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Abstract

Large Language Models (LLMs) have seen re-
markable development but are still prone to
hallucination. Developing robust and compre-
hensive Uncertainty Quantification (UQ) ap-
proaches for long-form text generation remains
a major challenge. In this paper, we present
Interrogative Uncertainty Quantification (IUQ),
a novel self-consistency based UQ approach
that leverages the language model’s tendency to
generate semantically coherent yet factually in-
correct responses. IUQ builds its estimation on
both the trustworthiness of individual facts and
their contextual consistency within the model
generation. By prompting the language model
to go through an interrogate-respond process,
IUQ can reliably measure generation-level un-
certainties in addition to the model’s overall ten-
dency to hallucinate. We evaluate our method
with the latest models over diverse model fami-
lies, and observe a consistent gain in classifica-
tion metrics.

1 Introduction

Large Language Models (LLMs) have shown re-
markable improvement across a diverse range of
Natural Language Processing tasks (Brown et al.,
2020; Chowdhery et al., 2022; Kamalloo et al.,
2023). However, the hallucination problem is still
evident, in which the LLMs generate plausible
answers that are factually incorrect (Zhang et al.,
2023; Huang et al., 2025).

Recent Uncertainty Quantification (UQ) meth-
ods effectively measure hallucination within a con-
fined answer space, where the models are prompted
to generate short responses or given questions that
have definite answers (Kuhn et al., 2023; Lin et al.,
2024; Duan et al., 2024; Chen et al., 2024a). These
approaches utilize token-probabilities or semantic
entailment of the responses to construct uncertainty
estimates. However, long-form answers typically
include more information, exhibit structure and
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Figure 1: An example of LLM generating multiple consistent
but factually incorrect responses. The model hallucinates on
a claim it made at the beginning of a long-form response.
Even though the LLM has the correct knowledge on the topic,
as shown by a separate short-form QA, it continues with its
false claim in the long-form responses to fabricate a coherent
narrative.

logic, and contain filler phrases to promote fluency.
Therefore, it can be difficult to evaluate entailment
relationships between long-answers, and, for the
same reason, token-probabilities are much less in-
dicative of hallucination.

Current efforts on long-form UQ leverage the
consistency between LLM generations to evaluate
factual correctness. By decomposing the long-form
response into sentences or claims, each of them can
be compared against additional samples of gener-
ation to obtain an uncertainty estimate (Manakul
et al., 2023; Zhang et al., 2024; Jiang et al., 2024b;



Wei et al., 2024). However, a concerning scenario
arises when LLMs produce consistent yet incorrect
responses across multiple queries. As illustrated in
Fig. 1, when the LLM is prompted to generate a
human biography, it hallucinates on the stated facts
at the very beginning of its responses. Although
the LLM possesses the right knowledge, as shown
by performing a separate QA, it still choose to
continue its narrative to maintain coherency. This
problem is specific to long-form generations. With-
out verifying the factual correctness using outside
sources, existing UQ methods may misleadingly
indicate that the model has low uncertainty over
the topic, because each claim does not contradict
with any of the sampled responses.

This phenomenon coincides with recent stud-
ies that reveal LLMs can exhibit overconfidence
over false knowledge (Ren et al., 2025), possibly
due to the long-tail distribution of the training data
(Mallen et al., 2023; Kandpal et al., 2023). There-
fore, it has become increasingly difficult to discern
the incorrect information when LLM formulates a
plausible response with human-like fluency (Jiang
et al., 2024a; Hu et al., 2024, Ji et al., 2024).

Inspired by this observation, we propose a novel
UQ framework, called Interrogative-Uncertainty-
Quantification (IUQ), to facilitate in-depth probing
of the LLM’s tendency to hallucinate. IUQ se-
quentially examines the claims extracted from the
response, raising perturbed questions for each to
encourage diverse answers from the LLM on spe-
cific details. The answers are then checked against
all previous claims to identify any conflict. This
strategy enforces a stricter constraint on the LLM
that the tendency to fabricate a false narrative will
be detected. However, an extreme case where TUQ
does not work is when the model is trained on
false knowledge source. This process is akin to an
interrogate-respond scenario where the responder
is being questioned continuously to identify any
disguise and untruthfulness. Empirically, we found
that even minimally rephrased questions can induce
semantically diverse answers.

