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ABSTRACT

We propose a generative framework for interpretable and property-aware molec-
ular design by learning warped subspaces within the latent space of a chemical
variational autoencoder (VAE) trained on a sequential representation of small
molecules. Instead of directly regularizing latent coordinates, our approach works
by creating low dimensional subspaces that are smoothly warped to align with
molecular property variation using a novel alignment loss. This warping provides a
flexible mechanism to capture non-linear structure in property—latent relationships
while retaining interpretability. This framework enables property optimisation
and traversal within a low-dimensional subspace, where directions correspond to
meaningful variations in molecular properties and decode back into valid molecules
in the original space. We evaluate the method on various tasks related to condi-
tional molecular generation on standard benchmarks used in literature like QM9,
ZINC250K and the Pubchem drug datasets demonstrating strong generative quality,
validity, uniqueness and novelty alongside a more controllable approach.

1 INTRODUCTION

Deep generative models (DGMs) have become an integral part of the discovery process in modern
science and engineering (Bilodeau et al., 2022; Jgrgensen et al., 2018; Ravanbakhsh et al., 2017;
Lopez et al., 2020). This work is about leveraging generative latent variable models for small
molecule generation — a predominant modality for modern drugs. A critical bottleneck in the drug
discovery process is the identification of new molecules from an overwhelming search space (=~ 10°)
(Polishchuk et al., 2013). It is interesting to note that small-molecule drugs discovered as recently as
in the early 2000s were using traditional phenotypic assays, i.e., by directly observing their effects on
disease physiology (Swinney and Anthony, 2011). In contrast, de novo design implies designing a
potentially novel chemical compound with an optimal property profile for downstream in vitro testing
and synthesizability. Generative models offer a viable solution to this inverse design problem by
fundamentally learning a probability distribution of molecular data which can be used not only for
unconditional generation of molecules but also for property constrained generation by exploration of
a so-called chemical space through gradient-based techniques (Gémez-Bombarelli et al., 2018).

A generative model in the small-molecule context essentially features such an open-ended chemical
latent space learned by embedding discrete molecules in a continuous vector space (encoder); for
generation, an inverse step (decoder) converts a continuous vector in latent space to a valid molecule.
This is the classical encoder-decoder setup as in a standard VAE (Kingma and Welling, 2013). In
this work, we augment the VAE framework with a mechanism to learn property specific subspaces —
i.e. for each molecular property j, we learn property aligned transformations 7; : R? — R* where
k < d and j indexes a molecular property.

The intuition behind the methodology is that while a variational autoencoder (VAE) provides a
flexible latent embedding of molecular structures, the geometry of this space is not automatically
aligned with variation in molecular properties of interest, unless explicitly trained through supervision
or guidance. Several existing approaches in the literature address this by training auxiliary prediction
tasks directly on top of the generative latent space, effectively endowing it with semantic meaning.
A key perspective, widely recognised in literature is that although the latent space may be globally
high-dimensional and entangled, meaningful variations often concentrates along oblique, lower-
dimensional manifolds with some residual variation dispersed along several entangled dimensions.



This makes property prediction and optimisation opaque, as gradients can be dispersed across nuisance
directions only weakly aligned with coherent property variation. Traversing the chemical latent space,
however, is a core operation in chemical generative modelling underpinning guided exploration of
novel molecules.

In our framework, we propose a technique to disentangle property-specific variation in the global
high-dimensional latent vectors into a transformed coordinate system. By non-linearly warping the
latent coordinates, we target a representation where property similarity contracts distances, bringing
embeddings of molecules close together. To achieve semantic organisation in the transformed coordi-
nate space, the parameters of the warping function are optimised through a novel loss construction
which targets this alignment. This loss function not only encourages semantic organization by pulling
molecules with similar properties closer together in the transformed space but also encourages a
consistent direction of property-specific variation in the latent space. We also provide techniques
around property prediction in the warped space and the decoding protocol to mathematically lift
embeddings from the warped space to the original global latent space for decoding.

