

WEBAGGREGATOR: SCALING COMPLEX LOGICAL INFORMATION AGGREGATION FOR WEB AGENT FOUNDATION MODELS

Anonymous authors

Paper under double-blind review

Figure 1: The Pass@1 performance of our WebAggregator models, tuned on the automatically constructed training resource, WebAggregatorQA, is comparable to or even exceeds that of GPT-4.1 on both GAIA-text and the more challenging WebAggregatorQA test set.

ABSTRACT

Deep research web agents must not only retrieve information from diverse sources such as web environments, files, and multimodal inputs, but more importantly, they need to rigorously analyze and aggregate knowledge in order to generate high-quality, insightful research. However, existing open-source deep research agent systems predominantly focus on enhancing *information seeking* capabilities of web agents to *locate* specific information, while overlooking the essential need for *information aggregation*, which would limit their ability to generate coherent insights or support in-depth research.

In this paper, we propose a paradigm for scalably constructing verifiable training datasets for web agents, by framing data construction as an agentic task grounded in real web pages while placing additional focus on developing fine-grained rules that enable complex information aggregation. Our approach synthesizes tasks by first collecting information through *proactive online web exploring* on the real web environment, followed by *Complex Aggregation Logic Injection* to compose the verifiable question-answer pairs from aggregated knowledge snippets, covering over 12 logical operations. The resulting dataset contains about 10K samples across 50K websites, covering more than 11 domains. Based on an open-source agent framework, SmolAgents, we collect supervised fine-tuning trajectories to develop a series of foundation models, named WebAggregator. WebAggregator-8B matches the performance of GPT-4.1, while the 32B variant surpasses GPT-4.1 by more than 10% on GAIA-text and closely approaches the performance of Claude-3.7-sonnet. Moreover, given the limited availability of benchmarks that evaluate web agents' information aggregation abilities, we construct a human-annotated evaluation split of WebAggregatorQA as a challenging test set. On this benchmark, Claude-3.7-sonnet only achieves 28%, and GPT-4.1 scores 25.8%, and even after retrieving all of the references, they still struggle on WebAggregatorQA, highlighting the need to strengthen the information aggregation capabilities of web agent foundations.

054 1 INTRODUCTION

056 DeepResearch agent systems (OpenAI, 2025; Monica.Im, 2025) are built upon foundational large
 057 language models (LLMs), aiming to perform complex, human-level tasks. Achieving this level of
 058 capability requires not only effective *information seeking*, using web-interactive tools to retrieve
 059 accurate and relevant knowledge, but more importantly, *information aggregation*, where retrieved
 060 materials are synthesized into coherent, novel insights in the spirit of expert human authors (Bereiter
 061 & Scardamalia, 1987; Flower & Hayes, 1981).

062 Developing web agents with human-level task composition capabilities fundamentally requires large-
 063 scale training corpora that explicitly capture both *information seeking* and *aggregation* behaviors.
 064 Yet, such datasets remain scarce. Existing multi-hop QA datasets (Yang et al., 2018; Talmor et al.,
 065 2021; Trivedi et al., 2022) rarely involve authentic web interactions, and can often be solved from the
 066 models’ parametric knowledge alone. More recent web agent datasets (Shi et al., 2025; Wu et al.,
 067 2025a; Tao et al., 2025) simulate multi-hop logics by linking *offline* static web pages into graphs and
 068 constructing questions along random paths (see Figure 8), but their scope remains limited.

069 Our analysis (Table 1) reveals two critical gaps in current resources. **First**, agent solutions in
 070 real-world contexts require accessing and synthesizing information from a dynamic, heterogeneous
 071 web—including diverse domains, file processing (e.g., parsing PDFs, CSVs) or active interactions
 072 with dynamic web elements (e.g., form submissions, JavaScript-rendered content)—far beyond
 073 the static, pre-collected page sets most methods employ. **Second**, existing datasets prioritize pure
 074 information seeking, overlooking the need for complex aggregation: 30.79% of WebWalkerQA (Wu
 075 et al., 2025b) tasks are solved by simple text parsing, while cases demanding deeper analysis are
 076 rare. As shown in Figure 2, robust web agents must not only find relevant facts but also perform deep
 077 analysis by aggregating and reasoning with information, *refining gold from sand*. Thus, promoting
 078 and evaluating aggregation ability is a crucial but underexplored challenge in web agent research.

079 To bridge these gaps, we introduce a method (see Figure 2) for automatically constructing training data
 080 that requires both information seeking from diversified sources and sophisticated aggregation logics
 081 for generalist web agents. This approach adopts **Proactive Online Web Exploring** and **Complex**
 082 **Aggregation Logic Injection**, treating the entire task composition process as an agent-driven pipeline.
 083 The agent is equipped with advanced web tools enabling search, static parsing, dynamic interaction,
 084 file processing, and vision input, thereby supporting diverse user scenarios, as shown in Appendix A.

085 Through Proactive Online Web Exploring, the agent collects comprehensive resources beginning
 086 from the anchor URL, with domain and complexity regulated by anchor selection and traversal
 087 budget. Subsequently, the Complex Aggregation Logic Injection imposes rigorous requirements
 088 for both seeking and aggregation. We define a taxonomy of high-level aggregation logics, Element,
 089 Set, Scientific Analysis, and Temporal Reasoning, with a total of 12 subtypes (e.g., Math, Statistics)
 090 informed by prior studies of multi-hop analysis (Chang et al., 2022; Yang et al., 2018; Talmor et al.,
 091 2021; Wu et al., 2025c) and logical reasoning (Ren et al., 2020; Fang et al., 2024). Our analysis
 092 shows broad diversity and complexity of aggregation operations in synthesized tasks (Figure 4).

093 Following quality control, we compile the **WebAggregatorQA** dataset consisting of approximately
 094 10K query-answer pairs, and a challenging human-annotated test set. We further employ rejection
 095 sampling on GPT-4.1 sampled trajectories on the constructed dataset, and train our WebAggregator

097 Resource	IS	IA	Train set	Information Source	#Domain
098 GAIA (Mialon et al., 2023)	✓	✓	N/A	Text, Figure, Audio, File, Dynamic Web Elements	-
099 BrowseComp (Wei et al., 2025)	✓	✗	N/A	Text	9
100 WebWalker (Wu et al., 2025b)	✓	✗	Y	Text	4
101 TaskCraft (Shi et al., 2025)	✓	✗	Y	Text, PDF, Figure	8
102 WebShaper (Tao et al., 2025)	✓	✗	N	Text	11
103 WebAggregatorQA (Ours)	✓	✓	Y	Text, Figure, File, Dynamic Web Elements	12

105 Table 1: Comparison between our WebAggregatorQA created by our method and previous data
 106 resources. **IS**: information-seeking, **IA**: information-aggregation. Our method could construct data
 107 that covers diverse aggregation needs (Table 6) compared with samples of previous work (Figure 8).

Figure 2: **Data construction pipeline of WebAggregatorQA.** (1) Proactive Online Web Exploring gathers comprehensive information by interacting with the web environment through tools (more details in Figure 9). (2) Task Construction via Complex Aggregation Logic Injection synthesizes QA pairs based on the collected knowledge by instantiating the high-level aggregation guidance into concrete operations, e.g., *Statistic Analysis* \rightarrow *standard deviation*. (3) Quality Control ensures the data quality and diversity.

model family based on the SmolAgents (Roucher et al., 2025). Extensive experiments demonstrate that WebAggregator outperforms strong baselines on GAIA-text and WebAggregatorQA, exemplifying the value of our data construction pipeline. The contribution of our work is as follows:

- We propose an automated and scalable workflow for web agent dataset construction, uniquely emphasizing aggregation complexity. The resulting WebAggregatorQA dataset covers a broad range of domains, source types, tool uses, and especially aggregation logics.
- The trained foundation models for web agents, WebAggregator, show superior performance. The WebAggregator-8B surpasses GPT-4.1, and the 32B version surpasses current strong baselines.
- Our test set remains challenging, with even the Claude-3.7-sonnet achieving only 28.3%. Notably, accurate reference retrieval does not guarantee success in aggregation, highlighting the crucial need for progress in this capability.

2 WEBAGGREGATORQA

Our objective is to automatically generate at scale a diverse and challenging set of QA pairs grounded in real web resources, suitable for training web agents with *few human involvement*. To reflect realistic scenarios, our tasks require complex information retrieval, deep aggregation, and structured reasoning rather than simple fact lookup.

To achieve this, we propose an automatically verifiable training data construction method illustrated in Figure 2. We frame data synthesis as a web agent task: starting from an anchor URL, an agent performs **Proactive Online Web Exploring** to collect relevant information across heterogeneous sites and file types, then generates QA pairs requiring complex aggregation and reasoning through **Complex Aggregation Logic Injection**. A rigorous automated quality control stage filters out low-quality samples. The process requires only anchor URLs as input, and no human annotation is needed. The agent we used is depicted in Appendix A, including action and observation space.

2.1 ANCHOR URL COLLECTION

Diversity of anchor URLs is crucial for broad domain coverage. By selecting seed URLs across multiple domains, we can effectively regulate the dataset’s domain distribution, thereby enabling precise control during data construction. We sampled 5,000 topic-diverse queries from QA and scientific datasets (Yang et al., 2018; Jin et al., 2019; Trivedi et al., 2022) and retrieved URLs via Google Search, resulting in over 160,000 anchor links from 11+ domains (see Figure 3).

Figure 3: The distribution of domains in WebAggregatorQA, tasks categorized by the number of different tools involved during construction, and steps (an action-observation round) in data synthesis.

2.2 DATA SYNTHESIS AS AN AGENT TASK IN REAL INTERNET

In this section, we introduce our approach to synthesizing target QA pairs by framing *task synthesis as a specialized form of web-agent tasks*. The agent is given a task prompt consisting of two components: Proactive Web Exploration and Complex Aggregation Logic Injection, enabling it to complete the task construction in an end-to-end manner.

2.2.1 INFORMATION COLLECTION VIA PROACTIVE ONLINE WEB EXPLORING

The first step, **Proactive Online Web Exploring**, aims to collect diverse information as the foundation for task construction. During this phase (Figure 2), the agent is prompted to start from a single anchor URL and employ various tools to navigate across web pages just like human browsing, to discover unknown but relevant information that serves as the basis for generating QA pairs. Interactions include navigating heterogeneous content types such as text, files, and images, as well as dynamic element interactions. To control task difficulty and ensure the comprehensiveness of the knowledge scope, a minimum number of web page visits (e.g., at least $N = 7$) is enforced (see Appendix B.3).

We found that this step could incorporate diversified information from multiple sources. By analyzing the tool calling statistics of 5,296 web exploring trajectories in Figure 3, we found that the proactive web exploration of these tasks involves at least three tools: the Search, Visit, and the compulsory tool ScreenShot. Moreover, 48.36%, 28.55%, and 13.41% of the samples involve the use of 3, 4, and 5 different tools, respectively. The broad interactions here promote greater knowledge diversity and introduce additional challenges—for example, questions derived from file-based information also evaluate the file-processing capabilities of the responding agents.