Furthermore, since the questions generated from
claims are independent of other generations, IUQ
can present a confidence landscape for each gener-
ation by simply treating the uncertainty of claims
as data points in a time-series. Based on such anal-
ysis, we also provide an experimental study on the
LLMs’ tendency to diverge over their responses to
a given topic.

We evaluate IUQ on various model families with

their latest models: GPT4o0 (OpenAl et al., 2024),
Qwen?2 (Yang et al., 2024), Gemma-3 (Team et al.,
2025), Mistral (Jiang et al., 2023), LLaMA-3.1,
LLaMA-3.3 and LLaMA-4 (Touvron et al., 2023),
with model size up to 72B. We use two widely
used datasets tailored for long-form generations:
FActScore (Min et al., 2023), which contains enti-
ties of human biography, and LongFact (Wei et al.,
2024), which contains a prompts set spanning di-
verse topics. Extensive experiments have shown
IUQ’s superior performance. Our contribution is
the following:

* We highlight the difficulty in accessing long-
form generation, as language models often
invent or fabricate facts in order to maintain a
coherent narrative. This tendency to prioritize
coherence poses a significant challenge for
uncertainty quantification.

* We propose an Interrogative Uncertainty
Quantification (IUQ) paradigm that evaluates
a model’s long-form responses by probing its
knowledge on the topic through fine-grained
and diversely-sampled questioning. Extensive
experiments have demonstrated the effective-
ness of IUQ over diverse topics.

2 Related Work

Uncertainty Quantification Existing approaches
of UQ can be roughly categorized into white-box
and black-box methods. White-box methods as-
sume the model architecture is partially or com-
pletely visible (Kuhn et al., 2023; Nikitin et al.,
2024; Duan et al., 2024, Fadeeva et al., 2024),
whereas the black-box methods rely only on the
input prompts and LLM responses to measure un-
certainties (Lin et al., 2024; Xiong et al., 2024;
Gao et al., 2024 ). Our work follows the line of
black-box methods. Among them, Tonolini et al.
(2024) utilizes a weighted ensemble of semanti-
cally equivalent prompts to compute output un-
certainty, where the weights are obtained through
Bayesian variational inference. Xiong et al. (2024)
explores various strategies in prompting, sampling,
and aggregating phases to acquire a confidence
score from the model. Gao et al. (2024) perturbs
the prompts and investigates the variation in re-
sponses to measure uncertainty. These mentioned
black-box approaches are similar to ours in that
we also incorporate perturbation to elicit a greater
variety of model responses. The distinction is our
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Figure 2: The framework of Interrogative Uncertainty Quantification IUQ): Responses are sampled from LLMs and decomposed
into atomic claims. LLMs then propose several questions for each claim to be answered by itself. The answers are evaluated

against the original claims to check for consistency.

method applies to long-form generation, and pertur-
bation is applied at claim-level, letting LLM format
its own questions without additional design.
Self-Consistency in LLMs Self-consistency based
approaches are proven to be effective in diverse
domains associated with LLMs (Pan et al., 2024).
Wang et al. (2023) have shown significant improve-
ment in Chain-of-thought prompting by sampling
multiple paths and pick the most consistent answer.
Shinn et al. (2023) robustly induces better decision-
making in various agentic tasks through linguistic
feedback. On quantifying uncertainty, the general
idea of self-consistency is to perform inter-sample
consistency checks, or let LLMs generate verbal-
confidence (Manakul et al., 2023; Chen et al.,
2024b; Rivera et al., 2024; Jiang et al., 2024b).
Kuhn et al. (2023) and Lin et al. (2024) utilize
Natural Language Inference models and pairwise
entailment to compute uncertainty estimates over a
set of sampled responses. Zhang et al. (2024) and
Jiang et al. (2024b) let LLM infer the supportive-
ness of its responses to each claim it has made. Our
work is inspired by the similar idea, but we enforce
self-consistency both on factual information and
contextual coherence.

3 IUQ: Interrogative Uncertainty
Quantification

IUQ focuses on the fine-grained uncertainty quan-
tification for LLMs, and incorporates prompts-

perturbation at claim-level to elicit diverse re-
sponses. To perform well, model must answer
consistently when generating long-form responses,
and when asked separately with the specific details
of its generations.

Structurally, IUQ is composed of a responder
and an interrogator, with the interrogator continu-
ally questioning the responder for the information
it has generated, as shown in Fig. 2. In practice,
both the responder and interrogator are the same
language model. Please refer to Appendix C for
the prompts we used in IUQ.