Representation Syntax Most of the literature on machine learning based chemical design for the
string representation of molecules uses SMILES strings (Weininger, 1988) — a line notation method
which encodes molecular structure using short ASCII strings. However, the SMILES representation
has two critical limitations. First, it is not designed to capture molecular similarity: molecules with
almost identical structure can have markedly different SMILES (Jin et al., 2018). Second, it is not ro-
bust on its own, which means that generative models are likely to produce strings that do not represent
valid molecules. Hence, the latent space of DGMs trained on SMILES strings can potentially have
large dead zones where none of the points sampled in the region decode to valid molecules. To over-
come these issues, we train our model on an alternative string representation for molecules introduced
in 2020 (Krenn et al., 2020) that guarantees 100% robustness — SELF-referencing embedded string
(SELFIES). We do not dive deep into technical construction aspects of the SELFIE syntax in this
work. At a high-level one of the difficulties of working with SMILES is the nested bracket closures
which appear frequently in the SMILES notation and introduce syntactic fragility. For instance,
consider the smiles string CCCclcc (NC (=0) CN2C (=0) NC3 (CCC(C)CC3)C2=0)n (C)nl.
The SELFIE translation uses a formal Chomsky type-2 grammar or a context-free gram-
mar and gets rid of the non-local characteristics. =~ The molecule above is translated to
“[CI[CIICICI[C][=C][Branch2][Ring1][=C][N][C][=Branch1][C][=O][C][N][C][=Branch1][C][=O]
[N][C][Branch1][O][C][C][C][Branch1][C][C][C][C][Ring1][#Branch1][C][Ring1] [N][=O][N]
[Branch1][C][C][N][=Ring2][Ring1][#Branch1]". We tokenize the SELFIE syntax to represent
molecules in our generative model. The chemical properties we use in experiments are hydrophobicity
(logP), synthetic accessibility (SAS) and quantitative estimate of drug-likeness (QED) score, all
of which are represented through continuous values and widely available for large drug libraries.
However, our framework does not rely on fully labeled datasets; it naturally accommodates partial
supervision, as the alignment losses are computed only with respect to the observed property labels
within each batch.

Related Work The fundamental idea of using a shared latent space which serves as input to an
auxiliary model for property prediction was first proposed in Gémez-Bombarelli et al. (2018) in
the cheminformatics space. The motivation for training the generative architecture along with an
auxiliary neural net for property prediction jointly can be attributed to encoding property similarity in
the latent space. However, this technique treats the latent space as a single monolithic embedding and
enforces regularisation with respect to different properties on the entire latent space. As a result, it
lacks the ability to disentangle or isolate the dimensions most aligned to specific molecular properties.
Since then, several works have relied on various techniques to induce a semantically regularised
latent space (Jin et al., 2018; Kang and Cho, 2018; Popova et al., 2019; Zang and Wang, 2020;
Tevosyan et al., 2022). Further, several other works additionally focus on adapting conditional VAE
architectures (Kang and Cho, 2018; Lim et al., 2018; Ang et al., 2023; Joo et al.) for property
conditioned molecular generation. A parallel line of work explores Bayesian optimisation in the latent
space of generative models using Gaussian process surrogates to model property variation (Griffiths
and Herndndez-Lobato, 2020; Eriksson et al., 2019; Maus et al., 2022; Lee et al., 2024; Tripp et al.,
2020). While these methods differ in how they address high-dimensionality and acquisition through
trust regions, projection techniques, or kernel selection techniques, they typically treat the latent space
as an indivisible embedding space. Our work departs from this by disentangling the high-dimensional
latent space into a transformed coordinate space post-hoc; the warping function acts as a spotlight



on property specific variation and decoding enabling optimisation in low-dimensions mitigating the
curse of dimensionality.

We summarise the key innovations over existing work below:

* Seq2seq Transformer VAE on SELFIES. We present state-of-the art results for recon-
struction and several other empirical metrics for this generative architecture trained with
SELFIES'.

* Learning property aligned coordinate space via differentiable warping function. This
enables gradient-based traversal and decoding aligned to property variation in a compressed
lower dimensional space.

* Property optimization through subspace traversal We present a principled approach for
optimising properties in low-dimensional transformed coordinate space mitigating the curse
of dimensionality subsequently lifting the optimised point back into the full latent space for
decoding in a numerically stable fashion.

