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Abstract001

Large Language Models (LLMs) have seen re-002
markable development but are still prone to003
hallucination. Developing robust and compre-004
hensive Uncertainty Quantification (UQ) ap-005
proaches for long-form text generation remains006
a major challenge. In this paper, we present007
Interrogative Uncertainty Quantification (IUQ),008
a novel self-consistency based UQ approach009
that leverages the language model’s tendency to010
generate semantically coherent yet factually in-011
correct responses. IUQ builds its estimation on012
both the trustworthiness of individual facts and013
their contextual consistency within the model014
generation. By prompting the language model015
to go through an interrogate-respond process,016
IUQ can reliably measure generation-level un-017
certainties in addition to the model’s overall ten-018
dency to hallucinate. We evaluate our method019
with the latest models over diverse model fami-020
lies, and observe a consistent gain in classifica-021
tion metrics.022

1 Introduction023

Large Language Models (LLMs) have shown re-024

markable improvement across a diverse range of025

Natural Language Processing tasks (Brown et al.,026

2020; Chowdhery et al., 2022; Kamalloo et al.,027

2023). However, the hallucination problem is still028

evident, in which the LLMs generate plausible029

answers that are factually incorrect (Zhang et al.,030

2023; Huang et al., 2025).031

Recent Uncertainty Quantification (UQ) meth-032

ods effectively measure hallucination within a con-033

fined answer space, where the models are prompted034

to generate short responses or given questions that035

have definite answers (Kuhn et al., 2023; Lin et al.,036

2024; Duan et al., 2024; Chen et al., 2024a). These037

approaches utilize token-probabilities or semantic038

entailment of the responses to construct uncertainty039

estimates. However, long-form answers typically040

include more information, exhibit structure and041

Figure 1: An example of LLM generating multiple consistent
but factually incorrect responses. The model hallucinates on
a claim it made at the beginning of a long-form response.
Even though the LLM has the correct knowledge on the topic,
as shown by a separate short-form QA, it continues with its
false claim in the long-form responses to fabricate a coherent
narrative.

logic, and contain filler phrases to promote fluency. 042

Therefore, it can be difficult to evaluate entailment 043

relationships between long-answers, and, for the 044

same reason, token-probabilities are much less in- 045

dicative of hallucination. 046

Current efforts on long-form UQ leverage the 047

consistency between LLM generations to evaluate 048

factual correctness. By decomposing the long-form 049

response into sentences or claims, each of them can 050

be compared against additional samples of gener- 051

ation to obtain an uncertainty estimate (Manakul 052

et al., 2023; Zhang et al., 2024; Jiang et al., 2024b; 053
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Wei et al., 2024). However, a concerning scenario054