3.1 Response Generation

Given prompt z and a model M, we draw N sam-
ples from M with predefined temperature 7' =
t. These responses compose a set R such that
R = {Riy,...,Rn}, where R; = Mp_(x) for
i € {1,..., N}. The generated responses are free-
form texts that have variable lengths. To ensure
meaningful analysis, we exclude the generations
that evidently refuse to respond (e.g. responses of
"I don’t know", "I cannot provide information").
This is a nontrivial process in traditional natural
language processing, so an additional query with
LLM will be made to check if its original response
is sensible. A data entity will be skipped if at least
one response refuses to answer.



Claim-Level Consistency Distribution

1.0 ?T

mm FActScore i
0.4 == LongFact

Consistency
o o o
o ~ [os]

o
(%]

dataset

GPT-40 LLaMA-4 Qwen2 Gemma-3 Mistral

Model

(a) Distribution of all claim consistency scores by models.

Claim-Level Consistency Variance

0.07 dataset
mm FActScore
0.06 == LongFact
0.05
4]
[}
c 0.04
§]
—
S 0.03
0.02
N R R [
GPT-40 LLaMA-4 Qwen2 Gemma-3 Mistral
Model
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Figure 3: Statistics of the claim-level consistency over selected models. (a) The consistency scores of all claims extracted from
model responses are collected to view their distribution over datasets. Notably, for FActScore, which contains less-known
entities, models exhibit different degrees of inconsistency. (b) The variance shown in the graph is computed over claims within
individual model responses, over all data entities. Low variance indicates that a model rarely makes self-contradictory claims.

3.2 Response Decomposition

The output from LLMs typically consists of a few
paragraphs of text, which may include redundant
information and colloquial language to maintain
coherence. Therefore, a common practice is to rely
on the LLM to decompose the generated text into
a set of claims, with each claim representing the
smallest unit that states a fact (Min et al., 2023;
Song et al., 2024). However, how to maintain a bal-
ance between verbosity (e.g., obvious claims like
"He is a man") and ineffectiveness (e.g., failing to
decompose and instead returning whole sentences)
remains underexplored. Empirically, the best prac-
tice is to prompt the LLLM with the full generated
text and directly extract a list of claims (Jiang et al.,
2024b).

As aresult, for each response R € R, we ask the
LLM to decompose R into a sequence of claims
C%, making LLM aware of the context by joining
prompt x:

CRZ = MT:()(RZ',&") = (C{%Z, CRZ, ceey Ck Z),
(1
where £ is the number of claims returned by the
LLM.

3.3 Claim-Level Question-Answering

For each claim, a set of questions are generated in a
multi-pass manner, using the same hyper-parameter
when sampling the long-form generations. We
prompts LLM with a restriction that each ques-
tion must have its answer contained in the claim to

prevent unpredictable behavior. For claim C, the
set of generated questions is defined as

Qv = (M, (C.x), M2 (Con),...}, (@)

where the number of questions | Q| is a predefined
parameter.

IUQ enforces an exact-match filtering rule for
the generated questions to preserve as much diver-
sity as possible in the questions set. The filtered
question set is defined as

Qc =1{Q € Qc | for all Q; # Q;}.

For a specific claim, we find the model typically
generates multiple paraphrased questions when the
claim is ’atomic’ enough (e.g. "Nobuhiro was
born in 1976"). On the other hand, when the
claim contains more than one piece of informa-
tion (e.g. "Nobuhiro was born in 1976, in Osaka,
Japan"), the generated questions tend to be diverse
(e.g. "When was Nobuhiro born?", "Where was
Nobuhiro born?"), thus complementing the claim
to achieve finer-grained analysis .

IUQ then queries the LLM with the generated
questions, passing the original prompt as context.
We sample several answers for each question in
QC. The set of answers for a claim C is defined as

Ac = {Mr—(Q,2) | Q € Qc}.  (3)

We empirically observe that, when asked for
detailed information using claim-level questions
Qc, LLMs can produce more accurate answers.



However, as shown in Fig. 1, LLM can still hallu-
cinate when it possesses the correct knowledge in
its parametrized memory.

