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ABSTRACT

The fast-growing single-cell analysis community extends the horizon of quan-
titative analysis to numerous computational tasks. While the tasks hold vastly
different targets from each other, existing works typically design specific model
frameworks according to the downstream objectives. In this work, we propose a
general single-cell analysis framework by unifying common computational tasks
as posterior modeling problems. In light of conditional diffusion generative mod-
els, we introduce scDiff through the proposed framework and study different con-
ditioning strategies. With data-specific conditions, scDiff achieves competitive
performance against state-of-the-art in various benchmarking tasks. In addition,
we illustrate the flexibility of scDiff by incorporating prior information through
large language models and graph neural networks. Additional few-shot and zero-
shot experiments prove the effectiveness of the prior conditioner on scDiff .

1 INTRODUCTION

Recent advances in single-cell technology enable extensive computational tasks for quantitative un-
derstanding of underlying biological principles (Wen et al., 2022; Elmentaite et al., 2022; Heath
et al., 2016). Some typical examples of these tasks include cell-level classification (Ma & Pelle-
grini, 2020; Xu et al., 2021), missing value imputation (Eraslan et al., 2019; Huang et al., 2018) and
generalization to novel conditions (Hetzel et al., 2022; Roohani et al., 2023; Lotfollahi et al., 2019).
Existing works often design distinct frameworks for different tasks according to their objectives.
For example, cell type annotation algorithms (e.g., ACTINN (Ma & Pellegrini, 2020)), typically
model the class attributes with multi-class cross-entropy loss; single-cell imputation methods (e.g.,
DCA (Eraslan et al., 2019)) aim to recover the true counts from dropouts by specifying some prior
distribution; and perturbation prediction frameworks (e.g., GEARS (Roohani et al., 2023)) explicitly
model the change in expression between perturbed cells and control cells.

In this work, we provide a new perspective by formulating common single-cell tasks through the
lens of distribution modeling. While the tasks are derived from diverse biological perspectives, we
articulate that their objectives can be described as posterior distribution modeling problems under
task-specific conditions, as detailed in Section 2. For example, cell type annotation can be con-
sidered as classifying each cell to the cell type that maximizes the conditional likelihood of its
expression (Li et al., 2023); and imputation can be treated as drawing samples from the learned
posterior given the partially observed expression data. This perspective brings new opportunities
to single-cell analysis. It allows a general posterior modeling framework that enables us to handle
multiple single-cell analysis tasks with a single unified objective. In the meantime, many conditional
generative models can be plugged into the framework. However, it also introduces new challenges.
Within the framework mentioned above, the choice of the generative model plays a crucial role
in how well they can conduct downstream tasks (Dhariwal & Nichol, 2021). An expected model
would bring out accurate distribution estimation and high-quality sample generation. Meanwhile,
better conditioning strategies are desired to trade off the influence across different conditions.

To address the challenges mentioned above, we delve into diffusion generative models (DGMs).
DGMs have shown great successes in generation tasks since the introduction of denoising diffusion
probabilistic models (Ho et al., 2020), which are further extended to conditional scenarios through
classifier guidance (Dhariwal & Nichol, 2021) and classifier-free guidance (Ho & Salimans, 2021).
Various types of conditions have been applied to guide the DGMs, like image (Poole et al., 2022),
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text (Rombach et al., 2022; Kim et al., 2022b), and audio (Ruan et al., 2023; Leng et al., 2022).
Compared to class guidance, those approaches paved the way to guide DGMs with prior knowledge.
This flexibility allows us to construct the probabilistic modeling process through conditional DGMs
in single-cell analysis with internal and external information. We demonstrate that internal-guided
DGMs can match state-of-the-art performance in standard settings while prior knowledge enables
better transferability under zero-shot and few-shot settings. We summarize our main contributions
as follows:

• We present a general single-cell analysis framework by formulating various tasks as posterior
modeling problems. Through this framework, we introduce scDiff with a conditional DGM.

• We study the conditioning strategies of scDiff . With cell-label conditioning, scDiff achieves com-
petitive performance with state-of-the-art models in various benchmarking tasks.

• We incorporate prior knowledge with large language models (LLMs) and graph neural networks.
Experimentally, scDiff shows outstanding few-shot and zero-shot results.

2 A GENERAL POSTERIOR MODELING FRAMEWORK

In this section, we detail our proposed framework. Section 2.1 aims to formulate the various single-
cell tasks as posterior modeling questions. Section 2.2 introduces the background of conditional
DGMs and the structure of the scDiff .

2.1 SINGLE-CELL TASKS AS POSTERIOR MODELING

Single-cell analysis is a vast topic that involves a large number of computational and biological
tasks. While existing works provide novel and effective solutions for individual tasks, few can
address multiple challenges. A natural reason is that the tasks are quantifying distinct perspectives
of the underlying mechanisms. Hereafter, we will argue that many common tasks in single-cell
analyses amount to quantifying the cell identities given the biological context. In other words, we
are actually estimating the posterior distribution of the cells’ expression given specific conditions.

Formally, we denote the expression of all cells as X ∈ Rn×m, where n is the number of cells
and m stands for the number of genes. We categorize the common tasks into three classes: cell
labeling, expression completion and knowledge transfer. The notations for task-specific conditions
are detailed subsequently.

Cell labeling. One of the most critical single-cell tasks is to label cells by their expression. Specif-
ically, let us denote the labels as Clabel ∈ Rn, which can either be discrete (e.g., cell type) or
continuous (e.g., spatial cell type ratio). For the cell labeling task, we estimate the posterior of the
labels given the expression X. Inspired by Li et al. (2023), we formulate the posterior with the
Bayesian theorem

p (Clabel | X) =
p (Clabel) p (X | Clabel)

EClabel∼p
Clabel

[p (X | Clabel)]
=

p (X | Clabel)∫
p (X | Clabel) dClabel

, (1)

where we assume a uniform prior on the support of Clabel. Consequently, the problem shifts from
estimating label posterior to approximating expression posterior.

One representative task of cell labeling is cell type annotation, where the labels become the func-
tional types of the cells. The integration in the denominator of equation 1 then reduces to summation
on the classes. From the data perspective, the ground truth annotation is typically given by experts’
curations. Most existing works directly model the posterior of the labels with multi-class cross-
entropy loss. Another typical task is cell trajectory inference, where the labels become the devel-
opmental trajectories of biological progression through processes such as cell differentiation (Qiu
et al., 2022). Similar ideas can be extended to spatial transcriptomics. For example, for cell type
deconvolution, the labels become the ratios of cell types within each spot (Biancalani et al., 2021;
Ma & Zhou, 2022). More details can be found in Appendix A

Expression completion. A crucial category of single-cell analysis tasks is expression completion.
It includes both filling in missing values or predicting the whole expression. In some scenarios,
the task may require external information from reference datasets. To account for the majority of
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the settings, we denote the observed expression as M ⊙ X, where ⊙ denotes matrix element-wise
multiplication and M ∈ {0, 1}n×m is the element-wise indicator with ones be observed and zeros
be missing. The task is defined to estimate the posterior p((Jn,m−M)⊙X | M⊙X), where Jn,m

is an all-ones matrix of dimensions n×m. Equivalently, we write the objective as

p(X | M⊙X)1. (2)

In missing value imputation, the partially observed expression is produced by manually dropping
out none-zero counts (Eraslan et al., 2019; Van Dijk et al., 2018). The dropout mechanism can be
extended to molecular cross validation (Batson et al., 2019), where a continuous M ∈ [0, 1]n×m

becomes the element-wise dropout rate specified by the partition of molecules. When some genes
are completely unobserved, the objective shifts to missing gene imputation (Arisdakessian et al.,
2019; Biancalani et al., 2021). Specifically, in equation 2, the indicator matrix M = [Jn,s,On,m−s]
describes s seen genes and m − s unobserved genes, where On,m−s is an all-zeros matrix with
dimensions n × (m − s). In the multiomics setting, the previous formulation can be extended to
modality prediction tasks, where the objective is to predict the expression of the target modality
from source modality (Yang et al., 2021; Wu et al., 2021). We detail the formulation in Appendix A.

