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Abstract

Protein fitness optimization involves finding a protein sequence that maximizes
desired quantitative properties in a combinatorially large design space of possible
sequences. Recent advances in steering protein generative models (e.g., diffu-
sion models and language models) with labeled data offer a promising approach.
However, most previous studies have optimized surrogate rewards and/or utilized
large amounts of labeled data for steering, making it unclear how well existing
methods perform and compare to each other in real-world optimization campaigns
where fitness is measured through low-throughput wet-lab assays. In this study, we
explore fitness optimization using small amounts (hundreds) of labeled sequence-
fitness pairs and comprehensively evaluate strategies such as classifier guidance and
posterior sampling for guiding generation from different discrete diffusion models
of protein sequences. We also demonstrate how guidance can be integrated into
adaptive sequence selection akin to Thompson sampling in Bayesian optimization,
showing that plug-and-play guidance strategies offer advantages over alternatives
such as reinforcement learning with protein language models. Overall, we pro-
vide practical insights into how to effectively steer modern generative models for
next-generation protein fitness optimization.

1 Introduction

Proteins, sequences of amino acids, can be optimized for useful properties such as binding affinity,
catalytic activity, or stability, numerically quantified as “fitness.” However, protein optimization is
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Figure 1: Comparison of steered generation for protein optimization (SGPO) to other ML-
assisted workflows for protein engineering. (A) SGPO involves initializing a generative prior model
to sample sequences with high natural likelihoods and steering that model with assay-labeled fitness
data. Optimization is difficult because the design space is vast, and the throughput of wet-lab fitness
assays (Erlenmeyer flask icon) is low, so adaptive learning across multiple iterations is beneficial.
Previous methods have utilized generative models such as (B) fully zero-shot methods that sample
highly natural sequences but do not utilize labeled fitness data or (C) those that only utilize labeled
fitness. (D) Alternatively, supervised approaches involve enumerating to calculate fitness predictions
for all variants in a design space, limiting them to optimizing few residues (i.e., N < 9).

challenging: the design space of proteins is enormous, as a protein of length M can be constructed in
20M different ways, of which only a negligible fraction are functional (Romero & Arnold, [2009).
Moreover, most wet-lab assays only provide 102 — 102 fitness labels. Consequently, researchers
often rely on directed evolution, an iterative process aiming to incrementally improve protein fitness
(Packer & Liul |2015)) through multiple rounds of mutation and experimental screening. In each round,
a protein is mutated, the variants’ fitnesses are measured, and the most beneficial variant is selected
for the next iteration. However, this approach can be slow, often accumulating only one mutation per
round, and inefficient, as it performs a local search limited to closely related protein sequences.

In recent years, there has been a growing interest in developing machine learning (ML)-assisted
methods to optimize protein fitness more efficiently (Yang et al.,|2019; Wittmann et al., 2021a; |Hie &
'Yangl [2022; Yang et al.| 2024, 2025c). Many recent studies have focused on generative approaches
combining unlabeled and labeled data for protein design. Broadly, these methods achieve conditional
generation by steering generative priors of natural protein sequences (Freschlin et al.,|2022) using
fitness data, thereby enabling incorporation of the steered models into adaptive optimization cycles
(Hie & Yang|,|2022). We refer to this class of methods as Steered Generation for Protein Optimization
(SGPO). These methods address the individual limitations of previous approaches (Fig. [T]A, Table
[I. First, SGPO leverages labeled data, which is essential for fitness goals that deviate from natural
functions (e.g., engineering enzymes for non-native activities (Arnold, 2018} |Yang et al., [2025b)),
unlike zero-shot methods relying solely on generative priors of natural sequences (Generative: Zero-
Shot, Fig. E]B, Hie et al.|2023; |Sumida et al.|[2024; [Fe1 et al.|[2025}; [Seki et al.|[2025; |Lambert et al.
2025). Second, generative priors (Wu et al., 2021; Hsu et al., 2024) sample sequences with high
evolutionary likelihoods and potentially higher fitness, giving these methods a significant advantage
over approaches relying exclusively on labeled data (Song & Li, 2023 |Stanton et al., 2022; (Gupta
& Zou, [2019; Brookes & Listgarten, [2020; Jain et al., [2022; |Kim et al.}|2025; |Angermueller et al.,
2020; Hie & Yang} 2022) (Generative: Adaptive, Fig. Ep). Finally, SGPO scales to larger design
spaces, unlike most supervised ML-assisted directed evolution (MLDE) approaches, which require
enumerating and scoring all variants in the design space (Supervised, Fig. [ID) (Wu et al., [2019;
Wittmann et al.,|2021b; [Yang et al., |2025bj L1 et al., 2025a; |Vornholt et al., [2024; [Jiang et al., 2024;
Hsu et al.| 2022} [Ding et al.| 2024; Hawkins-Hooker et al.| 2024; Zhao et al., [2024a; Thomas et al.,
2025 Sun et al., [2025)).

Despite these advantages, SGPO methods still face practical limitations in real-world fitness opti-
mization, particularly across two major classes of approaches: guiding discrete diffusion models
(Nisonoft et al., 2025} |Stark et al., 2024} [Klarner et al., 2024} |Gruver et al., 2023}, [Lisanza et al.|



Table 1: SGPO is a general approach for protein fitness optimization that does not face the
individual limitations of other strategies. Namely, SGPO utilizes zero-shot knowledge from the
natural distribution of proteins, can be guided by assay-labeled fitness data, and can optimize many
residues (/V) simultaneously. Beyond those listed here, there are many other studies that combine
different elements of these approaches.

Approach Prior In- Assay Scales Protein Examples (non-exhaustive)
formation  Fitness  to large
Used? Used? N?

SGPO v v v Lisanza et al.|(2025); Widatalla et al.| (2024);

Stocco et al.| (2024); [Nisonoff et al.| (2025));
Brookes et al.| (2019); [Blalock et al. (2025));
Goel et al.| (2025)); Huang et al.| (2025])

Generative: Vv X v Hie et al.| (2023)); [Sumida et al.| (2024)); [Fei

Zero-Shot et al.[(2025);Seki et al.| (2025); Lambert et al.
(2025))

Generative: X v v Song & Li|(2023)); Jain et al.| (2022)); |/Anger

Adaptive mueller et al.| (2020); |Stanton et al.| (2022);
Brookes & Listgarten| (2020)

Supervised v v X Wittmann et al.| (2021b)); Ding et al.| (2024);

Hawkins-Hooker et al. (2024); [Zhao et al.
(2024a)); |Sun et al.| (2025)

20255 |Goel et al.,[2025) and finetuning models such as protein language models (PLMs) through
reinforcement learning (RL) (Ruffolo & Madanil 2024} |Widatalla et al., |2024; |Stocco et al.| |[2024;
Blalock et al., 2025} [Wang et al.l 2025c). The limitations of prior work are summarized as follows:
(1) Few previous studies have explored steering with few (102 — 103) labeled sequences (Lisanza
et al.| 2025 Stocco et al., [2024) for protein optimization based on real fitness data, e.g. activity or
fluorescence, rather than computational surrogates (Lisanza et al.l 2025} Blalock et al., [2025)). (2)
Most studies only evaluate one type of generative prior and steering strategy, so it is unclear how
different combinations perform in practice. (3) There is room to incorporate principles from adaptive
optimization, such as uncertainty-aware exploration (e.g., Bayesian optimization), which have shown
clear benefits in protein engineering (Vornholt et al.,|2024; |Yang et al., | 2025b).