arises when LLMs produce consistent yet incorrect055

responses across multiple queries. As illustrated in056

Fig. 1, when the LLM is prompted to generate a057

human biography, it hallucinates on the stated facts058

at the very beginning of its responses. Although059

the LLM possesses the right knowledge, as shown060

by performing a separate QA, it still choose to061

continue its narrative to maintain coherency. This062

problem is specific to long-form generations. With-063

out verifying the factual correctness using outside064

sources, existing UQ methods may misleadingly065

indicate that the model has low uncertainty over066

the topic, because each claim does not contradict067

with any of the sampled responses.068

This phenomenon coincides with recent stud-069

ies that reveal LLMs can exhibit overconfidence070

over false knowledge (Ren et al., 2025), possibly071

due to the long-tail distribution of the training data072

(Mallen et al., 2023; Kandpal et al., 2023). There-073

fore, it has become increasingly difficult to discern074

the incorrect information when LLM formulates a075

plausible response with human-like fluency (Jiang076

et al., 2024a; Hu et al., 2024; Ji et al., 2024).077

Inspired by this observation, we propose a novel078

UQ framework, called Interrogative-Uncertainty-079

Quantification (IUQ), to facilitate in-depth probing080

of the LLM’s tendency to hallucinate. IUQ se-081

quentially examines the claims extracted from the082

response, raising perturbed questions for each to083

encourage diverse answers from the LLM on spe-084

cific details. The answers are then checked against085

all previous claims to identify any conflict. This086

strategy enforces a stricter constraint on the LLM087

that the tendency to fabricate a false narrative will088

be detected. However, an extreme case where IUQ089

does not work is when the model is trained on090

false knowledge source. This process is akin to an091

interrogate-respond scenario where the responder092

is being questioned continuously to identify any093

disguise and untruthfulness. Empirically, we found094

that even minimally rephrased questions can induce095

semantically diverse answers.096

Furthermore, since the questions generated from097

claims are independent of other generations, IUQ098

can present a confidence landscape for each gener-099

ation by simply treating the uncertainty of claims100

as data points in a time-series. Based on such anal-101

ysis, we also provide an experimental study on the102

LLMs’ tendency to diverge over their responses to103

a given topic.104

We evaluate IUQ on various model families with105

their latest models: GPT4o (OpenAI et al., 2024), 106

Qwen2 (Yang et al., 2024), Gemma-3 (Team et al., 107

2025), Mistral (Jiang et al., 2023), LLaMA-3.1, 108

LLaMA-3.3 and LLaMA-4 (Touvron et al., 2023), 109

with model size up to 72B. We use two widely 110

used datasets tailored for long-form generations: 111

FActScore (Min et al., 2023), which contains enti- 112

ties of human biography, and LongFact (Wei et al., 113

2024), which contains a prompts set spanning di- 114

verse topics. Extensive experiments have shown 115

IUQ’s superior performance. Our contribution is 116

the following: 117

• We highlight the difficulty in accessing long- 118

form generation, as language models often 119

invent or fabricate facts in order to maintain a 120

coherent narrative. This tendency to prioritize 121

coherence poses a significant challenge for 122

uncertainty quantification. 123

• We propose an Interrogative Uncertainty 124

Quantification (IUQ) paradigm that evaluates 125

a model’s long-form responses by probing its 126

knowledge on the topic through fine-grained 127

and diversely-sampled questioning. Extensive 128

experiments have demonstrated the effective- 129

ness of IUQ over diverse topics. 130

2 Related Work 131

Uncertainty Quantification Existing approaches 132

of UQ can be roughly categorized into white-box 133

and black-box methods. White-box methods as- 134

sume the model architecture is partially or com- 135

pletely visible (Kuhn et al., 2023; Nikitin et al., 136

2024; Duan et al., 2024, Fadeeva et al., 2024), 137

whereas the black-box methods rely only on the 138

input prompts and LLM responses to measure un- 139

certainties (Lin et al., 2024; Xiong et al., 2024; 140

Gao et al., 2024 ). Our work follows the line of 141

black-box methods. Among them, Tonolini et al. 142

(2024) utilizes a weighted ensemble of semanti- 143

cally equivalent prompts to compute output un- 144

certainty, where the weights are obtained through 145

Bayesian variational inference. Xiong et al. (2024) 146

explores various strategies in prompting, sampling, 147

and aggregating phases to acquire a confidence 148

score from the model. Gao et al. (2024) perturbs 149

the prompts and investigates the variation in re- 150

sponses to measure uncertainty. These mentioned 151

black-box approaches are similar to ours in that 152

we also incorporate perturbation to elicit a greater 153

variety of model responses. The distinction is our 154
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Figure 2: The framework of Interrogative Uncertainty Quantification (IUQ): Responses are sampled from LLMs and decomposed
into atomic claims. LLMs then propose several questions for each claim to be answered by itself. The answers are evaluated
against the original claims to check for consistency.