Knowledge transfer. While the exact condition control in single-cell experiments is both time-
consuming and resource-consuming, it is desired to have the computational method to transfer
known results to unseen conditions (Roohani et al., 2023; Hetzel et al., 2022). Let Cs be the source
condition set and Ct be the target condition set with Cs ∩ Ct = Ø, we aim to estimate the expres-
sion under target conditions. External reference conditions may also be included to enhance the
estimation with prior information. The knowledge transfer task can be formulated as:

Estimate p(X | Ct) given p(X | Cs). (3)

Common single-cell knowledge transfer tasks mainly focus on perturbation prediction, which in-
cludes predicting novel gene perturbation responses (Roohani et al., 2023), predicting novel drug
perturbation responses (Hetzel et al., 2022) and cell type transfer of perturbation (Lotfollahi et al.,
2019). Considering the first two tasks, prior knowledge is often needed to generalize to unseen
perturbation types. For the remaining task, we focus on only one type of perturbation and aim to
generalize the perturbation effect across cell types. Specifically, the training set contains both per-
turbed and control cells for the source cell types but only control cells for the target cell types, and
the model is expected to approximate the perturbed state of the target cell types.

A general objective. The objectives of the aforementioned tasks are to model the posterior distribu-
tion of the cells’ expression given task-specific conditions. Thus, a general objective can be formally
stated as:

p(X | C), where C ∈ C = {Clabel} ∪ {M⊙X} ∪ Cs. (4)
Without loss of generality, we write x as x0 on sample level. In the following section, we focus on
objective p(x0 | c) for one cell.

2.2 PRELIMINARY OF CONDITIONAL DIFFUSION MODEL

To model the posterior distribution, we delve into Diffusion generative models (DGMs). Following
the notations in denoising diffusion probabilistic models (DDPM) (Ho et al., 2020), we denote x1:T

as the latent variables that have the same dimension as x0. Utilizing the Bayesian theorem, we
model the posterior by a Markov chain:

pθ (x0 | c) =
∫
x1:T

pθ (x0:T | c) dx1:T ,where

pθ (x0:T | c) = p (xT )

T∏
t=1

pθ (xt−1 | xt, c) .

(5)

The above process (i.e., reverse process in DDPM) learns to recover the original data from Gaussian
white noise. Conversely, the forward process gradually corrupts data by adding Gaussian noise:

q (x1:T | x0) =

T∏
t=1

q (xt | xt−1) , q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, (6)

1Empirically we approximate the posterior via conditioning. See Appendix D.2.

3



Under review as a conference paper at ICLR 2024

	𝑥! 	𝑥!"#

perturbation 𝝍

… 𝑥!"#

cross-attention…

𝓓
𝓔

𝑥$

𝜖

	𝑄
	𝐾	𝑉

			𝑄
	𝐾	𝑉

	𝑄
	𝐾	𝑉𝝓𝑥!

text

cell types

…

𝝓: embedder

𝓓: decoder

𝝍: conditioner
𝓔	: encoder

	𝑥% 		𝑥&… …

Figure 1: An Overview of scDiff .

where {βt}Tt=1 is the variance schedule. Next, we detail the parameterization of the reverse pro-
cess. We empirically find that the widely-used predict-ϵ objective fails to recover the expression.
Since single-cell data often shows extreme sparsity with more than 95% of the entries as zeros, the
corrupted input at time-step t, i.e., xt, will mostly be pure noise. Under predict-ϵ parameterization,
the model would likely learn to reverse the noise schedule instead of modeling the data posterior.
Therefore, we turn to predict-x0 parameterization. Denote αt = 1 − βt and ᾱt =

∏t
s=1 αs, we

write the reverse process as:

pθ (xt−1 | xt, c) = N
(
xt−1;µθ (xt, c, t) , σ

2
t I

)
,where

µθ (xt, c, t) =
√
ᾱtxθ (xt, c, t) +

√
1− ᾱtϵ.

(7)

Due to the integral in equation 5, the data posterior is intractable. Alternatively, the parameters are
optimized by minimizing the variational lower bound (ELBO):

E [− log pθ (x0 | c)] ≤ Eq

[
− log

pθ (x0:T | c)
q (x1:T | x0)

]
. (8)

As detailed in Appendix B, we start from the ELBO and arrive at the simplified training objective:

Et,x0,ϵ

[∥∥x0 − xθ

(√
ᾱtx0 +

√
1− ᾱtϵ, c, t

)∥∥2] . (9)

2.3 scDiff MODEL ARCHITECTURE

We next introduce our scDiff model architecture, which is depicted in Fig 1. From a high level, scDiff
aims to recover the clean single-cell gene expression x0 given the corrupted signal xt with added
Gaussian noise to time step t. The associated conditions of the cell are also fed into the model to
provide conditional information. Specifically, scDiff follows a general encoder-decoder design and
consists of four main components: (1) input expression embedder ϕ; (2) various conditioners, ψ∗,
where each converts a specific condition of the input cell into a sequence of dense numerical vectors;
(3) a cross-attention encoder, E , which combines the input embeddings with the corresponding
conditioners and transforms them into the hidden representation of the input cell; and (4) a linear
decoder, D, that projects the hidden representation back to the gene expression space to recover the
input cell’s noise-free expression. We detail each component in the following.

Embedder. We use a linear mapping W ∈ Rm×d to project the noised gene expression xt ∈ Rm

into Rd and further mix it with the sinusoidal time embedding (Appendix C.1) to inject diffusion
time step information, following previous work (Ho et al., 2020).

ϕ(xt, t) = xtW + TimeEmbed(t). (10)

Conditioner. The goal of each conditioner is to extract a set of L numerical representations of an
input condition c, where L is the number of unique conditions. Among these representations, each is
used as the basis for the key and value embeddings in the cross-attention encoding step, as described
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in the next section. Formally, each conditioner ψf is a multilayer perceptron (MLP) that converts
the raw representation extracted by f into the final condition representation set2.

ψf (c) =
{
ψ
(i)
f (c)

}
i∈1,...,L

=
{

MLPi

(
f(c)

)}
i∈1,...,L

. (11)

where f ∈ F is a function that maps an input condition into a d dimensional vector and F is the set
of mappings. The mapping here can be designed to suit the specific needs of different input types,
including partially masked expression, class labels of cells and external prior information.

Context. A cell context is a randomly masked expression x̃ = m ⊙ x, where m ∈ {0, 1}m is the
element-wise mask indicator. We process the context condition similarly as the input embedding
using a linear projection, but without the time embedding: fctxt(x̃) = x̃Wctxt.

Class. We use learnable d dimensional embeddings to represent each class, fcls(c) = hc. The class
attribute is an important information of the input sample, and can be used to guide the diffusion
generation process (Ho & Salimans, 2021). In our case, class attributes can describe the cell type or
the perturbation state of a given cell.

