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Abstract

The stationary distribution of a GARCH(1,1) process has a power law decay, under broadly appli-
cable conditions. We study the change in the exponent of the tail decay under temporal aggregation
of parameters, with the distribution of innovations held fixed. This comparison is motivated by the
fact that GARCH models are often fit to the same time series at different frequencies. The resulting
models are not strictly compatible so we seek more limited properties we call forecast consistency and
tail consistency. Forecast consistency is satisfied through a parameter transformation. Tail consistency
leads us to derive conditions under which the tail exponent increases under temporal aggregation, and
these conditions cover most relevant combinations of parameters and innovation distributions. But
we also prove the existence of counterexamples near the boundary of the admissible parameter region
where monotonicity fails. These counterexamples include normally distributed innovations.

In memory of Tom Hurd and his longstanding interest in heavy-tailed phenomena in financial markets.

1 Introduction.

Many financial time series exhibit persistence and clustering in volatility. Once volatility becomes ele-
vated, it tends to remain elevated for some time; high levels of volatility produce large moves in market
data, and these large moves in turn fuel increased volatility. These features are captured by generalized
autoregressive conditional heteroskedasticity (GARCH) models, which are widely used for this reason.

GARCH models are often fit to the same time series at different frequencies — daily, weekly, and
monthly, for example. One part of a bank may be interested in forecasting exchange rates at a high
frequency for trading purposes, while another part of the bank forecasts over a somewhat longer horizon
for capital planning or risk management. The bank may thus end up with two GARCH models on
different time scales.

Drost and Nijman (1993) showed, however, that GARCH processes are not closed under temporal
aggregation. This means that if a time series is exactly described by a GARCH process at one frequency,
it cannot also be exactly described by a GARCH process when observed at a lower frequency.

The analysis of Drost and Nijman (1993) applies to both stock-variable temporal aggregation and
flow-variable aggregation. In the first case, the same variable is observed at different frequencies. In the
second case, a variable is summed over intervals of different lengths. We focus on the simpler case of
stock-variable aggregation. GARCH processes fail to be closed under both types of temporal aggregation.

In light of this fundamental limitation, what would it mean for GARCH models fit at two time
scales — possibly by two groups within the same bank — to be compatible with each other? Perfect
compatibility is impossible, so we propose two more limited objectives: (1) forecast consistency, meaning
that forecasts generated from the two models using the same data should agree; and (2) tail consistency,
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meaning that the stationary distributions of the two models should exhibit the same tail behavior. The
first point focuses on typical values under the two models, and the second point focuses on extreme values.

In showing that GARCH processes are not closed under temporal aggregation, Drost and Nijman
(1993) introduced a more general family of processes they called weak GARCH that is closed. They
also showed how the process parameters are transformed under temporal aggregation. Building on their
results, we show that forecast consistency is achieved when ordinary (strong) GARCH models are fit at
different frequencies using the Drost-Nijman parameter transformation. This property argues for using
this transformation to select parameters for lower-frequency models.

Our main focus is on the question of tail consistency. Under broadly applicable conditions, Mikosch
and Stărică (2000) showed that the stationary distribution of a GARCH process has a power law decay.
The power has a simple characterization in terms of the parameters of the process and the distribution
of the innovations (the noise) driving its evolution. Under stock-variable aggregation, the stationary
distribution should ideally be the same at different frequencies. As this is difficult or impossible to
achieve, we investigate the more modest requirement that the power law decay be preserved at different
frequencies.

We study this objective by analyzing how the exponent in the power law changes under the Drost-
Nijman parameter transformation. To describe our results in more detail, write κ = κ(α, β, Z) for the
exponent derived from GARCH(1,1) parameters (α, β) and innovations with the distribution of Z. Write
(αn, βn) for the parameters derived from the Drost-Nijman parameter transformation when every nth
value of the time series is observed. We study how κn = κ(αn, βn, Z) changes with n.

If κn increases under this transformation, then the innovations of the lower-frequency model would
need to be heavier-tailed to preserve the original value of κ because a heavier-tailed Z will ordinarily lead
to a smaller value of κ. In other words, for the innovations Z̃ of the lower-frequency model to achieve

κn ≡ κ(αn, βn, Z) > κ(αn, βn, Z̃) = κ(α, β, Z) ≡ κ1,

we need Z̃ to be heavier-tailed than the innovations Z of the original model. Tail consistency requires
κ(αn, βn, Z̃) = κ(α, β, Z).

This scenario describes the case that κn increases in n with Z held fixed. We will see that this covers
“most” cases. In a significant portion of the (α, β) parameter space, which we characterize explicitly, both
parameters decrease under the Drost-Nijman parameter transformation; within this region, the increase
in κ is automatic. In the more interesting region, α first increases under temporal aggregation as β
decreases, so the effect on κ depends on the distribution of Z.

Within this region, we derive a necessary and sufficient condition for κ to increase. We then establish
two types of results: conditions under which κ is guaranteed to increase, and conditions leading to excep-
tions — cases where κ decreases. Several of our results are based on comparing innovation distributions
under various convex orders.

The positive results confirm the “typical” case of κ increasing under temporal aggregation, and these
results cover a wide range of parameters and distributions. The structure of exceptions is in some respects
more intriguing. For example, with standard normal innovations, numerical testing finds no exceptions
with β < 0.993, but we prove the existence of exceptions as β → 1 and α→ 0.

Although our focus is on the effect of temporal aggregation of parameters, several of our results are
of independent interest in providing bounds on the tail parameter κ irrespective of temporal aggregation.
Because κ describes the tail decay of the stationary distribution, it is a useful measure for risk manage-
ment, and it is also important in extreme value theory for GARCH; see Bucher et al. (2020), Davison
et al. (2023), Francq and Zakoian (2019), Glasserman and Wu (2018), McNeil et al. (2015), Peña et al.
(2020), and Sun and Zhou (2014) for examples of applications.

The rest of this paper is organized as follows. Section 2 provides relevant background on GARCH
processes and temporal aggregation. Section 3 addresses forecast consistency. Section 4 formulates the
problem of tail consistency, and it then presents our general necessary and sufficient condition for κ
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monotonicity. Sections 5 and 6 derive specific sufficient conditions. These conditions rely on varying
levels of information about the innovations, particularly their moments. Section 7 studies asymptotics as
β → 1 and α→ 0 leading to exceptions. Section 8 illustrates our results with empirical examples.

2 Problem Formulation

2.1 Background on GARCH.

The scalar sequence {Xt, t ∈ Z} is a GARCH(1,1) process if it satisfies Xt = σtZt, t ∈ Z, with

σ2t = ω + αX2
t−1 + βσ2t−1 = ω + σ2t−1(αZ

2
t−1 + β) , t ∈ Z (1)

for positive constants ω, α, β, and an i.i.d. sequence of innovations {Zt, t ∈ Z}, with E[Zt] = 0 and
E[Z2

t ] = 1. Here, σt is called the conditional volatility of X at time t. The dynamics in (1) specify
that the conditional variance σ2t of Xt depends on both the lagged conditional variance σ2t−1 and on the
magnitude of the lagged observation X2

t−1. Thus, high levels of volatility will tend to be followed by high
levels of volatility, and large moves in Xt will tend to further amplify volatility. These properties capture
important features of many types of financial data; see, e.g., Bollerslev (1986), Engle (1995), and McNeil
et al. (2015) for background. We introduce a set of assumptions that will be in force throughout.

Assumption 2.1. The GARCH(1,1) parameters and innovations satisfy the following conditions:
(A1) The parameters α, β > 0 satisfy α+ β < 1.
(A2) The innovations Z satisfy E[Z] = 0 and E[Z2] = 1.
(A3) For some 0 < r <∞, we have 1 < E[(αZ2 + β)r] <∞.

Assumption (A2) is a standard normalization. Assumption (A1) ensures the existence of a stationary
solution to (1); see, e.g., Theorem 2 of Nelson (1990). Stationarity holds with α+β = 1 if E[log(αZ2+β)] <
0, but the stronger condition in (A1) is required for temporal aggregation in Drost and Nijman (1993).