method applies to long-form generation, and pertur-155

bation is applied at claim-level, letting LLM format156

its own questions without additional design.157

Self-Consistency in LLMs Self-consistency based158

approaches are proven to be effective in diverse159

domains associated with LLMs (Pan et al., 2024).160

Wang et al. (2023) have shown significant improve-161

ment in Chain-of-thought prompting by sampling162

multiple paths and pick the most consistent answer.163

Shinn et al. (2023) robustly induces better decision-164

making in various agentic tasks through linguistic165

feedback. On quantifying uncertainty, the general166

idea of self-consistency is to perform inter-sample167

consistency checks, or let LLMs generate verbal-168

confidence (Manakul et al., 2023; Chen et al.,169

2024b; Rivera et al., 2024; Jiang et al., 2024b).170

Kuhn et al. (2023) and Lin et al. (2024) utilize171

Natural Language Inference models and pairwise172

entailment to compute uncertainty estimates over a173

set of sampled responses. Zhang et al. (2024) and174

Jiang et al. (2024b) let LLM infer the supportive-175

ness of its responses to each claim it has made. Our176

work is inspired by the similar idea, but we enforce177

self-consistency both on factual information and178

contextual coherence.179

3 IUQ: Interrogative Uncertainty180

Quantification181

IUQ focuses on the fine-grained uncertainty quan-182

tification for LLMs, and incorporates prompts-183

perturbation at claim-level to elicit diverse re- 184

sponses. To perform well, model must answer 185

consistently when generating long-form responses, 186

and when asked separately with the specific details 187

of its generations. 188

Structurally, IUQ is composed of a responder 189

and an interrogator, with the interrogator continu- 190

ally questioning the responder for the information 191

it has generated, as shown in Fig. 2. In practice, 192

both the responder and interrogator are the same 193

language model. Please refer to Appendix C for 194

the prompts we used in IUQ. 195

3.1 Response Generation 196

Given prompt x and a model M , we draw N sam- 197

ples from M with predefined temperature T = 198

t. These responses compose a set R such that 199

R = {R1, . . . , RN}, where Ri = MT=t(x) for 200

i ∈ {1, . . . , N}. The generated responses are free- 201

form texts that have variable lengths. To ensure 202

meaningful analysis, we exclude the generations 203

that evidently refuse to respond (e.g. responses of 204

"I don’t know", "I cannot provide information"). 205

This is a nontrivial process in traditional natural 206

language processing, so an additional query with 207

LLM will be made to check if its original response 208

is sensible. A data entity will be skipped if at least 209

one response refuses to answer. 210
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(a) Distribution of all claim consistency scores by models. (b) Variance of claim consistency within generated responses.

Figure 3: Statistics of the claim-level consistency over selected models. (a) The consistency scores of all claims extracted from
model responses are collected to view their distribution over datasets. Notably, for FActScore, which contains less-known
entities, models exhibit different degrees of inconsistency. (b) The variance shown in the graph is computed over claims within
individual model responses, over all data entities. Low variance indicates that a model rarely makes self-contradictory claims.

3.2 Response Decomposition211

The output from LLMs typically consists of a few212

paragraphs of text, which may include redundant213

information and colloquial language to maintain214

coherence. Therefore, a common practice is to rely215

on the LLM to decompose the generated text into216

a set of claims, with each claim representing the217

smallest unit that states a fact (Min et al., 2023;218

Song et al., 2024). However, how to maintain a bal-219

ance between verbosity (e.g., obvious claims like220

"He is a man") and ineffectiveness (e.g., failing to221

decompose and instead returning whole sentences)222

remains underexplored. Empirically, the best prac-223

tice is to prompt the LLM with the full generated224

text and directly extract a list of claims (Jiang et al.,225

2024b).226

As a result, for each response R ∈ R, we ask the227

LLM to decompose R into a sequence of claims228

CR, making LLM aware of the context by joining229

prompt x:230

CRi
= MT=0(Ri, x) = (CRi

1 , CRi

2 , . . . , CRi

k ),
(1)231

where k is the number of claims returned by the232

LLM.233

3.3 Claim-Level Question-Answering234

For each claim, a set of questions are generated in a235

multi-pass manner, using the same hyper-parameter236

when sampling the long-form generations. We237

prompts LLM with a restriction that each ques-238

tion must have its answer contained in the claim to239

prevent unpredictable behavior. For claim C, the 240

set of generated questions is defined as 241

QC = {M (1)
T=t(C, x),M

(2)
T=t(C, x), . . . }, (2) 242

where the number of questions |QC | is a predefined 243

parameter. 244

IUQ enforces an exact-match filtering rule for 245

the generated questions to preserve as much diver- 246

sity as possible in the questions set. The filtered 247

question set is defined as 248

Q̂C = {Q ∈ QC | for all Qi ̸= Qj}. 249

For a specific claim, we find the model typically 250

generates multiple paraphrased questions when the 251

claim is ’atomic’ enough (e.g. "Nobuhiro was 252

born in 1976"). On the other hand, when the 253

claim contains more than one piece of informa- 254

tion (e.g. "Nobuhiro was born in 1976, in Osaka, 255

Japan"), the generated questions tend to be diverse 256

(e.g. "When was Nobuhiro born?", "Where was 257

Nobuhiro born?"), thus complementing the claim 258

to achieve finer-grained analysis . 259

IUQ then queries the LLM with the generated 260

questions, passing the original prompt as context. 261

We sample several answers for each question in 262

Q̂C . The set of answers for a claim C is defined as 263

AC = {MT=t(Q, x) | Q ∈ Q̂C}. (3) 264

We empirically observe that, when asked for 265

detailed information using claim-level questions 266

Q̂C , LLMs can produce more accurate answers. 267
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However, as shown in Fig. 1, LLM can still hallu-268