The two conditioners above utilize internal information obtained from the given training data. How-
ever, effectively incoporating prior information into the model is the key to more generalizable and
transferable knowledge. We next describe two distinct approaches to incorporate prior knowledge
as examples to illustrate the extendability of the conditioners.

LLM. Besides encoding the cell type attribute using class embeddings, we can alternatively leverage
LLM to extract rich representations of different cell types using their textual descriptions. Specifi-
cally, the cell type definitions are first obtained from the cell ontology (Bard et al., 2005). We then
feed these descriptions into the pre-trained BioLinkBERT (Yasunaga et al., 2022) model, and use
the resulting class token embeddings as fLLM(c).

GEARS. Roohani et al. (2023) proposed a novel approach to encode gene perturbation information
using a graph neural network (GNN) on a gene similarity graph G. This graph is constructed such
that each edge represents the number of shared gene ontology terms (Ashburner et al., 2000) between
each pair of genes, which reflects their functional similarities. The gene perturbation embeddings are
then computed using simple graph convolution (SGC) (Wu et al., 2019), fGEARS(c) = SGC(c,G).
Encoder. Once the input embedding ϕ(xt, t) and the condition representations {ψf (c)}f∈F are
calculated, we combine them through multiple layers of cross-attention (Appendix C.3).

h(l+1) = CrossAttn(l)
(
h(l),

{
ψ
(l)
f (c)

}
f∈F

)
. (12)

Decoder. Finally, the cell latent embedding is linearly projected back to the gene expression space
to recover the clean expression signals x0. We follow Lopez et al. (2018) and mix in an additional
learnable batch embedding with the latent embedding according to the batch label of the input cell.
This approach can better disentangle the non-biological variations in the data.

D(h(L), cbatch) =
(
h(L) + BatchEmbed(cbatch)

)
Wd. (13)

Combining the above components, we summarize the full scDiff model in equation 14.

xθ(xt, c, t) = D
(
E
(
ϕ(xt, t), {ψf (c)}f∈F

))
. (14)

In Section 2.1 we establish a general objective in equation 4 by merging all the conditions into the
prior. Consequently, in the context of DGMs, distinct tasks share a common training objective and
necessitate varied inference directions. This facilitates a task-agnostic training process and diverse
task-specific inference processes. More details are elaborated in Appendix D.

3 RELATED WORK

We introduce some existing works that study generative models in single-cell analysis. A large pro-
portion of the single-cell generative models are variational autoencoders (VAEs). scVI (Lopez et al.,

2The only exception is the processing of the context embeddings, which we achieve by extracting the dif-
ferent hidden layers from a single MLP (Appendix C.2)
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2018) led the trend of VAEs with a negative binomial prior to the raw expression. scVI achieved
satisfactory integration results by explicitly incorporating library size and batch information in the
model. Including those conditions helps to regress out the technological variance within the latent
space. Many other existing works extended the design space of VAEs in single-cell analyes. sc-
VAE (Grønbech et al., 2020) incorporated a Gaussian-mixture latent space to model the underlying
clustering structure. scDHA (Tran et al., 2021) formed a hierarchical framework consisting of two
VAEs. In a broader application scenario, scGen (Lotfollahi et al., 2019) utilized the VAE structure
for out-of-distribution prediction, while scMM (Minoura et al., 2021) aimed at multiomics analysis
with a mixture-of-experts VAE model. Meanwhile, several existing works applied generative adver-
sarial networks (GANs) (Goodfellow et al., 2014) to single-cell analysis. cscGAN (Marouf et al.,
2020) incorporated a conditional GAN for data augmentation. scIGANs (Xu et al., 2020) adapted
GAN for single-cell imputation via generation. Despite existing works applying generative models
in single-cell analysis, they are typically designed for one or a few tasks. This fundamentally limits
their extendability to broader classes of problems.

4 EXPERIMENT

In this section, we conduct experiments to validate the effectiveness of scDiff . Statistics of datasets
(e.g., the number of genes, cells, and cell types) and preprocessing pipeline are summarized in
Appendix E.2. Through the experiments, we aim to answer the following research questions:

• RQ1: How does scDiff perform against the state-of-the-art with internal data-specific conditions?
• RQ2: Can scDiff extend to other application scenarios with external prior knowledge?

4.1 PERFORMANCE OF INTERNAL-CONDITIONED scDiff

To answer the first question, we choose one representative task from each of the three categories
in Section 2.1, i.e., cell type annotation, missing value imputation, and perturbation prediction for
novel cell type. It is worth noting that in this section, we implement scDiff with the same structure
across three representative tasks. More implementation details can be found in Appendix E.1.

4.1.1 CELL TYPE ANNOTATION

Experimental settings. Cell type annotation is one of the fundamental tasks in single-cell analy-
sis. We collect 6 benchmark datasets: PBMC12K (Zheng et al., 2017; Lopez et al., 2018), Pan-
creas (Luecken et al., 2022), HLCA (Sikkema et al., 2023), Immune (Domı́nguez Conde et al.,
2022), Brain (Seeker et al., 2023) and Liver (MacParland et al., 2018). We randomly hold out 10%
of the cells for each dataset as the test set and train all the models on the remaining cells. For scD-
iff , we annotate the cells by evaluating the mean square error between input expression and model
posterior in a classifier-free approach (Li et al., 2023). We elaborate on the details in Appendix D.1.
The classification results are quantified by the macro multi-class accuracy score and F1 score.

Baselines. We evaluate the performance of scDiff against the representative cell type annotation
methods. The baselines are listed as follows. CellTypist (Domı́nguez Conde et al., 2022) is an
automated tool for cell annotation based on logistic regression. SingleCellNet (Tan & Cahan, 2019)
utilizes random forest along with top pair transformation. ACTINN (Ma & Pellegrini, 2020) is a
three-layer MLP classifier. scANVI (Xu et al., 2021) is a variational autoencoder with auxiliary
classifiers. All the baselines are evaluated based on their default settings provided by the authors.

Experimental results. Table 1 illustrates the cell type annotation results, where we report the macro
accuracy scores with mean and standard deviation across five runs. Note that the colors in the result
table in this section refer to the performance rank within one dataset, which is depicted as first
place, second place, and third place. We highlight that scDiff achieves top performance in four
out of six datasets without explicitly training a classifier, which extends the results in (Li et al.,
2023). This observation offers a solid support for the proposed probabilistic modeling framework,
suggesting that well-established generative models can even outperform discriminative models in
the single-cell context. We include the macro F1 score results in Appendix E.3.

4.1.2 MISSING VALUE IMPUTATION

Experimental settings. Missing value imputation aims to recover the true expression levels from
the dropout events in sequencing (Hou et al., 2020). We choose three datasets, i.e., Jurkat, 293T,
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Table 1: Macro ACC of cell type annotation

PBMC12K Pancreas HLCA Immune Brain Liver

Chance level 0.4167 0.3353 0.1445 0.1125 0.4081 0.3064

SingleCellNet 0.8446 ± 0.0064 0.6436 ± 0.0006 0.8113 ± 0.0046 0.7752 ± 0.0009 0.8768 ± 0.0033 0.8723 ± 0.0023
ACTINN 0.6141 ± 0.0709 0.5277 ± 0.0926 0.2176 ± 0.0440 0.2361 ± 0.0300 0.6950 ± 0.0624 0.6138 ± 0.0349
scANVI 0.9297 ± 0.0148 0.9632 ± 0.0083 0.7081 ± 0.0183 0.8505 ± 0.0133 0.9325 ± 0.0010 0.9084 ± 0.0144
CellTypist 0.8828 ± 0.0055 0.8816 ± 0.0011 0.7762 ± 0.0079 0.8217 ± 0.0020 0.9011 ± 0.0031 0.7642 ± 0.0132

scDiff 0.9670 ± 0.0042 0.9680 ± 0.0143 0.8931 ± 0.0070 0.8442 ± 0.0076 0.9473 ± 0.0074 0.8439 ± 0.0042

and PBMC1K, from Hou et al. (2020). For evaluation purposes, existing works typically create
the corrupted matrix by dropping out some non-zero entries. Specifically, we follow the setting
of DCA (Eraslan et al., 2019) and MAGIC (Van Dijk et al., 2018) to mimic the dropout events
by masking 10% of the none-zero counts to zeros, where the masking probability is given by the
exponential distribution. We evaluate the imputation performance based on the Pearson correlation
between the prediction and ground truth on masked entries.

