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Figure 1: Our proposed dual-arm robotic system demonstrates adaptive manipulation and assem-
bly of diverse multi-part objects. The system integrates task-oriented sequence, motion, and grasp
planners for long-horizon assembly planning. For robust control, it leverages SE(3)-equivariance
to learn assembly skills that generalize across various object geometries, assembly paths, and grasp
poses, enabling it to achieve high success rates in zero-shot transfer on unseen assemblies.

Abstract: Multi-part assembly presents significant challenges for robotic au-
tomation due to the need for long-horizon planning, contact-rich manipulation,
and broad generalization capabilities. In this work, we introduce a general dual-
arm robotic system that end-to-end assembles multiple parts in simulation with-
out any human effort. For learning contact-rich assembly skills, we propose a
simple reinforcement learning framework that generalizes across object geome-
tries, assembly paths, grasp poses, and robotic manipulators by leveraging SE(3)-
equivariance. For effective long-horizon planning, our system integrates task-
oriented sequence, motion, and grasp planners with a fixture generation method,
facilitating multi-step assemblies using a standard dual-arm robotic setup. Follow-
ing offline planning and training on a standard peg-in-hole benchmark, we perform
zero-shot transfer experiments on six unseen multi-part assemblies from different
categories. Our system achieves an average success rate of 90% per assembly step
with random grasp poses, demonstrating robust performance and adaptability.
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1 Introduction

Real-world products often consist of complex multi-part assemblies. Currently in manufacturing,
such assemblies are either still largely a manual process or require specially designed and fixed
assembly lines. These fixed lines demand significant effort to design, program, set up, maintain, and
modify, and they lack adaptability to uncertainty. There is a need for flexible, automated assembly
lines.

Robotic automation of multi-part assemblies is a challenging task due to several factors. First, long-
horizon sequence planning: generating physically feasible assembly sequences that also satisfy robot
kinematic and grasping constraints is non-trivial. For example, a naively planned sequence may not
be collision free or reachable by the robot. Moreover, the horizon increases with the number of parts
and the number of potential assembly sequences grows exponentially with the number of parts.
Second, the assembly process involves contact-rich manipulation and requires the robot to interact
with its environment by applying appropriate amount of force as well as adapt to any misalignment
and uncertainty. Finally, broad generalization capabilities are necessary, as the robot must adapt
to a wide range of parts and assembly scenarios, often with minimal prior knowledge or specific
programming for each unique task. Together, these factors make multi-part assembly a particularly
complex and demanding application for robotic automation.

In this work, we tackle these challenges by building a general system for flexible multi-part as-
semblies with a dual-arm setup in simulation. More specifically, to guarantee physical feasibility
and reachability of the assembly sequence, we propose an offline planning system that integrates
sequence, grasp and motion planning. To achieve generalizability in contact-rich manipulation, we
utilize equivariant representations and learn generalist reinforcement learning (RL) policies in com-
bination with compliance control.

In summary, our work makes the following contributions:

1. We build a virtual dual-arm robotic system for automated multi-part assembly. The system
end-to-end assembles individual parts to complete assemblies, generalizes to assemblies
from different categories, and is robust to realistic uncertainties.

2. We propose a simple RL framework to learn contact-rich assembly policies generalizable to
diverse object geometries, assembly paths, grasp poses, and robotic manipulators through
SE(3)-equivariant representations and guidance from planned assembly paths.

3. We propose a comprehensive offline assembly planner that integrates sequence, grasp, and
motion planning for dual robots arms. Our planner ensures feasibility for subsequent online
execution over long horizons of complex multi-part assembly.

4. We propose an automated fixture design pipeline for accurate initial part placing and facil-
itating task-oriented grasps satisfying geometry, motion, and stability constraints.

5. We design and compile a benchmark suite of diverse assemblies from multiple categories
assemblable by a dual-arm robotic system with parallel grippers. Our system shows end-
to-end, generalizable, and robust robotic assembly of multiple parts.

2 Related Work

2.1 Multi-Part Robotic Assembly Systems

Existing literature on multi-part assembly focuses on automated planning of assembly sequences
and paths, starting from the non-directional blocking graph [1] for geometric reasoning over simple
geometries to motion planning methods through randomized tree search [2, 3, 4] for complex-shaped
objects. Recently, physics-based motion planning [5] has shown success in assembling many com-
plex parts with tight clearance. Beyond motion, realistic constraints have been considered during
planning for execution on real-world robot setups, such as Tian et al. [6] and Rodrıguez et al. [7].
However, they are hard to deal with uncertainties in autonomous control of assembly skills beyond
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accurate planning. On the other hand, complete real-world robotic assembly systems have been
demonstrated on IKEA chairs [8], bar structure assemblies [9], timber joints [10]. However, they
are domain-specific systems and do not generalize to assemblies in any categories. In our work, we
propose an integrated robotic assembly system with planner and controller that both generalize to
diverse assemblies and completes end-to-end multi-part assembly.