cinate when it possesses the correct knowledge in269

its parametrized memory.270

3.4 Claim-level Consistency271

IUQ builds its uncertainty estimation on factual and272

contextual consistency, which is quantified by per-273

forming consistency checks between answers ACi274

and all previous claims Ci≤, including Ci. Denot-275

ing the consistency score for claim Ci as SC(Ci),276

one way to compute SC(Ci) is through exhaustive277

check between every pair of claims and answers,278

using either Natural Language Inference model as279

in (Lin et al., 2024), or the LLM M . However, the280

cost of exhaustive checks significantly outweighs281

the performance gain, so we ask the model M to282

return a numerical value representing the degree283

of consistency between each answer A ∈ ACi and284

claims Ci≤. The consistency score is then:285

SC(Ci) =
1

|ACi |
∑

A∈ACi

MT=0(A,Ci≤, x), (4)286

where MT=0(A,Ci≤, x) ∈ [0, 1]. We present the287

statistics of consistency scores over all data in-288

stances in our experiment, for selected models, in289

Fig. 3.290

When the context and reasoning-chain grow291

longer over time, LLMs performance can fail catas-292

trophically (Chen et al., 2023; Kotha et al., 2024).293

Similarly, hallucination accumulates and lead to294

further inconsistencies. IUQ propagates the impact295

of inconsistency in claim Ci to subsequent claims296

by superimposing an exponentially decaying func-297

tion. Defining the inconsistency over the sequence298

of claims C as299

1−SC(C) = (1−SC(C1), . . . , 1−SC(Ck)). (5)300

The inconsistency impact is then defined as the301

convolution between the claim-level inconsistency302

and the exponential decay function f(k):303

I(C) = f(k) ∗ (1− SC(C)) (6)304

With a predefined constant λ, we use the exponen-305

tial decay, defining306

f(k) = e−λi for i = 0, 1, . . . , k. (7)307

4 Uncertainty Estimation with 308

Claim-level Consistency 309

In this section we present several metrics to evalu- 310

ate claim-level uncertainty. First we show the sam- 311

pled responses can be used with Eq. 6 to produce 312

an uncertainty estimate adjusted for inconsistency 313

in claims. We also present a metric that utilize 314

consistency between answers in set AC . Addition- 315

ally, IUQ allows token-probability based methods 316

to be explored in long-form generations, by di- 317

rectly operating on the short-form answer in set 318

AC . We present two fundamental metrics, perplex- 319

ity (PPL) (Jelinek et al., 2005) and predictive en- 320

tropy (PE) (Kadavath et al., 2022). 321

4.1 Response-Claim Entailment 322

In long-form generation UQ, existing method uti- 323

lize LLM to infer whether the response entails a 324

claim or sentence (Jiang et al., 2024b; Zhang et al., 325

2024; Wei et al., 2024). We use this "entailment 326

score" combined with the inconsistency impact 327

I(C) to produce a fine-grained and context-aware 328

metric for uncertainty estimation. 329

Following Jiang et al. (2024b) and Zhang et al. 330

(2024), we define the response entailment score 331

(SR) for claim C as the ratio between number of 332

entailment and the total number of responses 333

SR(C) =
1

N

N∑
i=1

I[Ri ⇒ C], (8) 334

where the entailment relation (⇒) is inferred by 335

the model M by asking whether the response R 336

support the claim C. The uncertainty estimation 337

based on SR(C) is then 338

UR(C) = 1− SR(C). (9) 339

For the motivation discussed in section 1, we 340

utilize the claim-level inconsistency impact I(C) 341

as a measure of trustworthiness for a single re- 342

sponse. Therefore, we combine I(C) with the inter- 343

generation consistency SR(C) to obtain a new un- 344

certainty metric 345

US(C) = SR(C) · I(C), (10) 346

where I(C) is an element in the sequence I(C). 347

4.2 Answer-Claim Entailment 348

Similar to response-claim entailment, the consis- 349

tency of answers in AC indicates the LLM’s con- 350

fidence on its knowledge. Therefore, we investi- 351

gate whether the entailment of the short-form an- 352

swers are good indicators of hallucination, given 353
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Metric GPT-4o LLaMA-3.1 LLaMA-3.3 LLaMA-4 Qwen2 Gemma-3 Mistral
FA

ct
Sc

or
e

UV 0.649 0.640 0.595 0.620 0.768 0.768 0.659
UR 0.732 0.819 0.847 0.809 0.901 0.820 0.880
URV 0.750 0.826 0.846 0.810 0.915 0.843 0.860
UGC 0.749 0.822 0.843 0.810 0.929 0.840 0.862

UE 0.591 0.648 0.593 0.591 0.581 0.629 0.587
UP 0.620 0.701 0.641 0.649 0.675 0.677 0.736
UA 0.617 0.634 0.633 0.684 0.838 0.706 0.799
US 0.748 0.847 0.875 0.833 0.932 0.867 0.913