Experimental scope We demonstrate through several experiments, both quantitative and qualitative,
the general performance of our model on publicly available benchmark datasets for molecular
generation. More specifically, we show that we can achieve high-fidelity reconstructions and sensible
interpolations in latent space. We qualitatively show semantic regularisation in the transformed space
and the directional gradient with respect to properties. Through neighbourhood visualisations (also
seen in Jin et al. (2018); Kusner et al. (2017); Zang and Wang (2020)) we show that the structure of
the molecules varies smoothly as a function of distance.

2 METHODS

Our generative framework has two components: 1) A sequential Transformer VAE which forms the
backbone for reconstructing the molecular sequence structure and is jointly trained with a baseline
property predictor in the original latent space 2) a non-linear warping function to map to a transformed
and compressed coordinate space with a property alignment loss function with an adjoining linear
head for improved property prediction.

2.1 TRANSFORMER-BASED VARIATIONAL AUTOENCODER

The generative backbone features an encoder-decoder style architecture, we use transformer layers
for both the encoder and decoder. The encoder takes as input a fixed length, tokenised molecular
string, 1.7 = [®1, T2, ..., 27| where T is determined by the length of the longest molecule in the
training dataset, 1.7 € X. Shorter molecule strings are padded up with a reserved token to bring
them up to 7" dimensions. Each token is embedded and augmented with a positional encoding, then
processed by a stack of self-attention blocks to produce contextual states Hy.7 € RT*P where D is
the embedding dimension. We obtain a sequence summary h = % 3" H; € RP by mean pooling
which is used to parametrise the global latent z governed by the variational approximation,

QCﬁ(z‘xl:T) = N(l"z(wlzT)vdiag(o-g(wl:T))vWherev“z = Wuh + b,uvlog 0'3 = I/Vlogvh + blogv
(1

As in a standard VAE we assume a standard Normal prior for z ~ A(0, I).

The decoder is a Transformer with causal self-attention to broadcasted latent memory; more concretely
we project the latent m = W, z+b, € RP and repeat it across time as M = [m,m, ..., m] € RT*P
which serves as keys/values at every decoder layer. With teacher forcing, the likelihood factorizes as,

T
p(icl:T|Z) = Hp($t|$<t, Z)7 )

=1
p(xy | £<y,2) = Cat(mw,), v, = Softmax(fy(x<y,2)), 3)

'"Transformer VAEs are not new and have been used in other seq2seq tasks, its application and evaluation in
this setting has never been presented before to the best of our knowledge.



where fy, is the transformer decoder with parameters v/ that takes as input the previously decoded
tokens x.; along with a broadcast or concatenated version of z at each layer. The decoder self-
attention uses a causal mask M (forbids attending to future positions) and a key-padding mask P

(ignores pads). At the head level, attention is Attn(Q, K, V) = Softmax(% + M + P) Vv

for self-attention over targets with M and cross-attention from targets over latent memory M. This
design gives the decoder global control from z at every layer and time step, improves long-range
dependency modelling (rings/branches), and allows parallel training over sequence positions.

Inference and ELBO The posterior over the global latent variable z is intractable. We use the
variational approximation g, (z|xz) above to enable tractable inference through the use of a lower
bound.

The joint data marginal likelihood is given by the sum of individual marginal likelihoods, log p(X) =

25:1 log p(xgn%), and a:i”% € X represents a single molecular string sequence; each individual
marginal likelihood can be lower bounded as:

T
logp(z{}) > L(,4;2V)) = Eq, (sl | O logp(@" |w<r,2) | — KL(go (2l |p(2)),

t=1

“)
where ® = (¢, ¢2) are the encoder parameters and v are the decoder parameters. The variational
and generative parameters (P, ) are learnt by maximising the joint evidence lower bound. In
practice we optimize a padding-aware cross-entropy for the likelihood term, with a causal mask and
[-annealed KL.

Note: The terminology “global” latent variable refers to time-step independent and the fact that
z represents an information bottleneck for the entire sequence x.7; this is to distinguish it from
models which use latent variables per time-step z; (Chung et al., 2015). The motivation behind this
design is to enable latent space optimisation on a global latent space where each latent variable z
(Gaussian ellipsoid in d < T' dimensional space) represents the compression of an entire molecular
string sequence (a single molecule).

The generative model is jointly trained with a supervised property predictor network fp(z) = y on the
global high-dimensional latent space to complete the Baseline model for Stage 1. Below we describe
the precise framework for learning Stage 2 of learning the warped spaces using transformations 7.