In this study, we aim to understand the best practices for integrating SGPO into real-world engineering
workflows. We focus here on modern generative models (i.e., discrete diffusion, language models) but
acknowledge that other related methods are relevant, such as those based on variational autoencoders
(Brookes et al.,|2019; [Torres et al., [2024) and other adaptive search strategies (Kirjner et al., [2024;
Sinai et al.,[2020; Ren et al.|[2022)). We explore the following questions: Which steering strategies
perform best, and with which types of models? How can we utilize uncertainty to better explore the
design space when performing guidance? Overall, we make the following key contributions:

1. We motivate SGPO as a useful, general framework and contextualize existing methods for
protein optimization under this umbrella.

2. We comprehensively evaluate design decisions for SGPO, including different generative
models for sequences and steering strategies (Fig. [2] & [3] Section [2), offering best practices
for protein optimization with few fitness labels.

3. We introduce ideas from adaptive optimization into SGPO by proposing a method that
ensembles multiple plug-and-play fitness predictors and leverages their predictive uncertainty
to enable more efficient exploration.

4. We are the first to adapt decoupled annealing posterior sampling (Zhang et al.,|2025) for
SGPO, and this type of plug-and-play guidance has the strongest performance overall.

On the TrpB, CreiLOV, and GBI protein fitness datasets, we find that SGPO methods can consistently
identify high-fitness protein variants. In particular, our results highlight the advantages of plug-and-
play guidance with diffusion models over finetuned language models—offering greater steerability
and lower computational cost. To support future research and real-world adoption, our extensive,
user-friendly code is available at https://github.com/jsunn-y/SGPO!


 https://github.com/jsunn-y/SGPO

2 Related work

Generative models for discrete sequences. The most widely adopted generative models for
natural protein sequences are PLMs, such as autoregressive transformers (Nijkamp et al.| 2023)) and
masked language models (Rives et al.,[2021)). Increasingly, various diffusion model (Ho et al.|[2020)
architectures have shown efficacy for modeling discrete data (x) (L1 et al.| 2025b), such as protein
sequences (Alamdari et al.} 2024; [Wang et al.,|2024)), leveraging many similar learning techniques
such as masking or autoregressive decoding (Sahoo et al., 2024} |Lou et al., 2024} |Nie et al., 2025}
Shi et al., [2024)) (Fig. . These generative prior models p(x) can be categorized broadly into
two types: those that perform diffusion in a continuous latent space (Li et al., 2022; |Chen et al.|
2023b; Dieleman et al.| [2022) and those that diffuse directly over discrete space (Fig. [2)). In the
protein domain, it has also been shown that latent diffusion over embeddings from PLMs can be
more effective (Meshchaninov et al., [2025; [Chen et al., [2023a; Torres et al., 2025). Alternatively,
models performing diffusion in discrete space use a transition matrix to update all discrete states in
each timestep (D3PM) (Austin et al., 2021}, which has later been formulated as continuous-time
Markov chains (Lou et al.| |2024; Campbell et al.||2022}2024; Schiff et al.||2024). Two common ways
to add noise to discrete sequences are to use uniform noise matrices or absorbing state (masking)
matrices (Fig. [Z). These have been followed by simplified frameworks showing some of the highest
performance for modeling natural language, such as masked diffusion language models (MDLMs)
(Sahoo et al., [2024; Hoogeboom et al., [2022; Shi et al.} 2024) and a variation that uses uniform noise
called uniform diffusion language models (UDLMs) (Schiff et al.| | 2024). We elaborate more on these
methods in Section[A3]
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Figure 2: Overview of different approaches to train diffusion models over discrete state spaces.
During inference, a noised latent representation or sequence is decoded into a reasonable sequence
(bottom track for each method). [X] refers to a masked token.

Plug-and-play guidance strategies. An advantage of diffusion models is the ability to perform
plug-and-play guidance based on fitness labels (y) without finetuning the generative prior model
weights, resulting in reduced training costs and potentially strong signal despite having few (~ 10?)
labels. Guiding a continuous diffusion model often involves skewing the learned score function using
gradients from a supervised value function that can predict labels y from data x (Chung et al., 2023
Zheng et al., 2025} Soares et al.,|2025). These methods are often referred to as posterior sampling, as
they aim to sample from the posterior distribution, p(x|y). Recent works extend this idea to guiding
discrete diffusion models. Classifier guidance (CG) (Nisonoff et al., 2025) skews the rate matrix of
the reverse time Markov chain of discrete diffusion models using a time-dependent value function,
p(y|x¢,t); variable splitting methods (DAPS) (Zhang et al., [2025; [Chu et al., 2025) use discrete
diffusion models as denoisers and only require a value function of clean data, p(y|x); diffusion
optimized sampling (NOS) (Gruver et al., |2023) trains a value function on continuous embeddings
of discrete tokens and optimizes the embedding for higher fitness; sequential Monte Carlo methods
(SMO) (Li et al}|2024a} [Uehara et al., 2025; Wu et al., 2024; |Lee et al.} 2025a; Singhal et al., [2025)
evolve multiple particles from a series of distributions to approximate the posterior distribution in
limit. We explain these methods in more detail in Section[A.4] along with other variations on the
guidance process. In this study, we focus on CG, DAPS, and NOS as guidance techniques (Fig.
[3). Future work could also consider guidance techniques for autoregressive language models, such
as future discriminators for generation (FUDGE) (Yang & Klein, 2021), plug and play language
models (PPLM) (Dathathri et al.| [2020), and twisted SMC (Zhao et al.| [2024b}, |Amin et al.| 2025b)).
Additionally, [Xiong et al.| (2025)) demonstrate how guidance generalizes to masked language models
and order-agnostic autoregressive models.

Reinforcement learning via model finetuning. We consider RL broadly here as techniques that
achieve conditional generation by finetuning generative models with labeled data, thus pushing
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Figure 3: Methods design space for SGPO: a non-exhaustive landscape of generative models for
protein sequences and methods to steer them with labeled data. Three major types of diffusion
models for sequences include those that perform diffusion over continuous space and those that
perform diffusion over discrete space with a uniform or absorbing state (masking) noising process.
Various types of guidance strategies are compatible with certain models, in green (NOS: diffusion
optimization sampling, SMC: sequential monte carlo, FUDGE: future discriminators for generation,
PPLM: plug and play language models, DDPP: discrete denoising posterior prediction, RTB: relative
trajectory balance, DPLM: diffusion protein language model, BO: Bayesian optimization). Differently,
language models and variational autoencoders can be aligned with labeled data via reinforcement
learning such as policy optimization or supervised finetuning.

those models to produce more favorable generations. There are emerging RL techniques applied
to discrete diffusion models, including discrete denoising posterior prediction (DDPP) (Rector
Brooks et al., [2025)), relative trajectory balance (RTB) (Venkatraman et al.,|2024} Bartoldson et al.|
2025; |Venkatraman et al.| |2025), and direct reward backpropagation with gumbel softmax trick
(DRAKES) (Wang et al.,|2025a). While the above strategies are specific to discrete diffusion models,
supervised fine-tuning (SFT) and policy optimization are two important techniques used in RL that
can be broadly applied to generative models such as language models (Fig. [3)). Policy optimization
has generally shown better performance than SFT (Stocco et al., [2024; Blalock et al.|, [2025)); in
particular, direct preference optimization (DPO) is often used for its algorithmic simplicity and ease
of training (Rafailov et al.l 2023)) (details in Section[A.4). RL has demonstrated utility for aligning
generative models of proteins (language models, inverse folding models, variational autoencoders)
with properties like stability (Widatalla et al.| 2024; Blalock et al., [2025} [Stocco et al., 2024} |[Lim
et al.,[2025), but these methods can have high computational costs of finetuning and may require large
amounts of labels (> 10%) to effectively steer generations. We include DPO with an autoregressive
PLM (finetuned ProGen2 (Nijkamp et al., 2023)) as a baseline.