L
on

gF
ac

t

UV 0.599 0.611 0.567 0.680 0.632 0.574 0.576
UR 0.705 0.736 0.714 0.759 0.791 0.656 0.733
URV 0.721 0.748 0.728 0.762 0.792 0.660 0.709
UGC 0.722 0.724 0.702 0.755 0.782 0.639 0.712

UE 0.582 0.618 0.591 0.615 0.560 0.620 0.609
UP 0.597 0.638 0.578 0.608 0.591 0.596 0.617
UA 0.592 0.573 0.591 0.601 0.659 0.557 0.625
US 0.733 0.749 0.722 0.780 0.806 0.689 0.743

Table 1: AUROCs of the uncertainty quantification metrics proposed by IUQ and other baseline methods across various
instruction-tuned LLMs. Bold-text indicates the best result, and underline indicates second best result. The experimental setup is
detailed in Section 5.1 and he baseline methods are described in Section 5.3. AUPRCs of the same experiments are reported in
Appendix B.

that these answers collectively represent the infor-354

mation in LLM’s long-form responses.355

For each question Q in Q̂C , denoting the set356

of answers to Q as AQ, we define the uncertainty357

estimate for claim C based on answer-consistency358

as359

UA = 1− 1

|Q̂C |

∑
Q∈Q̂C

MT=0(AQ, x), (11)360

where MT=0(AQ, x) ∈ [0, 1] is the consistency361

estimate given by LLM.362

4.3 Answer Token-probability363

By characterizing the language generation as a clas-364

sification problem, the uncertainty of an response365

can be measured by the entropy of the prediction366

(Wellmann and Regenauer-Lieb, 2012; Kuhn et al.,367

2023). In general, the predictive entropy (PE) for368

input x is the conditional entropy (H) of the output369

R:370

H(R|x) = −
∑
i

p(zi|x) log p(zi|z<i, x), (12)371

where zi is the i-th token generated by the LLM372

and zi< is all the tokens before zi.373

Token-probability based approaches are com-374

monly adopted in short-form UQ. However, they375

are not employed in existing approaches of long- 376

form UQ, as the LLM response contain noisy to- 377

kens but meaningful ones are sparse. 378

On the other hand, we propose an indirect ap- 379

proach, using token-probability of the answers in 380

the set AQ. Since the context is bound to claim C 381

and the answers for Q ∈ Q̂C is much shorter than 382

the long-form response R, their token-probabilities 383

are indicative of the LLM’s uncertainty over the 384

claim C. We define the uncertainty estimate built 385

on entropy H as 386

UE =
1

|Q̂C |

∑
Q∈Q̂C

1

|AQ|
∑

A∈AQ

H(A|C). (13) 387

We also utilize perplexity (PPL) (Jelinek et al., 388

2005) to measure uncertainty of the answers in AC , 389

which is defined as 390

PPL(A) = exp(−1

t

t∑
i

log p(zi|z<i)), (14) 391

where t is the number of tokens in answer A. Sim- 392

ilarly, the uncertainty estimate of claim C using 393

answer-perplexity PPL(A) is then defined as 394

UP =
1

|Q̂C |

∑
Q∈Q̂C

1

|AQ|
∑

A∈AQ

PPL(A). (15) 395
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5 Experiments396

5.1 Datasets and Annotation397

We evaluate our proposed uncertainty estimation398

methods on FActScore (Min et al., 2023) and Long-399

Fact(Wei et al., 2024). For each dataset, we se-400

lect 50 entities, which are decomposed into claims401

as described in Section 3.2. Based on the con-402

tent of the claim, we let LLM generate 3 context-403

related questions, and for each question sample 3404

answers. The statistics of data generated by GPT-405

4o on FActScore and LongFact are shown in Ta-406

ble. 2.407

FActScore

Responses Claims Questions Answers
235 4759 10433 31299

LongFact

Responses Claims Questions Answers
250 4276 9954 29862

Table 2: Statistics of the total numbers of generated items by
GPT-4o on the FActScore and LongFact datasets.