Under (A1)–(A2), the process (σt, Xt) admits a stationary distribution (σ∞, X∞) for which we have
the equality in distribution,

σ2∞
d
= ω + (αZ2 + β)σ2∞. (2)

Mikosch and Stărică (2000), see also Basrak et al. (2002), show that the stationary distribution has
regularly varying tails, in the sense that

P(σ∞ > x) ∼ Cx−κ, x→ ∞, (3)

and P(|X∞| > x) ∼ C ′x−κ, for constants C and C ′. The exponent κ > 0 is determined by the distribution
of αZ2 + β through the equation

E[(αZ2 + β)κ/2] = 1. (4)

(A3) ensures the existence of a unique solution κ > 0 to (4).
As risk measures (such as value-at-risk or expected shortfall) are often proportional to σt, κ provides

a measure of the unconditional level of risk and is an important feature of the stationary distribution;
see Glasserman and Wu (2018) for its use in setting margin requirements. Notice that GARCH processes
are heavy-tailed, in the sense of (3), even when the innovations are light-tailed — for example, even if
E[(αZ2 + β)r] is finite for all r > 0 and (A3) holds.

We assume (A1)–(A3) in all our results. For emphasis, we sometimes refer to parameters (α, β) as
admissible if they satisfy (A1), and we call Z admissible if it satisfies (A2)–(A3).

The function
φ(s) = E[(αZ2 + β)s], s ≥ 0,
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is the moment generating function of log(αZ2+β). As a moment generating function, it is log-convex on
its domain, and, under (A3), its domain contains the interval [0, r]. We have φ(0) = 1, and, by Jensen’s
inequality, φ′(0) = E[log(αZ2 + β)] ≤ log(α+ β) < 0; at the positive root φ(κ/2) = 1, we therefore have
φ′(κ/2) > 0. (A1)–(A2) imply that φ(1) = α + β < 1, so κ > 2. With the values of α, β fixed, we refer
to φ as the generating function associated with Z.

Our main objective in this paper is to investigate how κ changes under transformations of the param-
eters α and β resulting from temporal aggregation.

2.2 Temporal Aggregation.

As discussed in the introduction, GARCH models are often fit to the same time series at different
frequencies. In the case of stock-variable aggregation, this means modeling both {Xt, t ∈ Z} and {Xnt, t ∈
Z}, for some integer n ≥ 2, as GARCH processes. However, Drost and Nijman (1993) showed that Xt and
Xnt cannot both be GARCH processes: GARCH processes are not closed under temporal aggregation.

Instead, they showed that if {Xt, t ∈ Z} is a GARCH process then {Xnt, t ∈ Z} is a weak GARCH
process. To explain what this means, we need additional background from Drost and Nijman (1993).
Our starting point is a stationary sequence Xt with finite fourth moments, and a stationary solution σ2t
to the equation

σ2t = ω + αX2
t−1 + βσ2t−1.

The sequence {Xt, t ∈ Z} is an ordinary (or strong) GARCH process if {Xt/σt, t ∈ Z} are i.i.d. with
mean 0 and variance 1. These i.i.d. random variables are then the Zt appearing in (1). The sequence
{Xt, t ∈ Z} is a weak GARCH process if the following two conditions are satisfied:

E[XtX
r
t−i] = 0, for all i ≥ 1 and r = 0, 1, 2; (5)

E[(X2
t − σ2t )X

r
t−i] = 0, for all i ≥ 1 and r = 0, 1, 2. (6)

Suppose {Xt, t ∈ Z} is a strong GARCH process. For any integer n ≥ 2, let X̃t = Xnt. Drost and
Nijman (1993) showed that {X̃t, t ∈ Z} is a weak GARCH process satisfying

σ̃2t = ωn + αnX̃
2
t−1 + βnσ̃

2
t−1, (7)

with σ̃2t satisfying (6). The coefficients (ωn, αn, βn) are determined as follows

ωn = ω
1− (α+ β)n

1− (α+ β)
, αn = (α+ β)n − βn (8)

and βn is the solution in (0, 1) of the quadratic equation

1 + β2n
βn

=
1 + α2 1−(α+β)2n−2

1−(α+β)2
+ β2(α+ β)2n−2

β(α+ β)n−1
. (9)

Weak GARCH processes are difficult to work with and seldom used in practice. In (7), σ̃2t is not the
conditional variance of X̃t, so weak GARCH processes are not directly applicable to volatility forecasting,
which is one of the main uses of (strong) GARCH models. Even simulating a weak GARCH process
presents a challenge because its driving noise is stationary but not i.i.d. (For more on weak GARCH
processes, see, e.g., Alexander and Lazar (2021), Francq and Zakoian (2000), and Su and Zhu (2022).)

In light of these limitations of weak GARCH processes, it is not uncommon to see ordinary (strong)
GARCH models fit to the same time series at different frequencies. We know that the resulting models
are inherently incompatible. What conditions can we impose to make them in some sense consistent with
each other? We propose two conditions:
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(1) Forecast consistency: Forecasts from the high-frequency and low-frequency models should agree
when both are provided with low-frequency data;

(2) Tail consistency: The high-frequency and low-frequency models should have the same power law
exponent κ.

The first condition focuses on typical values; the second focuses on extremes. Condition (2) is appropriate
because Xnt has the same stationary distribution as Xt, so models of the data at two frequencies should
ideally have stationary distributions with equally heavy tails. We develop these conditions in the next
two sections.

We limit our analysis to stock-variable aggregation, which compares Xnt at different values of n,
as opposed to flow-variable aggregation, which compares partial sums of Xt of different lengths. We
have extended some of our results to flow-variable aggregation in unpublished work. The Drost and
Nijman (1993) parameter transformation is considerably more complicated for flow-variable aggregation;
moreover, it depends on the kurtosis of the innovations and is therefore not distribution-free.

Market returns are usually treated as flow variables; market prices and balance sheet data observed
at specific points in time are more naturally viewed as stock variables than flow variables. A problem
of stock-variable aggregation arises, for example, in comparing publicly released quarterly balance sheet
data with confidential data observed at higher frequencies. Stock-variable aggregation is also referred
to as systematic sampling; see, e.g., Mamingi (2017), Su and Zhu (2022), Teles (2023), and the many
references therein.

3 Forecast Consistency.

We now formulate the idea of forecast consistency precisely, and we show that it is satisfied by the Drost-
Nijman parameters; indeed, related consistency considerations motivated the parameter transformation
they introduced. We start with the high-frequency model {Xt, t ∈ Z} in (1), where the innovations
Zt are i.i.d. We consider the problem of forecasting future values of X2

t . Because X2
t = σ2tZ

2
t , with Zt

independent of σt and independent of all {Xs, σs, Zs, s ≤ t−1}, forecasting X2
t is equivalent to forecasting

σ2t .
Define a low-frequency strong GARCH process {X̄t, t ∈ nZ} indexed by t ∈ {0,±n,±2n, . . . } by

setting
X̄t+n = σ̄t+nZ̄t+n, σ̄2t+n = ω̄ + ᾱX̄2

t + β̄σ̄2t , (10)

for some parameters (ω̄, ᾱ, β̄) and i.i.d. innovations {Z̄t, t ∈ nZ} satisfying (A1)–(A2). We have not made
any assumptions about how the high-frequency and low-frequency models are related.

We consider forecasts based on best linear predictors or, equivalently, linear projections. The best
linear predictor of a square-integrable random variable Y given a finite or infinite sequence ϵ1, ϵ2, . . . of
square-integrable random variables, is a linear combination

∑
i≥0 aiϵi, with ϵ0 = 1, satisfying

E[(Y −
∑
i≥0

aiϵi)ϵj ] = 0, j = 0, 1, . . . .

In other words, the forecast error Y −
∑

i≥0 aiϵi should be uncorrelated with all the ϵj . We denote the
best linear predictor by [Y |ϵ1, ϵ2, . . . ]. To indicate its value at specific outcomes ei of the ϵi, we write
[Y |ϵ1 = e1, ϵ2 = e2, . . . ].

Proposition 3.1. Suppose that the Xt in the high-frequency model (1) and the X̄t in the low-frequency
model (10) have finite fourth moments. Suppose that in the low-frequency model (10) we have (ω̄, ᾱ, β̄) =
(ωn, αn, βn), as defined in (8)–(9). Then, for any k ≥ 1, we have the forecast consistency property

[X̄2
t+kn|X̄2

t = vt, X̄
2
t−n = vt−n, X̄

2
t−2n = vt−2n, . . . ]

= [X2
t+kn|X2

t = vt, X
2
t−n = vt−n, X

2
t−2n = vt−2n, . . . ], (11)
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for any vt, vt−n, vt−2n, . . . .