3.4 Claim-level Consistency

IUQ builds its uncertainty estimation on factual and
contextual consistency, which is quantified by per-
forming consistency checks between answers A,
and all previous claims Cj<, including C;. Denot-
ing the consistency score for claim C; as S¢(C;),
one way to compute S (C;) is through exhaustive
check between every pair of claims and answers,
using either Natural Language Inference model as
in (Lin et al., 2024), or the LLM M. However, the
cost of exhaustive checks significantly outweighs
the performance gain, so we ask the model M to
return a numerical value representing the degree
of consistency between each answer A € A¢, and
claims C;<. The consistency score is then:

_ 1
|ACi ’

SC(CZ) Z MT:O(AaCiSa:E)a (4)

AEACZ.

where Mr—o(A, Ci<,x) € [0,1]. We present the
statistics of consistency scores over all data in-
stances in our experiment, for selected models, in
Fig. 3.

When the context and reasoning-chain grow
longer over time, LLMs performance can fail catas-
trophically (Chen et al., 2023; Kotha et al., 2024).
Similarly, hallucination accumulates and lead to
further inconsistencies. IUQ propagates the impact
of inconsistency in claim C; to subsequent claims
by superimposing an exponentially decaying func-
tion. Defining the inconsistency over the sequence
of claims C as

1-S¢(C) = (1-Sc(Ch), ..., 1=Sc(Ck)). (5)
The inconsistency impact is then defined as the

convolution between the claim-level inconsistency
and the exponential decay function f(k):

I(C) = f(k) * (1 = Sc(C)) (6)

With a predefined constant A, we use the exponen-
tial decay, defining

f(ky=eN fori=0,1,... k. (7

4 Uncertainty Estimation with
Claim-level Consistency

In this section we present several metrics to evalu-
ate claim-level uncertainty. First we show the sam-
pled responses can be used with Eq. 6 to produce
an uncertainty estimate adjusted for inconsistency
in claims. We also present a metric that utilize
consistency between answers in set .A¢. Addition-
ally, ITUQ allows token-probability based methods
to be explored in long-form generations, by di-
rectly operating on the short-form answer in set
Ac. We present two fundamental metrics, perplex-
ity (PPL) (Jelinek et al., 2005) and predictive en-
tropy (PFE) (Kadavath et al., 2022).

4.1 Response-Claim Entailment

In long-form generation UQ, existing method uti-
lize LLM to infer whether the response entails a
claim or sentence (Jiang et al., 2024b; Zhang et al.,
2024; Wei et al., 2024). We use this "entailment
score”" combined with the inconsistency impact
I(C) to produce a fine-grained and context-aware
metric for uncertainty estimation.

Following Jiang et al. (2024b) and Zhang et al.
(2024), we define the response entailment score
(SR) for claim C' as the ratio between number of
entailment and the total number of responses

N
1
Sr(C) = N;H[Riic], (®)
1=

where the entailment relation (=) is inferred by
the model M by asking whether the response R
support the claim C'. The uncertainty estimation
based on Si(C) is then

UR(C) =1 - Sg(C). ©)

For the motivation discussed in section 1, we
utilize the claim-level inconsistency impact I(C)
as a measure of trustworthiness for a single re-
sponse. Therefore, we combine /(C) with the inter-
generation consistency Sr(C') to obtain a new un-
certainty metric

Us(C) = Sr(C) - I(C), (10)
where I(C) is an element in the sequence I (C).

4.2 Answer-Claim Entailment

Similar to response-claim entailment, the consis-
tency of answers in A¢ indicates the LLM’s con-
fidence on its knowledge. Therefore, we investi-
gate whether the entailment of the short-form an-
swers are good indicators of hallucination, given