FActScore (Min et al., 2023) contains entities of408

human biography, where each of them has a ded-409

icated Wikipedia article. We randomly select 50410

entities. To evaluate the factuality of claims, IUQ411

employs a similar method in Min et al. (2023), la-412

beling each fact as "correct" or "incorrect" based413

on the corresponding Wikipedia article. The factu-414

ality evaluation is independent of the uncertainty415

estimation process, and is performed using GPT-4o416

due to its low error rate.417

LongFact (Wei et al., 2024) is a prompt set com-418

prising thousands of questions spanning 38 topics.419

We choose LongFact to test our uncertainty metrics420

since it complement FActScore on the domains of421

topics. While FActScore verifies the correctness422

of atomic claims through reference passages from423

Wikipedia, the approach proposed in (Wei et al.,424

2024) does so by performing web-search. To main-425

tain consistency and reproducibility, we manually426

select 50 entities of diverse topics in LongFact that427

have dedicated Wikipedia articles, and employ the428

same method we used for FActScore to evaluate429

the factuality of claims.430

5.2 Models and Parameters431

We conduct experiments over the latest models432

across various model families, including GPT4o433

(OpenAI et al., 2024), LLaMA-3.3 and LLaMA-4434

(Touvron et al., 2023), Qwen2 (Yang et al., 2024), 435

Gemma-3 (Team et al., 2025), and Mistral (Jiang 436

et al., 2023), with model size up to 72B. We set the 437

temperate t = 1.0 to sample 5 long-form responses 438

for each entity in dataset, and use greedy search 439

(temperature t = 0) to evaluate the correctness of 440

the claims. 441

5.3 Baselines 442

Following prior works (Tian et al., 2023; Jiang 443

et al., 2024b), we employ the LLM’s verbal con- 444

fidence on claims as an uncertainty metric. This 445

metric directly prompts the LLM with the claim 446

C to rate its confidence on the claim from 0 to 1. 447

The confidence rating is then compared directly 448

with the ground-truth label. We denote this metric 449

as UV and the result is shown in Table. 1. Addi- 450

tionally, similar to Eq. 10, we utilize the verbal 451

confidence as a weight to the response entailment 452

score defined in Eq. 8 to obtain a new metric URV . 453

The results of these metric are shown in Table. 1. 454

We also adopt the graph-based uncertainty met- 455

ric defined in Jiang et al. (2024b). In this work, 456

a bipartite graph is built from the entailment rela- 457

tion in Eq. 8, where each claim is a node and each 458

entailment relation between claim and generation 459

implies an edge. We directly apply the procedure 460

in Jiang et al. (2024b) to compute the "closeness" 461

of a node as one uncertainty metric. We denote this 462

metric as UGC and show the result in Table. 1. 463

5.4 Evaluation Metrics 464

Following prior works (Manakul et al., 2023; 465

(Kuhn et al., 2023); Jiang et al., 2024b), we for- 466

mulate the evaluation process as a classification 467

problem, where the predicted probability of claims 468

being correct is given by our uncertainty metrics, 469

and the procedure to obtain ground-truth labels is 470

detailed in Appendix A. We adopt the area un- 471

der the receiver operator characteristic curve (AU- 472

ROC) and Area Under the Precision-Recall Curve 473

(AUPRC) to classify the performance of the uncer- 474

tainty metrics. 475

5.5 Ablation Study 476

In this section, we present an experimental study 477

to show the effectiveness of our claim-consistency 478

paradigm (Section 3.4). Firstly, we illustrate that 479

claim consistency scores SC capture the model’s 480

self-contradictory behavior in its response, by com- 481

paring the performance of baselines and IUQ met- 482

rics. Secondly, by evaluating the influence of using 483
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Method
FActScore LongFact

GPT-4o LLaMA-4 Qwen2 Gemma-3 GPT-4o LLaMA-4 Qwen2 Gemma-3

No-ErrP 0.748 0.831 0.931 0.847 0.724 0.771 0.807 0.678
Lin-ErrP 0.732 0.809 0.917 0.834 0.725 0.763 0.801 0.682
Acc-ErrP 0.713 0.800 0.889 0.804 0.723 0.754 0.800 0.675

Exp-ErrP(US) 0.748 0.833 0.932 0.867 0.733 0.780 0.806 0.689

Table 3: Ablation study on the impact of claim consistency score with different error propagation (ErrP) function. The presented
values are AUROCs of the uncertainty quantification metric US .