This result says that with the parameters in (8)–(9), the low-frequency model on the left will produce
the same forecast as the high-frequency model on the right, when the two models are fed the same history.
In practice, we expect the high-frequency model to have access to a richer history, which would lead to
a different forecast. The point of (11) is that a richer history is the only reason the two models make
different forecasts. When they are both limited to the low-frequency data, they will make the same
forecasts, even though the low-frequency model is a (strong) GARCH process, whereas the temporally
aggregated high-frequency model is not. This is an important and attractive consistency property in
fitting models on two time scales.

Proof. Bollerslev (1988) observed that in a GARCH process the squared values follow an ARMA process;
in the case of (10), this becomes

X̄2
t+n = ω̄ + (ᾱ+ β̄)X̄2

t + η̄t+n − β̄η̄t, t ∈ nZ, (12)

with η̄t = X̄2
t − σ̄2t . This recursion is a direct consequence of (10). It defines an ARMA(1,1) process

indexed by t ∈ {0,±n,±2n, . . . , } because the η̄t are stationary with mean zero and are uncorrelated with
each other. If we start from the high-frequency model (1) and consider the subsequence X2

nt, t ∈ Z, Drost
and Nijman (1993) showed that this sequence also follows an ARMA(1,1) process,

X2
t+n = ωn + (αn + βn)X

2
t + ηt+n − βnηt, t ∈ nZ, (13)

with parameters (ωn, αn, βn) as defined in (8)–(9); indeed, the equations in (8)–(9) are derived precisely
to arrive at (13). In (13), the ηt, t ∈ nZ, are again stationary with mean zero, finite variance, and
uncorrelated with each other, so (13) does indeed define an ARMA(1,1) process. An expression for ηt is
derived in Drost and Nijman (1993).

We now see from (12) that the linear projection of X̄2
t+kn onto 1, X̄2

t , X̄
2
t−n, . . . is the best linear

predictor for an ARMA(1,1) process. The best linear predictor for an ARMA(1,1) process can be found
in, for example, equation (4.2.39) of Hamilton (1994); its coefficients are completely determined by the
ARMA parameters ω̄, (ᾱ + β̄), and β̄ in (12). Similarly, we see from (13) that the linear projection of
X2

t+kn onto 1, X2
t , X

2
t−n, . . . is the best linear predictor of an ARMA(1,1) process with parameters ωn,

(αn + βn), and βn. Thus, if we take (ω̄, ᾱ, β̄) = (ωn, αn, βn), then the coefficients of the best linear
predictors for the two ARMA models coincide, and (11) follows. In other words, once we match the
coefficients in the ARMA processes (12) and (13), the coefficients in their best linear predictors will
match, even though the processes are driven by different noise sequences η̄t and ηt. The noise sequences
do not affect the forecasts once we specify past values vt, vt−n, . . . in (11).

On the left side of (11), we could replace the best linear predictor with the conditional expectation
— the two coincide for a (strong) GARCH process. But we could not make such a substitution on the
right side of (11); the conditional expectation for the temporally aggregated process need not be linear
in the temporally aggregated history.

4 Tail Consistency and Monotonicity

4.1 A Motivating Numerical Experiment.

Proposition 3.1 provides a guarantee of forecast consistency using the Drost-Nijman temporally aggre-
gated parameters for the lower-frequency model, so from now on we will assume that lower-frequency
models use these parameters. But suppose we want to go beyond a point forecast and simulate the
future evolution of Xt to estimate risk measures, for example. Indeed, the ability to make this type of
distributional forecast is an important advantage of working with a strong GARCH model rather than
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a weak GARCH model. Doing so requires specifying a distribution for the i.i.d. innovations in the
low-frequency GARCH model (10). Ideally, we would like to be able to choose the innovations so that
the stationary distributions under the high- and low-frequency models coincide; but that is too much to
ask for, given that GARCH models are not closed under temporal aggregation. Instead, we consider the
weaker objective of selecting Z̃ so that the correct tail decay is reproduced

κ(αn, βn, Z̃) = κ(α, β, Z). (14)

In selecting an innovation distribution to use for simulation, there are at least two approaches one
could follow: use a standard choice, such as a normal distribution, or estimate the empirical distribution
of the innovations. If we take Z to be normal, we can ask whether (14) holds if Z̃ is also normal; our
analysis in later sections addresses this type of question.1 For additional motivation, we consider an
example using empirical distributions from simulated data.

Once the parameters ω, α, β are fixed (or estimated) from observations of Xt, estimation of the
empirical distribution of the innovations works as follows. Using the recursion σ2t+1 = ω + αX2

t + βσ2t ,
with some initial value σ20, one can evaluate the sequence of σ2t values. From these, one can extract the
innovations Zt = Xt/σt to estimate their distribution. This process can be applied to data observed at
different frequencies. We are interested in whether it provides the consistency in (14).

We simulate a high-frequency model with ω = 0.02, α = 0.1, β = 0.8, and innovations drawn from Z5,

with Zν =
√

ν−2
ν tν the Student-t distribution with ν degrees of freedom, rescaled to unit variance. Our

high-frequency data is thus drawn exactly from a GARCH(1,1) model. We simulate 105 observations and
we aggregate the data at multiples of n = {2, 4, 5}. At each level of aggregation, we use the Drost-Nijman
parameters (ωn, αn, βn) to extract the “implied” empirical distribution of the innovations Z(n). (We do
not find statistically significant serial correlation in the implied innovations, even though they are not
theoretically independent for n > 1.)

We next test whether tail consistency holds. More precisely we are asking whether the equality
κ(αn, βn, Z

(n)) = κ(α, β, Z5) holds, with Z
(n) the empirical distribution extracted at aggregation level n.

As a test of this equality we use the empirical distributions of the innovations to compute the expectation2

using a simulated time series with N observations

φ̂(s, αn, βn) =
1

N

N∑
i=1

(αnZ
(n)2
i + βn)

s (15)

at the point s = 1
2κ(α, β, Z5). Tail consistency of the empirical distribution is achieved if this quantity

approaches 1. For this simulation we use 100 samples of 105 observations each. The estimates for this
quantity are shown in the fourth column of Table 1. The results for n > 1 are consistently less than
1 which indicate that the tail exponent of the empirical distribution is larger than κ(α, β, Z5). These
estimates indicate that using the empirical distributions Z(n) does not produce tail consistency.

What is less clear is why. This comparison reflects changes in the parameters αn, βn together with
possible changes in the innovations Z(n). To isolate these effects, we focus on the question of how
κn = κ(αn, βn, Z) changes with n with Z fixed. The fifth column of Table 1 (calculated using numerical
integration) shows what happens when we fix the innovations at the original distribution, Z5. Holding
this distribution fixed, κn becomes progressively larger under temporal aggregation.

The last two columns in the table show that we can offset this effect by adjusting the degrees-of-
freedom parameter νn (for the innovations Zνn) downward with increasing n. With the appropriate
adjustment, we can achieve tail consistency, as shown in the last column. In decreasing νn, we are

1The widely followed V-lab website https://vlab.stern.nyu.edu/ makes GARCH estimates publicly available
for many financial time series using quasi-maximum likelihood assuming normal innovations.

2This is similar to the method used by Mikosch and Stărică (2000) to compute the tail exponent of the empirical
distribution.
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Table 1: Comparison of κ values using Student-t distribution with five degrees of freedom, Z5, and
Student-t distributions with νn degrees of freedom Zνn . The fourth column shows φ̂(12κ(α, β, Z5), αn, βn)

computed using the empirical distribution Z(n) determined as explained in text. Tail consistency requires
that this quantity is equal to 1; values smaller than 1 indicate a higher tail exponent under the empirical
distribution than κ(α, β, Z5). The adjustment in νn achieves tail consistency.

n αn βn φ̂(12κ, αn, βn) κ(αn, βn, Z5) νn κ(αn, βn, Zνn)

1 0.1 0.8 0.93± 0.08 4.58 5 4.58
2 0.1043 0.7057 0.79± 0.27 4.75 4.816 4.58
4 0.0935 0.5625 0.53± 0.20 4.89 4.686 4.58
5 0.0862 0.5043 0.46± 0.30 4.92 4.656 4.58

using progressively heavier-tailed innovations at lower frequencies; doing so offsets a general tendency for
κ(αn, βn, Z) to increase with n, for fixed Z.