Adaptive optimization. Protein engineering is commonly conducted through adaptive workflows
such as directed evolution [Packer & Liu|(2015) or ML-based approaches such as Bayesian optimiza-
tion (Frazier, [2018; [Stanton et al.| [2022). These methods follow an iterative loop: labeled data is
collected via expensive wet-lab assays, a surrogate model p(y|x) is trained or updated, an acquisition
function implied by the surrogate is used to propose new sequences to evaluate, and the cycle repeats
(Hie & Yang| 2022; [Vornholt et al.| [2024; [Yang et al.,[2025b). The surrogate model, often a Gaussian
process or a deep ensemble, provides uncertainty estimates, which are used by an acquisition function
(e.g., expected improvement, Thompson sampling) to balance exploration and exploitation of the
design space. In this study, we adapt these ideas to guide diffusion models for protein sequence
generation, as described in Section 4.3] A closely related line of work is latent space Bayesian
optimization (Maus et al.,|2022; Stanton et al., [2022; (Gémez-Bombarelli et al., |2018; |Castro et al.,
2022} [Torres et al., 2024 [Lee et al., 2025b), which searches for optimal sequences within a latent
space—typically learned by an autoencoder, which can implicitly capture a prior on natural protein
sequences. In this work, we compare against APEXGo (Torres et al., [2024), a method that performs
trust-region Bayesian optimization in the latent space of a variational autoencoder trained over protein
sequences. There are also related methods that involve conditional sampling from a prior (Brookes
et al.,2019). However, we note that SGPO offers greater flexibility by avoiding reliance on an explicit
latent space, which enables the use of modern, more powerful generative models such as diffusion
models and protein language models that are not easily accommodated by traditional latent Bayesian
optimization pipelines.



3 Problem setup

We focus on evaluating methods that fall under SGPO, where the primary downstream task entails
starting from a known sequence with some level of fitness for a target objective (i.e. activity, stability,
fluorescence, binding, etc.) and identifying a modified sequence with maximized fitness, where
real-world fitness can only be measured for 102 to 10® sequences. Our goal is to sample sequences
with maximum fitness y from the generative prior p(x), which is trained on the multiple sequence
alignment (MSA) of homologous protein sequences that are evolutionarily related to a known protein
with some level of desired fitness (details in Section[A.3)). This model can be thought of as capturing
the distribution of sequences with high likelihood from a given protein family.

During inference, sequences can be sampled unconditionally from p(x), or sampling can be guided
using a supervised model of the form p(y|x) « exp(f(x)/8), where f(-) is a learned fitness
predictor—also referred to as the classifier or value function. This predictor is trained on a small
number of labeled sequence-fitness pairs (typically in the hundreds) to reflect practical data limitations.
The goal of guided sampling is to generate protein sequences from the posterior distribution, p(x|y) o
p(x) exp(f(x)/B). We use a computational oracle to acquire and evaluate fitness labels y, to simulate
how fitness would be measured in a real-world campaign. Details on training and guidance with
the value function are provided in Section[A.4]and Table[A2] As an alternative steering method to
guidance, we finetune the generative prior with labeled data using an autoregressive language model
(ARLM) and DPO, which serves as a baseline. We further compare to a baseline of latent space
Bayesian optimization. The strength of steering is tuned by method-specific hyperparameters.

4 Results

Table 2: Summary of datasets used in this work. Train and test fitness refer to the number of fitness
labels used for training and testing the oracle. We focus on TrpB and CreiLOV, with some of the GB1
results moved to the Appendix. While the TrpB dataset has a lot more training labels, it may be more
difficult to learn due to relatively high amounts of epistatic effects between residues (non-additivity
of mutation effects).

Dataset Length Targeted Residues Design MSA Train Test Reference
Space Size Fitness Fit-
ness
TrpB 389 117,118, 119, 162, 166, N=15 5.7e4 75,618 23,313 |Johnston
Enzyme 182, 183, 184, 185, 186, et al.
Activity 227,228, 230, 231, 301 (2024)
CreiLOV 119 All N=119 3.7¢5 6,842 2,401 [Chenetal.
Fluorescence (2023c)
GB1 Binding 56 All N=56 126 3.9¢6 9.6e4  |Olson et al.
(2014)

We study three proteins, the TrpB enzyme (Johnston et al.,2024), the CreiLOV fluorescent protein
(Chen et al.| |2023c), and the GB1 binding protein (Olson et al.,[2014) due to the availability of fitness
data across many residues (Table[2). We focus protein fitness optimization to a design space of 15
residues in TrpB (only these positions are allowed to vary) and all 119 and 56 residues in CreiLOV
and GBI, respectively. For each protein’s variants, we evaluate fitness by approximating it via a
supervised oracle trained on a large amount of real data (Section[A.2).

4.1 Model pretraining captures the distribution of evolutionarily related protein sequences
and enables sampling sequences with high fitness

Based on the methods explained in Section and we trained generative priors on natural
sequences from the MSA, focusing on continuous diffusion models (Continuous), discrete diffu-
sion models with uniform (D3PM, UDLM) and absorbing state noising processes (MDLM), and
autoregressive language models (ARLM) (Table3). Overall, the trained models capture the natural
distribution of protein sequences, with the D3PM models seeming to match the distribution the most



Table 3: Summary of generative priors evaluated in this work. Each generative prior was trained
on an MSA of homologous natural sequences. All denoising processes were modeled using a
transformer architecture (Section [A.3). Italicized models were further explored in downstream
guidance experiments.

Model Type Noise # Params  Notes

Continuous Continuous Gaussian 27.9M

Continuous- Diffusion 255M diffusion over ESM embeddings

ESM

D3PM- 379 M

Baseline Discret

D3PM Di?fcligice)n Uniform  379M finetuned from EvoDiff 38M-Uniform

(Alamdari et al., [2024)

UDLM 28.6 M uniform diffusion langauge model

MDIM Discrete  Absorbing 28.6 M masked diffusion language model
Diffusion

ARIM Language n/a 151 M autoregressive language model fine-
Model tuned from ProGen2-small (Nijkamp

et al., [2023)

closely while also generating sequences with high diversity (Fig. {] Fig. [A3). The two different
diffusion models over continuous space show comparatively lower performance, and diffusing over
the latent space of ESM embeddings does not boost performance on this task. The UDLM model has
low performance due to mode collapse (Fig. [A3] Fig. [A5). Future work could finetune the pretrained
diffusion protein language model (DPLM) as an MDLM (Wang et al.| [2024).