different error propagation functions, we show that484

the exponential-decay weighting is the most effec-485

tive approach to estimate uncertainty in long-form486

generations. Lastly, we evaluate the sensitivity of487

our uncertainty metrics on the number of generated488

responses. We present ablation results on selected489

models in Table. 3 and Fig. 4. Additional experi-490

ments are reported in Appendix B.491

Effectiveness of Claim Consistency Score The492

claim consistency score (Eq. 4) captures the fab-493

ricated information in long-form responses by en-494

forcing a consistency check between claims and495

context. To demonstrate its effectiveness, we com-496

pare its performance with verbal-confidence, which497

is the confidence score elicited from the model. We498

also use verbal-confidence to weigh the response499

entailment score (Eq. 8) to compare with US , which500

is weighted by the claim-consistency score. These501

two uncertainty metrics are denoted as UV and502

URV and the experiments results are shown in Ta-503

ble. 1.504

The result illustrates that although UV is not505

a strong baseline, URV shows surprisingly good506

performance over all tested models. This finding507

consolidates our motivation that LLM has limita-508

tions in identifying its own weaknesses. Without509

sampling multiple responses and performing fine-510

grained analysis, it is risky to trust LLM responses,511

especially in long-form generation.512

Additionally, we present the statistics of claim513

consistency scores and consistency variance within514

generation in Fig. 3.515

Effectiveness of Inconsistency Propagation The516

inconsistency impact (Eq. 6-Eq. 7) serves to prop-517

agate the impact of an inconsistent claim to sub-518

sequent claims. In this section, we investigate the519

influence of different propagation functions Eq. 7520

on the uncertainty estimation performance. The521

results are shown in Table. 3 and the notations used522

are explained as follows: (1) No-ErrP: No error523

is propagated to subsequent claims, and we build524

the uncertainty estimate solely on the claim consis-525

Figure 4: AUROCs of uncertainty metric US and baselines on
different numbers of sampled responses.

tency score. (2) Lin-ErrP: Linear error propagation, 526

where the inconsistency is superimposed with a lin- 527

ear function f(k) = mi+b for i = k, k−1, . . . , 1, 528

where m > 0 and b is a constant. (3) Acc-ErrP: 529

accumulative error propagation, where I(C) (Eq. 6) 530

is defined as the cumulative sums of the claim-level 531

inconsistency Eq. 5. 532

Influence of Number of Generations We show 533

the influence of the number of sampled responses 534

on our uncertainty metric US and baseline meth- 535

ods in Fig. 4. Except for UV which is built on 536

verbalized confidence, all other metrics utilize the 537

response-entailment score (Eq. 8). Consequently, 538

more sampled responses will lead to more accurate 539

classification. 540

6 Conclusion 541

In this work, we identify the problem of language 542

models favoring coherence over factual correctness 543

in long-form generation. We propose Interrogative 544

Uncertainty Quantification (IUQ), a fine-grained 545

approach that builds on claim-level contextual con- 546

sistency to estimate the uncertainty in long-form 547

responses. Empirical results demonstrate the effec- 548

tiveness of IUQ over diverse model families. 549
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7 Limitations550

Our method relies on LLMs’ reasoning and551

question-answering ability to perform most parts of552

our pipeline. A major issue is the additional halluci-553

nation introduced in the processing, and there is no554

guarantee that such hallucination will be detected.555

This problem is partially addressed by adapting the556

source code to incorporate model API’s support557

for structured output, but is still limited to a few558

powerful models. Additional measures we take are559

to manually parse the model’s output and perform560

basic sanity checks to ensure model responses are561

at least minimally sensible.562
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Appendix843