2.2 Learning Contact-Rich Assembly Skills

Even with planned assembly sequences and paths, physically controlling the robot to assemble each
part is still highly challenging due to its rich contact, millimeter-level clearance, uncertainties and
errors in real robotic systems, and the need for generalization. RL has shown success in tackling
this problem, for example, Thomas et al. [11] first combines the motion plans generated from CAD
models and a RL policy for tracking the planned motion. Fan et al. [12] similarly warm-starts the
policy with supervised trajectory optimization. High-precision insertion with sim-to-real has been
also demonstrated [13, 14]. However, they primarily demonstrate assembly with top-down inser-
tion directions and fixed grasps, which is unrealistic and inflexible for multi-part assembly where
side-way insertion or tilted grasps are necessary for collision-free motion. The robotics commu-
nity has been exploring spatial-equivariant techniques for improving generalization on various tasks
such as pick-and-place [15] or object rearrangement [16], but is underexplored in robotic assem-
bly tasks. As the closest work, Seo et al. [17] proposes geometric impedance control for learning
SE(3)-equivariant gain scheduling policy, but does not consider varying grasps and diverse assembly
geometries. Several benchmarks on robotic assembly have been proposed, but either focus on two-
part insertion [18, 19], part alignment [20], or learning from demonstration [21, 22], where success
rates and generalization capabilities are limited. For the first time, in our work, assembly policies
are learned over diverse geometries, assembly paths, grasp poses, and robot manipulators, combined
with planning to complete multi-part assembly tasks with high success rates.

3 Method

We tackle the problem of multi-part assembly automation in simulation. The requirement is that the
system should be generalizable to a variety of part geometries and assembly scenarios, and robust to
misalignment and uncertainties. Specifically, given a CAD model of an assembly in the assembled
state and two robotic arms on the same work table with a parallel gripper on each arm, our system
outputs an assembly sequence that is collision free and reachable by the robotic arms, along with
suitable grasp poses, motion plan, and control policy, for completing the assembly.

3.1 System Overview

Our goal is to develop an autonomous planning and control system for flexible and generalizable
multi-part assembly. The system is composed of three main components: an offline planner, a
fixture generator, and an online controller. These components work together to achieve efficient and
accurate robotic assembly, leveraging the strength of accuracy from offline planning and robustness
from online policy execution.

Input The system receives as input the assembly meshes in their final assembled states provided
by the user, and specifications of the robotic setup, mainly the geometry and kinematics of the robot
arms and grippers.

Output The system produces the complete information needed for executing assembly of the
given object on the provided robotic setup starting from part pick-up to the final complete assem-
bly, including the feasible assembly sequences, desired robot arm motion, grasping poses, fixture
designs for holding the part initially, and the closed-loop learned control policy for tracking planned
motion and adapting to realistic uncertainties.

The system details of each component are expanded in the following sections.
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Figure 2: Overview of our robotic assembly system. Our system operates in two stages: offline and
online. During the offline stage, we perform planning for the assembly sequence, grasp, and motion,
generate necessary fixtures, and train the RL control policy using FMB pegs. In the online stage, we
execute the generated plan by tracking it closely and employ the pretrained RL policy to mitigate
real-world noise and uncertainties.

3.2 Planning Multi-Step Dual-Arm Assembly

To guarantee feasible multi-step assembly execution, it is essential to develop an offline planner that
outputs the desired sequence, grasp, and motion plans. We build upon the ASAP [6] framework
for sequence planning, which utilizes disassembly tree search from a completely assembled state to
fully disassembled parts, and extend it to support dual-arm grasp and motion planning.

Specifically, in each step, we perform antipodal grasp sampling on the surfaces of both the moving
and holding objects to generate grasp proposals. We then select pairs of grasps that ensure collision-
free interactions between objects, grippers, and arms, and also reachability by the arms through
inverse kinematics (IK). Additionally, in each assembly step, after a part is inserted by one robot
arm, the supporting robot arm needs to switch its grasp to support the next part. To facilitate this,
we use RRT-connect [23] to plan collision-free robot motions between assembly steps for feasible
grasp switching. Finally, the same motion planner is used to plan motions between the pick-up area
and the assembly area.

This integrated approach ensures that all planned motions are feasible and that the assembly process
is both efficient and reliable, capable of handling the complexities of multi-part assembly with dual
robotic arms.