2.2  WARPING THE LATENT SPACE FOR PROPERTY ALIGNMENT

After training the generative backbone, we learn property specific transformations,
T;: Z — U, where Z C R U CRF k< d 5)

that map global latents z € Z to warped coordinates u; = T)(z). Each T; is implemented as a
2-layer GELU MLP trained with an alignment loss over all pairs of molecules in a given batch as,

j 1 a a 2 B
= 3 (g —wllB—as g - 197, 1Pl = (3) ©®
(a,b)eP

where a batch is defined by tuples {(z%, y;) B_| denoting the global latent embedding and a scalar
property y; per molecule. This loss makes the geometry of the warped coordinate uj mirror the
magnitude of the property difference y;. The scale o; matches units so the model is free to warp: it
can contract regions where y; varies little and expand where y; changes rapidly, while preserving
a monotone relation between property difference and embedding distance. Averaging the squared
residuals over the batch pairs produces a smooth objective that aligns pairwise distances in u;- space
with pairwise dissimilarities in property space, thereby turning u; into a coordinate vector along
which similar or aligned embeddings implies closeness in property values ;.

Note that training only the above distance alignment term with a free-scale « has a degenerate solution
where the warping collapses all the u;’s to a constant, making the distances |[ug — ub|| — 0 and if
aj is fit/estimated from the batch then the optimum o = 0, hence, the global minimum collpases the
warped embedding u;. In order to alleviate this degeneracy, we fix oo = 1 and add a spread constraint
on u.



Covariance whitening In order to keep u; non-collapsed, smooth and well-conditioned we penalise
collapse by adding a covariance whitening loss given as,
; — 2
£9), = || Cov(uy) — I, || ©)

cov

where we penalise how far the unbiased batch covariance of the warped coordinates are from identity.
Overall, it makes the learned u; space have unit variance along each axis and zero cross-correlations.
This term also help the warped coordinates match the VAE prior and helps with lifting them back to
the global latent vectors by keeping the optimisation stay on-manifold.

Linear head For each property j we also fit a linear head on the warped coordinate u; as, g, (u;) =
wJT u; + b;. The warping function 7} is trained to concentrate the property-relevant variation along
a small number of coordinates. A linear map is sufficient and preferable as it yields a single monotone
direction w; to traverse for optimising a property. Critically, a linear map gives a principled closed-
form ascent direction for optimization (see section 2.3) in the warped coordinate space. During
training we just use a simple MSE loss for the linear head per property,

B
] 1 ~ a a2
Eﬁfs)e:EZ(yj(uj)—yj) ®)
a=1
Hence, the overall loss for stage 2 for a given property is,
L8 = Ll T Ao LD, + Amse L ©)

where Aoy and Ay are hyperparameters which are set to pre-defined schedules as training progress
in order to control the influence of each of the terms on the overall loss.

2.3 PROPERTY OPTIMISATION AND DECODING PROTOCOL

Given a warped prqperty—a!igned co.ord@nate space u; and a trained linear head 7;(u;) = wjT u;+ by,
we can score candidates via the objective,
T 2
Uuwj) =wju; — vylullz,  v>0 (10)
The first term promotes movement along the monotone property axis w; the second is a quadratic
trust-region that discourages departures to large ||u|| by exerting a pull towards the origin (it is
equivalent to having a standard Gaussian prior on u). This objective has a closed-form maximizer,

1
V. JU(uj) =w—-2yu; =0 = u§:%w (11)
i.e., the optimum lies on-axis and its magnitude is set by y. Without the penalty (v = 0), gradient
ascent would shoot off to infinity along +w, leaving the support of the learned geometry and yielding
unreliable decodes to the global latent space. The gradient ascent updates in u-space is given by,
u;+1 = uz. + 7 (w — 2'yu§-) (12)
where 7 is the learning rate.

Decoding Protocol Ultimately, we need to lift molecules back into the global latent space in
order to decode them with the transformer decoder. Importantly, 77 is not invertible, it is generally
non-injective (many-to-one) because k < d and the warping transformation deliberately contract-
s/identifies nuisance directions that are irrelevant to y; This non-injectivity is not undesirable as itt
denoises and concentrates property-relevant variation onto a small set of coordinates. For decoding,
since Tj_1 does not exist, we lift from u back to the backbone latent by solving a small optimization,

z* = argmin HTj(z)—u;Hz + )\HZ—ZOH; (13)
zEZ

where the second term biases the solution towards a soft radius around the starting point zg. A can
be set to zero but it is particularly useful (A > 0) if the goal is to preserve molecular structure while
nudging a property. In order to mitigate local optima we perform multi-restart latent optimization in
practice from a diversified set of starting points in the global latent space. However, in order to bias
optimisation towards favourable regions we can select starting points from molecules known to have
high property values y;.