2.2.2 DATA SYNTHESIS VIA COMPLEX AGGREGATION LOGIC INJECTION

The Complex Aggregation Logic Injection procedure aims to incorporate information aggregation behavior requirements into the QA pairs. Hence, the constructed training resource could be expected to enhance the agent’s abilities in careful reasoning to deliver concise but valuable insights spawned from the retrieved knowledge, rather than a batch of entities or numbers.

To enhance the diversity of information aggregation, we first define a set of high-level logical operations compiled from human annotations and prior work (Sen et al., 2022; Talmor et al., 2021; Wu et al., 2025c; Fang et al., 2024; Krishna et al., 2025). As shown in Figure 2, aggregation operations are categorized into four major types, Element, Set, Scientific Analysis, and Temporal Reasoning, with a total of 12 subtypes. Element and Set operations are the basis of regular aggregation behaviors among knowledge snippets, such as *mathematical calculation* among elements and *set merging* among sets. While Scientific Analysis and Temporal Reasoning are advanced applications of them, which are expected to reflect user cases and increase the task complexity. These subtypes represent high-level guidance that appears in the prompt to instruct the agent to translate them into concrete reasoning steps, rather than rigid constraints. A vivid example is that math calculations between elements could be derived into addition, subtraction, etc., which could be observed in Figure 4. More detailed seed operations and corresponding prompts are provided in Appendix B.3.

Figure 4: Word cloud of aggregation operations extracted from the constructed tasks. In the **Complex Aggregation Logic Injection** stage, the agent converts high-level guidance into concrete low-level operations to combine knowledge snippets into new conclusions. The illustrated task requires seeking knowledge by `Search`, `Visit`, `Click`, `FileRead`, and aggregations to derive the final answer.

2.2.3 QUALITY CONTROL

QA Alignment Checking: We implement a two-stage refinement process. First, a self-refinement tool for the agent with a checklist verifies and revises questions before outputting the sample (Appendix B.5). Second, a data checking agent thoroughly reviews the entire task by verifying reference URLs to ensure alignment among questions, answers, and sources (Appendix B.4). About 11.72% of the original data are filtered out in the second stage.

Diversity Constraint: We ensure dataset diversity by balancing domain and aggregation operation distributions. First, we annotated anchor URL domains with GPT-4.1 and balanced data to achieve a more balanced distribution (Figure 3). Second, we analyzed information aggregation types using GPT-4.1 to identify low-level operations. Although not perfectly reliable without solving the questions, operations like *calculating average* can be easily detected. We then adjusted prompts to emphasize rare aggregation types, increasing their sample frequency. The word cloud of the aggregation operations (Figure 4) exhibits that different high-level aggregation guidance will spawn diversified low-level, specific operations, e.g., *intersection* for Set, *table* processing for Scientific Analysis.

2.2.4 TRAJECTORY SAMPLING

After the task synthesis, we collect the trajectory that completes these tasks. We utilize the agent based on GPT-4.1 with SmolAgents, equipped with almost the same tools exhibited in Table 7, except for the `Screenshot` and `Scroll`, because we only collect the plain text trajectories. To ensure the quality of the collected trajectories, we conduct a further filtering procedure and finally collected 6,184 trajectories for the foundation model training:

- **Correctness** We employ rejection sampling to retain those trajectories that with correct answers according to the reference answers in the WebAggregatorQA.
- **Format** Data with output format errors (e.g., undefined tool name or parameters) is filtered out.
- **Exception Handling** Anomalies in observations (e.g., page failures) are kept to improve the model's generalization, since similar situations would occur in real web environments.

2.2.5 STATISTICS OF WEBAGGREGATORQA

WebAggregatorQA comprises 9,883 tasks (with 200 reserved for testing), covering 54,064 unique URLs across 12 domains. Figure 3 shows the distribution of domains and steps for both QA construction trajectories. Domains are labeled by GPT-4.1. Most QA pairs are constructed with around 15 steps, demonstrating that the generated data points are not hastily created from only a few reasoning steps, thus avoiding overly simplistic questions.

270 2.3 CURATION OF WEBAGGREGATORQA TEST SET
271272 Evaluating web agents is vital for their improvement. Existing benchmarks (Wu et al., 2025b;
273 Wei et al., 2025) mainly focus on information-seeking tasks (Figure 8), like deducing answers
274 from ambiguous clues and retrieving entities, often corresponding to *Element->Retrieve / Inverse*
275 *Questions* and *Set->Filtering*. 30.29% of WebWalkerQA tasks require only direct retrieval of a single
276 entity, with almost none involving large-scale computation or analysis for the answers.277 While this is important for evidence retrieval, the deeper analytical capabilities, such as generating
278 clear and structured answers through reasoning and aggregation (Mialon et al., 2023; Krishna et al.,
279 2025) of evidence, are inadequately evaluated. To bridge this gap, we developed the WebAggrega-
280 torQA test set to comprehensively measure both complex retrieval and aggregation skills.281 **Annotation Details** We uniformly split 200 tasks as seeds from WebAggregatorQA across different
282 domains to ensure high task diversity. Since humans have inherent cognitive limits in creating highly
283 complex tasks spanning multiple domains (Chen et al., 2025).284 > **Step 1:** Human annotators review the QA pairs and references to eliminate ambiguities and provide
285 a revised version of the original data. Our analysis, aligned with prior work (Wei et al., 2025), shows
286 that while questions are generally well-structured, they might lack a unique ground truth due to the
287 high uncertainty of the web. Thus, we ensure every question is unambiguous with exactly one correct
288 answer by adding constraints, e.g., explicit reference sources (the World Bank in Figure 4).289 > **Step 2 & 3:** To further enhance sample reliability and reduce bias from the solver’s perspective, this
290 process is repeated twice: tasks are solved, ambiguities identified, and revisions made by annotators.292 > **Step 4:** In the final cross-validation stage, each question was answered by two annotators, yielding
293 155 consistently aligned samples. Additionally, there are 4 samples that annotators abandoned during
294 the answering process due to difficulty, but whose references and questions were verified to ensure
295 data quality and thus were retained. More details are shown in Appendix B.2).296 This yielded 159 samples, including those in text and multimodal, categorized by difficulty into Level
297 1 (24), Level 2 (99), and Level 3 (36). Each sample contains a question, reference answer, solution,
298 and supporting URLs. A text example is shown in Figure 4 and a multimodal one is in Figure 10.300 3 EXPERIMENTS
301302 3.1 EXPERIMENTAL SETUPS
303304 **Models and Benchmarks** We construct the WebAggregator models by SFT Qwen2.5-7B, Qwen2.5-
305 32B (Yang et al., 2024), Qwen3-8B, and Qwen3-32B (Yang et al., 2025) on the training set of
306 WebAggregatorQA. We evaluate the baselines and our methods on the subset of 103 text-only cases of
307 GAIA (Mialon et al., 2023) following Li et al. (2025a;b); Wu et al. (2025b), and WebAggregatorQA.308 **Training Configs** We formalize the trajectory we sampled as $(\text{question}, a_1, o_1, \dots, a_n, o_n, \text{answer})$.
309 a_i stands for the action code the agent generated to perform tool calling, and o_i is the observation
310 returned by the web environment. The question and observations are masked during training.312 **Baselines and Metrics** We mainly compare WebAggregator with three types of prior works. **a.**
313 Non-agentic foundation models that answer questions using their internal knowledge. **b.** Zero-
314 shot foundation models initialized as agents via the SmolAgents framework. **c.** Strong fine-tuned
315 foundation models: WebThinker (Li et al., 2025b), WebDancer (Wu et al., 2025a), CognitiveKernel-
316 Pro (Fang et al., 2025), WebSailor (Li et al., 2025a) and WebShaper (Tao et al., 2025). We utilize the
317 pass@1 for performance comparison. The correctness is evaluated by GPT-4.1 with the prompt fol-
318 lowing previous works (Wu et al., 2025a). Due to the inevitable network fluctuations and CAPTCHA,
319 the agent will be allowed up to two additional attempts when encountering exceptions.321 3.2 EXPERIMENT RESULTS
322323 **Effects of WebAggregatorQA Training Set** The experiment results are shown in Table 2. For the
zero-shot foundations, the closed-sourced models surpass the Qwen models on both the GAIA-text

Methods	GAIA-text				WebAggregatorQA			
	level-1	level-2	level-3	Avg.	level-1	level-2	level-3	Avg.
<i>Non-Agentic</i>								
GPT-4.1	10.3	13.5	8.3	11.7	15.4	4.0	2.8	5.6
Claude-3.7-sonnet	35.9	17.3	0.0	22.3	18.5	5.1	2.8	6.8
Qwen2.5-7B	12.8	3.8	0.0	6.8	4.2	1.0	0.0	1.3
Qwen2.5-32B	20.5	9.6	8.3	13.6	4.2	1.0	0.0	1.3
Qwen3-8B	12.8	3.8	0.0	6.8	4.2	1.0	2.8	1.9
Qwen3-32B	17.9	3.8	0.0	8.7	8.3	1.0	0.0	1.9
<i>Zero-shot Foundations</i>								
GPT-4.1	51.3	44.2	16.7	43.7	62.4	22.2	11.1	25.8
GPT-5	71.8	57.7	33.3	60.2	58.3	24.5	22.2	28.9
Claude-3.7-sonnet	74.4	55.8	33.3	60.2	66.7	25.3	11.1	28.3
Qwen2.5-7B	23.1	15.4	0.0	16.5	27.3	3.4	2.8	6.3
Qwen2.5-32B	46.1	21.2	0.0	28.2	25.0	10.1	5.6	11.3
Qwen3-8B	33.3	11.5	0.0	18.4	30.8	5.1	5.6	9.4
Qwen3-32B	48.7	40.4	16.7	40.8	45.8	10.1	5.6	14.5
<i>Fine-tuned Foundations</i>								
<i>WebThinker</i>								
Qwen2.5-32B	56.4	50.0	16.7	48.5	—	—	—	—
<i>WebDancer</i>								
Qwen2.5-7B	41.0	30.7	0.0	31.0	—	—	—	—
Qwen2.5-32B	46.1	44.2	8.3	40.7	—	—	—	—
<i>WebSailor</i>								
Qwen2.5-7B	-	-	-	37.9	—	—	—	—
Qwen2.5-32B	-	-	-	53.2	—	—	—	—
<i>WebShaper</i>								
Qwen2.5-32B	61.5	53.8	16.7	52.2	—	—	—	—
<i>CogKernel-Pro</i>								
Qwen3-8B	56.4	42.3	8.3	43.7	—	—	—	—
<i>WebResearcher</i>								
Qwen2.5-7B	53.8	30.8	16.7	40.8	37.5	11.1	8.3	14.5
- pass@3	74.4	63.5	25.0	63.1	54.2	22.2	19.4	26.4
Qwen2.5-32B	66.7	44.2	33.3	51.5	54.2	15.2	11.1	20.1
- pass@3	79.5	67.3	50.0	69.9	70.8	22.2	19.4	28.9
Qwen3-8B	61.5	34.6	16.7	42.7	54.2	11.1	5.6	16.4
- pass@3	82.1	53.8	33.3	62.1	62.4	21.2	11.1	25.2
Qwen3-32B	69.2	55.8	16.7	56.3	62.4	24.2	8.3	26.4
- pass@3	79.5	67.3	50.0	69.9	66.7	35.4	13.9	35.2

Table 2: The Pass@1 & Pass@3 performance of agents on GAIA-text and WebAggregatorQA. The best performance of different settings is in bold.

and WebAggregatorQA. However, after tuning on WebAggregatorQA, Qwen models exhibit clear and steady improvements on GAIA-text and WebAggregatorQA and approach the performance of these strong baselines. Specifically, the WebAggregator based on Qwen2.5-32B and Qwen3-32B surpasses most of the strong baselines, including GPT-4.1 and WebShaper. The pass@3 performance of WebAggregator-32B achieves 69.9 on GAIA-text. These observations prove the quality of WebAggregatorQA and the effectiveness of our data construction paradigm.