Baselines. We choose the following top-performing baselines according to Hou et al. (2020).
DCA (Eraslan et al., 2019) parameterizes negative binomial distribution with an autoencoder.
MAGIC (Van Dijk et al., 2018) is a graph imputation method based on Markov affinity. ALRA (Lin-
derman et al., 2022) imputes zero counts with low-rank matrix approximation. scVI (Lopez et al.,
2018) utilizes a variational autoencoder to approximate negative binomial distribution with cell con-
ditions. SAVER (Huang et al., 2018) estimates the parameters of negative binomial distribution with
Poisson LASSO regression. All the baselines are implemented with default settings.

Experimental results. The results are illustrated in Table 2a with standard deviation across five
runs, where the best result in each dataset is highlighted in bold. We observe that scDiff and MAGIC
bring out similar performance on Jurkat and 293T, while scDiff outperforms the others on PBMC1K.
Meanwhile, scDiff delivers significant performance gain compared to the other generative model
scVI. This highlights the capability of scDiff to recover the true expression from dropout events.

Table 2: Results of imputation and perturbation prediction.

(a) Pearson correlation of imputation.

Jurkat 293T PBMC1K

ALRA 0.8070 ± 0.0001 0.7862 ± 0.0001 0.6693 ± 0.0003
SAVER 0.7898 ± 0.0002 0.7735 ± 0.0003 0.7143 ± 0.0009
MAGIC 0.8249 ± 0.0001 0.8103 ± 0.0001 0.7693 ± 0.0001
scVI 0.7285 ± 0.0013 0.7149 ± 0.0007 0.6222 ± 0.0013
DCA 0.8189 ± 0.0002 0.8040 ± 0.0002 0.7547 ± 0.0007

scDiff 0.8228 ± 0.0001 0.8110 ± 0.0002 0.7743 ± 0.0003

(b) Squared Pearson correlation of change in expres-
sion on top 100 differential expressed genes.

Salmonella H.poly PBMC

CPA 0.0756 ± 0.0558 0.2582 ± 0.1562 0.0742 ± 0.0235
Vec 0.8777 ± 0.0081 0.8606 ± 0.0063 0.8346 ± 0.0008
PCA-Vec 0.8752 ± 0.0058 0.8615 ± 0.0050 0.8350 ± 0.0007
CVAE 0.8605 ± 0.0095 0.8964 ± 0.0146 0.9194 ± 0.0149
scGen 0.8568 ± 0.0186 0.9115 ± 0.0060 0.9271 ± 0.0098

scDiff 0.9318 ± 0.0074 0.9169 ± 0.0160 0.9435 ± 0.0155

4.1.3 PERTURBATION PREDICTION FOR NOVEL CELL TYPE

Experimental settings. Previous tasks intend to assess how well the model can approximate the pos-
terior given conditions. On the contrary, the perturbation prediction task requires the model to gen-
eralize to novel combinations of conditions. Following scGen (Lotfollahi et al., 2019), we include
three datastes, i.e., Salmonella (Haber et al., 2017), H.poly (Haber et al., 2017) and PBMC Kang
et al. (2018). Each dataset contains eight different cell types and two perturbation states (perturbed
and control). During training, the model is given the full dataset except for the perturbed cells of
one cell type, which are held out for testing. Then, the model generates the unseen perturbed cells’
expressions for the held-out cell type in the testing stage. The evaluation metric is based on changes
in expression between perturbed and control cells. We aggregate the expression of a given condi-
tion by calculating the mean expression across cells. The changes in expression are given by the
difference between perturbed and control of the held-out cell type in the mean expression. Squared
Pearson correlation is calculated among the top 100 differential expressed genes.

Baselines. For evaluation purposes, we implement existing baselines and benchmark their perfor-
mance. scGen (Lotfollahi et al., 2019) is a variational autoencoder combined with latent space vector
arithmetics. Along with scGen, we also include some baselines mentioned in Lotfollahi et al. (2019),
i.e., a conditional variational autoencoder (CVAE), vector arithmetics on expression space (Vec) and
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Figure 2: Macro accuracy score of one-shot cell type annotation.

vector arithmetics in the latent space of principal component analyses (PCA-Vec). In addition, we
include CPA (Lotfollahi et al., 2023), which is an autoencoder with disentangled latent space.

Experimental results. We summarize the results in Table 2b, where the bold numbers represent
the top performance of each dataset. Remarkably, scDiff outperforms all baselines on all datasets.
These results highlight that scDiff shows superior generalizability to novel conditions compared
to the baseline counterparts. Consequently, scDiff shows great potential in single-cell applications
where condition transfer is needed.

4.2 PERFORMANCE OF EXTERNAL-CONDITIONED scDiff

In Section 4.1, we evaluated scDiff in three representative tasks where all individual conditions
are observed. In practice, we may encounter extreme cases when only a few or even no labeled
samples are available for the query conditions. Given only the internal information, the few-shot or
zero-shot settings are challenging, if not intractable. Here, we showcase ways to extend scDiff by
incorporating prior information as external conditions to enable the handling of unseen conditions.
To test the performance of scDiff under these settings, we conduct experiments with one-shot cell
type annotation and zero-shot gene perturbation prediction.

4.2.1 ONE-SHOT CELL TYPE ANNOTATION

While some rare cell types play a crucial role in particular researches (Khalilia et al., 2011), accu-
rately annotating them is incredibly challenging because of the limited availability of labeled sam-
ples (Jindal et al., 2018). Under the few-shot setting, prior information on cell types would signifi-
cantly enhance the model. The cell ontology provides a comprehensive vocabulary and definitions
of different cell types written in natural language, which can be readily encoded by LLMs into em-
beddings. We use BioLinkBERT (Yasunaga et al., 2022) as the backbone LLM since it is specifically
trained on the biomedical corpuses. We extracted textual descriptions of all cell types from the cell
ontology terms that appeared in our datasets except for the mucus-secreting cell (CL:0000319) and
pulmonary artery endothelial cell (CL:1001568). For these two terms, we utilize GPT4 (OpenAI,
2023) to depict their descriptions given available definitions as query contexts.

Experimental settings. For the six datasets in Section 4.1.1, we use the four datasets from CEL-
LxGENE (Megill et al., 2021) since they come with manually annotated cell ontology terms. To
mimic the rare samples setting, we simulate an extreme one-shot scenario. Particularly, for a spe-
cific dataset, we refer to the cell types that contain more cells than a threshold as majority types and
the remaining as minority types. We randomly sample one cell per type from the minority types as
the one-shot set, and the rest of the cells in minority types are used for evaluation. scDiff is first pre-
trained on all cells in majority types and then fine-tuned on the one-shot set for 50 epochs. Similar
to the evaluation in Section 4.1.1, we calculate the macro average of the multi-class accuracy score
and F1 score for performance comparison. More details can be found in Appendix E.4.