3 EXPERIMENTS

Dataset and pre-processing We use two widely used datasets for our experimental evaluation — the
ZINC 250k dataset comprises 250K randomly sampled molecules from the ZINC database (Sterling
and Irwin, 2015) containing over 120 million “drug-like” compounds. The QM9 dataset (Ruddigkeit
et al., 2012) contains about 134K small molecules with fewer than nine heave atoms (C, N, O, F).
Both datasets are provided in the canonical SMILES representation. Hence, we translate the string
representation to the SELFIES syntax using their publicly available python package called selfies.
The package provides several convenience methods to convert SELFIES strings to one-hot-encodings
or integer encodings. For QM9, ZINC and PubChem we work with integer encoding. Since the
molecules come in different sequence lengths, we pad each of the encodings to a max length (length
of the longest sequence) using a padding token [nop] which is a part of the alphabet.

3.1 RECONSTRUCTION, VALIDITY AND SAMPLING

We report reconstruction accuracy alongside several standard metrics commonly used to evaluate the
performance of chemical generative models on the ZINC 250k dataset (see table 1). We employ an
80/10/10 split for training, validation, and testing. Our generative model demonstrates performance
comparable to other state-of-the-art VAE-based approaches for molecular string generation. Notably,
using the SELFIES representation allows us to circumvent the syntactic fragility of SMILES and
ensures 100% validity in generated molecules. Furthermore, our Transformer-based VAE achieves
100% novelty—measured as the fraction of unconditionally generated molecules not present in the
training data, and high uniqueness, which accounts for duplicates. The statistics for our method are
computed on 100,000 samples drawn from the N'(0, 1) prior post-training. We also report Monte
Carlo (MC) reconstruction accuracy, in which a fixed batch of molecules is encoded and decoded
n times, and the reconstruction accuracy is computed as the fraction of exact matches between the
generated sequences and the original inputs.

Metrics Test Reconstruction Accuracy
Datasets QM9  ZINC250K Pubchem
Dataset size 132K 250K 500K
Accuracy (%) | 99.3% 99.67% 99.8%

It is worth noting that the average reconstruction accuracy of our method, calculated as the fraction
of sequence tokens that match the ground truth, averaged across all sequences in a held-out set is on
par with the top accuracies reported in literature.

Table 1: Summary of generative performance across a range of metrics for the ZINC 250k dataset
for a subset of popular methods reported in literature. Some of the statistics reported are compiled
directly from (Kusner et al., 2017; Jin et al., 2018) for the string representation and (Zang and Wang,
2020) for the graph representations.

Models Representation % Validity % Novelty ~%Uniqueness % MC Reconstruction
Chem-VAE (G6émez-Bombarelli et al., 2018) SMILES 0.7 n/a n/a 44.6
Grammar-VAE (Kusner et al., 2017) SMILES 7.2 n/a n/a 53.7
SD-VAE (Dai et al., 2018) SMILES 435 n/a n/a 76.2
JT-VAE (Jin et al., 2018) Graphs 99.8 100 100 76.7
MoleculeRNN (Popova et al., 2019) Graphs 100 100 99.89 n/a
MoFlow (Zang and Wang, 2020) Graphs 100 100 99.9 100
GraphNVP (Madhawa et al., 2019) Graphs 42.6 100 94.8 100
GRF (Honda et al.) Graphs 73.4 100 53.7 100
Transformer VAE (ours) SELFIES 100 100 99.9 87.1