This general tendency — and exceptions to it — are the focus of the rest of the paper. If we know
that κ(αn, βn, Z) is increasing in n, then we know at least qualitatively that we need to replace Z with a
heavier-tailed distribution at larger n in order to achieve tail consistency. Within a parametric family of
innovation distributions, one can search for the appropriate adjustment, as we did with νn in Table 1; but,
more generally, we would like to find conditions under which we know that the distributional adjustment
needs to move toward heavier-tailed or lighter-tailed innovations.

One way to make precise the idea that Z̃ is heavier-tailed than Z is to impose the convex order
Z2 ≤cx Z̃2, meaning that E[g(Z2)] ≤ E[g(Z̃2)], for all convex functions g for which the expectations
exist. As the function x 7→ (αx + β)s is convex for all s ≥ 1, for all admissible α, β, Z2 ≤cx Z̃

2 implies
that κ(α, β, Z) ≥ κ(α, β, Z̃). We end this section by applying this idea to the Student-t distribution and
confirming that varying the parameter ν has the offsetting effect suggested by Table 1.

Proposition 4.1. For any admissible α, β, κ(α, β, Zν) is increasing in ν ∈ (2,∞), where Zν is the scaled
Student-t distribution, scaled so that E[Z2

ν ] = 1.

4.2 Parameter Derivatives Under Temporal Aggregation.

Expressions (8)–(9) remain well-defined if we extend them to real values of n ≥ 1. From any initial point
(α1, β1), (8)–(9) then yield a trajectory of values (αn, βn), n ≥ 1, with n now varying continuously. These
trajectories are illustrated in Figure 4.1 in the (β, α) plane. (See also Figure 1 of Drost and Nijman
(1993).) As suggested by the figure, in region A, both parameters decrease whereas in region B, αn

increases as βn decreases. (Of the (βn, αn) values in Table 1, the case n = 1 is in region B and the others
are in region A.) The change in κ under temporal aggregation will depend on the changes in (αn, βn), so
we need to characterize these regions explicitly, which we do in the following result. Recalling that we
have extended n to real values, we use α′

1 and β′1 to denote derivatives with respect to n evaluated at
n = 1.

Proposition 4.2. For all admissible (α, β), we have β′1 < 0. With

αc(β) = −
β(2− β2)−

√
β2(2− β2)2 + (1− β2)3

1− β2
, (16)

we have α′
1 > 0 if α > αc(β), and α

′
1 < 0 if α < αc(β).

The threshold αc(·) defines the boundary between regions A and B in Figure 4.1, so the proposition
confirms the pattern in the figure.
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Figure 4.1: Regions A,B in the (β, α) parameter space. In the interior of region B, α increases under
temporal aggregation; β decreases in both regions.

Proof. Differentiation in (8)–(9) yields

α′
1(α, β) =

log(α+ β)

[1− (α+ β)2][1− β2]
αfα(α, β) (17)

β′1(α, β) =
log(α+ β)

[1− (α+ β)2][1− β2]
βfβ(α, β) (18)

with

fα(α, β) = 1− α2 − 4αβ − 2β2 + β2(α+ β)2

fβ(α, β) = 1 + α2 − 2αβ − 2β2 + β2(α+ β)2 .

= [1− β(α+ β)]2 + α2 > 0 .

The sign of β′1 follows from the last inequality.
The function fα is quadratic in α. By writing it as

fα(α, β) = −α2(1− β2)− 2βα(2− β2) + (1− β2)2,

we see that the equation fα = 0 has the real root αc in [0, 1]. For α > αc the function fα is negative, and
for α < αc it is positive.

A trajectory starting from (β, α) will be in region A after n steps if α′
1(βn, αn) < 0. This condition

can alternatively be formulated using the sign of the derivative α′
n evaluated at the initial point (β, α)

through the following lemma.

Lemma 4.1. We have

nα′
n(α, β) = α′

1(αn, βn) , nβ′n(α, β) = β′1(αn, βn) . (19)

Proof. The composition rule under double aggregation gives αmn(α, β) = αn(αm, βm). Taking a derivative
with respect to m we obtain d

dmαmn(α, β) = nα′
mn(α, β) = α′

m(αn, βn). Taking m = 1 gives the first
relation (19). The second relation follows analogously.

4.3 Monotonicity Condition.

Holding the distribution of Z fixed, the mapping n 7→ (αn, βn) induces a mapping n 7→ κn := κ(αn, βn).
For parameters (αn, βn) in region A, where both parameters decrease, κn must increase to satisfy (4).
Within region B, the effect on κn is not obvious. With Z fixed, we will say that κ monotonicity holds at
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(α, β) if κ′1 ≥ 0, where κ′1 denotes the derivative with respect to the temporal aggregation parameter n,
evaluated at n = 1 and at parameter values (α, β). We want to identify regions of the parameter space
at which κ′1 ≥ 0, for a fixed Z or a family of distributions. As long as a trajectory of (αn, βn) evolves
within the region where κ′1 ≥ 0, κn continues to increase. The trajectory starting from any admissible
(α, β) eventually enters region A in Figure 4.1 and thus has κ′n ≥ 0, for all sufficiently large n. In the
following, φ denotes the generating function associated with Z.

Proposition 4.3. Under the admissibility conditions (A1)–(A3), κ monotonicity holds at (α, β) if and
only if

φ
(κ
2
− 1

)
≥ δ(α, β) := − fα(α, β)

2αβ(α+ β)
. (20)

Proof. As φ(s) depends smoothly on s, α, and β, and αn and βn depend smoothly on n, we may
differentiate κn with respect to n, applying the chain rule to get

κ′1 = α′
1∂ακ(α, β) + β′1∂βκ(α, β). (21)

The partial derivatives of κ can be evaluated by differentiating the equation φ(κ/2) = 1 with respect to
α, β and rearranging to get

∂ακ(α, β) = − κ(α, β)

φ′(κ/2)
E[Z2(αZ2 + β)κ/2−1] < 0

∂βκ(α, β) = − κ(α, β)

φ′(κ/2)
E[(αZ2 + β)κ/2−1] < 0 ;

we noted in Section 2.1 that φ′(κ/2) > 0. Substituting into (21) gives

κ′1 = − κ(α, β)

φ′(κ/2)
E[{α′

1Z
2 + β′1}(αZ2 + β)

κ
2
−1].

It follows that κ′1 ≥ 0 if and only if

E[(α′
1Z

2 + β′1)(αZ
2 + β)κ/2−1] ≤ 0 . (22)

If α′
1 ≤ 0, this inequality is automatic, and so is (20) because −fα has the same sign as α′

1, and φ(s) > 0,
for all s. If α′

1 > 0, substituting Z2 = 1
α((αZ

2+β)−β) and multiplying by α shows that (22) is equivalent
to

α′
1 + (αβ′1 − βα′

1)φ(κ/2− 1) ≤ 0 .

As αβ′1−βα′
1 < 0, this is equivalent to a lower bound on φ(κ/2−1). Substituting the relations (17)–(18)

for α′
1, β

′
1 gives the bound (20).

The condition in (20) is automatically satisfied in region A, where δ(α, β) ≤ 0 because fα(α, β) ≥ 0.
Our focus throughout the rest of the paper is on understanding when (20) holds within region B. We
focus on the derivative κ′1 for tractability. Derivatives at larger values of n can be reduced to derivatives
at n = 1 through Lemma 4.1.

The lower bound δ(α, β) satisfies the inequality

δ(α, β) ≤ α+ β , α+ β ≤ 1 . (23)

This can be seen by writing (23) as

(α+ β)2[(α+ β)2 − 1] ≥ (1 + α2)[(α+ β)2 − 1] ,

and noting that (α + β)2 ≤ 1 + α2. Because φ(1) = α + β and φ is convex, a simple condition for κ
monotonicity is φ′(1) > 0 and κ > 4, as this implies φ(κ/2− 1) > φ(1) ≥ δ(α, β) through (23).
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5 Moment-Free Bounds.