Experimental results. We summarize the results in Fig. 2, where we increase the number of cell
types by gradually adding target cell types from top to bottom in the descending order of their
original cell counts. We directly train a CellTypist (Domı́nguez Conde et al., 2022) on the one-shot
set to provide a reference of the macro accuracy scores. Notably, the LLM variant of scDiff shows
performance gain against the class-conditioned scDiff on three out of four datasets. The conclusion
can be drawn from the results that utilizing BioLinkBERT in scDiff -LLM enhances the model in the
one-shot setting. More results and analysis are in Appendix E.4.
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4.2.2 NOVEL GENE PERTURBATION PREDICTION

Understanding the transcriptional responses to genetic perturbations is a crucial step towards delin-
eating the regulatory circuits in the biological system (Jaitin et al., 2016; Sachs et al., 2005). Its
realization has many vital applications in translational medicine and health science (Réda et al.,
2020). However, exhaustively screening all possible genetic perturbations is impractical, given the
high cost of such experiments. Here, we follow GEARS (Roohani et al., 2023) and leverage scDiff
to predict the effects of novel gene perturbations. Under such zero-shot setting, we incorporate bio-
logical prior for the unseen genes by adapting the gene ontology-based graph neural network from
GEARS, as detailed in Section 2.2.
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Figure 3: Gene perturbation perfor-
mance comparison.

Experimental settings. To access the zero-shot gene per-
turbation prediction performance, we follow the setting of
GEARS by holding out part of the perturbations as the test
set. We include two one-gene perturbation datasets (Adam-
son et al., 2016; Dixit et al., 2016) and a two-gene per-
turbation dataset (Norman et al., 2019). To be consistent
with GEARS, we use the same metrics, i.e., Pearson corre-
lation of change in expression (Delta Pearson Correlation)
and mean squared error of change in expression on top 20
differential expressed genes (MSE Top 20 DE).

Experimental results. The results are illustrated in Fig. 3.
We observe that scDiff outperforms GEARS among all the
metrics and datasets except the MSE on Norman3. In addi-
tion, scDiff presents more stable results with smaller vari-
ance across five runs. This observation indicates that the
core components of GEARS can be readily adapted to scD-
iff as a conditioner without any modification. The numeric
results are summarized in Appendix E.5.

5 CONCLUSION

In this work, we have unified common single-cell tasks with a posterior modeling framework. Sub-
sequently, we developed scDiff using a conditional diffusion generative model to approximate the
posterior. scDiff showed decent performances in diverse single-cell benchmarking tasks using a sin-
gle training objective. More importantly, the proposed scDiff is versatile and accommodates various
conditioning strategies. As two showcases, we incorporated prior information with large language
models and graph neural networks. Our results demonstrated that scDiff successfully leveraged this
prior information through conditioning. Together, our work paves the way for diffusion genera-
tive models in single-cell analysis, ultimately accelerating the development from health science to
therapeutic discovery.

Future work and limitation. The flexibility of scDiff enables extensive conditioning strategies.
Besides LLMs and GNNs, we can enhance scDiff with other guidance methods, like CLIP (Radford
et al., 2021; Kim et al., 2022b). In addition, the proposed probabilistic framework can be promptly
extended to multiomics or multi-modality tasks. A natural future direction is to explore the possibil-
ity of scDiff in spatial transcriptomic. There, histological images can also be used as an additional
condition, further opening up the possibilities in single cell analyses such as predicting gene expres-
sion from histology (Shmatko et al., 2022). On the other hand, there are intrinsic limitations of the
current framework. Particularly, representation learning plays a crucial role in several single-cell
tasks, such as single-cell integration (Luecken et al., 2022). Yet, scDiff at its current form still needs
further adaptation to accommodate those tasks. With recent works in vision (Preechakul et al., 2022;
Kim et al., 2022a), a promising future direction of scDiff is meaningful representation learning.

3We directly copied GEARS’ performance on the Dixit dataset from the manuscript due to reproducibility
issues (Appendix E.5)
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A FURTHER DETAILS OF SINGLE-CELL TASKS

Cell type deconvolution is to estimate the proportions of different cell types within mixed-cell
spatial transcriptomics data. Due to the nature of the spatial transcriptomics profiling technologies,
the true cell type compositions are unknown. This task typically requires some external reference,
in most cases using annotated scRNA-seq data as a reference (Biancalani et al., 2021; Cable et al.,
2022; Ma & Zhou, 2022).

Modality prediction aims to estimate expression levels of target modality from the input modality.
As in equation 2, let X = [Xsource,Xtarget] be the concatenation of measures of source modality
Xsource ∈ Rn,ms and target modality Xtarget ∈ Rn,mt , then the indicator matrix can be written as
M = [Jn,ms ,On,mt ], where ms and mt are the number of source genes and target genes. Note that
for ease of notation, we present the above formulation assuming that the two modalities have the
same number of cells, which can be readily satisfied by appending all-zeros samples.

B PARAMETERIZATION DETAILS

As described in DDPM (Ho et al., 2020), the ELBO in equation 8 can be written as:
Eq[DKL (q (xT | x0) ∥p (xT ))︸ ︷︷ ︸

LT

+
∑

t>1DKL (q (xt−1 | xt,x0) ∥pθ (xt−1 | xt, c))︸ ︷︷ ︸
Lt−1

− log pθ (x0 | x1, c)︸ ︷︷ ︸
L0

].

(15)
Following Rombach et al. (2022), the posterior mean in equation 7 has the form:

µθ (xt, t) =

√
ᾱt(1− ᾱt−1)√
ᾱt−1(1− ᾱt)

xt +

√
ᾱt(1− ᾱt−1

ᾱt−1
)

1− ᾱt
xθ (xt, t) . (16)

Replacing xt with
√
ᾱtx0 +

√
1− ᾱtϵ, the KL divergence term Lt−1 simplifies to:

Ex0,ϵ

[
1

2
(

ᾱt−1

1− ᾱt−1
− ᾱt

1− ᾱt
)
∥∥x0 − xθ

(√
ᾱtx0 +

√
1− ᾱtϵ, c, t

)∥∥2] . (17)

Since the term LT has no trainable parameters, the complete training objective becomes:
T∑

t=1

Ex0,ϵ

[
1

2
(

ᾱt−1

1− ᾱt−1
− ᾱt

1− ᾱt
)
∥∥x0 − xθ

(√
ᾱtx0 +

√
1− ᾱtϵ, c, t

)∥∥2] . (18)

Apply the simplification process described in DDPM, the training objective reduces to equation 9
by ignoring the weights of every time-step.
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C FURTHER DETAILS OF scDiff

C.1 SINUSOIDAL TIME EMBEDDING

In equation 10, we implement sinusoidal time embedding as:

TimeEmbed[t,i] =


sin

(
(t/T)2i/d

)
if 1 ≤ i ≤ ⌊d/2⌋

cos
(
(t/T)2i/d

)
otherwise

(19)

C.2 CONTEXT EMBEDDING PROCESSING
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Figure 4: Illustration of context conditioner.