Overall, we found that pretrained priors sample protein variants that have higher mean fitness, which
corroborates previous studies finding that sequences with higher evolutionary likelihood are also
likely to have higher fitness (L1 et al., 2025a; |Hie et al.,2023). Based on these results, we proceeded
to perform remaining experiments with one model from each category of model type, namely the
Continuous, D3PM, MDLM, and ARLM models.
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Figure 4: Pretrained generative priors capture the target éistribution of naturally occurring
sequences that are homologous to TrpB (A-B) and CreiLOV (C-D), respectively. Lower perplexity
corresponds to higher likelihood in the model. The diversity of sequences was computed as the average
Shannon entropy of mutated positions with mean fitness corresponding to the oracle predictions.
While the various models largely achieve comparable performance, the D3PM models capture the
target distribution with the highest fidelity, whereas the UDLM model is prone to mode collapse. For
each model, 1000 sequences were sampled and repeats were allowed to approximate the distribution.
To approximate the target distribution, 1000 sequences were sampled from the MSA used for
pretraining. Perplexity was calculated by passing generated sequences through the 764 M parameter
ProGen2-base model. More details on model training can be found in Table[3and Section[A23] and
GBI results are provided in Fig. [A4]
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Figure 5: Pareto boundaries demonstrate the trade-off between generating sequences with high
fitness and high diversity for TrpB (A-C), CreiLOV (D-F), and GB1 (G-I). Sequences sampled from
the generative models (Continuous, D3PM, and MDLM)), after guidance with labeled fitness data,
are enriched in high-fitness protein variants, and most methods show higher performance than the
ARLM+DPO baseline. Larger circle indicates a stronger guidance strength hyperparameter (excluding
NOS), specified in Table[A3] Each experiment was repeated using 10 different standardized sets of 200
unique sequences used for steering, each drawn from the D3PM prior, and error bars show standard
deviation. Mean fitness and diversity were calculated based on 200 generated samples, with diversity
calculated as the average Shannon entropy of amino acids at mutated positions. Unconditional refers
to sequences sampled from the prior with no guidance.

4.2 Evaluating SGPO design choices

Impressively, steering with modest amounts of labeled data (200 sequence-fitness pairs) enables
most models and methods to generate sequences with even higher fitness, while sacrificing some
generation diversity (Fig. [3). In this low data regime, guidance with diffusion models outperforms
DPO with language models; the latter does not enable as much steerability. CG and DAPS enable
the strongest steerability overall, but DAPS outperforms CG for the continuous models (Fig. 5A, D).
In general, guidance seems to work similarly for uniform diffusion (D3PM) and to absorbing state
diffusion (MDLM). Overall, the continuous diffusion models do not perform as well as other models,
as the prior does not capture the distribution of natural sequences with high fitness as well (Fig. PJA).
NOS does not seem to allow for as much steerability, despite an extensive hyperparameter scan (Table
[A3). Finally, we conducted a closer analysis of the number of unique sequences generated by the
steered models and confirmed that most models produce entirely novel sequences, suggesting that
they are not over-steering (Fig. [A6).

4.3 “Thompson sampling” using an ensemble of classifiers is effective for adaptive

optimization

Next, we performed adaptive optimization experiments, which mimic real-world protein engineering
scenarios and follow a setup similar to batch Bayesian optimization: in each round, a batch of
sequences is sampled, evaluated for fitness, and used to retrain a supervised value function that
guides sampling from the pretrained prior. We focused on the MDLM models with the CG and
DAPS guidance strategies, as these combinations achieved the best performance in our earlier set
of experiments (Fig. [5). Based on findings from these previous experiments, we selected the ideal
guidance strength hyperparameter to balance fitness and diversity—ensuring high predicted fitness
without significantly compromising sequence diversity (Table[A3)). For both guidance strategies, we
employed an algorithm akin to Thompson sampling (Kandasamy et al.| [2018} [Russo et al., [2018]),
drawing a different value function from a frequentist ensemble of neural network regressors to guide
the generation of each new sample (Yang et al.|[2025b). Pseudocode for our adaptive optimization
algorithm is provided in Section[A.5]



Plug-and-play guidance strategies outperform baselines such as DPO with an ARLM, sampling just
from the unconditional generative prior, and latent space Bayesian optimization with APEXGo (Fig.
[6): Sampled sequences achieve higher values of mean and maximum fitness. Furthermore, campaigns
using an ensemble of value functions and “Thompson sampling” achieve higher maximum fitness than
those using only a single value function for guidance (Table[A4), which may be because these models
enable more exploration of sequence space (Fig. [A7). However, it is difficult to ascertain wither CG
or DAPS works better as a guidance strategy, as the performance is highly dependent on the guidance
strength hyperparameter, and the optimal hyperparameter will not typically be known in a real-world
campaign. Because the oracle may not capture the true nature of the protein fitness landscape, we
also suggest making relative comparisons here rather than absolute comparisons between model
performance.
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Figure 6: Maximum/mean fitness achieved improves over multiple iterations of steering in an
adaptive setting similar to batch Bayesian optimization for TrpB (A), CreiLOV (B), and GB1 (C).
100 sequences were sampled in each round. Within each round, an ensemble of 10 value functions
(classifiers) was trained on fitness data from all previously queried samples, and each new sample
was generated by the MDLM model guided with a value function sampled from the ensemble (akin
to Thompson sampling). Only unique, novel samples were acquired. Guidance strength parameter is
provided in Table[A3] Error bars show standard deviation between 5 different random initializations.

5 Discussion

In this work, we conduct a comprehensive study of SGPO methods and demonstrate that it is an
effective approach for protein fitness optimization, by capturing the distribution of natural protein
sequences with a generative prior and then steering the generations with labeled data. We find
that DAPS with discrete diffusion models has the highest performance overall, and plug-and-play
guidance-based strategies are generally more effective than finetuning language models; the latter can
be difficult when only few fitness labels are available. SGPO approaches also outperform latent space
Bayesian optimization (namely APEXGo), which we attribute to the difficulty in calibrating the trust
region in very low-data regimes with limited rounds of optimization and the fact that latent space
Bayesian optimization relies heavily on the structure of the latent space learned during generation
model training, which can limit extrapolation to high-fitness but unnatural variants.

Using plug-and-play guidance approaches has other advantages. First, only one hyperparameter
(guidance strength) needs to be tuned. In real-world engineering scenarios, even in the absence of
ground truth fitness labels, one practical approach to selecting the guidance strength is to scan over
values and choose the highest setting for which n generated sequences remain unique and novel
relative to previously measured sequences, where n corresponds to the screening throughput available
for the next round. By contrast, for DPO, various hyperparameters need to be tuned, and the training
process has to be monitored closely. Even for NOS, different parameters such as the step size, the
number of steps, and the stability coefficient must be tuned together. A further advantage of guidance
is the low computational cost required, as the prior model weights are not updated during guidance.
Pretraining/finetuning to obtain each initial prior was achieved on a single HI00 GPU in less than
one hour while each individual guidance experiment took minutes; pretraining language models took
several hours on a single GPU.

Still, there are certain limitations of our work. We focused on proteins with fitness as mostly native
function, but it would be interesting to test SGPO on other protein fitness optimization tasks where
the pretrained prior may not provide as much utility. We also focused on protein optimization where



only =~ 102 fitness labels were available; different methods, such as RL, may perform better for
applications where larger amounts of fitness data are available (Hie & Yang, 2022; Blalock et al.,
2025). We focused on guidance strategies and did not test DPO or model finetuning-based methods
with discrete diffusion models, but future work could adapt these methods for discrete diffusion
(Borso et al.,|2025)). Furthermore, for TrpB and for language models, we manually mapped sequences
back into the design space after generation (Section[A.2)), but explicitly building this into sampling
techniques, such as inpainting in masked models (Blalock et al., 2025} |Goel et al.,|2025) may lead to
improved performance. We did not consider insertions or deletions, but variable-length sequence
generation could be considered in the future. Finally, we did not directly compare to existing
approaches for protein engineering such as directed evolution for reasons explained in Section[A.2]