Difficulty of WebAggregatorQA Test Set WebAggregatorQA poses a new challenge for current agent systems. GPT-4.1-powered SmolAgents attain 43.7% accuracy on GAIA-text but drop to 25.8% on WebAggregatorQA. Claude-3.7-sonnet shows a similar decline. Furthermore, the performance gap between Claude and GPT-4.1 is smaller on WebAggregatorQA than on GAIA-text. This suggests that for the harder questions in WebAggregatorQA, neither model can solve them effectively, which leads to the reduced

Model	WWQA	XBench
WebDancer-7B	36.0	-
WebSailor-7B	-	34.3
WebAggregator-7B	44.7	37.0
WebAggregator-8B	41.2	40.0

Table 3: Performance on XBench and WWQA (WebWalkerQA).

Figure 5: Distributions of tasks required different numbers of tools (a) and aggregation operations (d). Proportion of information source (b) and aggregation operations (c) that are needed across tasks.

gap. These results highlight the substantial gap between current agent capabilities and the demands of information aggregation needed for multi-hop web tasks.

Transferability of WebAggregator Models Considering the response latency and efficiency of small foundation models, it is crucial to further enhance these smaller foundations to offer society a more affordable yet powerful alternative. To explore their potential, we evaluate these models on two additional benchmarks: WebWalkerQA (Wu et al., 2025b) and XBench (Chen et al., 2025), as summarized in Table 3. In Table 2, WebAggregator-8B achieves performance comparable to GPT-4.1 on GAIA-text, demonstrating strong capabilities despite its relatively smaller size. Furthermore, both WebAggregator-8B and 7B significantly outperform previous strong baselines on WebWalkerQA and XBench. Although these results confirm that smaller WebAggregators excel on these benchmarks, they still face challenges with the more difficult tasks in WebAggregatorQA, where WebAggregator-8B notably trails behind the 32B counterpart and GPT-4.1. Consequently, breaking through the performance bottleneck of small foundation models on hard tasks remains a vital direction.

4 ANALYSIS

4.1 HOW TO SOLVE WEBAGGREGATORQA

We present the distribution of the information source and aggregation operations needed to solve WebAggregatorQA, as shown in Figure 5.

Diversified Information Source Reliance We observe that all of the tasks of WebAggregatorQA need information from only Search and Web Text. Moreover, the tasks also require information from Files and do not rely solely on one source. Solving WebAggregatorQA requires advanced web-browsing capabilities to retrieve knowledge. The task is highly challenging for models that rely only on their internal knowledge: even strong base models such as Claude-3.7 and GPT-4.1 correctly solve fewer than 7% of the questions. The advantage of GPT-4.1 and Claude over the Qwen series is largely attributable to their multimodal (image) processing capabilities. Without access to tools to fulfill multimodal understanding, Qwen models can only answer a small fraction of questions.

Diversified Information Aggregation Requirements We observe that the information aggregation requirements of WebAggregatorQA challenge the agent systems. Figure 5 illustrates that all of the tasks possess these operations, and many of them contain multiple operations, further increasing the task difficulty. We then further examine the impact of information aggregation. We analyze the agents’ trajectories to identify the frequency of a specific failure mode: *successfully retrieving all of the reference URLs but fails the task*. From Table 4, a clear trend emerges: for tasks where agents successfully visit all reference URLs, accuracy is notably higher than the overall average, suggesting that successful information retrieval is helpful for correct aggregation. While Qwen3-32B is a notable exception, indicating its performance bottlenecks may lie beyond simple retrieval. In this context, our WebAggregator-32B not only demonstrates this accuracy improvement but also achieves performance comparable to other strong baselines. Nevertheless, even with complete information, no agent reaches a perfect score, underscoring that the complex aggregation logic remains the ultimate challenge.

Model	Counts	Acc.
GPT-4.1	30	33.3
Claude	38	42.1
Qwen3-32B	22	9.7
WebR-32B	28	35.7

Table 4: Counts and accuracy of trajectories that visited all of the reference URLs.

432

Retrieval vs. Aggregation Tasks We evaluate the impact of information aggregation on agents by analyzing their tool usage patterns across WebAggregatorQA and WebWalkerQA, as shown in Figure 6.

433

We define tool call density as the percentage of steps that involve tool usage. We observe that while tasks in WebAggregatorQA require more total steps to complete, the tool call density is notably lower. This pattern suggests that in WebAggregatorQA, models rely more heavily on reasoning steps to execute information aggregation—enabling deeper synthesis and analysis of existing information—rather than predominantly invoking tools to acquire new external knowledge.

434

435

4.2 BEHAVIOR EVOLUTION OF WEBAGGREGATOR

436

437

Evolution on Tool Usage Behaviors To understand how fine-tuning on WebAggregatorQA alters agent behavior, we analyzed its operational steps, classifying them as either tool-calling (information-seeking) or non-tool-calling (reasoning). Our findings, illustrated in Table 5 and Figure 12, reveal three key trends. First, WebAggregator agents exhibit less tool dependency and more reasoning, significantly reducing their tool usage across all model sizes. Second, we found an inverse correlation with scale, where larger models rely on fewer tools. Finally, the agent’s behavior demonstrates increased complexity; post-tuning, tool-calling patterns shift from a simple, concentrated structure (e.g., 40% of initial trajectories used only two tools, as shown in Figure 12) to a far more diverse and sophisticated distribution.

438

439

Evolution on Aggregation Capabilities We investigate how different aggregation logic types affect model performance, focusing on failure patterns common across models rather than model-specific issues. Logic labels are generated by an LLM, consistent with the dataset construction method (Figure 2). We compare Qwen series models before and after fine-tuning. We compute the Phi Coefficient (ψ), measuring correlation between logic type presence and answer correctness. More negative ψ indicates greater difficulty. Figure 7 reveals that computation-intensive logic, particularly Scientific Analysis and Set Operations, remains the key performance bottleneck even for WebAggregators.

440

441

Training Efficiency The construction of datasets and the training of web agent models are typically resource-intensive processes. If satisfactory performance can be achieved with a smaller trajectory size, the approach would become more accessible and cost-effective. Motivated by this, we train the Qwen3-8B on small subsets of WebAggregatorQA, using 500 and 1,200 samples, respectively. The model trained on 500 samples attained 36.9% accuracy on GAIA-text, while the one trained on 1,200 samples achieved 38.83%. These results further demonstrate the high quality of WebAggregatorQA; even a small-scale subset can deliver significant performance gains for foundation models.

442

443

4.3 SCREENING ON FAILURE MODES

444

445

To understand the challenges posed by WebAggregatorQA, we analyze failure trajectories where the agent successfully retrieved all necessary information but still produced an incorrect answer. Our analysis is based on a manual examination of 50 such cases from models in Table 4. We identify a taxonomy of interconnected failure modes, categorized below.

Figure 6: Steps and tool use density of two models across test sets.

Model	%tc steps	sum(tc)/step
Qwen3-8B	90.27%	1.52
+WAgg	86.37%	0.94
Qwen3-32B	91.55%	1.12
+WAgg	82.14%	0.89

Table 5: The tool calling behaviors of Qwen3-8B and Qwen3-32B on WebAggregatorQA before and after training.

Figure 7: Phi Coefficients (ψ) by Logic Type across Qwen series models, before and after Tuning on WebAggregatorQA.

486 **Information Seeking** Errors at this stage prevent the agent from accessing or correctly interpreting
 487 necessary evidence. This can manifest as a **Source Finding Failure**, where the agent fails to locate
 488 the correct webpage due to high uncertainty or being misled by preliminary steps, often settling for
 489 secondary sources with incomplete information.

490 **Information Aggregation and Reasoning** This category covers logical errors during the aggregation
 491 of retrieved information. One primary issue is **Faulty Aggregation**, where the agent applies flawed
 492 reasoning, such as unsupported assumptions, fails to leverage key information and thus misinterpreting
 493 evidence (e.g., Figure D.1). Another failure is **Error Accumulation**, where minor inaccuracies, like
 494 premature rounding, compound across steps to yield a significantly incorrect result (Figure D.3).
 495 Compounding these issues is **Underperformed Iterative Refinement**, a critical failure where the
 496 agent cannot self-correct erroneous steps, causing it to proceed down an incorrect logical path without
 497 identifying or revising its mistake (e.g., Figure D.2).

498 **Agent Foundation Capability Failures** Agents are also prone to operational failures that derail the
 499 task. For instance, they may make **Invalid Tool Calls** by providing improper arguments (e.g., a poorly
 500 formulated query or an invalid URL), which often yield empty results and waste valuable steps. Such
 501 inefficiencies can lead to **Exceeding Max Steps**, for the agent becomes trapped in error-correction
 502 loops or simply wastes of steps due to poor planning, ultimately failing to complete the task.

5 RELATED WORK

504 **Resources for Web Agent Foundation Models** Multi-hop questions for training web agent foun-
 505 dation models (Tongyi, 2025; Qiao et al., 2025) require advanced tool use, complex reasoning, and
 506 grounding in real-world web environments, making manual dataset construction challenging. Existing
 507 QA datasets, such as HotpotQA (Yang et al., 2018) and Musique (Trivedi et al., 2022), do not capture
 508 the intricacy of authentic web interactions. While some works generate request-action pairs (Xu
 509 et al., 2025; Chen et al., 2024; He et al., 2024), these are not applicable for goal-oriented web tasks.
 510 Recent methods first construct logical flows over knowledge snippets and then synthesize tasks
 511 accordingly (Wu et al., 2025a; Li et al., 2025a; Shi et al., 2025; Tao et al., 2025; Xia et al., 2025). For
 512 instance, knowledge graphs built from *offline* pages are used for task generation (Shi et al., 2025; Wu
 513 et al., 2025a), and entity expansion or formalization helps model logic flows (Xia et al., 2025; Tao
 514 et al., 2025). However, these approaches are restricted by their dependence on static pages and often
 515 neglect the aggregation of information from diverse sources (Figure 2). Moreover, their complexity
 516 mainly comes from entity tracing rather than synthesizing information across multiple sources.
 517

519 **Benchmarking Web Agents** Most existing benchmarks focus on information-seeking, requiring
 520 agents to use tools and perform multi-hop reasoning in realistic web scenarios, as in WebWalker (Wu
 521 et al., 2025b) and BrowseComp (Wei et al., 2025). Few research (Li et al., 2025c) assess information
 522 aggregation. FRAMES (Krishna et al., 2025) aim to evaluate the factuality, retrieval, and aggregation
 523 abilities of LLMs, but their knowledge scope is limited to Wikipedia. WideSearch (Wong et al., 2025)
 524 addresses aggregation by constructing tasks involving many simple actions. GAIA (Mialon et al.,
 525 2023), which is most relevant to our work, evaluates general capabilities with human-constructed tasks.
 526 However, recent agents (Fang et al., 2025; Qiu et al., 2025) perform well on GAIA, indicating a crucial
 527 need for more challenging benchmarks that jointly evaluate information-seeking and aggregation.