‘ Metric ‘ GPT-40 LLaMA-3.1 LLaMA-3.3 LLaMA-4 Qwen2 Gemma-3 Mistral

Uy 0.649 0.640 0.595 0.620 0.768 0.768 0.659

Ur 0.732 0.819 0.847 0.809 0.901 0.820 0.880

@ Urv 0.750 0.826 0.846 0.810 0.915 0.843 0.860
e

R Ucc 0.749 0.822 0.843 0.810 0.929 0.840 0.862
S

§ Ug 0.591 0.648 0.593 0.591 0.581 0.629 0.587

Up 0.620 0.701 0.641 0.649 0.675 0.677 0.736

Ua 0.617 0.634 0.633 0.684 0.838 0.706 0.799

Us 0.748 0.847 0.875 0.833 0.932 0.867 0.913

Uy 0.599 0.611 0.567 0.680 0.632 0.574 0.576

Ur 0.705 0.736 0.714 0.759 0.791 0.656 0.733

¥ Urv 0.721 0.748 0.728 0.762 0.792 0.660 0.709

%: Ucc 0.722 0.724 0.702 0.755 0.782 0.639 0.712
=

.3 Ug 0.582 0.618 0.591 0.615 0.560 0.620 0.609

Up 0.597 0.638 0.578 0.608 0.591 0.596 0.617

Ua 0.592 0.573 0.591 0.601 0.659 0.557 0.625

Us 0.733 0.749 0.722 0.780 0.806 0.689 0.743

Table 1: AUROCs of the uncertainty quantification metrics proposed by IUQ and other baseline methods across various
instruction-tuned LLMs. Bold-text indicates the best result, and underline indicates second best result. The experimental setup is
detailed in Section 5.1 and he baseline methods are described in Section 5.3. AUPRCs of the same experiments are reported in

Appendix B.

that these answers collectively represent the infor-
mation in LLM’s long-form responses.

For each question @) in Oc, denoting the set
of answers to ) as A¢, we define the uncertainty
estimate for claim C based on answer-consistency
as

Uy=1

1
Y. Mr_o(Ag,x), (D

|9 S

where Mr—o(Ag,z) € [0,1] is the consistency
estimate given by LLM.

4.3 Answer Token-probability

By characterizing the language generation as a clas-
sification problem, the uncertainty of an response
can be measured by the entropy of the prediction
(Wellmann and Regenauer-Lieb, 2012; Kuhn et al.,
2023). In general, the predictive entropy (PE) for
input X is the conditional entropy (H) of the output
R:

H(R|z) = = p(zilx) log p(zi|z<i, ), (12)

1

where z; is the i-th token generated by the LLM

and z; is all the tokens before z;.
Token-probability based approaches are com-

monly adopted in short-form UQ. However, they

are not employed in existing approaches of long-
form UQ, as the LLM response contain noisy to-
kens but meaningful ones are sparse.

On the other hand, we propose an indirect ap-
proach, using token-probability of the answers in
the set Ag. Since the context is bound to claim C
and the answers for () € QC is much shorter than
the long-form response R, their token-probabilities
are indicative of the LLM’s uncertainty over the
claim C. We define the uncertainty estimate built
on entropy H as

1 1
Up = 5 > o > H(A|C). (13)
| C| Qcde Q AcAg

We also utilize perplexity (PPL) (Jelinek et al.,
2005) to measure uncertainty of the answers in A¢,
which is defined as

1 t
PPL(A) = exp(—~ > logp(zilz<i)), (14)

where t is the number of tokens in answer A. Sim-
ilarly, the uncertainty estimate of claim C using
answer-perplexity PPL(A) is then defined as

1
Up = —
PlQC|Z

Y PPL(A). (1)

AeAq

1
A
QEQC! Ql



S Experiments

5.1 Datasets and Annotation

We evaluate our proposed uncertainty estimation
methods on FActScore (Min et al., 2023) and Long-
Fact(Wei et al., 2024). For each dataset, we se-
lect 50 entities, which are decomposed into claims
as described in Section 3.2. Based on the con-
tent of the claim, we let LLM generate 3 context-
related questions, and for each question sample 3
answers. The statistics of data generated by GPT-
40 on FActScore and LongFact are shown in Ta-
ble. 2.

FActScore
Responses Claims Questions Answers
235 4759 10433 31299
LongFact
Responses Claims Questions Answers
250 4276 9954 29862

Table 2: Statistics of the total numbers of generated items by
GPT-40 on the FActScore and LongFact datasets.

FActScore (Min et al., 2023) contains entities of
human biography, where each of them has a ded-
icated Wikipedia article. We randomly select 50
entities. To evaluate the factuality of claims, IUQ
employs a similar method in Min et al. (2023), la-
beling each fact as "correct” or "incorrect" based
on the corresponding Wikipedia article. The factu-
ality evaluation is independent of the uncertainty
estimation process, and is performed using GPT-40
due to its low error rate.