For some additional context, note that some of the recent graph based approaches like Zang and
Wang (2020); Honda et al.; Madhawa et al. (2019) boast 100% MC reconstruction rate, however their
empirical running times for this dataset for a 200 epoch training schedule are reported to be 22 hours
for MoFlow (Zang and Wang, 2020), 38.4 hours for GraphNVP(Madhawa et al., 2019) and over 120
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Figure 1: Ground-truth vs. predicted molecular properties on a held-out ZINC250K test set using a
linear head trained on a warped latent space. Each panel corresponds to one property (logP, QED,
SAS). Points show model predictions (“Reconstruction’) against ground truth; the red line denotes
the identity (y=x). Points are coloured by the ground-truth value to visualise any range-dependent
effects. Across properties, predictions align closely with y=x with no evident systematic bias across
the value range, indicating that a simple linear head on the warped subspace generalises to unseen
molecules.

hours for GRF (Honda et al.) on a GeForce RTX 2080 Ti 16 core GPU machine. Our model trains in
under 2 hours on a NVIDIA RTX A6000 utilising a single core. We note that this is not a like-for-like
comparison in terms of compute configuration. Differences in hardware, implementation details, and
model architecture all influence runtime. Nonetheless, these figures highlight the practical efficiency
of some of these approaches.

Details about the generative architecture and learning parameters for our transformer based VAE can
be found in the appendices.

3.2 PROPERTY PREDICTION

In this section we report the mean squared error of the property prediction task on a held-out test
dataset from ZINC250 where we have the ground truth properties. In fig. 1 we show the values of the
ground truth property v reconstruction for each of the properties predicted by the linear head on a 4D
warped space (k = 4). By shading the points by their ground truth values we can observe that there
is no correlation between the bias of the estimate and the ground truth value. The reconstructions
shown are just computed as y; = wTuj + b; for each property j. Despite its low capacity, the
linear head achieves surprisingly competitive accuracy compared to the canonical non-linear baseline
predictor trained on the entangled high-dimensional latents (see table 2) while yielding a highly
compressed interpretable space. Across properties we observe high rank correlation (Spearman p)
and calibration slopes near 1, confirming that the warp concentrates property relevant variation so
that a linear readout suffices. The identical plot for the baseline predictor is in the appendices. All
property values were standardised to zero mean and unit variance before training and we report the
RMSE on standardized values.

Table 2: Test RMSE scores for property prediction using the warped coordinate space v. the baseline
model.

Metric RMSE: Test (Train)

Model (]) | Head \ logP QED SAS
Baseline Non-linear | 0.1381 (0.1203)  0.2546(0.1765) 0.1556 (0.1383)
Warped Linear 0.1364 (0.118)  0.2560 (0.144)  0.1474 (0.1311)



2D Warped Subspaces with Gradient Trajectories
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Figure 2: Two-dimensional slices of the learned 4D warped subspaces for logP, QED, and SAS, with
gradient-based optimisation trajectories (blue) and converged optima (red). Points are coloured by
ground-truth property values. The optimiser converges to high-scoring regions of the manifold; a
projection-to-radius step u <— Uy, + min(1, r/|[u — uyy||) (u — uy,) enforces a trade-off between
exploration (larger r) and fidelity to the data manifold (smaller 7). u,,denotes the nearest neighbour
of the current optimisation iterate among the set of training embeddings.

3.3 WARPED SUBSPACES

In fig. 2 we visualise a 2D slice of the 4D warped space learnt for each of the molecular properties.
Each panel shows the embedding of molecules in the corresponding warped space, with points
coloured by the ground-truth property value. The geometry of each subspace reflects the non-linear
structure that the warping captures, revealing smooth property gradients. To evaluate whether these
subspaces can be used for targeted molecular optimisation, we further perform gradient-based ascent
within each subspace using the linear property heads. Starting from random initial molecules, we
follow gradient trajectories (blue curves) that traverse the warped coordinates toward regions of
higher property value. The final optimised points are marked in red, corresponding to the top-u
configurations identified by the optimiser. Because the head is optimised on observed u’s while the
ascent updates are free-form, trajectories can drift slightly off the empirical manifold. To mitigate
this, after each gradient step we apply a projection-to-radius (a trust-region update) that snaps u back
toward the nearest sampled point. Empirically, decreasing the radius tightens the trust region keeping
trajectories close to the data manifold (with a smaller radius the optimiser would have converged
to points on the data manifold, the choice of the radius determines a trade-off between exploration
and playing safe). Importantly, the converged points consistently land in high-scoring regions of the
manifold, where neighbouring molecules already exhibit elevated property values. This demonstrates
that the warped subspaces not only disentangle variation in individual properties but also provide
smooth and navigable landscapes.