There are several promising directions for future work to improve and extend SGPO methods.
For instance, we experimented with guiding generation using value functions sampled from a
Gaussian process posterior, enabling principled Thompson sampling from a fully Bayesian perspective.
However, the Gaussian process struggled to model high-dimensional protein representations, leading
to poor performance. This limitation could potentially be addressed with better kernel choices
(Wilson et al., |2016; Michael et al., [2024; Yang et al., 2025b). Recent work has also begun to
incorporate multi-objective optimization (Annadani et al.| 2025} Tang et al.| 2025a; Li et al.| 2024bj
Chen et al.,|2025) and uncertainty quantification (Wu et al.,|2025)) when guiding diffusion models.
Simultaneously, alternatives to acquisition-function-based approaches are being developed to enable
Bayesian optimization in large design spaces where enumeration is infeasible (Bal et al., 2025). Other
emerging approaches—closer in spirit to flow matching—are being proposed for discrete data and
may offer new opportunities for exploration (Davis et al.||2024; |Stark et al.| [2024; Tang et al., 2025b).
Finally, for masked diffusion models, strategies such as remasking or scheduling could be explored
to improve inference, particularly to enhance model amenability to guidance (Wang et al., 2025bj
Peng et al.| [2025; Liu et al., 2025; |/Amin et al.| [2025a). It will also be interesting to further explore
guidance in other discrete domains such as natural language and small molecules (Schiff et al., [ 2024)).

In summary, guiding generative models with labeled data offers a powerful, flexible, and principled
framework for protein fitness optimization, as it effectively leverages both the evolutionary infor-
mation encoded in natural protein sequences and task-specific fitness objectives. At the same time,
we recognize the potential dual-use risks: such methods could, in principle, be misused to design
harmful proteins, underscoring the importance of appropriate safeguards (Baker & Church, [2024;
Wittmann et al., [2024). In short, our work has examined multiple effective SGPO strategies and
offered insights on best-practices for real-world protein fitness optimization, laying the groundwork
for further exploration and wet-lab validation.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract summarizes the claims that we explain further in the Results and
the Discussion.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: A detailed discussion of the limitations is provided in the Discussion section.
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: All proofs have cited their sources.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The methods needed to reproduce the experimental results are provided in the
appendix. The code will also be released to the public.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The codebase will be linked in the text upon de-anonymization.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: These details are provided in the appendix methods section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Standard deviations between multiple repetitions of the same experiment are
provided in relevant figures.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The compute resources used to perform the experiments is provided.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Yes, the research conforms with the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We have cautioned the potential for negative societal impacts in the discussion.
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» The answer NA means that there is no societal impact of the work performed.
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to point out that an improvement in the quality of generative models could be used to
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Safeguards
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release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our models only apply to designing proteins with minimal risk of negative
impacts.
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faith effort.
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the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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asset is used.
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well as details about compensation (if any)?

Answer: [NA]
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Answer: [NA]
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
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should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
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guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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A Appendix

A.1 Data for pretraining generative priors

The first step in our pipeline involves learning a generative prior on naturally occurring protein
sequences to capture the distribution of those with high evolutionary likelihood. This prior is
unconditional in the sense that no labeled fitness data is used for training. However, because we are
optimizing protein variants for a desired fitness, we pretrained our generative prior on sequences
homologous to the parent protein to be optimized (known as a multiple sequence alignment or MSA):
TrpB, CreiLOV, or GB1. Likelihoods from MSAs have been captured by statistical models and have
been shown to offer good zero-shot approximations of fitness. In other words, they capture mutational
substitutions that are more favorable, based on the precedent of natural evolution.

We focused on the TrpB (Johnston et al.,|2024) and CreiLOV (Chen et al.| [2023c)) datasets due to the
extensive number of sequences in their MSAs and compared to GB1 (Olson et al.,|2014), which has
comparatively fewer sequences. MSAs were obtained by running jackhmmer (Johnson et al.,2010)
against Uniref90 for two iterations with the parent sequence of the fitness dataset as target. For the
MSA, we only used sequences where the aligned portion was at least 75% the length of the parent
sequence. We used the MSA that was aligned to the parent sequence, with gap tokens replaced by the
corresponding amino acid found in the parent sequence, resulting in full, fixed-length pseudo-natural
sequences. For GB1, we augmented the training set with synthetic data, namely all proteins with
a single mutation to sequences in the MSA. For the language models on TrpB and CreiLOV, some
sequences were randomly mutated by a single position near the beginning of the sequence, to prevent
mode collapse during autoregressive generation.

We performed sequence clustering using mmseqs2 (Steinegger & Soding} 2017) at 80% identity and
resampled the dataset by weighting each sample with m relative probability of being sampled,

where n is the size of the cluster associated with that sequence. Afterward, we removed 5% of the
clusters and their associated sequences as a validation set.

A.2 Protein fitness optimization task

An oracle as a proxy for protein fitness. We studied fitness optimization across three different
protein-fitness datasets, TrpB, CreiLOV, and GB1 (Table2). TrpB is 389 residues in length, but based
on available fitness data, we limited design to 15 residues: 117, 118, 119, 162, 166, 182, 183, 184,
185, 186, 227, 228, 230, 231, and 301. Namely, we combined the fitness data from 6 combinatorially
complete 3-site libraries (D-I from Johnston et al.|(2024)) and the 4-site library across residues 183,
184, 227, and 228. We normalized the parent fitness to 1 in each dataset and rounded all negative
fitness values up to zero. The fitness here is the catalytic rate of a native reaction, the formation of
tryptophan from indole and serine. To obtain a proxy fitness for all variants in the design space (20*°
possibilities) we trained an oracle inspired by the dataset splitting and model architecture used in
Blalock et al.[(2025). Namely, we used all of the single, double, and triple mutants in the library
for training, with 10% and 20% of the quadruple mutants being used for validation and testing,
respectively. Our model consists of an ensemble of 20 MLPs for TrpB, and each was trained on
one-hot encodings of the designed residues for 1000 epochs.

Differently, the CreiLOV dataset (length N = 119) contains experimental fitnesses for all single
mutations in the protein and certain higher order mutations at 15 selected positions with beneficial
single mutations. Fitness here refers to associated fluorescence. To obtain a proxy fitness for all
variants in the design space (20'!° possibilities), we trained an oracle similar to the procedure above,
using similar splits to those in|Blalock et al.[(2025)) and were able to reproduce their high performance
on the test set. Before model training, we scaled the fitnesses of the single mutants to the fitnesses of
multi-mutants by adding a normalization factor to all single mutants such that the parent sequence in
both datasets had the same fitness. Our model consists of an ensemble of 10 MLPs for CreiLOV, and
each was trained on onehot encodings of sequences for 1000 epochs.

For GB1, the experimental finesses for nearly all double mutations across the entire protein were
available, where fitness refers to binding affinity of a domain of the G protein. To train the oracle, we
held out 10% and 20% the sequences with two mutations as a validation and test set, respectively,
with remaining sequences being used for training. Our model consists of an ensemble of 10 MLPs
for GB1, and each was trained on one-hot encodings of the designed residues for 50 epochs.
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Our oracles show high Pearson correlation on the train and test sets (Fig. [AT]). As the generalization
ability of our oracle was only been tested on variants that are similar to the parent, we penalized the
fitness of protein sequences by a factor of 0.99 for every mutation accumulated beyond a threshold of
60% sequence identity to the parent sequence. From here forth, we treated ground truth fitness as
outputs from the oracle.
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Figure A1l: Oracles trained on available labeled fitness data for TrpB, CreiLOV, and GB1 extrapolate
well to higher order combinations of mutations within the design space, as measured by Pearson
correlation.