6 CONCLUSION

531 In this work, we identify the critical limitation of existing web research agents, their inadequate focus
 532 on information aggregation, which restricts their capacity for generating insightful and coherent
 533 research outputs. To address this, we propose an automated, agent-driven data construction paradigm
 534 that enables the synthesis of diverse and verifiable tasks demanding both information seeking and
 535 complex aggregation across real-world web environments. Our resulting WebAggregatorQA dataset
 536 and the foundation model family, WebAggregator, demonstrate substantial improvements over current
 537 baselines on GAIA-text and WebAggregatorQA. Notably, even advanced commercial models like
 538 GPT-4.1 and Claude-3.7-sonnet struggle on these tasks. Even after retrieving all of the references,
 539 the agents still struggle on WebAggregatorQA, reflecting the importance and difficulty of effective
 information aggregation for web agents.

540 ETHICS STATEMENT
541

542 In this paper, we do not involve any significant ethical issues. First, the data we construct is based on
543 URLs obtained through information retrieval from existing datasets, which do not contain sensitive
544 content such as violence. All datasets and models used in this work strictly follow the licenses
545 specified by their original authors. Additionally, this paper involves manual annotation; detailed
546 explanations of the annotation process and the remuneration provided to annotators are given in
547 Appendix B.2.

548
549 REPRODUCIBILITY STATEMENT
550

551 We will provide comprehensive details to facilitate the reproducibility of our work. We commit to
552 open-sourcing all relevant code, including the agent workflow, data construction, and evaluation
553 scripts. The constructed dataset—comprising pure QA pairs, trajectories, and URL collections—will
554 also be made publicly available. Furthermore, the trained model checkpoints, the qwen3-8B and 32B
555 versions of WebAggregator, will be released alongside inference code, which includes benchmark
556 evaluation and a quick-start guide.

557 Currently, we have already uploaded the agent workflow, data construction, and evaluation scripts;
558 samples of training set of WebAggregatorQA due to space limitation and the whole testset in the
559 **Supplement Materials**.

560
561 USE OF LLMs
562

563 In this paper, we mainly use LLMs as grammar checking tools after our authors finished the
564 manuscript. LLMs are not involved in primary manuscript writing, coding, and other tasks.

565
566 REFERENCES
567

568 Carl Bereiter and Marlene Scardamalia. The psychology of written composition. 1987. URL
569 <https://api.semanticscholar.org/CorpusID:143781031>. 2

570 Yingshan Chang, Guihong Cao, Mridu Narang, Jianfeng Gao, Hisami Suzuki, and Yonatan Bisk.
571 Webqa: Multihop and multimodal QA. In *IEEE/CVF Conference on Computer Vision and Pattern*
572 *Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022*, pp. 16474–16483. IEEE,
573 2022. doi: 10.1109/CVPR52688.2022.01600. URL <https://doi.org/10.1109/CVPR52688.2022.01600>. 2

574 Kaiyuan Chen, Yixin Ren, Yang Liu, Xiaobo Hu, Haotong Tian, Tianbao Xie, Fangfu Liu, Haoye
575 Zhang, Hongzhang Liu, Yuan Gong, Chen Sun, Han Hou, Hui Yang, James Pan, Jianan Lou,
576 Jiayi Mao, Jizheng Liu, Jinpeng Li, Kangyi Liu, Kenkun Liu, Rui Wang, Run Li, Tong Niu,
577 Wenlong Zhang, Wenqi Yan, Xuanzheng Wang, Yuchen Zhang, Yi-Hsin Hung, Yuan Jiang, Zexuan
578 Liu, Zihan Yin, Zijian Ma, and Zhiwen Mo. xbench: Tracking agents productivity scaling with
579 profession-aligned real-world evaluations, 2025. URL <https://arxiv.org/abs/2506.13651>. 6, 8

580 Zehui Chen, Kuikun Liu, Qiuchen Wang, Wenwei Zhang, Jiangning Liu, Dahua Lin, Kai Chen,
581 and Feng Zhao. Agent-FLAN: Designing data and methods of effective agent tuning for large
582 language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the*
583 *Association for Computational Linguistics: ACL 2024*, pp. 9354–9366, Bangkok, Thailand, August
584 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.557. URL
585 <https://aclanthology.org/2024.findings-acl.557>. 10

586 Tianqing Fang, Zeming Chen, Yangqiu Song, and Antoine Bosselut. Complex reasoning over logical
587 queries on commonsense knowledge graphs. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
588 (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics*
589 (*Volume 1: Long Papers*), *ACL 2024, Bangkok, Thailand, August 11-16, 2024*, pp. 11365–11384.
590 Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.613. URL
591 <https://doi.org/10.18653/v1/2024.acl-long.613>. 2, 4

594 Tianqing Fang, Zhisong Zhang, Xiaoyang Wang, Rui Wang, Can Qin, Yuxuan Wan, Jun-Yu Ma,
 595 Ce Zhang, Jiaqi Chen, Xiyun Li, Hongming Zhang, Haitao Mi, and Dong Yu. Cognitive kernel-
 596 pro: A framework for deep research agents and agent foundation models training, 2025. URL
 597 <https://arxiv.org/abs/2508.00414>. 6, 10

598 Linda S. Flower and J. R. Hayes. A cognitive process theory of writing. *College Composition
 599 & Communication*, 1981. URL [https://api.semanticscholar.org/CorpusID:
 600 18484126](https://api.semanticscholar.org/CorpusID:18484126). 2

601 Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong
 602 Lan, and Dong Yu. WebVoyager: Building an end-to-end web agent with large multimodal
 603 models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd
 604 Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 605 6864–6890, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
 606 10.18653/v1/2024.acl-long.371. URL [https://aclanthology.org/2024.acl-long.
 607 371](https://aclanthology.org/2024.acl-long.371). 10

608 Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W. Cohen, and Xinghua Lu. Pubmedqa: A
 609 dataset for biomedical research question answering, 2019. URL [https://arxiv.org/abs/
 610 1909.06146](https://arxiv.org/abs/1909.06146). 3

612 Satyapriya Krishna, Kalpesh Krishna, Anhad Mohananey, Steven Schwarcz, Adam Stambler,
 613 Shyam Upadhyay, and Manaal Faruqui. Fact, fetch, and reason: A unified evaluation of
 614 retrieval-augmented generation. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Pro-
 615 ceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association
 616 for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp.
 617 4745–4759, Albuquerque, New Mexico, April 2025. Association for Computational Lin-
 618 guistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.243. URL
 619 <https://aclanthology.org/2025.naacl-long.243>. 4, 6, 10

620 Kuan Li, Zhongwang Zhang, Huifeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baixuan
 621 Li, Zhengwei Tao, Xinyu Wang, Weizhou Shen, Junkai Zhang, Dingchu Zhang, Xixi Wu, Yong
 622 Jiang, Ming Yan, Pengjun Xie, Fei Huang, and Jingren Zhou. WebSailor: Navigating Super-human
 623 Reasoning for Web Agent, July 2025a. URL <http://arxiv.org/abs/2507.02592>.
 624 arXiv:2507.02592 [cs]. 6, 10

625 Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
 626 Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability,
 627 2025b. URL <https://arxiv.org/abs/2504.21776>. 6

628 Zijian Li, Xin Guan, Bo Zhang, Shen Huang, Houquan Zhou, Shaopeng Lai, Ming Yan, Yong
 629 Jiang, Pengjun Xie, Fei Huang, Jun Zhang, and Jingren Zhou. Webweaver: Structuring web-
 630 scale evidence with dynamic outlines for open-ended deep research, 2025c. URL <https://arxiv.org/abs/2509.13312>. 10

632 Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas Scialom.
 633 Gaia: a benchmark for general ai assistants, 2023. URL [https://arxiv.org/abs/2311.
 634 12983](https://arxiv.org/abs/2311.12983). 2, 6, 10

636 Monica.Im. Manus ai. Technical report, Monica.Im, 2025. URL <https://manus.im/>. 2

637 OpenAI. Introducing deep research | OpenAI, 2025. URL <https://openai.com/index/introducing-deep-research/>. 2

640 Zile Qiao, Guoxin Chen, Xuanzhong Chen, Donglei Yu, Wenbiao Yin, Xinyu Wang, Zhen Zhang,
 641 Baixuan Li, Huifeng Yin, Kuan Li, Rui Min, Minpeng Liao, Yong Jiang, Pengjun Xie, Fei Huang,
 642 and Jingren Zhou. Webresearcher: Unleashing unbounded reasoning capability in long-horizon
 643 agents, 2025. URL <https://arxiv.org/abs/2509.13309>. 10

644 Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang, Zixin
 645 Yao, Qihan Ren, Xun Jiang, Xing Zhou, Dongrui Liu, Ling Yang, Yue Wu, Kaixuan Huang,
 646 Shilong Liu, Hongru Wang, and Mengdi Wang. Alita: Generalist agent enabling scalable agentic
 647 reasoning with minimal predefinition and maximal self-evolution, 2025. URL <https://arxiv.org/abs/2505.20286>. 10

648 Hongyu Ren, Weihua Hu, and Jure Leskovec. Query2box: Reasoning over knowledge graphs in
 649 vector space using box embeddings. In *8th International Conference on Learning Representations*,
 650 *ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020*. OpenReview.net, 2020. URL <https://openreview.net/forum?id=BJgr4kSFDS>. 2

651

652 Aymeric Roucher, Albert Villanova del Moral, Thomas Wolf, Leandro von Werra, and Erik Kaunis-
 653 mäki. ‘smolagents’: a smol library to build great agentic systems. <https://github.com/huggingface/smolagents>, 2025. 3, 16

654

655 Priyanka Sen, Alham Fikri Aji, and Amir Saffari. Mintaka: A complex, natural, and multilingual
 656 dataset for end-to-end question answering. In Nicoletta Calzolari, Chu-Ren Huang, Hansaem Kim,
 657 James Pustejovsky, Leo Wanner, Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli,
 658 Heng Ji, Sadao Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm,
 659 Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, and Seung-Hoon Na (eds.), *Proceed-
 660 ings of the 29th International Conference on Computational Linguistics*, pp. 1604–1619, Gyeongju,
 661 Republic of Korea, October 2022. International Committee on Computational Linguistics. URL
 662 <https://aclanthology.org/2022.coling-1.138/>. 4