3.4 QED PROPERTY OPTIMISATION

In fig. 3 we show 5 molecules obtained by decoding the top optimised points from the warped
subspace with respect to QED. The generated structures are all novel relative to the training data
and achieve QED scores above 0.94 placing them among the highest reported values in literature.
Interestingly, despite the diversity of the scaffolds, the associated SAS and logP values remain
relatively stable across these top candidates, suggesting that the optimisation in the warped QED
subspace can selectively improve drug-likeness without substantially perturbing synthetic accessibility
(SAS) or lipophilicity (logP).
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Figure 3: Top molecules decoded from optimised points in the warped QED subspace. All candidates
are novel and achieve QED > 0.94. Notably, SAS and logP remain nearly unchanged (see appendices)
across diverse scaffolds, evidence of directional consistency: ascent along the QED-aligned direction
in the warped space leaves orthogonal property components approximately invariant, reflecting
coherent control.

It is interesting to note that property optimisation in the baseline model for QED yielded a top score
of 0.9208 with 100 restarts. The top QED score in the training data is 0.948. As a comparison JT-VAE
(Jin et al., 2018) reported a top score of 0.925 in the QED optimisation task while the graph methods
(Popova et al., 2019; Zang and Wang, 2020) recover molecules which achieve the top score of 0.948.

4 DISCUSSION, LIMITATIONS, SCOPE

The aim of this work is to contribute an effective technique to search and traverse chemical latent
spaces for the small-molecule drug modality. We conduct our experiments with the recently developed
(Krenn et al., 2020) SELFIE syntax for molecular string representation to side-step an important
failure mode of the commonly used SMILES representation. Beyond, a performant generative
backbone we showed that the auxiliary warping step is extremely effective for learning a compressed
transformed coordinate space with consistent direction of property variation and a linear property
prediction head which surpasses the baseline method.

While we only use SELFIES for the molecular representation, the methodology and proposed
alignment techniques can be integrated with generative models built for other string representations
of molecules like extended connectivity fingerprints (ECFP) (Rogers and Hahn, 2010), SMILES or
DeepSMILES (O’Boyle and Dalke, 2018); or graph representations (Zang and Wang, 2020; Popova
et al., 2019) as well as just any generative modelling setting where there is a core input along with a
measured context or condition to align with. It is important to note that the computational overhead of
training the warping function through alignment loss is quadratic in batch size (similar to contrastive
loss and other pairwise geometry objectives) with overall complexity O(B?K) where B is the batch
size and K = dim(u). A limitation of the overall design is that our whole approach encourages
the formation of property-specific semantic subspaces, where ‘property’ denotes either a scalar
observable or a composite functional (e.g., the penalized logP, pLogP), formed by combining logP
with structural penalty terms. We do not yet explicitly model cross-property correlations potentially
overlooking shared latent structure.

However, one advantage is that there are no practical limits to the number of property specific warped
spaces that can be simultaneously learnt in this manner. This contrasts with more commonly used
approaches, where regularising across multiple properties creates competition for limited latent
dimensions and may lead to interference effects leading to diminished regularisation or even worse,
compromised reconstruction. More work is needed to understand their behaviour.

This work can be extended in several ways. An important direction for future work is extending this
framework to settings with partial feedback where the property space is only sparsely observed. In
real-world molecular datasets, it is often the case that only a subset of properties are available for each
compound. Application to active learning settings such as Bayesian optimisation is also an important
experimental direction. While we only experiment with a specific choice of warping functions and
property predictors there could be other choices that may work well such as Gaussian processes
where one can inherently control smoothness attributes of the input space through the choice of the
kernel function. Finally, a true test of these models is to assess their generative capabilities on genuine
target based lead discovery, for instance, designing a lead molecule that binds to a target with high
affinity and is simultaneously retrosynthetically accessible. Our framework with the ability to move
along an coherent direction of variation can be strong advancement on existing techniques.
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5 SUPPLEMENTARY

5.1 BATCH SIZE AND PAIRWISE METRICS

The alignment loss is computed over all unordered pairs of a mini-batch, giving |P| ~ B? pairs for
batch size B. In the idealized case of independent pairs, the variance of the stochastic gradient scales
as,

o? o?

WNE.