Processing generated sequences. Our primary method for evaluation involved examining the
distribution of sampled sequences and their corresponding fitness values, diversities, and novelties.
The processing pipeline for generated sequences in shown in Fig. [A2] In diffusion models, sequences
were generated with fixed length equal to the parent length. For the language models, nearly all
generated sequences had length equal to the parent sequence length. Still, sequences were aligned
with the parent sequence using mafft (Katoh & Standleyl [2013)), and gaps were replaced with the
corresponding amino acid in the parent sequence to generate complete pseudo-sequences of a fixed
length. Special tokens, which occurred rarely in generation, were replaced by a random amino acid.
For TrpB, residues outside of the design space of 15 residues were naively mapped to the original
amino acid type in the parent sequence at the end of generation. We did not test inpainting, although
this could be accomplished with masked (diffusion) language models.

4 JEE—— N align with parent i.e. Nresidues = 8
Model M-YFG...SQ-FD extract residues in
the design space

L MYFGH...ETQFD ) [ fill in gaps with parent YRAMSHRF
MKYRG...TQRFD final sequences
4 e —— ) with fitness values
Model ( extract residues in
the design space
L MKYFG...SQRFD ) YFAMGHRF

Figure A2: Example pipeline for generating protein sequences for evaluation, based on a hypothetical
parent sequence: MKKFG...SQRFD (length=100), with 8 residues being optimized (3, 4, 26, 27, 28,
29, 98, 99), corresponding to a design space combo of KFDEACRF.

Comparison to existing protein engineering methods. There are several reasons why we did not
directly compare the performance of SGPO methods to existing methods used in protein engineering,
such as directed evolution and MLDE. In the case of directed evolution (such as random mutagenesis):
(1) It is not obvious which parent sequences to use as the starting points for directed evolution for a
fair comparison. (2) It is unclear if the oracle captures the true nature of the protein fitness landscape
or extrapolates well to sequences with many mutations relative to the original fitness dataset from
which the oracle was trained. (3) Overall, our method enables the accumulation of many mutations in
a single round of experimentation, whereas directed evolution is largely limited to one mutation at
a time. For example, on the CreiLOV dataset, the generated sequences with the highest fitness had
on average 66 mutations from the parent reference sequence from which the original dataset was
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generated, which would not be achievable with directed evolution. We also did not directly compare
our method to supervised approaches in smaller design spaces, such as 4-site combinatorial libraries
(Yang et al.l 2025b)), as we focus here on design in larger design spaces, where existing methods are
lacking. Overall, traversing large swaths of sequence space will be important for faster engineering
and enabling improvements to fitness that would normally be slow with directed evolution.

A.3 Generative models for sequences

Table Al: Summary of training details for generative priors in this work. Reference refers to the
codebase that was modified for our implementation and where the model architecture was adapted
from. For all models, we retained the model with the lowest validation loss. When using the ESM
encoder, we used the 35M-parameter ESM2 model |Lin et al.| (2023)).

Model Max Learning Batch Warmup Noise Diffusion Model Reference
Epochs Rate Size Steps  Schedule Timesteps Architecture
Continuous 5 1x107* 64 10 cosine 500 BERT Gruver et al.
(2023))
Continuous- 25 1x107* 64 10 cosine 500 BERT Gruver et al.
ESM (2023)
D3PM- 5 1x107% 64 10 Sohl- 500 ByteNet Alamdari
Baseline Dickstein et al.| (2024)
D3PM 5 1x107% 64 10 Sohl- 500 ByteNet Alamdari
Dickstein et al.[(2024)
UDLM 5 3x107® 64 2500  loglinear 500 DiT Schiff et _al.
(2024)
MDLM 50 3x107* 64 2500  loglinear 500 DiT Schiff et al.
(2024)
ARLM 10 1x107* 32 10 n/a n/a GPT-J Nijkamp

et al.|(2023)

A.3.1 Diffusion over continuous space

Diffusion models construct samples by reversing a diffusion process that maps clean data points xg to
samples from a prior distribution 7(x). The forward process (xg — x7) is composed of conditional
distributions p(x;|x;—1), which admit closed-form expressions for the conditional distributions
p(x¢|x0) and p(x;—1|x¢, X0). The reverse process (x7 — Xq) converts samples from the prior into
samples from the learned data distribution pg(xo) by repeatedly predicting the denoised variable
X( from noisy values x;, using the conditional distribution p(x;_1|x;,Xo) to derive a transition
distribution pg (x¢—1|x¢).

Continuous noise forward process. Similarly to|Gruver et al.[(2023)), we define a protein sequence
asw € AL, where A is the alphabet of amino acids and L is the fixed length of the sequence.
To learn a distribution p(w), we first embed w into a continuous variable x( using an embedding
matrix Uy or encoder from the ESM2 language model (Lin et al., 2023)), transforming discrete tokens
into a continuous latent space. Gaussian noise is then applied to this embedding space. The prior
distribution is defined as:

7T(X) :N(OaI)a (D

while the forward process follows a Gaussian corruption schedule:
t
p(xe|x0) = N(Vauxg, (1 —ap)l), @ = H a;, oy =1—p. 2)
i=1

The variance schedule {/;} follows the cosine schedule proposed by [Nichol & Dhariwal| (2021)),
which is commonly used to stabilize training.
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Reverse process. The reverse process aims to recover the original sequence by learning a function
po(W|x¢,t) that predicts the sequence from noised points x;. This is done by minimizing the
following objective:

L(0) = Ew.i [~ logpo(wolx:)],  x¢ ~ p(xe|x0 = Uswo). 3)

By learning pp(W|x:,t), we construct the reverse transition distribution:

o(x¢—1[x¢) Zp X¢—1[%, %o = UgW)po(Wlxs, 1), @

where the posterior p(x;_1|x¢,X) follows:

p(x¢—1[%t,%0) = N (x¢—1; i, 07 1), (5)

with mean i, and variance o7 given by:

Va1 Vai(l —a;q)

pr— 6

=14, X0 + 1 —a (©)
11—«

ot = —— 1B @)

].—O[t

Inference and sampling. At inference time, the learned reverse process is used to generate protein
sequences from the prior 7 (z). This is done by iteratively sampling:

X1 ~ po(Xe—1[X¢), (3)
and then reconstructing w by sampling:
w ~ pp(W]|xo). )

This denoising process iteratively refines noisy embeddings back into structured sequences.

A.3.2 Diffusion over discrete space.

Discrete diffusion models (Austin et al.| |2021} |Campbell et al.| 2022} [Lou et al.,|[2024) generate
data in discrete spaces by reversing a predefined forward Markov process. Specifically, a family of
distributions p; evolves according to the Markov chain

d
ﬁ = Qipr, (10)

where Py = Pdata is the data distribution and Q; € RV > are predefined transition matrices.

o)

This Markov process can be reversed with the help of a concrete score function, s(x, t) :
as its time reversal is given by

Pt Qr v, (1
where Q¢ [X,x] = s(x,1)zQ:[x, X] for X # x, and Q;[x,x] = — D osx Q:[X,x]. To generate data
X0 ~ Ddata, We start with sampling x from a uniform distribution and then evolve through Eq.
by the Euler method.

Uniform discrete language models. Both D3PM (Austin et al.,2021)) and UDLM (Schiff et al.,
2024) implement a uniform transition matrix Q; = 711" — I. When T' — oo, the probability
distribution p7 converges to a uniform distribution.