Conditions for κ monotonicity in region B cannot be formulated purely in terms of (α, β), as the first
part of our next result shows; we need to add conditions on κ or Z. In this section, we keep Z general
and restrict κ; in the subsequent two sections, we add moment information about Z and weaken the
conditions we need on κ. In the following, let δ+(α, β) denote max{0, δ(α, β)}, and interpret log 0 as
−∞.

Theorem 5.1. (i) For any (α, β) with δ(α, β) > 0, there exists an admissible innovation distribution
for which κ monotonicity fails at (α, β).

(ii) If κ > 4, then

(α+ β)
κ
2
−1 ≤ φ

(κ
2
− 1

)
≤ (α+ β)1/(

κ
2
−1); (24)

κ monotonicity is guaranteed if κ ≤ 2 + 2 log δ+(α, β)/ log(α+ β).

(iii) If 2 < κ ≤ 4, then

(α+ β)1/(
κ
2
−1) ≤ φ

(κ
2
− 1

)
≤ (α+ β)

κ
2
−1, (25)

and
β

κ
2
−1 ≤ φ

(κ
2
− 1

)
; (26)

κ monotonicity is guaranteed if κ ≥ 2 + 2 log(α + β)/ log δ+(α, β) or κ ≤ 2 + 2 log δ+(α, β)/ log β.
In particular, κ monotonicity is guaranteed if

log δ+(α, β) ≤ −
√

log β log(α+ β). (27)

The sufficient condition in (27) is stated purely in terms of α and β, so it is particularly easy to
check. It does not contradict the statement in (i) because (27) implies κ monotonicity only for κ ∈ (2, 4].
Anywhere (27) holds, the violation guaranteed by (i) must have κ > 4.

We noted in Section 2.2 that Drost and Nijman (1993) assume a finite fourth moment in defining
a weak GARCH process, as required in (6). We assumed finite fourth moments in Proposition 3.1 to
ensure the existence of a best linear predictor. This condition would entail κ > 4, but a finite fourth
moment is not needed for the parameter transformation (8)–(9), so our question of κmonotonicity remains
well-posed for κ ∈ (2, 4].

5.1 An Extremal Case.

As already suggested by Theorem 5.1, the case κ ∈ (2, 4) is often qualitatively different from κ > 4
because in the first case κ/2 − 1 < 1 < κ/2, and monotonicity depends on φ(κ/2 − 1). In this section,
we show that among all distributions with a given κ ∈ (2, 4), κ monotonicity is guaranteed if it holds for
a certain two-point distribution. This result provides a simple sufficient condition for monotonicity for
κ ∈ (2, 4) at a fixed (α, β): if κ monotonicity holds for this extremal two-point distribution, it holds for
all innovations that yield the same κ at (α, β).

For any x ≥ 1, let Bx denote a random variable supported in {0, x} with mass 1/x at x, and thus
with E[Bx] = 1. The associated generating function is given by

φBx(s) = βs +
1

x
[(αx+ β)s − βs], s ≥ 0. (28)

We think of Bx as a candidate distribution for the squared innovations. The innovations themselves could
have the symmetric distribution on {−

√
x, 0,

√
x} with mass (x− 1)/x at zero. Condition (A3) requires

x > 1.
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Theorem 5.2. Fix any admissible (α, β). For each κ ∈ (2, 4), there is an x > 1 for which φBx(κ/2) = 1.
If κ monotonicity holds for this Bx, then it holds for all admissible innovations with the same κ.

We can make the condition more explicit as follows:

Corollary 5.1. Suppose κ ∈ (2, 4) and βκ/2−1 < δ(α, β). Define

x∗ =
1− βδ(α, β)− αβκ/2−1

α[δ(α, β)− βκ/2−1]
.

If φBx∗ (κ/2) ≥ 1, then κ monotonicity holds for all innovations with the same κ. If κ ∈ (2, 4) and
βκ/2−1 ≥ δ(α, β), κ monotonicity holds without further conditions.

This corollary provides a simple check for monotonicity for κ ∈ (2, 4) at any (α, β). In extensive
numerical testing over a grid of (α, β) pairs and values of κ in (2, 4), we have not found any instance
in which the conditions in the corollary fail to hold. This numerical evidence thus suggests that κ
monotonicity holds whenever κ ∈ (2, 4), regardless of the innovation distribution. Recall that Theorem 5.1
already tightly constrained the possibility of exceptions for κ values in this range.

5.2 Unimodal Innovations.

The violations of κ monotonicity constructed in Theorem 5.1(i) relied on distributions of Z2 that put
nearly all mass on 1, which would be unnatural in applications. The range of guaranteed κ monotonicity
is much wider if we restrict attention to unimodal innovations with mode zero. The innovations commonly
used in practice satisfy these conditions. As a preview of our results, Figure 5.1 illustrates the region of
(β, α) pairs for which κ monotonicity holds for this class of innovations when κ ≥ 4.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

β

α

3α+β=1

C
2

Figure 5.1: In the shaded region, κ monotonicity holds for any unimodal admissible innovation distribu-
tion with mode zero and κ ≥ 4.

The precise unimodality condition we impose is that the cumulative distribution function of Z be
convex on (−∞, 0) and concave on (0,∞). Our bounds are based on the special case U ∼ U [−

√
3,
√
3],

the uniform distribution on the interval [−
√
3,
√
3]. The admissibility condition (A3) requires P(αU2+β >

1) > 0 and thus 3α+β > 1, so the results in this section are limited to parameters satisfying this condition.
Without this condition, the equation E[(αU2 + β)s] = 1 would fail to have a solution s > 0. For this
choice of innovation, we have an explicit expression for the function φ.

Lemma 5.1. With U ∼ U [−
√
3,
√
3], we have

φU (s) = E[(αU2 + β)s] = βs2F1

(
1

2
,−s, 3

2
;−3α

β

)
,

where 2F1 denotes the Gauss hypergeometric function.

12

Electronic copy available at: https://ssrn.com/abstract=3502425



Proof. By definition,

φU (s) =
1

2
√
3

∫ √
3

−
√
3
(αu2 + β)s du = βs

∫ 1

0
(1 + 3αu2/β)s du.

From 15.3.1 in Abramowitz and Stegun (1972), we have the representation

2F1(
1

2
,−s, 3

2
;−x) = 1

2

∫ 1

0
t−1/2(1 + tx)sdt =

∫ 1

0
(1 + u2x)sdu,

from which the result follows.

The uniform case provides a powerful bound. We show in Appendix B.2 that for any unimodal
innovation distribution, φ(s) ≥ φU (s), for all s ≥ 1. A condition on φU thus leads to κ monotonicity for
a broad class of unimodal innovations. We write κU for the strictly positive root of φU (κU/2) = 1. We
need 3α + β > 1 for the existence of κU , and the quadratic parameter constraint in the following result
is equivalent to κU ≥ 4. The quadratic constraint is indicated by the curve C2 in Figure 5.1.

Theorem 5.3. Suppose 3α+ β ≥ 1, 9α2/5 + 2αβ + β2 ≤ 1, and

min
s∈[1,κU/2−1]

φU (s) ≥ δ(α, β) . (29)

Then κ monotonicity holds at (α, β) for any admissible innovation distribution that is unimodal with
mode zero and has κ ≥ 4.

Figure 5.1 shows that condition (29) holds for a large proportion of (β, α) pairs. Theorem 5.3 improves
on Theorem 5.1 in the sense that κ monotonicity is guaranteed in the shaded region regardless of the
value of κ. Above the C2 curve, we have κ < 4 for unimodal innovations. As we noted at the end of
Section 5.1, numerical testing based on the condition in Corollary 5.1 suggests that κ monotonicity always
holds with κ < 4. The main question left open by Figure 5.1 (and Theorem 5.3) is whether we have κ
monotonicity with unimodal innovations when β is close to 1.

6 Convexity Bounds.

Using the first three moments of Z2 we can derive further conditions for κ monotonicity. These results,
derived in Section 6.1, use a generalization of the standard convex stochastic order. In Section 6.2, we
derive conditions that apply when we have sufficiently many moments of Z2 to provide integer bounds
on κ.

6.1 s-Convexity Bounds.