As illustrated in Fig. 4, unlike the parallel processing done with parallel MLP for other conditioners
mentioned in section 2.2, the masked gene expression context conditioner ψfctxt extracts the hidden
representations within a single MLP. Formally,

ψ
(l)
fctxt

(x̃) = MLP[1:(L−l+1)]
ctxt (x̃), (20)

where MLP[1:(L−l+1)]
ctxt is the output of the MLP at the lth last layer. Subsequently, the processed

condition embeddings are fed into the cross-attention blocks in reverse, where the highly processed
context embeddings are first mixed with the raw input embeddings. This reversed mixing approach
is inspired by the similar design of the DiffMAE model (Wei et al., 2023), where the masked and
visual patches are mixed in reversed order. We found that, empirically, using the reversed mixing
strategy leads to better reconstruction of the gene expression (x0 predictions) during training, as
opposed to using the multihead MLP processing.

C.3 CROSS-ATTENTION

We specify the cross-attention in equation 12 as:

CrossAttn(h, {zi}i) = FFN
(∑

i

exp(hWkz
⊤
i )∑

j exp(hWkz⊤j )
ziWv

)
. (21)

The feed-forward network (FFN) can be formulated as:
FFN(z) = GELU

(
LayerNorm(z)W1 + b1

)
W2 + b+ z. (22)

D TASK-AGNOSTIC TRAINING AND TASK-SPECIFIC INFERENCE

In Section 2.1, we formulate all the tasks as posterior modeling questions. Subsequently, scDiff can
handle multiple downstream tasks with the same trained model through diverse inference processes,
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provided that the required condition type is embedded in the model. This allows us to unify the
training process of all the tasks by consolidating all conditions into the prior. While the available
conditions are determined by the datasets rather than the tasks, we term the training process of scDiff
as data-centric training, or equivalently, task-agnostic training. Specifically, for a given dataset, we
gather all conditions, including cell types, cell batch labels, cell context, and, if available, perturba-
tion status. Along with diffused expression, all the conditions are then fed into scDiff to recover the
clean expression with the training objective in equation 9. In the following sections, we present the
details of the task-specific inference stage.

D.1 CELL TYPE ANNOTATION

Li et al. (2023) introduced a density estimation approach to probe the class prediction of an input
sample out of the diffusion model. The core idea of the method lies in evaluating the prediction error
of the input x0 at various time steps t given different conditions c. Consequently, the condition that
leads to the smallest noise prediction error is taken as the prediction of the input sample. Here, we
adapt this approach to the predict-x0 scenario. Recall that the posterior for a discrete class variable
c can be described as

pθ (ci | x) =
p (ci) pθ (x | ci)∑
j p (cj) pθ (x | cj)

=
pθ (x | ci)∑
j pθ (x | cj)

, (23)

assuming a uniform prior over {ci}. Since the data posterior is intractable for the diffusion models,
we replace pθ (x | ci) with the exponential of negative simplified training objective

pθ (ci | x) =
exp

{
−Et,x0,ϵ

[∥∥x0 − xθ

(√
ᾱtx0 +

√
1− ᾱtϵ, ci

)∥∥2]}∑
j exp

{
−Et,x0,ϵ

[∥∥x0 − xθ

(√
ᾱtx0 +

√
1− ᾱtϵ, cj

)∥∥2]} . (24)

An unbiased estimation of the simplified training objective can be obtained by Monte Carlo esti-
mation. This can be done by repeatedly sampling t from uniform distribution U [1, 1000], ϵ from
standard Gaussian, and calculating

N∑
i=1

∥∥x0 − xθ

(√
ᾱtx0 +

√
1− ᾱtϵ, ci

)∥∥2 , (25)

where N is the number of Monte Carlo samples. In practice, we follow Li et al. (2023) and use 5
equally spaced-out time-steps between 0 and T .

D.2 MISSING VALUE IMPUTATION

In the imputation setting, it is important to note that there is a gap between the generated samples
and the missing values. We incorporate cell context as a condition during the training stage to model
the posterior of the training data. In the inference stage, we approximate the missing values by
sampling from the distribution of training data conditioned on the visible values. Empirically we
find out that this is a good approximation of the imputation task.

D.3 PERTURBATION PREDICTION

We apply a similar inference strategy in perturbation prediction tasks for novel cell types and novel
gene perturbations. In both scenarios, scDiff is trained on the existing conditions in the training set,
and the task objective is to generate samples from query conditions.

In the case of novel cell types, we aim to predict the expression of a hold-out cell type under pertur-
bation. During the training stage, scDiff has seen the perturbed state of other cell types. The query
condition in the testing set is the combination of held-out cell type and positive perturbation status.

In the context of novel gene perturbation, the query conditions involve novel types of gene per-
turbations that are excluded from the training set. In such a zero-shot scenario, we incorporate
GEARS (Roohani et al., 2023) conditioner to provide prior information about the query conditions
for scDiff .
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E EXPERIMENTAL SETTINGS AND RESULTS

E.1 IMPLEMENTATION DETAILS

We used a unified scDiff model architecture throughout the paper for different tasks. We train a
new model from scratch for each task on each dataset except for the few-shot annotation setting.
The only changing parts across tasks are the number of epochs, and the base learning rate of the
optimizer (Table 3). These two choices are adjusted according to the sizes of the particular dataset.

Architecture We used six layers of cross-attention blocks to encode the cell latent representations.
Accordingly, each conditioner ψf is a collection of six MLPs. We set the latent dimension to 512 and
used 8 stacking attention heads. More specifically, each attention head is 64 dimensional, and we
combine outputs from all the attention heads by concatenating them into a 512 dimensional vector.

Optimizer We used the decoupled Adam (AdamW) (Loshchilov & Hutter, 2018) to optimizer the
model’s parameter. The learning rate is computed by scaling the base learning rate with the batch
size, learning rate = base learning rate × batch size. We use batch size of 2048 throughout the
experiments.

Table 3: Task specific hyperparameter settings and the choice of conditioners enabled. † indicates
that the LLM conditioner can be optionally turned on to replace the cell-type class conditioner.

Conditiners
Max epochs Base Learning Rate Context Cell type Perturb state Gene perturbation LLM

Denoising Jurkat 3000 1.00e-8 ✓ ✓
293T 3000 1.00e-8 ✓ ✓
PBMC1K 3000 1.00e-8 ✓ ✓

Annotation PBMC12K 2000 1.00e-8 ✓ ✓
Pancreas 2000 1.00e-8 ✓ ✓
HLCA (subset) 2000 1.00e-8 ✓ ✓ †
Immune (subset) 2000 1.00e-7 ✓ ✓ †
Brain 2000 1.00e-8 ✓ ✓ †
Liver 2000 1.00e-8 ✓ ✓ †

Perturbation Salmonella 1000 1.00e-8 ✓ ✓ ✓
HPoly 1000 1.00e-8 ✓ ✓ ✓
PBMC 1000 5.00e-9 ✓ ✓ ✓

Gene Pert Adamson 50 1.00e-8 ✓ ✓ ✓
Norman 100 1.00e-8 ✓ ✓ ✓
Dixit 150 1.00e-8 ✓ ✓ ✓

E.2 DATASETS

For all the datasets, we applied the standard preprocessing pipeline: filtering out all-zero genes and
cells, library size normalization with target sum = 10, 000, and then logarithm normalization. We
summarize the information of all processed datasets in Table 4.