3.3 Generating Grasp-Oriented Assembly Fixtures

To perform assembly tasks using a dual-arm robotic setup, one arm must insert the part while the
other arm holds the base part firmly. Therefore, the arm responsible for insertion should grasp the
part in the correct orientation for insertion, ensuring that the gripper does not touch any section of
the part that will be inserted later. If this condition is not met, both arms would need to reorient
and re-grasp the part by passing it between them, therefore release the grasps of partially assembled
objects. To address this challenge, we design a fixture that stably positions and orients each part
for grasping. The parts are manually placed inside the fixtures before the assembly process starts.
Knowing the exact location and orientation of the parts, the robotic arm can easily reach and grasp
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them in the proper orientation for insertion. The fixtures are designed such that the grasping section
of each part extends out, allowing the arm to grasp the part effectively.

To generate the molds, an acceptable orientation for each part is
first determined based on its geometry. This desired orientation is
not unique. The depth of the fixture’s hole for each part is calculated
so that the part’s center of mass aligns with the hole’s opening after
placement, ensuring gravitational stability when the part is placed
inside the fixture. Although the parts are oriented obliquely in the
mold, they are removed with a straight upward motion after being
grasped by the arm. Therefore, the fixture’s holes cannot be created
simply by subtracting the part’s geometry from a cubic block; the
fixture’s hole geometry must be convex. To achieve this, we project
the part’s 3D geometry onto a 2D plane perpendicular to the direc-
tion of the removal motion. The generated 2D polygon is then cut-extruded to the calculated depth
from the fixture block. Consequently, the mold can be generated in a completely automated way
for arbitrary shapes of objects and any given grasps generated by the planner, as shown in the inset
figure above.

3.4 Learning General Single-Step Assembly Policy

Once the sequence, grasp, and motion are planned with feasibility guarantees, the next challenge is
to develop a robust controller that can accurately track the desired plan. Multi-part robotic assembly
involves manipulating various objects with different grasps and motions, which are hard constraints
inherent to the task. To effectively address the multi-part assembly problem, the controller policy
must generalize across multiple dimensions: object, grasp, assembly motion, and ideally, the type
of robotic hardware to achieve broader and more transferable generalization.

Although this may seem challenging, we argue that with the appropriate design choices in the RL
setup, a highly capable generalist policy can be learned to achieve such generalization. With the goal
of broad generalization in mind, we propose a set of design choices that are simple to implement
and extend while being highly effective for achieving robust and adaptable assembly policies.

SE(3)-equivariant observation and action Humans have the intuition to assemble diverse objects
using the same skills, regardless of the object’s pose or the assembly motion. We emulate this
capability by leveraging SE(3)-equivariant transformations, which convert all possible straight-line
assembly motions into top-down insertions, allowing the RL agent to perceive them in a standardized
manner. By aligning the assembly path to the top-down direction, these transformations become
computationally feasible with the guidance from our assembly path planner. The agent’s observation
consists of the SE(3)-equivariant pose and velocity of the object being assembled, derived from the
global pose and velocity through the equivariant transformation. Since we transform the motion to
be top-down insertion, there is no need to specify a goal in the observation. Similarly, the agent’s
actions are defined as equivariant delta poses. To execute a target action, we compute the kinematic
transformation from the end effector to the object following the grasp pose planned by the planner.
This design ensures that the observation and action spaces are minimal yet essential, facilitating easy
information acquisition and enhancing generalizability, and is fully transferrable to different robot
arm and end effectors. Please see the supplementary material for implementation details.

Sparse reward with path-guided reset Instead of designing a complex reward function with
multiple terms and weighting factors, we keep the reward as simple as possible: task success, defined
as a sparse but highly indicative measure. We have observed that the most crucial and challenging
aspect of assembly occurs during the initial alignment between the peg and the hole, which requires
millimeter-level precision. Once this alignment is achieved, completing the rest of the insertion
motion becomes straightforward. Therefore, we define task success as the completion of the initial
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alignment. Quantitatively, this means determining whether the agent can insert the peg slightly into
the hole, approximately 1 cm, without getting stuck above the hole.

Such a sparse reward can make exploration challenging for the agent due to the difficulty of achiev-
ing initial alignment in the presence of noise. To address this, we draw inspiration from the concept
of reverse curriculum generation [24] and implement a reset method that effectively leverages the
planned path guidance. Instead of always starting the agent from a position directly above the hole,
which necessitates extensive exploration, we reset the agent randomly along the planned assembly
path. This means the agent can be reset to positions already close to the goal, making exploration
easier. After experiencing success from these close-to-goal positions, the agent gains better intuition
for exploration when reset farther away from the hole. To further enhance the agent’s capability for
alignment without extensive guidance, we gradually increase the lower bound of the random initial
positions, moving incrementally higher above the hole. We find that this combination of a sparse
yet directed reward and a path-guided reset mechanism successfully facilitates the learning of a
high-performance policy.