The s-convex stochastic orderings, introduced by Denuit et al. (1998), are generalizations of the ordinary
convex stochastic order; see also Section 3.A.5 of Shaked and Shanthikumar (2007). For any s = 1, 2, . . . ,
let Us−cx denote the class of functions g : [0,∞) → R whose derivative of order s exists and satsifies
g(s)(x) ≥ 0, for all x ∈ [0,∞). For non-negative random variables X and Y , we write X ⪯s−cx Y if
E[g(X)] ≤ E[g(Y )], for all g ∈ Us−cx for which the expectations exist. The 1-convex order is the ordinary
stochastic order, and the 2-convex order is the usual convex order. We will apply the cases s = 3, 4. For
other results on stochastic comparisons of GARCH processes, see Bellini et al. (2014).

Let Bs(µ1, . . . , µs−1) denote the set of random variables on [0,∞) with moments µ1, . . . , µs−1. Denuit
et al. (1998) characterize the minimal distributions within these sets in the s-convex order. In other
words, for each s they define a random variable Xs such that Xs ⪯s−cx Y , for all non-negative random
variables Y . (The maximal counterparts are defined only on bounded intervals [a, b]; as noted in Denuit
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et al. (1998), the minimal distributions hold on [0,∞).) We will use these results to bound Z2, and as
we require E[Z2] = 1, we take µ1 = 1.

For s = 3, the minimal distribution is supported on {0, µ2} with mass 1/µ2 at µ2. For s = 4, the
minimal distribution is supported on points {y1, y2}, y2 > 1 > y1 defined by

y2/1 =
µ3 − µ2 ±

√
(µ3 − µ2)2 − 4(µ2 − 1)(µ3 − µ22)

2(µ2 − 1)

with mass p = (y2 − 1)/(y2 − y1) on y1. We will write ϕs(u) for E[(αXs + β)u]
To illustrate, consider distributions matching the first few moments of Z2 when Z ∼ N(0, 1), meaning

µ1 = 1, µ2 = 3, and µ3 = 15. Then

ϕ3(u) = E[(αX3 + β)u] = (1− 1

µ2
)βu +

1

µ2
(αµ2 + β)u =

2

3
βu +

1

3
(3α+ β)u ,

and
ϕ4(u) = E[(αX4 + β)u] = p(αy1 + β)u + (1− p)(αy2 + β)u ,

where y1 = 3−
√
6, y2 = 3 +

√
6, p = 1

2(1 +
√

2
3).

Because the functions ϕ3 and ϕ4 are based on minimal distributions, they provide lower bounds on
the generating function φ associated with any Z for which Z2 has the same first three or four moments.
The bound φ(u) ≥ ϕ3(u) holds where x

u is 3-convex (i.e., u ̸∈ (1, 2)), and the bound φ(u) ≥ ϕ4(u) holds
where xu is 4-convex (i.e., u ̸∈ (0, 1) ∪ (2, 3)). These properties lead to the following result, which allows
us to verify κ monotonicity based on the first few moments of the squared innovations.

Theorem 6.1. Let Xs be s-convex minimal elements of Bs(µ1, . . . , µs−1), s = 3, 4, and let ϕs be the
associated generating functions. For any κ satisfying

κ/2 ∈ [1, 2] ∪ [3,∞) and ϕ3

(κ
2
− 1

)
≥ δ(α, β), (30)

κ monotonicity holds under any admissible innovation Z with Z2 ∈ B3(µ1, µ2) satisfying φ(κ/2) = 1. If

κ/2 ∈ [2, 3] ∪ [4,∞) and ϕ4

(κ
2
− 1

)
≥ δ(α, β), (31)

then κ monotonicity holds under any admissible innovation Z with Z2 ∈ B4(µ1, µ2, µ3) satisfying φ(κ/2) =
1.

Figure 6.1 shows the (β, α) pairs where κ monotonicity is guaranteed by Theorem 6.1, when the
moments are chosen to match the first three moments of Z2, with Z ∼ N(0, 1). The two labeled curves
show the set of (β, α) pairs for which φ(2) = 1 (κ = 4) and φ(3) = 1 (κ = 6), respectively, under normal
innovations. So, for example, at (β, α) pairs in the shaded region above the κ = 4 curve, we have κ < 4
(because φ(2) > 1), and κ monotonicity is guaranteed for normal innovations by (30). In the shaded
region between the two curves, κ monotonicity is guaranteed for normal innovations by (31). The figure
indicates that κ monotonicity is guaranteed for normal innovations throughout nearly all of region B, but
we will show in Section 7 that there are indeed exceptions in the lower right corner.

With αµ2+β > 1, X3 is an admissible choice of Z2, and with αy2+β > 1, X4 is admissible. Because
these random variables are minimal in the corresponding convex orders, the conditions in Theorem 6.1
are in a sense the best possible conditions, given the moments µ2 and µ3.
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Figure 6.1: Points (β, α) where κ monotonicity is guaranteed by (30) (left panel) and by (31) (right panel)
for innovations matching the first three moments of Z2, Z ∼ N(0, 1).

6.2 s-Convexity with Moment Bounds.

Theorem 6.1 provides monotonicity guarantees for specific values of κ and thus requires knowledge of κ.
In this section, we derive conditions based on bounds on κ. Some of our results use bounds on κ based
on integer moments of Z2. Knowing the moments of Z2 is equivalent to knowing the values of φ(n) for
n ∈ N, because

φ(n) =
n∑

k=0

(
n

k

)
αkβn−kE[Z2k].

In some cases, φ(n) can be calculated recursively, without evaluating E[Z2k]:

Proposition 6.1. With standard normal Z and any s ≥ 1,

φ(s+ 1) = [α(1 + 2s) + β]φ(s)− 2αβsφ(s− 1) .

For double exponential innovations,

φ(s+ 1) = α(1 + s)(1 + 2s)φ(s)− 2αβs(s+ 1)φ(s− 1) + βs+1 .

Proof. Write φ(s + 1) as αE[Zf(Z)] + βφ(s) with f(z) = z(αz2 + β)s. For standard normal Z, Stein’s
lemma yields E[Zf(Z)] = E[f ′(Z)]. Making this substitution and simplifying yields the first recursion.
For exponentially distributed Y with parameter λ and differentiable g with E[g(Y )] <∞, integration by
parts yields

E[g(Y )] =
1

λ
E[g′(Y )] + g(0) =

1

λ2
E[g′′(Y )] +

1

λ
g′(0) + g(0).

With g(y) = (αy2 + β)s+1, Y = |Z|, and λ =
√
2, this identify yields the second recursion.

With the ability to evaluate φ(n) at integer n, we can find the m ∈ N at which

φ(m) ≤ 1 < φ(m+ 1),

and this tells us m = ⌊κ/2⌋, without knowledge of κ. In other words, we can bound κ using moments of
Z2. As a first application, we have the following.

Proposition 6.2. Monotonicity holds if

φ(m)

φ(m+ 1)
≥ δ(α, β) (32)

or if m ≥ 2 and

min

(
φ(m− 1),

φ(m− 2)2

φ(m− 1)

)
≥ δ(α, β). (33)
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Proof. Log-convexity of φ(s) yields

log 1− logφ(κ/2− 1) ≤ logφ(m+ 1)− logφ(m) ,

so the ratio in (32) is a lower bound on φ(κ/2− 1). The log-convexity of φ(s) on the points (m− 2,m−
1, κ/2− 1) implies that the left side of (33) also provides a lower bound on φ(κ/2− 1).

The lower-left panel of Figure 6.2 shows the (β, α) values for which Proposition 6.2 guarantees κ
monotonicity in the case of the normal distribution (or any other distribution with same first 2m + 2
moments). The simple bounds in (32)–(33) turn out to be quite powerful in the lower-right corner of the
parameter region. Nevertheless, gaps remain in this corner.

We can also combine integer bounds on κ with the s-convexity bounds. As in the previous sec-
tion, let ϕ3 and ϕ4 denote the generating functions associated with the 3-convex and 4-convex minimal
distributions, respectively. If αµ2 + β > 1, the function ϕ3(s) has a minimum at

smin,3 =
log(− log β) + log(µ2 − 1)− log log(αµ2 + β)

log(αµ2 + β)− log β
.

For αµ2 + β ≤ 1 set smin,3 = ∞. Similarly, let smin,4 denote the minimizer of ϕ4 if αy2 + β > 1 and
smin,4 = ∞, otherwise.