LongFact (Wei et al., 2024) is a prompt set com-
prising thousands of questions spanning 38 topics.
We choose LongFact to test our uncertainty metrics
since it complement FActScore on the domains of
topics. While FActScore verifies the correctness
of atomic claims through reference passages from
Wikipedia, the approach proposed in (Wei et al.,
2024) does so by performing web-search. To main-
tain consistency and reproducibility, we manually
select 50 entities of diverse topics in LongFact that
have dedicated Wikipedia articles, and employ the
same method we used for FActScore to evaluate
the factuality of claims.

5.2 Models and Parameters

We conduct experiments over the latest models
across various model families, including GPT4o0
(OpenAl et al., 2024), LLaMA-3.3 and LLaMA-4

(Touvron et al., 2023), Qwen2 (Yang et al., 2024),
Gemma-3 (Team et al., 2025), and Mistral (Jiang
et al., 2023), with model size up to 72B. We set the
temperate ¢ = 1.0 to sample 5 long-form responses
for each entity in dataset, and use greedy search
(temperature ¢ = 0) to evaluate the correctness of
the claims.

5.3 Baselines

Following prior works (Tian et al., 2023; Jiang
et al., 2024b), we employ the LLM’s verbal con-
fidence on claims as an uncertainty metric. This
metric directly prompts the LLM with the claim
C to rate its confidence on the claim from O to 1.
The confidence rating is then compared directly
with the ground-truth label. We denote this metric
as Uy and the result is shown in Table. 1. Addi-
tionally, similar to Eq. 10, we utilize the verbal
confidence as a weight to the response entailment
score defined in Eq. 8 to obtain a new metric Ugy .
The results of these metric are shown in Table. 1.
We also adopt the graph-based uncertainty met-
ric defined in Jiang et al. (2024b). In this work,
a bipartite graph is built from the entailment rela-
tion in Eq. 8, where each claim is a node and each
entailment relation between claim and generation
implies an edge. We directly apply the procedure
in Jiang et al. (2024b) to compute the "closeness"
of a node as one uncertainty metric. We denote this
metric as Ugc and show the result in Table. 1.

5.4 Evaluation Metrics

Following prior works (Manakul et al., 2023;
(Kuhn et al., 2023); Jiang et al., 2024b), we for-
mulate the evaluation process as a classification
problem, where the predicted probability of claims
being correct is given by our uncertainty metrics,
and the procedure to obtain ground-truth labels is
detailed in Appendix A. We adopt the area un-
der the receiver operator characteristic curve (AU-
ROC) and Area Under the Precision-Recall Curve
(AUPRC) to classify the performance of the uncer-
tainty metrics.

5.5 Ablation Study

In this section, we present an experimental study
to show the effectiveness of our claim-consistency
paradigm (Section 3.4). Firstly, we illustrate that
claim consistency scores S¢ capture the model’s
self-contradictory behavior in its response, by com-
paring the performance of baselines and ITUQ met-
rics. Secondly, by evaluating the influence of using



Method FActScore LongFact
GPT-40 LLaMA-4 Qwen2 Gemma-3 GPT-40 LLaMA-4 Qwen2 Gemma-3
No-ErrP 0.748 0.831 0.931 0.847 0.724 0.771 0.807 0.678
Lin-ErrP 0.732 0.809 0.917 0.834 0.725 0.763 0.801 0.682
Acc-ErrP 0.713 0.800 0.889 0.804 0.723 0.754 0.800 0.675
Exp-ErrP(Us) 0.748 0.833 0.932 0.867 0.733 0.780 0.806 0.689

Table 3: Ablation study on the impact of claim consistency score with different error propagation (ErrP) function. The presented

values are AUROC: of the uncertainty quantification metric Us.

different error propagation functions, we show that
the exponential-decay weighting is the most effec-
tive approach to estimate uncertainty in long-form
generations. Lastly, we evaluate the sensitivity of
our uncertainty metrics on the number of generated
responses. We present ablation results on selected
models in Table. 3 and Fig. 4. Additional experi-
ments are reported in Appendix B.

Effectiveness of Claim Consistency Score The
claim consistency score (Eq. 4) captures the fab-
ricated information in long-form responses by en-
forcing a consistency check between claims and
context. To demonstrate its effectiveness, we com-
pare its performance with verbal-confidence, which
is the confidence score elicited from the model. We
also use verbal-confidence to weigh the response
entailment score (Eq. 8) to compare with Ug, which
is weighted by the claim-consistency score. These
two uncertainty metrics are denoted as Uy and
Ury and the experiments results are shown in Ta-
ble. 1.