Masked diffusion language models. Masked diffusion language models (MDLM) (Sahoo et al.,
2024) utilize an absorbing transition matrix @ that converts tokens in a sequence to [MASK] states.
The corresponding transition matrix can be written as Q; € RIWN+TDXN+1) @, = T + ey 117,
When T" — oo, the limiting distribution p7 converges to a completely masked sequence.
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A.3.3 Autoregressive language models.

In this work, we finetuned the ProGen2-small decoder-only transformer (151 million parameters)
based on the code and parameters used in|Yang et al.|(2025a). Models were trained based on next
token prediction and cross entropy loss. However, we did not use adapter layers, and we did not
group batches based on sequence length. During inference from the autoregressive model, we used a
temperature of 1 and a Top-p value of 1.

A.4 Steering methods

Table A2: Summary of supervised value functions used to predict fitness in this work, to guide
diffusion models. All “classifiers” were trained as regressors to predict fitness. For DAPS methods,
only clean data was used for training, whereas other classifiers are trained on clean and noised
samples from various timesteps.

Model Guidance Max Learning  Batch Architecture  Hidden

Strategy Epochs  Rate Size Dimension
Continuous CG 1000 1x1073 128 4-layer MLP 256
Diffusion

DAPS 1000 1x1073% 128 4-layer MLP 256
Continuous NOS 100 1x1073 128 I-layer MLP 256
Diffusion
Discrete CG 1000 1x1073 64 4-layer MLP 64
Diffusion

DAPS 200 1x1073 64 4-layer MLP 64
Discrete  NOS 200 3x107* 64 linear layer  n/a
Diffusion

A.4.1 Classifier guidance

Classifier guidance (Song et al.,[2021]) is a technique used to steer samples generated by diffusion
models toward desired attributes. The primary goal is to sample from a conditional distribution
p(x]y), where y is a guiding signal of interest. In continuous space, this can be achieved by replacing
the unconditional score function Vy, log p;(x;) at time ¢ by a conditional score function,

Vi, log p(x¢|y) = Vi, log pi(x;) + Vi, log p: (y|x:) (12)

To obtain the conditional score function, one only needs to train a time-dependent predictor, which
predicts the probability of p;(y|x;) given x; and time ¢.

Continuous guidance. Classifier guidance modifies the reverse diffusion process to steer generated
samples toward a desired property, represented by a conditioning variable y. The guided sampling
process modifies the update rule for x; by incorporating a classifier score Vy, log p(y|x;) into the
model’s learned score function based on the relation in Eq. Following [Song et al.| (2021)), the
classifier guidance term modifies the predicted X in the denoising process:

X0 =X¢ + 02(30(Xt7t) + Vi, log p(y|x¢)). 13)

Since our diffusion model directly predicts logits rather than the score function sg(x¢, t), adding
classifier guidance requires modifying the predicted X.

Instead of predicting the score function explicitly, our model predicts logits over the vocabulary, from
which the denoised representation X is obtained. We modify X, by incorporating classifier gradients
as follows:

* Compute the unmodified %, using the model’s predicted logits:

%0 = 3 pl(wh. () Upw (14)
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Table A3: Hyperparameters used to tune the guidance/steering process. The bolded parameter
was chosen as the ideal parameter for the iterative “Bayesian optimization” experiment (Fig. [6).
Larger guidance parameter typically implements stronger guidance strength.

Guidance Strategy Hyperparameters

Continuous CG 1/8 = 64,128,256,512,1024
Discrete CG 1/p=1,2.5,6.25,15.625, 39.0625
Continuous DAPS 1/8=0.25,0.5,1,2,4 x 10*

K =50

Euler method steps = 10

Langevin dynamics steps = 100
Discrete DAPS 1/p = 16, 32,64, 128, 256

K =50

Euler method steps = 20

Metropolis Hastings steps = 1000

Continuous NOS A=0.1,1,10,100,1000

n=0.5,2,5

K =5,10

optimizer = AdaGrad
Discrete NOS A =0.1,1,10, 100, 1000

n=0.5,2,5

K =5,10

optimizer = AdaGrad
DPO 8 =0.02,0.1,0.5,2,4

Ir=1x10"6

epochs =5

batch size = 8

where Uy is the embedding matrix mapping discrete tokens to continuous space.
* If a time-dependent classifier f is available, compute the classifier guidance term:
Vi, log p(y|x:) = Vi, f(xt,1) /8. (15)
* Modify X using the classifier gradient:
%o = %o + 0%V, log p(y|x;). (16)
This allows the diffusion model to generate samples that are more likely to satisfy the desired
condition y.

Further details on training the classifier are provided in Table[AZ]and Table [A3]

Discrete guidance. |[Nisonoff et al.| (2025) extend classifier guidance to discrete state-space dif-
fusion models. In analogy to classifier guidance for continuous diffusion models, they modify the
unconditional rate matrix Q; (as defined in Eq. to be a conditional rate matrix R} with
_—
RYx %] = 2050 0 0 5 ve £ x, a7
p(ylx,t)

For classifier guidance on both continuous and discrete diffusion models, we train a time-dependent
predictor (classifier) f that predicts the fitness y given x; at time t. We define p(y|x) x exp(f(x)/f),
where f(-) is a surrogate predictor of the fitness, and § is the guidance temperature and gov-
erns the strength of guidance. Therefore, Vy, log p(y|x:) = %th f(x¢,t), and R} [x,%X]| =

exp (5(f(%1) = f(%,1)) ) Qilx. %]

To obtain a classifier f for discrete diffusion models, we trained an MLP regressor to predict the
fitness of a one-hot encoded sequence given x; and uniformly random time ¢ € [0, T'|. Further details
are provided in Table[A2]and Table
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A.4.2 Posterior sampling

Another line of guidance work (Chung et al., 2023} Mardani et al., [2024} Zhang et al., |2025)) focuses
on drawing samples from the posterior distribution p(x|y) o p(x)p(y|x), where the prior distribution
is modeled by a pretrained diffusion model. The conditional distribution p(y|x) can either be the
likelihood function of a forward model (i.e., when y is an incomplete measurement of x) or an
exponential distribution with respect to a reward function (i.e., p(y|x) o exp(f(x)/8)). The major
difference between posterior sampling and classifier guidance is that it requires the reward function
to be trained only on clean data x.

While many works have studied posterior sampling in Euclidean space with continuous diffusion
models, posterior sampling for discrete data has been less explored. We modified DAPS (Zhang
et al.| [2025) to enable diffusion posterior sampling in discrete-state spaces. Suppose x lies in a finite
support X', we follow the following steps:

* Initialize x7 ~ pr(xr)
e fori=1,...,K
(%)
0

1. Sample X’ ~ p(xg|x¢,_, ) by a discrete diffusion model.

2. Run Metropolis Hastings to sample xéi) ~ p(xo|x¢, ,,y) as defined in Eq.
3. Sample x;, ~ p(x¢,|Xo) following the forward Markov process.

e Return xg.

Specifically, g, t1, .. ., tx are mono-decreasing time steps with to = T and tx = 0. p(X¢|X¢,y) is
defined as

p(xo[x¢,y) o< p(y|xo)p(xolxt)
~ p(y[xo) exp(—|[x0 — Xo(xt)[lo/¢), (18)
where X (x;) ~ p(xo|x¢) is a point estimate of the conditional distribution, and we approximate
p(Xo|x+) by an exponential distribution over Hamming distance. Following Proposition 1 inZhang
et al[(2025), fcg), xél), and x;, converge to the posterior distribution as ; goes to 0.
For posterior sampling with DAPS, we obtained the value function f using the same model architec-
ture and training parameters as classifier guidance but only trained on clean data x (no noisy x;). We

set K = 50 using the time scheduler for the original model. Further details are provided in Table
and Table

A4.3 NOS

Diffusion optimized sampling (NOS) (Gruver et al.,[2023)) is a guidance method for both continuous
and discrete diffusion models, which utilizes gradient information of the continuous latent represen-
tations of protein sequences. In pretrained discrete diffusion models, noisy sequences w; always
have a continuous embedding in the form of hidden states of the neural network. Specifically, the
denoising model that predicts wg from w; can be written as pg(wo|g(w), t), where hy = g(w;) is
a continuous hidden states of the model.