A Correctness Evaluation844

FActScore We evalute the factual correctness of845

claims extracted from long-form responses using846

an adapted approach in Min et al. (2023). For each847

topic, first, the reference article is fetched from848

Wikipedia and broken into chunks of passages. The849

passages and claims are vectorized using sentence-850

transformer gtr-t5-large Ni et al. (2021). Based on851

the relevance of the claim and the reference pas-852

sage, the passages are returned based on similarity.853

The correctness of claims are evaluated by GPT-4o854

and labeled as either "correct" or "incorrect".855

LongFact LongFact is a dataset that contains 2,280856

prompts that solicit long-form responses across 38857

selected topics, including arts, chemistry, histori-858

cal events and etc. Wei et al. (2024) propose to859

use Google Search API to exhaustively verify the860

factuality for each fact presented in the long-form861

response. However, to maintain consistency and862

reproducibility, we manually selected 50 prompts863

from LongFact that have dedicated Wikipedia en-864

tries, and use the same method for FActScore to865

evaluate factual correctness. Example prompts and866

Wikipedia entities for LongFact are shown in Ta-867

ble. 4.868

B Additional Experiments869

AUPRCs We show the experiment results of Ta-870

ble. 1 using Area Under the Precision-Recall Curve871

(AUPRC) in Table. 5. AUPRC measures how well872

a model separates the positive class from the neg-873

ative class, focusing on the performance for the874

positive class. On the other hand, AUROC looks875

at the trade-off between true positive rate and false876

positive rate, and considers both classes equally.877

Claim Consistency Landscapes The claim con-878

sistency score computed in Eq. 4 encapsulates the879

self-consistency of the claim and consistency in the880

context of the generated response. Since we can as-881

sign a score for every claim within a response, the882

scores themselves imply the LLM’s hallucination883

degree across individual responses. Therefore, we884

can treat the claim consistency scores as time-series885

and visualize them in Fig. 5.886

To accommodate for multiple samples of re-887

sponses, each of different lengths and thus differ-888

ent numbers of claims, we interpolate the claim-889

consistency scores of shorter responses linearly to890

construct sets with equal number of elements. The891

sequence of claim-consistency scores representing 892

a single topic is then the average of the interpolated 893

sequences. 894

For generations across data instances, interpola- 895

tion is not ideal due to LLM’s varied knowledge 896

on different topics. Therefore, we simply pad the 897

responses across data instances with trailing zeros. 898

C Prompts 899

We follow the structure of Fig. 2 to list the prompts 900

used in IUQ (Table. 6 - Table. 7). Generally, they 901

include the prompts used on generating long-form 902

responses, performing claim-level question answer- 903

ing, and evaluating consistency. 904
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LongFact Prompt Wiki-entry
Can you describe the occurrences during the Watts Riots? Watts riots

Can you provide an overview of the International Monetary Fund? International Monetary Fund
Could you explain what the Kepler Space Telescope is? Kepler space telescope

Table 4: Example LongFact prompts and corresponding Wikipedia entries.

Metric GPT-4o LLaMA-3.1 LLaMA-3.3 LLaMA-4 Qwen2 Gemma-3 Mistral

FA
ct

Sc
or

e

UV 0.844 0.734 0.634 0.704 0.518 0.583 0.498
UR 0.884 0.868 0.847 0.841 0.774 0.646 0.808
URV 0.897 0.878 0.848 0.850 0.804 0.719 0.814
UGC 0.895 0.889 0.850 0.850 0.849 0.723 0.810

UE 0.756 0.776 0.657 0.717 0.438 0.478 0.542
UP 0.729 0.805 0.687 0.743 0.490 0.494 0.640
UA 0.837 0.757 0.659 0.736 0.648 0.498 0.695
US 0.897 0.908 0.896 0.870 0.857 0.767 0.863

L
on

gF
ac

t

UV 0.901 0.838 0.837 0.891 0.881 0.854 0.893
UR 0.929 0.893 0.891 0.920 0.937 0.881 0.934
URV 0.934 0.902 0.899 0.932 0.940 0.884 0.933
UGC 0.943 0.907 0.900 0.930 0.936 0.890 0.937

UE 0.858 0.860 0.857 0.885 0.872 0.889 0.915
UP 0.850 0.865 0.851 0.883 0.881 0.877 0.913
UA 0.904 0.844 0.851 0.875 0.893 0.850 0.915
US 0.944 0.912 0.901 0.937 0.950 0.909 0.943

Table 5: AUPRCs of the uncertainty quantification metrics proposed by IUQ and other baseline methods across various
instruction-tuned LLMs. Bold-text indicates the best result, and underline indicates second best result.
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Figure 5: Claim-consistency scores within individual generations. The x-axis is the index of the claim made in LLM’s response,
and y-axis is the index of the topic in datasets. Results for FActScore and LongFact are shown with selected models.
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Prompt Role

"Answer the following question in plain text, without any additional
formatting: {prompt}"

Generate response

"Given context and a paragraph of text, deconstruct the text into the
smallest possible standalone and self-contained facts without semantic
repetition. Each fact should come from the text and must be related to
the context.

<Context>{context}</Context>
<Text>{text}</Text>
Return ONLY a list of facts, with no additional text."

Decompose response

"Given context and a claim, generate one specific, clear question that
has its answer contained in the claim. The generated question must be
self-contained and related to the context. Return only the question, with
no additional text.

Context: {context}
Claim: {claim}"

Claim-level questions

"Answer the following question based on the given context. Format your
answer in one sentence:

Context: {context}
Question: {question}

Answer: "

Question answering

"You will be given a statement and a context. Please estimate how much
of the context contradicts the statement? Your final answer should be a
percentage number between 0 and 100, representing the percentage of
the context that contradicts the statement.

<Statement>
{statement}
</Statement>

<Context>
{context}
</Context>

Return your answer as a percentage number ONLY, with no additional
text."

Claim-level consistency

Table 6: Prompts used in IUQ.
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Prompt Role

"Is the following claim supported by the reference passage? Choose
your answer from <supported/not supported>.

<Claim>{claim}</Claim>

<Reference>{reference}</Reference>"

Evaluate correctness

Table 7: Prompts used in IUQ cont..
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