For αy2 + β > 1 denote by κ4 > 0 the solution of the equation ϕ4(κ4/2) = 1, and let m4 = ⌊κ4/2⌋.
The value of κ4 gives useful constraints on m and κ, as shown by the following result. Denuit et al. (2000)
use similar arguments to bound the Lundberg coefficient of insurance risk theory.

Lemma 6.1. Assume αy2 + β > 1. Either 2 ≤ κ ≤ κ4 < 4, or 4 ≤ κ4 ≤ κ ≤ 6, or 6 ≤ κ ≤ κ4. In
particular, m = 1 if and only if m4 = 1, and m = 2 if and only if m4 = 2.

Proof. For s ∈ [1, 2]∪[3,∞), (46) yields ϕ4(s) ≤ φ(s). In addition, we have φ(1) = ϕ4(1) and φ(2) = ϕ4(2)
because, by construction, the first three moments of X4 and Z2 agree. It follows that if κ/2 ∈ [1, 2], then
κ4/2 ∈ [1, 2], and κ ≤ κ4. Similarly, φ(3) = ϕ4(3) implies that if κ/2 ≥ 3, then κ4 ≥ κ.

For s ∈ [2, 3], ϕ4(s) ≥ φ(s). In addition, φ(2) = ϕ4(2) and φ(3) = ϕ4(3). It follows that if κ/2 ∈ [2, 3],
then κ4/2 ∈ [2, 3], and κ4 ≤ κ.

The following result provides sufficient conditions for κ monotonicity without reference to the inno-
vations Z. The conditions are fomulated purely in terms of the 3-convex minimal and 4-convex minimal
distributions that match the first two and first three moments of Z2, respectively.

Theorem 6.2. Suppose αy2 + β > 1. Then κ monotonicity holds under any of the following conditions:

(i) m4 ̸= 2, κ4/2− 1 ≤ smin,3 and ϕ3(κ4/2− 1) ≥ δ(α, β).

(ii) m4 ̸= 2, αµ2 + β > 1, and ϕ3(smin,3) ≥ δ(α, β).

(iii) m4 = 2 and ϕ4(smin,4) ≥ δ(α, β).

Proof. If m4 ̸= 2, then we know from Lemma 6.1 that κ ≤ κ4 and κ/2 − 1 ∈ (0, 1) ∪ [2,∞). By (45),
φ(κ/2− 1) ≥ ϕ3(κ/2− 1) ≥ ϕ3(κ4/2− 1), where the second inequality holds because ϕ3 is decreasing on
[0, smin,3]. Thus, φ(κ/2 − 1) ≥ δ(α, β), and κ monotonicity holds in case (i). In case (ii), αµ2 + β > 1
implies that smin,3 < ∞, and then φ(κ/2− 1) ≥ ϕ3(κ/2− 1) ≥ ϕ3(smin,3) ≥ δ(α, β), and κ monotonicity
holds. In case (iii), Lemma 6.1 yields m = 2, so κ/2− 1 ∈ [1, 2), and applying (46) we get φ(κ/2− 1) ≥
ϕ4(κ/2− 1) ≥ ϕ4(smin,4).
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The region of (β, α) where κ monotonicity holds by Theorem 6.2 is shown in the upper panels of
Figure 6.2 for squared innovations matching the first three moments of a squared standard normal random
variable. The conditions cover almost the entire region of (α, β), except for a gap at large β > 0.85, and
the region below the αy2 + β = 1 line. The region below this line has large values of κ and is covered by
the ratio bounds (32)–(33).

The lower right panel of Figure 6.2 shows that combination of Proposition 6.2 and Theorem 6.2
covers nearly all of region B for normal innovations. The figure makes it tempting to conjecture that
κ monotonicity holds everywhere. But numerical examples indicate that some of the gaps are genuine
exceptions to monotonicity. For example, at α = 0.001, β = 0.995, we find κ = 1049.64 and φ(κ/2−1) =
0.9605, but δ(α, β) = 0.9638, violating (20). In the next section, we prove the existence of such exceptions
(thus excluding the possibility of numerical error) by considering limits as β → 1.
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Figure 6.2: The upper panels show (β, α) points where κ monotonicity is guaranteed for Z ∼ N(0, 1)
by each case of Theorem 6.2. The lower left panel shows the region covered by Proposition 6.2, and the
lower right panel shows the combined regions from Theorem 6.2 and Proposition 6.2.

7 Exceptions.

By an exception we mean a point (α, β) and an innovation distribution for which φ(κ/2 − 1) < δ(α, β),
implying that κ monotonicity fails. Numerical testing finds exceptions near β = 1. We investigate this
region by considering limits as β ↑ 1 with α = r(1− β), with r ∈ (0, 1).

We compare the limits of the derivatives (more precisely, difference quotients) of δ(α, β) and φ(κ/2−1)
as β → 1 along the line α = r(1− β). For δ, direct calculation yields

lim
β→1

1− δ(r(1− β), β)

1− β
= −3 +

2

r
+ r . (34)

An exception is then guaranteed, for all β sufficiently close to 1, if the limit of

∆β =
1− φ(κ/2− 1)

1− β
(35)

is larger than the limit in (34). We consider the following class of innovations:
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Sub-Gaussian innovations: There exist positive constants C, v such that

P(|Z| > t) ≤ Ce−vt2 , for all t > 0 .

This condition implies that ψ(θ) := E[eθZ2
] is finite for θ in a neighborhood of the origin. With θ̄ =

sup{θ ≥ 0 : ψ(θ) <∞} (which may be infinite), we add the requirement that

ψ(θ) → ∞ as θ ↑ θ̄. (36)

We also require that Z satisfy (A3) for all (α, β) that satisfy (A1). Normal innovations Z ∼ N(0, 1) fall
within this class.

In a separate analysis, not reported here, we have proved the existence of exceptions for exponentially
bounded and heavy-tailed innovations. Details are available from the authors.

Theorem 7.1. For sub-Gaussian Z,

lim
β→1,α=r(1−β)

∆β = 2rg′Z(a(r)) , (37)

where gZ(c) := e−
c
2rE[e

1
2
cZ2

], and a(r) is the unique strictly positive solution of gZ(a(r)) = 1.

We prove this result in D but first discuss its implications. If the limit of ∆β is larger than the limit
(34), then we know that φ(κ/2− 1) < δ(r(1− β), β), indicating an exception, for all β sufficiently close
to 1. It thus remains to compare the limit of ∆β in the theorem with the limit in (34).

With Z ∼ N(0, 1), the expectation E[e
1
2
cZ2

] = 1√
1−c

exists for c < 1 and

gZ(c) =
e−

c
2r

√
1− c

. (38)

This function is convex with gZ(0) = 1, g′Z(0) < 0, and unique positive root a(r) satisfying a(r) =
1− e−a(r)/r, where g′Z(a(r)) > 0. Differentiating (38) gives

g′Z(c) =
c+ r − 1

2r(1− c)3/2
e−

c
2r =

c+ r − 1

2r(1− c)
gZ(c),

from which we obtain

lim
β→1

∆β = 2rg′Z(a(r)) =
a(r) + r − 1

1− a(r)
= −1 +

r

1− a(r)
. (39)

Exceptions occur for β near 1 if

−1 +
r

1− a(r)
> −3 +

2

r
+ r . (40)

With x(r) = 1− a(r), the fixed point equation a(r) = 1− e−a(r)/r is equivalent to

r =
x(r)− 1

log x(r)
, (41)

and (40) is equivalent to
r2

x(r)
> −2r + 2 + r2. (42)

Equation (41) is a strictly increasing function from x to r, mapping (0, 1) onto (0, 1), so we may evaluate
the limit as r → 0 of the left side of (42) as

lim
r→0

r2

x(r)
= lim

x→0

(x− 1)2

x(log x)2
= ∞,
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because
√
x log x → 0 as x → 0. Thus, (42) holds for all sufficiently small r. Numerically, we find that

(39) is greater than (34) (so (40) holds) for r < 0.45. For r in this range, we will observe exceptions for
all β sufficiently close to 1 and α = r(1− β).

The rather subtle structure of exceptions is surprising. The results in previous sections all point to
monotonicity of κ as the “typical” case. Our bounds guarantee κ monotonicity over nearly all of the
parameter space for broad classes of distributions. And yet, for some of the most important classes of
innovation distributions, we find exceptions. Returning to the example of Section 4.1, this means that
we cannot automatically assume that ensuring tail consistency across multiple time scales means using
heavier-tailed innovations at lower frequencies, even though this is usually the case.