Hybrid RL and motion tracking control Separating the stages of high-accuracy alignment and
low-accuracy motion tracking offers the added advantage of generalizing to assembly paths of ar-
bitrary lengths and varying numbers of required alignments. The key intuition is to have the RL
agent focus on the most challenging alignment task while leaving the remaining motion to a simple
motion tracking controller that does not need to be learned. In our implementation, control begins
with a position-based motion tracking controller. Whenever the system detects that the controller is
stuck, we switch to the RL policy to complete the alignment. Once the RL policy successfully aligns
the part, control is handed back to the motion tracking controller. This hybrid control scheme lever-
ages the strengths of both learning-based and classical controllers, ensuring efficient and accurate
assembly.

Note that for both RL and motion tracking, we leverage a low-level admittance controller to adjust
the robot’s compliance to external forces, allowing for smooth and controlled movements during the
assembly process. It ensures that the robotic arms can handle minor misalignments and variations in
force, further enhancing the robustness and precision of both the RL policy and the motion tracking
controller.

Network architecture We use a standard MLP architecture for both the policy and critic network,
which has 4 hidden layers with 64 neurons in each layer. The standard Tanh activation function
is used. We use this naive network design for simplicity and ease of implementation. Despite its
simplicity, this architecture is capable of learning effective policies for complex assembly tasks.

4 Experiments

To achieve high performance in multi-part assembly, it is essential to develop assembly policies that
can reliably assemble each component. In this section, we address several critical questions:

1. Can the reinforcement learning (RL) policy learn effective assembly skills that generalize
across diverse geometries and various grasping poses?

2. Does the SE(3)-equivariant representation of the observation and action space enhance pol-
icy performance?

3. Can the RL policy effectively leverage guidance from the planner to improve assembly
outcomes?

4. How well does the learned policy transfer to unseen scenarios, including new objects,
grasping configurations, and assembly paths?
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Figure 3: Benchmark assemblies.

Table 1: Success rates of same-domain policy evaluation on FMB peg assemblies.

Method Success Rate (%)
Rectangle Round Oval Hexagon Arch Square + Circle Double Square 3 Prong

Motion Tracking 0.72 0.62 0.72 0.54 0.7 0.56 0.72 0.54

Generalist
Policy

Global 0.74 0.86 0.82 0.54 0.7 0.72 0.74 0.58
Equiv. 0.72 0.86 0.88 0.6 0.74 0.92 0.94 0.58

Equiv. + Guided 0.8 0.92 1.0 0.9 0.92 0.92 0.92 0.76

4.1 Benchmark Suite

To evaluate our multi-part robotic assembly system, we developed a diverse benchmark suite span-
ning furniture, toys, and industrial equipment categories. The suite includes a beam structure, stool,
plumber’s block (5 parts each), a gamepad, toy car (6 parts each), and a drone (9 parts). These
assemblies cover various geometries and connection types found in real-world applications, with
some featuring both top-down and side insertions, unlike other datasets. The gamepad assembly
is challenging, requiring the alignment of 2 parts with 4 differently shaped pegs in a single step.
The drone involves inserting a cantilevered arm needing precise alignment and admittance control.
Certain assemblies necessitate specific sequences, testing the system’s planning abilities.

All benchmarks contain rigid parts assemblable by a dual-arm robot with parallel grippers. CAD
models of the final assembled configuration serve as input to our system. Evaluating on this diverse
set demonstrates the generalizability and robustness of our system to different geometries, scales,
orientations, and sequences, showcasing its potential for real-world multi-part assembly automation.

To simulate realistic types of noise and fairly compare all methods, we inject a 4 mm translational
noise and a 4 degree rotational noise to the pose of the object to be inserted for all experiments.

4.2 Same-Domain Policy Evaluation

We first evaluate the performance of our RL assembly policy by training on 8 different peg insertion
from the functional manipulation benchmark (FMB) [22] and testing on the same pegs in Table 1.
Note that we train generalist policies instead of specialist policies, which means that we random-
ize the environments during training across all pegs and also randomize the grasp poses within 30
degrees. We compare multiple variants of the generalist policy with the baseline motion track-
ing controller. Global means using global observation and action space instead of our equivariant
spaces. Equiv. means policies learned from our equivariant observation and action spaces. Equiv. +
Guided means policies learned using the equivariant representation as well as the path-guided reset
mechanism. The results suggest that Equiv. + Guided variant is the most effective one for learning
the generalist policy due to the proper representation of the task spaces and effective guidance from
the path planner.