The result illustrates that although Uy is not
a strong baseline, Ury shows surprisingly good
performance over all tested models. This finding
consolidates our motivation that LLM has limita-
tions in identifying its own weaknesses. Without
sampling multiple responses and performing fine-
grained analysis, it is risky to trust LLM responses,
especially in long-form generation.

Additionally, we present the statistics of claim
consistency scores and consistency variance within
generation in Fig. 3.

Effectiveness of Inconsistency Propagation The
inconsistency impact (Eq. 6-Eq. 7) serves to prop-
agate the impact of an inconsistent claim to sub-
sequent claims. In this section, we investigate the
influence of different propagation functions Eq. 7
on the uncertainty estimation performance. The
results are shown in Table. 3 and the notations used
are explained as follows: (1) No-ErrP: No error
is propagated to subsequent claims, and we build
the uncertainty estimate solely on the claim consis-
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Figure 4: AUROC: of uncertainty metric Us and baselines on
different numbers of sampled responses.

tency score. (2) Lin-ErrP: Linear error propagation,
where the inconsistency is superimposed with a lin-
ear function f(k) = mi+bfori=k,k—1,...,1,
where m > 0 and b is a constant. (3) Acc-ErrP:
accumulative error propagation, where I(C) (Eq. 6)
is defined as the cumulative sums of the claim-level
inconsistency Eq. 5.

Influence of Number of Generations We show
the influence of the number of sampled responses
on our uncertainty metric Ug and baseline meth-
ods in Fig. 4. Except for Uy, which is built on
verbalized confidence, all other metrics utilize the
response-entailment score (Eq. 8). Consequently,
more sampled responses will lead to more accurate
classification.

6 Conclusion

In this work, we identify the problem of language
models favoring coherence over factual correctness
in long-form generation. We propose Interrogative
Uncertainty Quantification (IUQ), a fine-grained
approach that builds on claim-level contextual con-
sistency to estimate the uncertainty in long-form
responses. Empirical results demonstrate the effec-
tiveness of IUQ over diverse model families.



7 Limitations

Our method relies on LLMs’ reasoning and
question-answering ability to perform most parts of
our pipeline. A major issue is the additional halluci-
nation introduced in the processing, and there is no
guarantee that such hallucination will be detected.
This problem is partially addressed by adapting the
source code to incorporate model API’s support
for structured output, but is still limited to a few
powerful models. Additional measures we take are
to manually parse the model’s output and perform
basic sanity checks to ensure model responses are
at least minimally sensible.
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Appendix
A Correctness Evaluation

FActScore We evalute the factual correctness of
claims extracted from long-form responses using
an adapted approach in Min et al. (2023). For each
topic, first, the reference article is fetched from
Wikipedia and broken into chunks of passages. The
passages and claims are vectorized using sentence-
transformer gtr-t5-large Ni et al. (2021). Based on
the relevance of the claim and the reference pas-
sage, the passages are returned based on similarity.
The correctness of claims are evaluated by GPT-40
and labeled as either "correct” or "incorrect".
LongFact LongFact is a dataset that contains 2,280
prompts that solicit long-form responses across 38
selected topics, including arts, chemistry, histori-
cal events and etc. Wei et al. (2024) propose to
use Google Search API to exhaustively verify the
factuality for each fact presented in the long-form
response. However, to maintain consistency and
reproducibility, we manually selected 50 prompts
from LongFact that have dedicated Wikipedia en-
tries, and use the same method for FActScore to
evaluate factual correctness. Example prompts and
Wikipedia entities for LongFact are shown in Ta-
ble. 4.

B Additional Experiments

AUPRCs We show the experiment results of Ta-
ble. 1 using Area Under the Precision-Recall Curve
(AUPRC) in Table. 5. AUPRC measures how well
a model separates the positive class from the neg-
ative class, focusing on the performance for the
positive class. On the other hand, AUROC looks
at the trade-off between true positive rate and false
positive rate, and considers both classes equally.
Claim Consistency Landscapes The claim con-
sistency score computed in Eq. 4 encapsulates the
self-consistency of the claim and consistency in the
context of the generated response. Since we can as-
sign a score for every claim within a response, the
scores themselves imply the LLM’s hallucination
degree across individual responses. Therefore, we
can treat the claim consistency scores as time-series
and visualize them in Fig. 5.