Thus, doubling the batch size would in principle quarter the gradient variance. In practice the pairwise
terms are correlated, so the empirical scaling falls between 1/B and 1/B?. Nonetheless, increasing
batch size consistently improves stability and often reduces the number of steps needed to reach a
given training target.

Var[Vﬁalign} 0.8

6 ADDITIONAL RESULTS
6.1 BASELINE PROPERTY PREDICTION

Property Prediction on unseen molecules under Baseline Model

logP QED

Reconstruction
|
-
Reconstruction
Reconstruction
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Figure 4: Property prediction with the baseline model on the global latent space.

6.2 QED Top MOLECULES

The SMILES string of the top QED molecules shown in the main section are given below along with
the corresponding SAS and logP scores which were computed in RDkit (as these molecules were not
in the training data).

C[C@H1]1C(=0)NCCNI1C(=0)C(C2=CC=CC=C2)C3=CC=CC=C3

QED: 0.9444 LogP: 2.1654 SAS: 2.5538

0=C(CN1C=CC(C(F)(F)F)=N1)NN2CC3=CC=CC=C3C2
QED: 0.94254 LogP: 1.9489 SAS: 2.6247

CN1C=NC(S(=0)(=0)N[C@ @H1]2CCC3=CC(Cl)=CC=C32)=C1
QED: 0.94315 LogP: 2.0392 SAS: 2.9646

CN(C[C@H1]1CCCCO1)C(=0)C2=CC3=CC=CC=C3C(=0)[NH1]2
QED: 0.94465 LogP: 2.1692 SAS: 2.7004

CC1=CC(=0)N(CC(=0)NC2=CC=CC(C(F)(F)F)=C2)C=N1
QED: 0.9450 LogP: 2.2092 SAS: 2.0946
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Figure 5: Samples from an € neighbourhood of a seed molecule (top-left) from the QM9 dataset
(fewer than 9 heavy atoms).
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Figure 6: Interpolation in the global latent space, 10 Euclidean steps, the scores denote the Tanimoto
similarity

6.3 NEIGHBOURHOOD VISUALISATION AND INTERPOLATION

In order to examine the decoder smoothness of our architecture, we show interpolations and traversals
with pubchem and QM9 data in the global latent space. For interpolations we report the chemical
similarity to the seed molecule measured with the Tanimoto kernel (Gower, 1971). One can observe
gradual changes in the molecular graph as the similarity co-efficient recedes gradually as a function
of distance to the starting molecule.

7 EXPERIMENTAL CONFIGURATIONS

Architecture The transformer encoder and decoder were trained with 4 layers and 6 attention
heads, with am embedding size of 132 and hidden dimension of 300. The dimension d of the global
latent space was 256. The dimension of the warped space was kept at & = 4 for all the properties.

The MLP for the baseline property predictor was a 2-Layer GELU network which mapped to a joint
property vector of dimension 3.

Training and schedules The generative backbone was trained for 120 epochs with S annealing for

the KL term given by the schedule: beta_kl = min(0.2, (epoch / 40.0) * 0.2).

For the baseline property predictor, the scaling term is given by:
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Figure 7: Interpolation in the global latent space, 40 Euclidean steps, the scores denote the Tanimoto
similarity

)\minv t < 5,
1- Amin
M) = Amin + —— (= 5), 5 <t <12,
1, t>12,
where A\pnin = le — 3 and ¢ is the epoch.
For the Ay, the schedule is given by,
Amina t < 3,
1- >\min
)\mSe(t) = 4 Amin + 127 (t - 3), 3<t <15,
1, t > 15,
with A\pip = 0.1
For Ay, the weight for the covariance whitening loss followed the schedule,
Aos t < hold,
/\cov(t) — ¢ Mioor; t > end,

Afioor + % ()\0 — )\ﬂoor) (1 + COS(?T efxg—llﬁz(}d)>’ hold <t < end,

with \g = 0.1, A\goor = 0.05, hold=10 and end=25.

The warped transformations were trained for 90 epochs for each property and the maximisations
were conducted with 100 restarts for 2000 steps with a step size of le-4. The decoding protocol for a
single molecule used multiple diverse seeds sampled from the prior or alternatively, preset to specific
molecules for testing.
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Figure 8: Samples from an e neighbourhood of a molecule from pubchem data.
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