663

664 Dingfeng Shi, Jingyi Cao, Qianben Chen, Weichen Sun, Weizhen Li, Hongxuan Lu, Fangchen Dong,
 665 Tianrui Qin, King Zhu, Minghao Yang, Jian Yang, Ge Zhang, Jiaheng Liu, Changwang Zhang,
 666 Jun Wang, Yuchen Eleanor Jiang, and Wangchunshu Zhou. TaskCraft: Automated Generation of
 667 Agentic Tasks, June 2025. URL <http://arxiv.org/abs/2506.10055>. arXiv:2506.10055
 668 [cs]. 2, 10, 15

669

670 Alon Talmor, Ori Yoran, Amnon Catav, Dan Lahav, Yizhong Wang, Akari Asai, Gabriel Ilharco,
 671 Hannaneh Hajishirzi, and Jonathan Berant. MULTIMODALQA: COMPLEX QUESTION AN-
 672 SWERING OVER TEXT, TABLES AND IMAGES. 2021. 2, 4

673

674 Zhengwei Tao, Jialong Wu, Wenbiao Yin, Junkai Zhang, Baixuan Li, Haiyang Shen, Kuan Li,
 675 Liwen Zhang, Xinyu Wang, Yong Jiang, Pengjun Xie, Fei Huang, and Jingren Zhou. Webshaper:
 676 Agentically data synthesizing via information-seeking formalization, 2025. URL <https://arxiv.org/abs/2507.15061>. 2, 6, 10, 15

677

678 Tongyi. Tongyi-depresearch. <https://github.com/Alibaba-NLP/DeepResearch>,
 679 2025. 10

680

681 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. MuSiQue: Multihop
 682 questions via single-hop question composition. *Transactions of the Association for Computational
 683 Linguistics*, 2022. 2, 3, 10

684

685 Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
 686 Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecmp: A simple yet
 687 challenging benchmark for browsing agents, 2025. URL <https://arxiv.org/abs/2504.12516>. 2, 6, 10, 17

688

689 Ryan Wong, Jiawei Wang, Junjie Zhao, Li Chen, Yan Gao, Long Zhang, Xuan Zhou, Zuo Wang, Kai
 690 Xiang, Ge Zhang, Wenhao Huang, Yang Wang, and Ke Wang. Wideseach: Benchmarking agentic
 691 broad info-seeking, 2025. URL <https://arxiv.org/abs/2508.07999>. 10

692

693 Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu
 694 Zhang, Zekun Xi, Yong Jiang, Pengjun Xie, Fei Huang, and Jingren Zhou. WebDancer: Towards
 695 Autonomous Information Seeking Agency, May 2025a. URL <http://arxiv.org/abs/2505.22648>. arXiv:2505.22648 [cs]. 2, 6, 10, 15

696

697 Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Linhai Zhang, Yulan
 698 He, Deyu Zhou, Pengjun Xie, and Fei Huang. Webwalker: Benchmarking llms in web traversals,
 699 2025b. URL <https://arxiv.org/abs/2501.07572>. 2, 6, 8, 10

700

701 Xianjie Wu, Jian Yang, Linzheng Chai, Ge Zhang, Jiaheng Liu, Xeron Du, Di Liang, Daixin Shu,
 702 Xianfu Cheng, Tianzhen Sun, et al. Tablebench: A comprehensive and complex benchmark
 703 for table question answering. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 704 volume 39, pp. 25497–25506, 2025c. 2, 4

702 Ziyi Xia, Kun Luo, Hongjin Qian, and Zheng Liu. Open data synthesis for deep research, 2025. URL
 703 <https://arxiv.org/abs/2509.00375>. 10
 704

705 Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong, and
 706 Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials, 2025. URL
 707 <https://arxiv.org/abs/2412.09605>. 10

708 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 709 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 710 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 711 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia,
 712 Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu
 713 Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *arXiv preprint arXiv:2412.15115*,
 714 2024. 6

715 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 716 Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
 717 Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 718 Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
 719 Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
 720 Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
 721 Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
 722 Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
 723 Qiu. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025. 6

724 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and
 725 Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answer-
 726 ing. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Proceedings
 727 of the 2018 Conference on Empirical Methods in Natural Language Processing*, pp. 2369–2380,
 728 Brussels, Belgium, October–November 2018. Association for Computational Linguistics. doi:
 729 10.18653/v1/D18-1259. URL <https://aclanthology.org/D18-1259/>. 2, 3, 10

730 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 731 React: Synergizing reasoning and acting in language models, 2023. URL [https://arxiv.or
 733 g/abs/2210.03629](https://arxiv.or

 732 g/abs/2210.03629). 16

734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

Operations	Questions
<i>Element Operations</i>	Aggregate elements/entities, e.g., numbers, times, names(x, y).
Retrieve(x)	In Amor: A Recipe for Building Adaptable ... , what hourly pay (in USD) is for the hired NLP expert?
Inverse(x)	Which American actor won the Academy Award for XXX in the 1990s released their first solo studio album the greatest number of years after their Oscar win?
Math(x, y)	Among Benedict, Robert Downey, and ..., for the person's first appearance in a Marvel Cinematic Universe film corresponded to the highest ROI for their debut Marvel movie, what is the ROI (three decimals)?
<i>Set Operations</i>	Aggregate elements (x) and sets (Y, Z, \dots).
Filter(\bar{Y})	Among the countries that won at least 15 gold medals at the London 2012 Summer Olympics, what is the HDI of the country that had the third highest per-capita GDP (in USD) in 2012?
Existence(x, \bar{Y})	For the college that had the most players selected overall in the 2023 NBA Draft, how many of its draftees were picked in the first round?
Compose(\bar{Y}, \bar{Z})	According to the WorldPopulationReview, how many cities among the top 100 most populous cities in 2025 have experienced a population decrease compared to 2024?
<i>Temporal Reasoning</i>	Reasoning or calculation related with time.
Change	Between 1990 and 2022, which country had the third largest average annual percentage increase in nominal GDP?
TempCalc	Among Robert De Niro, Al Pacino, Christopher Walken, and Jessica Lange, who has the longest interval between their first and most recent Academy Award nominations without winning, and what is the length of that span in years?
<i>Science Analysis</i>	Coding is a must to improve efficiency or precision for computation-intensive tasks.
ComplIntensive(X)	What is the average closure price of Apple, inc from Jan. 2024 to Oct. 2024?
Predict(x_1, \dots, x_n)	KFF published an article on abortion in Women's Health Policy on Feb 27, 2025. Using single exponential smoothing and MSE, search for the optimal alpha (0.01-0.99, step=0.01) based on the historical data, the MSE loss, and use the alpha to estimate the next data point.
Statistic(x_1, \dots, x_n)	Among all Cleveland Cavaliers head coaches who have won at least one playoff game with the team, what is the standard deviation of their playoff win percentages?
Correlate(\bar{X}, \bar{Y})	Between the 2012 to 2022 NBA seasons, what is the Pearson correlation coefficient between Damian Lillard's season average points per game and the Portland Trail Blazers' regular season win percentage?

Table 6: Several representative examples in WebAggregatorQA of information aggregation operations are presented. Note that the operations here are *high-level guidance* that could be derived into a diversified, specific form, rather than low-level constraints. x means an element or knowledge snippet, X denotes a list of knowledge snippets that fulfill a certain condition.

TaskCraft	WebShaper	WebAggregatorQA training set
<p>Question: According to UnitedHealth Group Reports 2024 Results, what was the return on equity in the fourth quarter of 2024?</p> <p>1.Element-> Retrieve-> A: 2024 Reports Results 2.Set-> Filter-> B: the return on equity in ... Answer-> B: 23.7%</p>	<p>Question: What is the name of the recognition that the former Supreme Court Justice and author of "Six Amendments: How and Why We Should Change the Constitution" received from the organization that publishes newsletter archives on Oxfordian theory research, including analyses of Edward de Vere's connection to Shakespeare's works?</p> <p>1.Element-> Retrieve-> A: the former Supreme Court Justice, B: the author of "Six Amendments ..." 2.Set-> Sets Composition-> C: intersection(A, B) 3.Element-> InverseQ-> D: the organization archiving Oxfordian theory research newsletters, including... 4.Element-> Retrieve-> E: the name of the recognition of D 5.Set-> Existence-> F: C ∈ E Answer-> F: Oxfordian of the Year</p>	<p>Question: Among all countries with a land area over 2 million square kilometers and whose population increased by less than 20% between 2010 and 2023, which country had the highest ratio of GDP growth rate to population growth rate over that period? What is the standard deviation (rounded to the nearest whole number) of its annual per capita GDP (in USD) from 2010 to 2023?</p> <p>1.Element-> Retrieve-> A: countries area, B: countries population 2.Element-> Math-> C: population increase rate 3.Set-> Filter-> D: countries with A>2M m², E: countries with C<20% 4.Set-> Sets Composition-> F: intersection(D, E) 5.Element-> Retrieve-> G: GDP and GDP growth rate of F 6.Element-> Math-> H: ratio of G to C 7.Set-> Filter-> I: top-1 of H 8.Element-> Retrieve-> J: per capita GDP of county I 9.Sci. Analys.-> Statis.-> K: std of J of county I Answer-> I: China, K: 2604</p>
WebDancer		

Figure 8: Samples from TaskCraft (Shi et al., 2025), WebDancer (Wu et al., 2025a), and WebShaper (Tao et al., 2025) primarily evaluate basic information-seeking skills, such as *Element -> Retrieve* and *Set -> Sets Composition* for entity filtering. In contrast, the selected WebAggregatorQA samples demand significantly more complex information aggregation to derive final answers. Crucially, these diverse aggregation strategies are *automatically constructed* by agents, guided by high-level logics and accumulated knowledge during data construction, resulting in rich variability that reflects task-specific intricacies.

Figure 9: A running example of **Proactive Web Exploring**: a greater variety of interactions fosters a richer diversity of knowledge and introduces more challenges throughout the process, e.g., questions built from file knowledge also test the file-processing abilities of responding agents.

A AGENT STRUCTURE

First, we introduce our agent framework. User instructions often require accessing diverse information on the web—plain text, images, or files—some needing specific interactions like button clicks. Thus, the agent must go beyond extracting static page text. We categorize tools by information source: **Search** (Search), **Static Page Parsing** (Visit, StrFind), **Dynamic Interaction** (Input, Click, Scroll, Goback), **File Processing** (FileRead), and **Image Captioning** (ImageCaption).

Our implementation utilizes a code-based ReAct (Yao et al., 2023) agent, built on SmolAgents (Roucher et al., 2025), which outputs natural language thoughts, Python-coded actions, and receives code log as environment observations. Each task runs within a fixed 30-step budget, where a step includes an agent action and its observation. We extend the *opendepresearch* SmolAgents instance with DOM parsing for finer web interactions (see Table 7). This web agent effectively handles tasks requiring information from multiple sources, as summarized in Table 1.