Table 4: Summary of datasets

Dataset # cells # genes # batchs # cell types # conditions Reference Link

Denoising Jurkat 3,258 12,635 – – – Zheng et al. (2017); Hou et al. (2020) 10x Genomics
293T 2,885 13,555 – – – Zheng et al. (2017); Hou et al. (2020) 10x Genomics

PBMC1K 1,087 12,811 – – – Hou et al. (2020) 10x Genomics

Annotation PBMC12K 11,990 3,254 2 9 – Zheng et al. (2017); Lopez et al. (2018) scvi-tools
Pancreas 16,382 16,587 9 14 – Luecken et al. (2022) Open Problems

HLCA (subset) 58,484 28,024 166 47 – Sikkema et al. (2023) CELLxGENE
Immune (subset) 32,964 20,661 12 33 – Domı́nguez Conde et al. (2022) CELLxGENE

Brain 45,528 26,469 20 14 – Seeker et al. (2023) CELLxGENE
Liver 8,444 22,461 5 13 – MacParland et al. (2018) CELLxGENE

Perturbation Salmonella 5,010 15,215 2 8 2 Lotfollahi et al. (2019); Haber et al. (2017) GSE92332
HPoly 5,951 15,215 2 8 2 Lotfollahi et al. (2019); Haber et al. (2017) GSE92332
PBMC 17,082 15,109 3 8 2 Lotfollahi et al. (2019); Kang et al. (2018) GSE96583

Gene Perturbation Dixit 44,735 5,012 – – 20 Roohani et al. (2023); Dixit et al. (2016) GSE90063
Adamson 68,603 5,060 – – 87 Roohani et al. (2023); Adamson et al. (2016) GSE90546
Norman 91,205 5,045 – – 284 Roohani et al. (2023); Norman et al. (2019) GSE133344
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E.3 CELL TYPE ANNOTATION

We present the macro F1 scores of the cell-type annotation task in Tabke 5. It implies the same
conclusion that scDiff outperforms the baselines in four out of six datasets.

Table 5: Macro F1 score of cell type annotation

PBMC12K Pancreas HLCA Immune Brain Liver

CellTypist 0.9081 +/- 0.0029 0.8946 +/- 0.0013 0.8253 +/- 0.0068 0.8523 +/- 0.0013 0.9229 +/- 0.0023 0.8001 +/- 0.0080
SingleCellNet 0.8789 +/- 0.0062 0.6489 +/- 0.0006 0.8449 +/- 0.0052 0.8045 +/- 0.0008 0.9047 +/- 0.0032 0.8889 +/- 0.0020
ACTINN 0.6243 +/- 0.0790 0.5307 +/- 0.1023 0.1955 +/- 0.0456 0.1988 +/- 0.0370 0.6865 +/- 0.0760 0.6174 +/- 0.0374
scANVI 0.9107 +/- 0.0089 0.8738 +/- 0.0269 0.6119 +/- 0.2285 0.8227 +/- 0.0204 0.8094 +/- 0.0152 0.8352 +/- 0.0131

scDiff 0.9485 +/- 0.0062 0.9626 +/- 0.0089 0.8949 +/- 0.0057 0.8193 +/- 0.0106 0.9534 +/- 0.0065 0.8663 +/- 0.0100

E.4 FEW-SHOT CELL TYPE ANNOTATION

Table 6: Dataset statistics of few-shot annotation

threshold # pre-train cell types # pre-train cells

Brain 3000 6 43750
Liver 600 5 4613
HLCA 1000 14 49279
Immune 1000 14 16969

On each dataset, we split the set of cells C into two sets: majority set Cmajority and minority set
Cminority. The majority set Cmajority consists of cells from the majority cell types that contain
more cells than the threshold, while the remaining cells form the minority set Cminority. In the
one-shot setting, we randomly sample one cell from each type in Cminority to form the one-shot set
Cone. scDiff is pre-trained on Cmajority for 1000 epochs with the base learning rate as 1e− 8 and
fine-tuned on Cone for 50 epochs, as mentioned in Section 4.2.1. We evaluate the performance of
scDiff on the remaining part of minority set Cminority − Cone. Similarly, for the few-shot setting,
we increase the number of cells per type sampled from the minority set Cminority. We summarize
the statistics of the datasets used in few-shot cell type annotation in Table 6.

We illustrate the macro F1 score of one-shot cell type annotation in Fig. 5. Note that there is a
significant drop of performance when the number of cell types reaches 5 in Liver dataset. The
fifth cell type is B cell, and we observe that plasma cell have been included as the third cell type.
Since B cells and plasma cells are from lymphocyte of B lineage (Hoffman et al., 2016), their gene
expression levels are similar to each other. In the one-shot setting, two cells from different cell types
share similar expression measurements, which will obscure the model. This observation reveals one
drawback of diffusion classifier: it becomes increasingly challenging for diffusion classifier when
the distributions of different classes are indistinguishable.
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Figure 5: Macro F1 score of one-shot cell type annotation.

We summarize the macro accuracy score of few-shot cell type annotation in Fig. 6 and the macro
F1 score in Fig. 7. We fix the number of target cell types to 5. In Brain and Immune, LLM-guided
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scDiff shows significant performance gain against class-guided scDiff . In the other two datasets, the
two variants of scDiff achieve comaprable performance.
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Figure 6: Macro accuracy score of few-shot cell type annotation on top 5 cell types.
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Figure 7: Macro F1 score of few-shot cell type annotation on top 5 cell types.

E.5 NOVEL GENE PERTURBATION PREDICTION

Table 7: Gene perturbation performance comparison.

Dataset Adamson Dixit Norman

GEARS Corr Delt ↑ 0.4869 +/- 0.0890 0.6191 +/- 0.1156 0.4018 +/- 0.0719
MSE DE 20 ↓ 0.3169 +/- 0.1103 0.0319 +/- 0.0068 0.3583 +/- 0.0802

scDiff Corr Delt ↑ 0.6269 +/- 0.0820 0.7483 +/- 0.0922 0.4702 +/- 0.0280
MSE DE 20 ↓ 0.2709 +/- 0.0187 0.0106 +/- 0.0041 0.4238 +/- 0.0175

We used the official GEARS code base4 to reproduce the performance on the three benchmarking
datasets. We need to rerun the experiments because the data splits used from the original paper were
not published. Thus, directly comparing our results with the reported metrics from the GEARS
paper is infeasible. We obtained results comparable with the reported scores from the paper for
the Adamson and Norman datasets. However, we cannot produce reasonable results for the Dixit
dataset and have obtained negative Pearson correlations. Thus, we decided to directly copy the
reported metrics for Dixit rather than using the doubtful results.

E.6 ABLATION STUDIES

We present the ablation studies in the annotation task regarding the number of layers in the embedder
and decoder, adding residual connection and removing cross-attention. The results are summarized

4https://github.com/yhr91/GEARS_misc/tree/6d34e646fc878f897625dc4d5cc10c30234aace4
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Table 8: Macro accuracy score of ablation studies on annotation.