4.3 Cross-Domain Policy Transfer

To test how well the pretrained generalist policy work on other different scenarios, we perform zero-
shot policy transfer evaluations on our benchmark assemblies beyond FMB pegs, and the results can
be found in Table 2. We surprisingly find that the policy pretrained on the PMB pegs can effec-
tively transfer to new scenarios with different objects, assembly paths and random grasps. While
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Table 2: Success rates of zero-shot cross-domain policy transfer on unseen multi-part assemblies
after training on FMB peg assemblies.

Method
Success Rate (%)

Beams Stool Plumber Block Gamepad Car Drone
(5 Parts) (5 Parts) (5 Parts) (6 Parts) (6 Parts) (9 Parts)

Motion Tracking 0.73 ± 0.08 0.68 ± 0.04 0.77 ± 0.12 0.84 ± 0.16 0.68 ± 0.07 0.75 ± 0.14

Pretrained
Generalist

Policy

Global 0.64 ± 0.11 0.5 ± 0.03 0.45 ± 0.13 0.78 ± 0.17 0.42 ± 0.08 0.81 ± 0.13
Equiv. 0.75 ± 0.08 0.78 ± 0.04 0.78 ± 0.1 0.89 ± 0.13 0.73 ± 0.08 0.87 ± 0.15

Equiv. + Guided 0.93 ± 0.05 0.99 ± 0.01 0.89 ± 0.07 0.92 ± 0.08 0.8 ± 0.02 0.86 ± 0.12

the baseline motion tracking controller can achieve roughly 70 percent success rates thanks to the
complicance control, our pretrained policy shows a clear advantage compared to it, which matters
even more in the multi-part assembly setup where the error accumulates from multiple steps. We
believe further finetuning the pretrained policy using a little amount of data from the test scenario
will further strengthen the performance. Moreover, Table 2 also demonstrates superior performance
of learning generalist policy with equivariant representations and path-guided reset. We hope this
training scheme of the RL assembly policy serves as a simple but strong baseline for future research.

5 Limitations and Future Work

While our system shows promising results for generalizable multi-part assembly, several limitations
remain. Currently, we assume stable grasps, light part weights, and focus primarily on insertion
skills. This leaves areas such as handling heavier parts, managing grasp slippage, and performing
other operations like screwing unaddressed. Incorporating these capabilities would significantly
improve the robustness and applicability of our system in more complex and diverse assembly tasks.

Moreover, the current setup does not involve multi-part reorientation, which is often necessary in
real-world scenarios. Developing more dexterous manipulators capable of such reorientations is an
important avenue for future work. Additionally, integrating vision systems for alignment feedback
could greatly enhance the accuracy and adaptability of the assembly process. Training policies
to handle zero-shot insertion of arbitrary objects with arbitrary grasps would further improve the
system’s flexibility.

Sim-to-real transfer is a natural next step for our system, allowing it to be deployed in real-world
settings. However, this transition poses significant challenges, including issues related to perception,
slippage handling, and bin-picking. Effectively addressing these challenges will require substantial
research and development efforts. By overcoming these limitations, we can expand the real-world
capabilities of our system and provide a solid foundation for future research in adaptive assembly
automation.
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[3] D. T. Le, J. Cortés, and T. Siméon. A path planning approach to (dis) assembly sequencing. In
2009 IEEE International Conference on Automation Science and Engineering, pages 286–291.
IEEE, 2009.

[4] X. Zhang, R. Belfer, P. G. Kry, and E. Vouga. C-space tunnel discovery for puzzle path plan-
ning. ACM Transactions on Graphics (TOG), 39(4):104–1, 2020.

[5] Y. Tian, J. Xu, Y. Li, J. Luo, S. Sueda, H. Li, K. D. Willis, and W. Matusik. Assemble them
all: Physics-based planning for generalizable assembly by disassembly. ACM Transactions on
Graphics (TOG), 41(6):1–11, 2022.

[6] Y. Tian, K. D. Willis, B. A. Omari, J. Luo, P. Ma, Y. Li, F. Javid, E. Gu, J. Jacob, S. Sueda, et al.
Asap: Automated sequence planning for complex robotic assembly with physical feasibility.
arXiv preprint arXiv:2309.16909, 2023.

[7] I. Rodrıguez, K. Nottensteiner, D. Leidner, M. Kaßecker, F. Stulp, and A. Albu-Schäffer. Iter-
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