B MORE DETAILS FOR WEBAGGREGATORQA

B.1 MORE EXPLANATIONS OF QUALITY CONTROL

QA Alignment-based Filtering To improve data quality, we implemented a two-stage refinement process for task construction. The first stage uses a self-refinement tool with a checklist (Appendix B.5) to quickly verify and revise questions during creation. Items meeting all criteria are accepted and outputted; those that don't are revised based on feedback until they comply. The second stage involves a data checking agent that thoroughly reviews all reference URLs to ensure alignment of question, answer, and sources (Appendix B.4). About 11.72% of the data were filtered out for failing to meet these standards.

Diversity Constraint We ensure dataset diversity by balancing domain and aggregation operation distributions. First, we annotated anchor URL domains with GPT-4.1 and sampled data to achieve a more balanced domain distribution, shown in Figure 3. Second, we analyzed information aggregation types using GPT-4.1 to identify high- and low-level operations (e.g., *math subtraction*). Although

Action	Observation
Search (Query)	Search results
Visit (URL)	Web Text & DOM
StrFind (Query)	Matched str in text
Input (str, bbox_id)	Web Text & DOM
Click (button_id)	Web Text & DOM
Scroll (Pixels)	Web Text & DOM
Goback ()	Web Text & DOM
FileRead (Path)	File content
Screenshot (Path)	Capture screen
ImageCaption (Path)	Image description

Table 7: Action and Observation space.

864 not perfectly reliable without solving the questions, common operations like *calculating average*
 865 *GDP* can be accurately detected. We then adjusted prompts to emphasize rare aggregation types,
 866 increasing their sample frequency. Figure 4 shows a word cloud illustrating how different high-level
 867 aggregation tasks yield diverse specific operations, such as *intersection* for set operations and *table*
 868 processing for Science Analysis.

870 **Data Leakage Avoidance** During proactive web exploration, agents may download and parse
 871 existing datasets. To prevent data contamination, we created a website keyword blacklist. Pages
 872 matching the blacklist or containing identified datasets were excluded from retrieval and subsequent
 873 model evaluation to ensure the fairness of the evaluation.

875 B.2 TESTSET ANNOTATION

877 B.2.1 DATA COLLECTION AND VERIFICATION

879 The construction of the test set includes the seed tasks collection, several rounds of revision, and cross-
 880 validation procedures. Three human annotators are involved, all of them with at least a bachelor’s
 881 degree. Each sample requires an average of 3 hours of annotation work, and the whole procedure
 882 lasts for more than 4 weeks of part-time work (4 hours a day).

883 **Seed Tasks Collection** A single human annotator, even if highly specialized in one domain, faces
 884 inherent limitations in generating diverse and comprehensive samples across multiple fields. To
 885 address this, we engage multiple annotators to revise 200 topic-diverse tasks, uniformly selected from
 886 WebAggregatorQA based on their domain labels. These carefully revised seed examples help ensure
 887 that the test set attains the desired diversity.

888 **Task Revision Principles** Our initial analysis, consistent with prior work (Wei et al., 2025), shows
 889 that due to high uncertainty in the web environment and an answer-to-question task design, questions
 890 are generally well-structured but often lack unique ground truths. While this ambiguity may be
 891 tolerable for training, it is unacceptable for testing. Thus, our key revision principle is to ensure each
 892 question is unambiguous and has exactly one correct answer.

893 • **QA** (1) Ensure clarity in the question statements. All claims must be explicitly stated, and if
 894 multiple sources of evidence exist, additional constraints should be provided in the question to avoid
 895 ambiguity. (2) The reference answer must be the sole feasible and correct one to the question.

896 • **Reference** Reference information, including URLs and solutions, is vital to the revision process.
 897 When these reference URLs and solutions are properly validated, the quality and reliability of the
 898 questions and answers are assured. Accordingly, annotators are required to: (1) verify the reliability
 899 of URLs, ensuring they originate from authoritative and reputable sources; (2) ensure consistency: the
 900 evidence remains stable and not prone to variation across different websites, contexts, or over time;
 901 (3) confirm the fidelity of URLs: each provided reference URL directly and substantively supports
 902 the question. Those pages that have a strict CAPTCHA will be replaced with more stable ones. Then
 903 the questions and answers are revised accordingly.

904 The second principle is to **increase task complexity** from the same two perspectives: complex infor-
 905 mation aggregation and diversified information sources. We provide annotators with the information
 906 aggregation guidance and encourage them to incorporate more reasoning steps into the questions to
 907 enhance their difficulty. They are also advised to leverage various information forms beyond plain
 908 webpage text. The answer should not be directly found on the web page.

909 **Verification** We utilize agents to assist the human validation procedure. Initially, a GPT-4.1-
 910 powered agent attempts to solve the questions, facilitating identification of potential ambiguities from
 911 the solver’s perspective within a realistic web environment. Subsequently, human annotators review
 912 the agent’s responses, detect any misunderstandings, and revise the questions, solutions, and answers
 913 accordingly. This cycle is repeated once more to ensure comprehensive disambiguation.

914 In the final stage, human annotators independently solve the tasks for cross-validation purposes. Sam-
 915 ples that fail to achieve consensus with previously annotated answers are excluded. The independent
 916 annotation achieved agreement with 155 out of 159 references, with 4 tasks omitted due to excessive
 917 complexity, thereby validating the quality of the references.

918 **Question:** Between the game's release month and three months afterward, what was the average monthly percentage change in peak concurrent players for a
 919 superhero PvP shooter game released in 2024 (from steamcharts.com)? The game lost the highest average number of players in a month before July 2025. At the
 920 beginning of that month, there was a Twitch Drops event where watching for 30 minutes rewarded an item featuring two characters. Before July 2025, how many
 921 times was the character on the right buffed and nerfed, respectively? Rounded to two decimals.
 922 **Answer:** -2.78; buffed: 3, nerfed: 7
 923 **Solution:** 1. Get peak concurrent players for Marvel Rivals for Dec 2024, Jan 2025, Feb 2025, and Mar 2025 from statistics (...).
 924 3. Average the percentages: -2.78%. 4. The month this game lost the highest number of average players is March 2025.
 925 5. The first twitch drops shown in marvelrivals.com is 20250217.
 926 The 30mins reward is a spray, the human torch on the right of the spray.
 927 6. Finally, we can count the ↓ (nerf), 7, and ↑ (buffed), 3.
 928 **URLs:**
 929 <https://steamcharts.com/app/2767030>
 930 https://www.marvelrivals.com/announcements/20250217/40955_1212338.html
 931 https://marvelrivals.fandom.com/wiki/Human_Torch#Balance_Changes

Figure 10: A multimodal sample from the test set of WebAggregatorQA. To solve this task, the agent must extract information from the image to obtain clues for the next step. Since the image is not provided with the question, the agent is required to locate the relevant picture independently.

B.3 DATA CONSTRUCTION PROMPT

Part-I: Proactive Online Web Exploring

937 **URL:**
 938 {URL}
 939
 940 --
 941 **Task Overview**
 942 • Create a challenging multi-hop question based on the given URL
 943 and related information.
 944 • Ensure the quality of the answer when providing a reference
 945 answer! Please calculate and verify the reference answer before
 946 giving the final data.
 947 • The question should be written in the SAME language as the
 948 website content.
 949 --
 950 **1. Information Gathering**
 951 • Start by thoroughly exploring the given URL and its description.
 952 • Visit and browse at least **{least_visits} different websites**
 953 to collect diverse and relevant information.
 954 • Avoid relying solely on simple search engine queries or Wikipedia.
 955 Instead, actively browse, jump between pages, and record your
 956 navigation steps and key findings.
 957 • After each browsing action, briefly document what you did and the
 958 important information you discovered.
 959 --
 960 **2. Question Design**
 961 Formulate a **multi-hop question** that MUST requires reasoning
 962 across multiple sources. The answer should **not** be obtainable
 963 by a simple search or from a single page.
 964
 965 The question should be:
 966 • Challenging but natural and concise, as if a real user is seeking
 967 to learn or solve a puzzle. Avoid unnatural or arbitrary questions
 968 such as summing unrelated numbers.
 969 - e.g., year * (number of countries of china) is unacceptable!
 970 • Self-contained.
 971 - Illustrated with essential clues that guide the respondent
 972 to locate the information without explicitly naming the sources
 973 or searching queries. The clues must be necessary but precise,
 974 avoiding overly broad candidates.
 975 - BAD EXAMPLES: Some China city has,... (NOT self-contained!
 976 Specify the city by specifying the name or providing clues.)

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

- Based on specific details from at least 5 to 8 different web pages.
- Reflective of the domain's characteristics (e.g., medical: functions, gaming: guidance, players, chemistry, math, puzzles).

1026
1027**Part-2: Complex Aggregation Logic Injection**

1028

3. Composition Reasoning Operations (Mandatory)

1029

Incorporate at least one of the following reasoning operations in your question:

1030

• Science Analysis

1031

> Statistical Analysis

1032

- Analyze data from web pages, you may use, but not limited to: calculating the mean, variance, or standard deviation within a specified time period. Some good examples:

1033

1. What is the median winnings for drivers who have driven a Chevrolet car?

1034

2. Which category exhibits the most consistent growth rate across the 5-year period, and what is the average annual percentage increase for that category?

1035

3. Can you calculate the standard deviation of the average comprehension scores across A, B, and C?

1036

> Correlation Analysis

1037

1. What is the Pearson correlation coefficient (to two decimal places) between China's average annual temperature and its CO₂ emissions per capita over the same period?

1038

> Trend Forecasting

1039

- Based on historical data, predict future data points. Any algorithm can be used, such as linear regression, polynomial regression, logistic regression, EMA, etc. REMEMBER: Clearly specify the basis for prediction to ensure a unique answer. Some good examples:

1040

1. Considering the historical data from 1961 to 1967, what could be the forecasted points of Suzuki in the 50cc and 125cc classes for the upcoming years? Use the average growth rate or the most recent 5-year growth rate for prediction.

1041

2. KFF published an article on abortion in Women's Health Policy on Feb 27, 2025. Using single exponential smoothing and MSE, search for the optimal alpha (0.01-0.99) based on the historical data, the MSE loss, and use the alpha to estimate the next data point.

1042

> General Computation Intensive Tasks

1043

- Batch Data Analysis Requires Intensive Computation. The need to retrieve and process large lists of numbers makes coding ESSENTIAL.

1044

1. What is the average closure price of Apple.inc from Sep. 2024 to Oct. 2024?

1045

2. Across all NBA seasons where Manu Ginobili's Player Efficiency Rating (PER) exceeded 20 in the regular season, what was the average number of regular season wins by his team?

1046

> Other Tasks

1047

- Complex Algorithm with high Complexity: Try to design problems that require coding to reduce time complexity.

1048

1049

• Element-wise operations

1050

> Calculation

1051

- Selecting specific elements, performing mathematical operations between elements, e.g., probability, calculation.

1052

- Examples:

1053

1. What is the sum of A's speed and B's speed?

1054

2. By how much does C's value exceed D's value?

1055

3. What is the difference between the population of city X and city Y?

1056

> Inverse Question

1057

- Formalized as an inverse question about certain information.

1058

Avoid direct listing; use indirect clues framed as questions.

1059

Ensure your phrasing uniquely identifies the subject without ambiguity.