To accommodate for multiple samples of re-
sponses, each of different lengths and thus differ-
ent numbers of claims, we interpolate the claim-
consistency scores of shorter responses linearly to
construct sets with equal number of elements. The
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sequence of claim-consistency scores representing
a single topic is then the average of the interpolated
sequences.

For generations across data instances, interpola-
tion is not ideal due to LLM’s varied knowledge
on different topics. Therefore, we simply pad the
responses across data instances with trailing zeros.

C Prompts

We follow the structure of Fig. 2 to list the prompts
used in IUQ (Table. 6 - Table. 7). Generally, they
include the prompts used on generating long-form
responses, performing claim-level question answer-
ing, and evaluating consistency.



LongFact Prompt Wiki-entry
Can you describe the occurrences during the Watts Riots? Watts riots
Can you provide an overview of the International Monetary Fund? | International Monetary Fund
Could you explain what the Kepler Space Telescope is? Kepler space telescope

Table 4: Example LongFact prompts and corresponding Wikipedia entries.

\ Metric \ GPT-40  LLaMA-3.1 LLaMA-33 LLaMA-4 Qwen2 Gemma-3 Mistral
Uy 0.844 0.734 0.634 0.704 0.518 0.583 0.498
Ur 0.884 0.868 0.847 0.841 0.774 0.646 0.808

2 | Urv 0.897 0.878 0.848 0.850 0.804 0.719 0.814

S| Usc 0.895 0.889 0.850 0.850 0.849 0.723 0.810

da

2| us 0.756 0.776 0.657 0.717 0.438 0.478 0.542
Up 0.729 0.805 0.687 0.743 0.490 0.494 0.640
Ua 0.837 0.757 0.659 0.736 0.648 0.498 0.695
Us 0.897 0.908 0.896 0.870 0.857 0.767 0.863
Uy 0.901 0.838 0.837 0.891 0.881 0.854 0.893
Ur 0.929 0.893 0.891 0.920 0.937 0.881 0.934

s | Ugrv 0.934 0.902 0.899 0.932 0.940 0.884 0.933

% Ucc 0.943 0.907 0.900 0.930 0.936 0.890 0.937

=

S Ug 0.858 0.860 0.857 0.885 0.872 0.889 0.915
Up 0.850 0.865 0.851 0.883 0.881 0.877 0.913
Ua 0.904 0.844 0.851 0.875 0.893 0.850 0.915
Us 0.944 0.912 0.901 0.937 0.950 0.909 0.943

Table 5: AUPRC:s of the uncertainty quantification metrics proposed by IUQ and other baseline methods across various
instruction-tuned LLMs. Bold-text indicates the best result, and underline indicates second best result.
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Figure 5: Claim-consistency scores within individual generations. The x-axis is the index of the claim made in LLM’s response,
and y-axis is the index of the topic in datasets. Results for FActScore and LongFact are shown with selected models.
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Prompt

Role

"Answer the following question in plain text, without any additional
formatting: {prompt}"

Generate response

"Given context and a paragraph of text, deconstruct the text into the
smallest possible standalone and self-contained facts without semantic
repetition. Each fact should come from the text and must be related to
the context.

<Context>{context}</Context>
<Text>{text}</Text>
Return ONLY a list of facts, with no additional text."

Decompose response

"Given context and a claim, generate one specific, clear question that
has its answer contained in the claim. The generated question must be
self-contained and related to the context. Return only the question, with
no additional text.

Context: {context}
Claim: {claim}"

Claim-level questions

"Answer the following question based on the given context. Format your
answer in one sentence:

Context: {context}
Question: {question}

"

Answer:

Question answering

"You will be given a statement and a context. Please estimate how much
of the context contradicts the statement? Your final answer should be a
percentage number between 0 and 100, representing the percentage of
the context that contradicts the statement.

<Statement>
{statement}
</Statement>

<Context>
{context}
</Context>

Return your answer as a percentage number ONLY, with no additional
text."

Claim-level consistency

Table 6: Prompts used in IUQ.
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Prompt Role

"Is the following claim supported by the reference passage? Choose | Evaluate correctness

your answer from <supported/not supported>.

<Claim>{claim }</Claim>

<Reference>{reference } </Reference>"

Table 7: Prompts used in IUQ cont..
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