Brain HLCA Immune Liver Pancreas PBMC12K

Default 0.9473 +/- 0.0074 0.8931 +/- 0.0070 0.8442 +/- 0.0076 0.8439 +/- 0.0042 0.9680 +/- 0.0143 0.9670 +/- 0.0042

Decoder
2-layer 0.9445 +/- 0.0041 0.8911 +/- 0.0042 0.8444 +/- 0.0070 0.8589 +/- 0.0238 0.9735 +/- 0.0023 0.9700 +/- 0.0045
3-layer 0.9378 +/- 0.0017 0.8994 +/- 0.0038 0.8383 +/- 0.0112 0.8062 +/- 0.0216 0.9731 +/- 0.0014 0.9701 +/- 0.0029
4-layer 0.9409 +/- 0.0064 0.8989 +/- 0.0037 0.8414 +/- 0.0051 0.8199 +/- 0.0185 0.9763 +/- 0.0011 0.9744 +/- 0.0002

Embedder
2-layer 0.9394 +/- 0.0029 0.8857 +/- 0.0089 0.8424 +/- 0.0061 0.8434 +/- 0.0239 0.9720 +/- 0.0011 0.9667 +/- 0.0039
3-layer 0.9512 +/- 0.0048 0.8847 +/- 0.0053 0.8358 +/- 0.0081 0.8447 +/- 0.0224 0.9745 +/- 0.0026 0.9672 +/- 0.0039
4-layer 0.9434 +/- 0.0048 0.8927 +/- 0.0018 0.8461 +/- 0.0014 0.8423 +/- 0.0100 0.9742 +/- 0.0012 0.9606 +/- 0.0036

General
U-Net residual 0.9456 +/- 0.0047 0.8959 +/- 0.0050 0.8502 +/- 0.0075 0.8399 +/- 0.0103 0.9693 +/- 0.0014 0.9644 +/- 0.0021

No cross attention 0.9376 +/- 0.0019 0.8870 +/- 0.0012 0.8318 +/- 0.0028 0.8456 +/- 0.0054 0.9722 +/- 0.0000 0.9608 +/- 0.0042
Remove diffusion 0.5513 +/- 0.1390 0.1487 +/- 0.0313 0.1233 +/- 0.1661 0.1525 +/- 0.0214 0.3749 +/- 0.0627 0.5939 +/- 0.1144

Table 9: Pearson correlation of ablation studies on imputation.

Jurkat 293T PBMC1K

scDiff 0.8228 +/- 0.0001 0.8110 +/- 0.0002 0.7743 +/- 0.0003
Remove diffusion 0.7833 +/- 0.0021 0.7674 +/- 0.0014 0.7439 +/- 0.0004

in Table 8, where we report the accuracy across all the annotation datasets. We will elaborate on our
motivation for the current model structure according to the results.

The autoencoder structure has shown great success in single-cell analysis (Lopez et al., 2018; Eraslan
et al., 2019). Following the existing works (Gong et al., 2023; He et al., 2022), we build our model
with a relatively heavy 6-layer encoder and a light 1-layer decoder. Before the encoder, we utilize
an embedder to project the input expression into the embedding space. In the encoder, we wish to
inject the prior information through different conditions into the expression embeddings, where we
choose the cross-attention mechanism due to performance concerns. We extract the embeddings of
conditions through various conditioners and feed them into the key and value of the cross-attention
blocks. The embedder serves as a projection from expression space to embedding space, while the
decoder reverses this process. We empirically observed that a 1-layer neural network is sufficient
for such transformation. We note that the model structure has not been optimized for downstream
tasks. Tricks like adding U-Net style residual connections can still improve the performance.

We also include the ablation study of removing the diffusion process for annotation and imputation
in Table 8 and Table 9, respectively. In this experiment, we retain the model structure in both tasks.
Annotation is achieved by selecting the class that minimizes the reconstruction error of the posterior,
while we impute the missing values through 1-step prediction from the visible entries. We observe
that removing the diffusion process results in a significant performance drop in both tasks, indicating
that the diffusion process serves as a crucial part of the proposed probabilistic modeling framework.

E.7 COMPUTATION EFFICIENCY

Table 10: Per-epoch training run time in seconds.

Dataset scDiff Baseline Baseline name

Annotation

Brain 9.63 9.82 scANVI
HLCA 13.6 12.73 scANVI

Immune 5.28 8.86 scANVI
Liver 2.83 2.97 scANVI

Pancreas 5.05 14.37 scANVI
PBMC12K 2.04 3.31 scANVI

Denoising
293T 0.8847 0.53 DCA
Jurkat 0.5736 0.6 DCA

PBMC1K 0.2634 0.16 DCA

Perturbation
HPoly 1.96 1.83 scGEN
PBMC 3.16 3.53 scGEN

Salmonella 1.58 1.81 scGEN

Gene Perturbation
Adamson 83.88 1189.66 GEARS

Dixit 44.67 760.7 GEARS
Norman 155.88 491.97 GEARS
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We note that scDiff has a computational complexity that is nearly the same as a standard MLP. In
Table 10, we report the per-epoch computation time for scDiff against standard baselines for all our
benchmarking tasks. It is crucial to acknowledge that diffusion models inherently demand a rela-
tively longer time during the inference stage compared to other generative models. In our empirical
observations, we find that the inference time of scDiff is negligible compared to the training time.
Therefore, our emphasis is placed on training speed.

From the table, we observe that in all cases, scDiff has comparable per-epoch runtime as the base-
lines, especially for MLP-based ones (scANVI, DCA, and scGEN). Referring to the model structure
of scDiff , the central backbone of it comprises the cross-attention (CA) encoder blocks, where the
tokens are the number of types of conditions (e.g., cell type, perturbation status). As mentioned
in Appendix E.2 Table 4, the number of types of conditions will not exceed 5. Thus, unlike the
traditional transformer model that poses O(N2) complexity, where the token number N is typically
much larger than the hidden dimensions, in scDiff the feedforward module dominates the computa-
tion complexity of our CA block.

For the space complexity, we note that the required amount of GPU memory is determined by both
the batch size and the number of genes. Empirically, we set batch size = 2048 throughout all the
experiments. On the dataset with the highest number of genes, namely HLCA with 28, 024 genes,
scDiff necessitates 4.5 GB of GPU memory. Given the above discussion on training efficiency, it is
noteworthy that scDiff can be scaled effectively to large datasets.

E.8 ADDITIONAL BENCHMARKING RESULTS FOLLOWING OPENPROBLEMS

Table 11: Macro accuracy of annotation following OpenProblems

Pancreas Tabula Muris CeNGEN

Logistic regression 0.98 0.92 0.89
Seurat reference mapping 0.98 0.90 0.83
Multilayer perceptron 0.98 0.92 0.87
XGBoost 0.97 0.86 0.84
scDiff 0.9800 +/- 0.0039 0.9257 +/- 0.0066 0.8889 +/- 0.0024

Table 12: Mean square error of denoising following OpenProblems

PBMC Pancreas Tabula Muris

MAGIC 0.18866 +/- 0.00002 0.23186 +/- 0.00003 0.18417 +/- 0.00001
DCA 0.21843 +/- 0.00029 0.26834 +/- 0.00033 0.21595 +/- 0.00066
ALRA 0.28233 +/- 0.00074 0.33169 +/- 0.00004 0.28000 +/- 0.00061
scDiff 0.18102 +/- 0.00109 0.20794 +/- 0.00265 0.16800 +/- 0.00227

To benchmark scDiff with existing leaderboards, we present results following the setting of Open-
Problems in denoising and cell type annotation. For the annotation task, we copied the accuracy of
four top-performing baselines from the leaderboard with random splits. The results are summarized
in Table 11, where scDiff is evaluated across five runs. We observe that scDiff matches the best
performance of the leaderboard.

For the denoising task, we selected three performant baselines from the leader board regarding MSE.
We report the mean and variance of scDiff and baselines across five runs in Table 12. Note that the
MSE results on leader board are scaled for better illustration, we reproduced the benchmark for a fair
comparison via the code repository of OpenProblems without scaling. A conclusion can be drawn
that scDiff outperforms the baselines across datasets.
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