1060

- Examples:

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

```

1080
1081   1. Instead of "Tom is a singer from New York, who was born on
1082      11 Nov 2024, he...", you can use "for the single from New York, who
1083      was born on 11 Nov 2024, he...".
1084   2. In June 2022, researchers from Huddersfield University
1085      published a paper on the application of YOLO in agriculture. My
1086      research primarily focuses on ...
1087 -----
1088   • List/Set-wise operations
1089      > sorting (alphabetical, numerical, top-K), sum, average,
1090      counting, intersection, subtraction, merging. Examples:
1091      1. Which is the shortest among XXX?
1092      2. What is the average length of YYY?
1093      3. How many items appear in both set A and set B?
1094      4. What is the total number of Z across all categories?
1095 -----
1096   • Element-Set operations
1097      > checking membership or counting occurrences. Examples:
1098      1. Is element E part of the top 10 ranked items?
1099      2. Exclude all names that were born in 1984 from ...
1100      3. Between 2012 and 2021, was the rate of increase in China's
1101         average annual temperature higher or lower than the global average?
1102      4. On the same day that a landmark house on South Main Street
1103         in Coeymans Landing, New York, rich with local history, built
1104         in the late 1830s, officially entered the National Register of
1105         Historic Places listing, how many places entered the list total?
1106 -----
1107   Note: The numbers or elements used in these operations should be
1108      discoverable by reading the web content, not directly provided in
1109      the question.
1110 -----
1111   4. Answer Requirements > The answer MUST not be obtained directly
1112      from the retrieved text and MUST be derived through reasoning. >
1113      Short, Concise and easy to verify.
1114      > Stable over time (avoid dynamic or real-time data).
1115      > Of a clear entity type (e.g., person, number, date, place).
1116 -----
1117   5. Output Format
1118      Output your final result in the following JSON format:
1119      {
1120        "topic": "Brief description of the question's domain or topic",
1121        "question": "The constructed multi-hop question",
1122        "answer": "The answer X",
1123        "context": {
1124          "URLs": [ "url_1", "url_2", "url_3", "url_4", "url_5", ... ]
1125        }
1126      }
1127
1128
1129
1130
1131
1132
1133

```

1134 B.4 PROMPT OF DATA QUALITY CHECKING AGENT
1135

1136

1137 TASK DESCRIPTION OF DATA QUALITY CHECKING AGENT

1138

1139

1140

{Composition Reasoning Operations Prompt}
Evidence Checking

1141

 URL Validity: Verification that all URLs conform to proper syntax and resolve correctly without errors.

1142

1143

1144

 Information Relevance: Assessment of whether each URL contains information that is necessary and sufficient to address the research question.

1145

1146

Question Checking

1147

1148

1149

 Self-Containment: The extent to which the question is fully specified and comprehensible without requiring additional external context.

1150

1151

1152

 Retrieval Necessity: The degree to which answering the question necessitates consulting external sources, while avoiding excessive disclosure of information within the question itself.

1153

1154

1155

 Aggregation Necessity: The question must include at least three different aggregation operations, ensuring that the answer cannot be obtained through direct retrieval.

1156

1157

1158

 Clarity: The precision and unambiguity of the cues or references embedded in the question that facilitate accurate data retrieval. The clues will not lead to multiple feasible answers.

1159

1160

1161

1162

 Temporal Stability: The property that the correct answer to the question remains consistent over time, unaffected by temporal changes (e.g., "Who was the immediate past president of the United States?").

1163

1164

Answer Quality Assessment

1165

1166

1167

 Information Fidelity: The extent to which all information presented in the reference answer is fully consistent with the URLs or other provided external information sources.

1168

1169

1170

- *Example of inconsistency:* The temperature retrieved from the reference URL is 37°C, whereas the solution states 35°C, resulting in an erroneous calculation of the average temperature.

1171

1172

1173

1174

 Ground Truth Validity: The reference answer must accurately and unambiguously reflect the requirements of the question, conforming to information obtained from authoritative and reliable data sources.

1175

1176

1177

1178

1179

1180

1181

1182

- The answer should be derived from recognized authoritative channels or verified databases.

- Ensuring verifiability through reliable sources is especially important for questions involving numerical data, statistics, or other factual information.

- *Example of invalid answer:* "The moon's distance from Earth is 100,000 km." This contradicts scientific consensus, which states the distance is approximately 384,400 km.

1183

1184

1185

1186

1187

 Uniqueness and Unambiguity: The reference answer should be uniquely correct, avoiding ambiguity or multiple plausible solutions.

- Are there conflicting data from multiple sources that lead to multiple possible answers?

```

1188
1189      • Are there precision conflicts between different data
1190      sources (e.g., 33.2 vs. 33.20987)?
1191
1192  -----
1193  Based on the above criteria, analyze the following data:
1194  Question: {}
1195  Answer: {}
1196  Evidence_URLs: {}
1197  Please verify whether each item meets the standards.
1198
1199  -----
1200  Output Format
1201  Return your analysis in the following JSON format:
1202  ``'json
1203  {
1204      "Evidence Passed": 1 or 0,
1205      "Question Passed": 1 or 0,
1206      "Answer Passed": 1 or 0,
1207      "Domain": "[USE ONLY ONE WORD OF THE FOLLOWING!] Gaming, Sport,
1208      TV shows & movies, Computer Science, Art, History, Music, Geography,
1209      Politics, Finance, Medical, Law",
1210      "Aggregation_Operation":
1211          {
1212              "type": ["Science Analysis Operations->Informations search->XLSX
1213              Processing of ...", "Element-wise->Math->Addition", "Science
1214              Analysis Operations->Batch Data Processing->", ...]
1215          }
1216      }
1217  ``'
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

```

1242
1243

B.5 PROMPT OF INTERGRATED DATA QUALITY CHECKING TOOL

1244
1245

PROMPT OF EFFICIENT QUESTION CHECKING TOOL

1246
1247

{Composition Reasoning Operations Prompt}

1248
1249
1250

Question Checking

1251
1252
1253

- Self-Containment:** The extent to which the question is fully specified and comprehensible without requiring additional external context.
- Retrieval Necessity:** The degree to which answering the question necessitates consulting external sources, while avoiding excessive disclosure of information within the question itself.
- Aggregation Necessity:** The question must include at least three different aggregation operations, ensuring that the answer cannot be obtained through direct retrieval.
- Clarity:** The precision and unambiguity of the cues or references embedded in the question that facilitate accurate data retrieval. The clues will not lead to multiple feasible answers.
- Temporal Stability:** The property that the correct answer to the question remains consistent over time, unaffected by temporal changes (e.g., "Who was the immediate past president of the United States?").

1254
1255
1256-----
Based on the above criteria, analyze the following data:

1257

Question: {}1258
1259
1260**Answer:** {}1261
1262
1263**Evidence_URLs:** {}1264
1265
1266

Please verify whether each item meets the standards and provide advice for improvements.

1267
1268
1269

C DATA CONTAINMNATION ANALYSIS

1270

We investigate potential data contamination between WebAggregatorQA and GAIA through two similarity analyses, with the results presented in Figure 11. First, to establish a baseline, we prompt an LLM to paraphrase the GAIA dataset, creating a new version termed GAIA-para. We then measure the similarity between the original and paraphrased GAIA questions. Second, we assess the cross-dataset overlap by sampling 100,000 pairs from the Cartesian product of the WebAggregatorQA training set and GAIA and computing their similarity. For all comparisons, we employ three metrics: a semantic similarity score calculated by Qwen3-Embedding-8B, ROUGE-L, and Jaccard similarity.

1271
1272
1273
1274

Figure 11 reveals a stark contrast: while GAIA shows significant similarity with its paraphrased counterpart, its overlap with WebAggregatorQA is negligible. This provides strong evidence that our WebAggregatorQA dataset is free from GAIA data contamination.

1275

D CLOSE SCREENING AGENT TRAJECTORIES

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1342 Figure 12: The distribution of unique tools used per trajectory, comparing the model before and
1343 after fine-tuning. After fine-tuning, WebAggregator utilizes a more diverse and balanced set of tools
1344 within each trajectory. In trajectories that involve only two tools, these are consistently Search and
1345 Visit.

1350 D.1 EXAMPLE 1

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Example 1**User**

Between 2014 and 2024, which year has the most new Trustees of the current Embry-Riddle Board of Trustees? And how many of the current Trustees received the Living Legend of Aviation?

Agent

First, I need to find the official Embry-Riddle Aeronautical University Board of Trustees page. This will likely contain the current list of Trustees and possibly historical data or links to archives. I will search for the Board of Trustees page and review its contents for the necessary information.

```
1 results = web_search(query="Embry-Riddle Aeronautical
2     University Board of Trustees")
3 print(results)
```

User

- 1 [Embry-Riddle Aeronautical University: Board of Trustees](<https://trustees.erau.edu/>)
- 2 [Meet the Trustees](<https://trustees.erau.edu/trustees>)
- 3 [Trustee Ken Dufour and Chairman Mori ...](<https://news.erau.edu/headlines/trustee-ken-dufour-and-chairman-mori-hosseini-mark-milestones-on-embry-riddles-board>)
- 4 ...

Agent

The top search result is the official Embry-Riddle Board of Trustees page: <https://trustees.erau.edu/>.

This page is likely to have a current list of Trustees and possibly links to historical data or news about new appointments.

I will visit this page and review its contents to gather the information needed, especially looking for sections about current Trustees, their appointment years, and any links to archives or news about new appointments.

```
1 board_page = visit_webpage(url="https://trustees.erau.edu/")
2
3 print(board_page)
```

User

...

1404

1405

1406

1407 Since there is no unified list or page displaying the year each trustee became a trustee,
 1408 I will open each trustee's profile one by one to check and confirm whether they have
 1409 received the Living Legend of Aviation award.

```
1 # Visit the pages of the first ten trustees
2 urls=[
3 "https://trustees.erau.edu/trustees/michael-amalfitano",
4 "https://trustees.erau.edu/trustees/michael-amalfitano",
5 "https://trustees.erau.edu/trustees/leanne-caret",
6 ...
7 ]
8 print(len(urls)) # There are {20} pages
9 for url in urls[:10]:
10     print(visit_webpage(url))
```

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Agent

Since there is no unified list or page displaying the year each trustee became a trustee, I will open each trustee's profile one by one to check and confirm whether they have received the Living Legend of Aviation award.

```
1 # Visit the pages of the first ten trustees
2 urls=[
3 "https://trustees.erau.edu/trustees/michael-amalfitano",
4 "https://trustees.erau.edu/trustees/michael-amalfitano",
5 "https://trustees.erau.edu/trustees/leanne-caret",
6 ...
7 ]
8 print(len(urls)) # There are {20} pages
9 for url in urls[:10]:
10     print(visit_webpage(url))
```

User

...

Mori Hosseini is the Chairman and CEO of ICI Homes, one of Florida's largest residential homebuilder/developers. Born in Iran, Mr. Hosseini was educated in London, England, ...

- Mori Hosseini (HonDoc '13; '78, '79, '82, DB)
- Member since **1999**
- Chair, Board of Trustees since 2014
- Chair, Committee on Trustees

...