Instead of training a value function on discrete sequences wy, NOS proposes to train the value
function on the hidden states h,. In each diffusion step, NOS samples from the posterior distribution,

p(wolhe,y) o< pg(wolhy) exp(f (hy)). (19)
To sample from this distribution, NOS runs Langevin dynamics on hy, i.e.,
h} «+ h} — th;()\DKL(pg(wo\hi)||p9(wo|ht)) — f(hy)) + /2n7e, € ~ N(0,1). (20)

After K iterations, we denoise w; following the guided hidden state, i.e., p(wWi_1|Wt,y) =
pé‘(wt—1|h{£7t)-

To train the value function used for guidance in NOS, following the method from (Gruver et al.| (2023)),
we trained a very shallow neural network on the final layer hidden embeddings of the diffusion model.
Further details are provided in Table[A2]and Table[A3]
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A.4.4 Direct preference optimization

For DPO with language models, we used the weighted loss function from |Widatalla et al.| (2024)
and [Stocco et al| (2024) (Eq. [21). g is the policy to be updated, 7 is the original model, and 3
is a tunable parameter describing the extent of drift from the reference model. The loss therefore

describes the cross entropy of the ratio 5 log 77:‘((’:()) and the fitness value w. Following|Stocco et al.

(2024), we calculated the ratio r as the difference of the log likelihood of the sequence from the
updated model minus the log likelihood of the reference model, and softmax was applied to all of the
fitness values w. We used the default parameters from (Stocco et al.,|2024)) and tested increasing the
learning rate to 10~* but found that generation quality broke down above the levels used in Table
[A3] with finetuning for 5 epochs. We also tested ranked loss with other types of models, but the
performance was similar.

K K
mo(x mo(x
Lo, g (T0; Tref) = —Ep E w® | Blog 0(x) log E exp (ﬂ log o )) 21
k=1 re j=k

Tref (2) - Tret(2)

A.5 Adaptive optimization algorithm

Algorithm 1 Adaptive Optimization with Guided Generative Models

1: Input: Pretrained generative prior p(x), initial empty labeled dataset Dy = @), number of rounds
T, batch size B, ensemble size M

2: fort =1toT do

3: Initialize batch X, < 0

4: if t > 1 then Train ensemble of value functions {fy, . }23/_; on Dy

5: while |X;| < B do

6: if ¢ > 1 then

7: Sample value function fy ~ Uniform({f, . }»_;) > Thompson-style sampling
8: Sample sequence x; ~ GuidedSample(p(x), fy, GuidanceStrategy)
9: else
10: Sample sequence x; ~ UnconditionalSample(p(x))
11: end if
12: if x;, ¢ D;_; then Add x; to batch X;

13: end while

14: Evaluate true fitness y, = fiue(Xp) for all x, € X;
15: Update dataset: Dy < Dy—1 U {(xp,v)} 2.,

16: end for

17: Return: Best observed sequence in D

We used an ensemble size of M = 10 models, each trained with a different random initialization of
neural network weights. In practice, to speed up sampling, we sampled (B = 100 samples)/(M = 10
models) = 10 sequences in each GPU batch using the same Thompson-sampled value function, rather
than using a GPU batch size of 1. Alternatively, for the Gaussian process model, we trained the
model with the radial basis function kernel, and we sub-sampled the total amount of training pairs
(when using noisy samples) to 5000 samples.

A.6 Latent space Bayesian optimization with

We utilized the APEXGo codebase (Torres et al.,[2024), a package for training generative variational
autoencoders over peptide sequences and then optimizing those sequences with latent space Bayesian
optimization to maximize certain properties. We used the training code out-of-the-box to train
variational autoencoders over the same MSA sequences used to train priors for discrete diffusion
models in SGPO. We trained until losses plateaued, to 542, 241, and 391 epochs for TrpB, CreiLOV,
and GBI, respectively. Overall, the reconstruction losses were low, and generated sequences had
low perplexity and high fitness, comparable to the generative models used in SGPO. We then used
this latent space and the APEXGo optimization algorithm to maximize the fitness of sequences as
measured by the oracle used in SGPO benchmarking. Specifically, in our configuration, we set
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the number of initialization points to 100, the number of desired diverse solutions to 1, the max
number of oracle calls to 800, and the batch size to 100—to mimic the iterative Bayesian optimization
experiments performed in Fig. [f]

A.7 Additional results

\
|
|
I
|
I
|
|
I
|
I
|
I
|
I
I
|
I
|
1

Figure A3: The distributions of sequences sampled from pretrained generatlve priors largely
match those of the target distribution. The target distribution shows all sequences in the MSA,
and the distributions of generative models are approximated by sampling 1000 sequences. Model
definitions can be found in Table 3] The residues shown for TrpB are 4 out of 15 positions studied in
the dataset (parent is VFVS), and 5 out of 119 residues for CreiLOV are shown as they correspond to
those harboring favorable mutations in the original dataset (parent is AGQRD). Note that the target
distribution for training the ARLM is slightly different than that shown here.
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Figure A4: Additional results for GB 1, correspondmg to Fig. ] and Fig. @ The 4 posmons shown
correspond to the parent sequence of VDGV.
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Figure AS: Generated sequences from pretrained priors are more similar to parent than random for
(A) TrpB and (B) CreiLOV, measured by the Hamming (or edit) distance. UDLM models exhibit
mode collapse onto consensus sequence(s) in the training distribution. The parent sequence refers to
the starting sequence used to generate variants in the original protein fitness dataset.
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Figure A6: Pareto boundaries demonstrate the trade-off between generating sequences with high
fitness and high diversity for TrpB (A-C), CreiLOV (D-F), and GB1 (G-I) — showing the same
experiment as Fig. [5] Error bars show standard deviation. Mean fitness and diversity were calculated
based on 200 generated samples, with diversity calculated as the total number of unique and novel
(previously unseen) samples in the generated batch, out of 200. Larger circles indicate a stronger
guidance strength, specified in Table. [A3]

Table A4: Adaptive optimization with an ensemble of 10 value functions and Thompson sampling,
compared to using a single model for guidance. Max fitness refers to the mean max fitness achieved
at the end of the campaign using the same experimental setup as Fig. [6] over 5 different random
initializations.

Protein Model Guidance  Max Fitness Max Fitness
(Ensemble) (Single Model)
TrpB D3PM CG 1.551 1.542
DAPS 1.595 1.568
MDLM CG 1.551 1.542
DAPS 1.595 1.568
CreiLOV  D3PM CG 5.608 5.552
DAPS 5.522 5.520
MDLM CG 5.608 5.552
DAPS 5.530 5.520
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Figure A7: Diversity of generated sequences, measured by average Shannon entropy of mutated
positions, during each round of guidance. Using an ensemble of value functions and Thompson
sampling generally shows higher diversity than using a single model. Experimental setup is the same
as Fig. [6] and experiments were repeated over 5 random initializations.
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