Agent

I will continue to access other pages and record the years they became members.

```
1 trustees=[
2 "Michael Amalfitano": {
3     "member year": "2021",
4     "living legend": False
5 },
6
7 "John Amore": {
8     "member year": "2010",
9     "living legend": False
10 },
11 ...
12 "Mori Hosseini": {
13     "member year": "2014",
14     "living legend": False
15 },
16 ...
17 ]
18 for url in urls[10:]:
19     print(visit_webpage(url))
```

Error Analysis: Faulty Aggregation

Key information extraction error: **2014 v.s. 1999**

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

User

...

1462

Agent

1 final_answer=(\{"year":2014, "number of awardees": 3 \})

Error Analysis: Faulty AggregationFaulty Aggregation while *Set->Filter->Counting*

1469

1470

1471

1472

User

END» answer: 2014, 3 # true answer: 2014&2018, 2

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

D.2 EXAMPLE 2

1484

1485

1486

1487

1488

Example 2

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

User

After one game's update introducing the Embrion and Old Bird, calculate the compound monthly CAGR of its average players from the update's release month until (but excluding) the next major patch's month, using steambase.io data. For the same period, calculate the CAGR of another game, which is a 4 player online co-op psychological horror game released in 2020. Present both game name and number as 'game: ±XY.ZT%'.

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Agent

Step 1: Identify the game that received an update introducing "Embrion" and "Old Bird". I will use a web search to find which game this is and get the update's release month. After that, I will look for the next major patch's release month for that game.

```
1 search_query = 'game update introducing Embrion and Old Bird'
2
3 results = web_search(query=search_query)
4
5 print(results)
```

1509

1510

1511

User

...

1512

1513

1514

1515 The update introducing Embrion and Old Bird is Version 50 of Lethal Company,
 1516 released on April 13, 2024. I now need to find the release month of the next major
 1517 patch after Version 50. I will search for "Lethal Company next major patch after
 1518 Version 50" to determine this.

```
1519 1 next_patch_search = web_search(query="Lethal Company next  

1520 2   major patch after Version 50")  

1521 3 print(next_patch_search)
```

1523

1524

1525

1526

1527

1528

User

...

1528

1529

1530

1531

1532

1533

1534

1535

Agent

1529 The most relevant sources suggest that after Version 50, **the next major patch is**
 1530 **speculated to be Version 70**, but there is no explicit mention of an official release date.
 1531 Since the question specifies to use steambase.io data, I should check steambase.io
 1532 for the version history or patch notes for Lethal Company to see if there is a clear
 1533 next major patch after Version 50. If not, I might have to use the next version listed
 1534 or clarify if there is a clear, next major patch. I will visit the steambase.io Lethal
 1535 Company page and look for update/version history.

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

Error Analysis: Faulty Aggregation

1542 The next major patch is v60, on August 17, 2024. But the agent takes a guess.

User

...

1566

1567 **Agent**

1568

1569 The search did not provide a direct link to the Lethal Company page on steambase.io,
 1570 but it did mention steambase.io as a source for player counts. I should visit steambase.io
 1571 and look for the Lethal Company page, or try to directly access the relevant
 1572 URL. Once there, I can look for monthly average player counts for the period starting
 1573 April 2024 (the release month of Version 50) and **check for any next major patch**
 1574 (**likely Version 70**) or any other official patch that is listed as "major" after Version 50.

```
1575 1 lethal_company_url = "https://steambase.io/games/lethal-
  1576   company"
  1577 2
  1578 3 page_info = visit_webpage(url=lethal_company_url)
  1579 4
  1580 5 print(page_info)
```

Error Analysis: Underperformed Iterative Refinement

1581 The next major patch is 'v60', on August 17, 2024. But the agent no longer
 1582 checks whether 'v70' is reasonable and proceeds with subsequent steps.

1585

1586 **Agent**

1587

1588 The update introducing Embrion and Old Bird (Version 50) was released in April
 1589 2024. The next major patch after Version 50 is not explicitly listed, but the next major
 1590 patch after 50 is Version 70, which is referenced in previous search results as the next
 1591 major update.

1592

1593 ...
 1594 Now, I will extract the average player counts for Lethal Company from April 2024
 1595 to March 2025 (12 months, not including April 2025), as that's the period from the
 1596 update's release month until (but not including) the next major patch's month.

```
1596 1 # Monthly average players for Lethal Company from steambase.io
  1597   (April 2024 - March 2025)
  1598 2   lethal_company_averages = {    "2024-04": 24020,    "
  1599   3   2024-05": 13345,    "2024-06": 12073,    "2024-07": 14299,
  1600   4   "2024-08": 16523,    "2024-09": 16036,    "2024-10": 
  1601   5   13545,    "2024-11": 14299,
  1602   6   "2024-12": 13120,    "2025-01": 17462,    "2025-02": 
  1603   7   15399,    "2025-03": 8886}
  1604
  1605 8 print(lethal_company_averages)
```

1606

Error Analysis: Underperformed Iterative Refinement

1607 The next major patch is 'v60', on August 17, 2024. But the agent no longer
 1608 checks whether 'v70' is reasonable and proceeds with subsequent steps.

1611

1612 **User**

1613

1614 The rest of the trajectory is omitted for readability.

1615

1616

1617

1618

1619

1620 D.3 EXAMPLE 3
1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

User

Using data from the World Bank for 2014-2023, calculate annual averages for: (1) GDP growth rate, (2) Inflation rate (consumer prices), (3) CO2 emissions per capita growth (excluding LULUCF), (4) Internet users (% population), (5) Women in parliament (%). Find the intersection between: (a) top 200 countries in (1),(3),(4),(5) and (b) bottom 200 countries in (2). Rank the countries in ascending order based on their CO2 emissions growth rate, with CO2 emissions growth rate rounded to 5 decimals. For the growth rate conditions mentioned above, if the World Bank provides growth rate data, prioritize using the World Bank's growth rate data. Otherwise, calculate it using the following formula: Growth Rate (%) = ((data[n] - data[n-1]) / (data[n-1] + 0.00001)) × 100 The small constant 0.00001 is added to avoid division by zero in cases where data[n-1] = 0. Give me the answer as 'Country: CO2 emissions growth rate'

Agent

This is a comprehensive data-rich task involving 5 World Bank indicators for all countries from 2014-2023. I need to:

1. Identify the exact World Bank indicator codes for each metric.
2. Download the datasets for each indicator (preferably from the World Bank API or CSV download links).
3. For each country and indicator, compute the annual averages for the period 2014-2023.
4. For indicators (1), (3), and (2): if WB has growth rate data, use it; if not, compute it using the formula provided.
5. Select the top 200 countries in (1) GDP growth, (3) CO2 per capita growth, (4) Internet users, (5) Women in parliament, and bottom 200 in (2) inflation. Find the intersection countries among top 200 in 1/3/4/5 and bottom 200 in 2.
6. Rank those by ascending order of their CO2 emissions growth rate, rounded to 5 decimals.

This is a multi-step data task. First, I will search for the official World Bank indicator codes for each variable.

```

1 queries = [
2
3 "World Bank indicator for GDP growth rate",
4
5 "World Bank indicator for inflation rate (consumer prices)",
6
7 "World Bank indicator for CO2 emissions per capita growth (
8     excluding LULUCF)",
9
10 "World Bank indicator for Internet users percent the
11     population",
12
13 ]
14
15 for q in queries:
16     print(f"{q}:", web_search(query=q))

```

User

...

1674

1675

1676

1677 I'll process the data ****directly in memory****, reading from the zipfile into a 'csv.reader'
 1678 and printing the header/first lines for inspection. approach requires no file system
 1679 operations and should work given the allowed modules.

```

1680 1 def average(values):
1681 2     nums = [float(v) for v in values if v not in ('', None)]
1682 3     return sum(nums)/len(nums) if nums else None
1683 4
1684 5 def CO2_growth_rate(vals):
1685 6     # compute per-year growth rates, then average them
1686 7     result = []
1687 8     # Need at least two years to compute one growth rate
1688 9     vals_num = [float(v) if v not in ('', None) else None for
1689 10    v in vals]
1690 11    for i in range(1, len(vals_num)):
1691 12        if vals_num[i] is not None and vals_num[i-1] is not
1692 13        None:
1693 14            prev = vals_num[i-1]
1694 15            curr = vals_num[i]
1695 16            # formula with epsilon to avoid division by zero
1696 17            rate = ((curr - prev) / (prev + 0.00001)) * 100
1697 18            result.append(rate)
1698 19    return sum(result)/len(result) if result else None
1699 20
1700 21 indicator_avgs = {}
1701 22 for key in indicator_data:
1702 23     indicator_avgs[key] = {}
1703 24     for code, vals in indicator_data[key].items():
1704 25         if key == "CO2_pc":
1705 26             avg = CO2_growth_rate(vals)
1706 27         else:
1707 28             avg = average(vals)
1708 29     indicator_avgs[key][code] = avg
1709
1710 30 # Print samples for all indicators to verify
1711 31 for k in indicator_avgs:
1712 32     print(f"Averages for {k}:", list(indicator_avgs[k].items()
1713 33     )[:3])
  
```

Agent

...

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731 I will obtain the countries with the highest CO2 emissions growth rates. Then I will
 1732 begin calculating other metrics and finding their intersections.

```

1 # Prepare (country, rounded growth rate) pairs for
2   intersection countries
3 results = []
4 for code in intersection:
5     val = indicator_avgs['CO2_pc'][code]
6     if val is not None:
7         results.append((code, round(val, 5)))
8
9 # Sort by CO2 emissions growth rate, ascending
10 results_sorted = sorted(results, key=lambda x: x[1])
11
12 # Obtain the top 200 countries and growth rate
13 country_rate=results_sorted[:200]
14 print(country_rate)
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
  
```

Agent

I will obtain the countries with the highest CO2 emissions growth rates. Then I will begin calculating other metrics and finding their intersections.

```

1 # Prepare (country, rounded growth rate) pairs for
2   intersection countries
3 results = []
4 for code in intersection:
5     val = indicator_avgs['CO2_pc'][code]
6     if val is not None:
7         results.append((code, round(val, 5)))
8
9 # Sort by CO2 emissions growth rate, ascending
10 results_sorted = sorted(results, key=lambda x: x[1])
11
12 # Obtain the top 200 countries and growth rate
13 country_rate=results_sorted[:200]
14 print(country_rate)
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
69
70
71
72
73
74
75
76
77
78
79
79
80
81
82
83
84
85
86
87
88
89
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
109
110
111
112
113
114
115
116
117
118
119
119
120
121
122
123
124
125
126
127
127
128
129
129
130
131
132
133
134
135
136
137
138
139
139
140
141
142
143
144
145
146
147
148
149
149
150
151
152
153
154
155
156
157
158
159
159
160
161
162
163
164
165
166
167
168
168
169
169
170
171
172
173
174
175
176
177
177
178
178
179
179
180
181
  
```

Error Analysis: Error Accumulation in Aggregation

Due to **the pre-reduction of the country list in this step**, the final intersection differed from the actual results, causing **this trajectory to ultimately return an empty list**.