8 Empirical Illustration.

To illustrate our theoretical results, we apply them to several time series. We consider daily log returns
on the S&P 500 stock market index (SPX), the euro/dollar exchange rate (EUR/USD), the yen/dollar
exchange rate (JPY/USD), the Brazilian real/dollar exchange rate (BRL/USD), and the price of West
Texas Intermediate crude oil (WTI). This set gives us an equity index, two major exchange rates, an
emerging market exchange rate, and a commodity price. For each series we use 11 years of daily data,
from 2010 through 2020.

We de-mean each series by subtracting its sample mean for the full time period. We then fit a
GARCH(1,1) model to each de-meaned series, using the fGARCH package in R. We estimate parameter
values using quasi-maximum likelihood estimation, which assumes normal innovations. Normal innova-
tions facilitate comparison with results and figures in previous sections.

The parameter estimates (α̂1, β̂1) for each series are shown in Table 2. The standard errors for
these estimates range from 0.006 to 0.02. The third column reports κ1, the value of κ found by solving
φ(κ/2) = 1, using parameter values (α̂1, β̂1) and a normal distribution for Z.

Starting from the parameters (α̂1, β̂1) for each series, we apply the temporal aggregation transforma-
tion (8)–(9) to get a sequence of parameters (αn, βn), n = 1, 2, . . . . The sequence for each series follows a
trajectory of the type illustrated in Figure 4.1, starting in region B and eventually entering region A. The
nmax value for each series in Table 2 shows the largest n for which the trajectory remains in region B.
The question of κ monotonicity is relevant in the range n ≤ nmax; in region A, monotonicity is automatic.

The last four columns show the range of n values (with n ≤ nmax) for which the indicated results
guarantee κ monotonicity. The results collectively guarantee κ monotonicity for all series for all n. In
fact, in these examples, Theorem 6.2 guarantees κ monotonicity in every case, and Proposition 6.2 covers
all but one case. This pattern should not be surprising, given the near-complete coverage illustrated
in Figure 6.2. Proposition 6.2 contains two sufficient conditions for κ monotonicity, (32) and (33), and
we credit the proposition with ensuring monotonicity if either of these conditions is satisfied. In several
cases, only one of the two conditions in Proposition 6.2 is met, but neither is uniformly more effective
than the other.

We did not include Theorem 6.1 in the table because it requires stronger conditions than Theorem 6.2.
We have encountered rare cases in which κ monotonicity is guaranteed by Theorem 6.1 but not by any
of the results in Table 2. In our numerical search of the parameter space, we have not encountered cases
in which condition (20) for κ monotonicity in Proposition 4.3 holds but for which monotonicity is not
implied by any of our bounds.

As suggested by Table 2 and Figures 5.1–6.2, no single result uniformly dominates all other results in
ensuring κ monotonicity. Different conditions are helpful in different parts of the (α, β) parameter space.
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Table 2: Summary of κ monotonicity tests for five time series. The last four columns report the range of
aggregation levels 1 ≤ n ≤ nmax for which the indicated results guarantee monotonicity. Monotonicity is
automatic beyond nmax.

Unimodal bound Ratio bounds s-cx bounds

Market (α̂1, β̂1) κ1 nmax Thm 5.1 Thm 5.3 Prop. 6.2 Thm 6.2

SPX (0.183, 0.785) 3.9 7 all all all all
EUR/USD (0.035, 0.962) 7.0 67 n ≥ 39 n ≥ 41 all all
JPY/USD (0.058, 0.936) 5.8 32 n ≥ 12 n ≥ 10 all all
BRL/USD (0.089, 0.898) 5.1 17 n ≥ 3 n ≥ 3 all all

WTI (0.116, 0.874) 3.7 23 all all n ≥ 2 all

9 Concluding Remarks.

The stationary distribution of a GARCH(1,1) process is heavy-tailed, even when the innovations driving
the GARCH process are light-tailed. We have studied how the exponent κ in the power-law decay of a
GARCH(1,1) process changes under a transformation of the model parameters α and β that results from
temporal aggregation.

The parameter transformation we study arises in fitting GARCH models to the same time series at
multiple frequencies. We showed that this parameter transformation provides a property we call forecast
consistency, meaning that low-frequency and high-frequency models produce the same forecasts when
both are limited to low-frequency historical data.

Our investigation of κ was motivated by a second objective we call tail consistency, requiring that
models fit at different frequencies exhibit the same tail behavior in their stationary distributions. We
established several results showing that κ increases under temporal aggregation of parameters, meaning
that heavier-tailed innovations are required at lower frequencies to acheive tail consistency. Surprisingly,
we have also proved exceptions to this pattern for several classes of innovation distributions in the region
where α is close to zero and β is close to one.

These results provide guidance on the usually informal practice of fitting models at multiple fre-
quencies. Forecast consistency argues for using the Drost and Nijman (1993) parameter transformation,
rather than estimating parameters separately. Tail consistency usually argues for using heavier-tailed
innovations with lower-frequency models, except for β very close to 1.

Extending these results to GARCH(p, q) models remains an open problem. The counterpart of κ for
GARCH(p, q) models can be found in Basrak et al. (2002), and the temporal aggregation of parameters for
these models was already derived in Drost and Nijman (1993). The challenge thus lies in understanding
how the exponent in Basrak et al. (2002) changes under temporal aggregation of parameters and different
innovation distributions.

A Proofs for Section 4

Proof. (Proposition 4.1.) It suffices to show that 2 < ν1 < ν2 implies Z2
ν2 ≤cx Z

2
ν1 . Let hν denote the

density of Z2
ν and Hν its cumulative distribution. By Theorem 3.A.44 of Shaked and Shanthikumar

(2007), to show Z2
ν2 ≤cx Z

2
ν1 , it suffices to show that hν1 −hν2 changes signs exactly twice on [0,∞), with

sign sequence +,−,+.
Since Z2

ν1 and Z2
ν2 have the same mean, their densities must cross at least twice; this follows from

combining Theorems 1.A.8 and 1.A.12 in Shaked and Shanthikumar (2007). The densities are given by

hν(x) = Cν√
x
(1 + x

ν−2)
− ν+1

2 with Cν > 0 a normalization constant. The equation hν1(x) = hν2(x) thus
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takes the form

1 +
x

ν1 − 2
= c

(
1 +

x

ν2 − 2

) ν2+1
ν1+1

,

for some constant c > 0. The left side is linear and the right side is strictly convex, so this equation can
have at most two solutions in [0,∞). Thus hν1 − hν2 changes signs exactly twice on [0,∞). We clearly
have hν1(x) > hν2(x) for all sufficiently large x, so the difference must have sign sequence +,−,+.

B Proofs for Section 5

Proof. (Theorem 5.1.) We prove (i) last. For any 0 ≤ r ≤ s ≤ t in the domain of φ, log-convexity yields

φ(s)t−r ≤ φ(r)t−sφ(t)s−r. (43)

In case (ii), applying (43) with r = 1, s = κ/2 − 1, and t = κ/2, and recalling that φ(1) = α + β and
φ(κ/2) = 1, yields

φ
(κ
2
− 1

)(κ
2
−1)

≤ (α+ β)

and thus the upper bound in (24). The convexity of the mapping x 7→ xκ/2−1 yields the lower bound
in (24) through Jensen’s inequality. Monotonicity holds if the lower bound exceeds δ(α, β), and this
condition simplifies to the upper bound on κ in (ii).

For case (iii), applying (43) with r = κ/2− 1, s = 1, and t = κ/2 yields

(α+ β) ≤ φ
(κ
2
− 1

)(κ
2
−1)

and thus the lower bound in (25). The mapping x 7→ xκ/2−1 is concave, so Jensen’s inequality yields the
upper bound in (25). Monotonicity holds if the lower bound in (25) exceeds δ(α, β), and this condition
simplifies to the lower bound on κ in (iii). The trivial bound αZ2 + β ≥ β implies φ(s) ≥ βs, so κ
monotonicity holds if βκ/2−1 ≥ δ(α, β), which yields the upper bound on κ in (iii). If (27) holds, then
the lower bound exceeds the upper bound, so every κ in (2, 4] satisfies at least one of the two sufficient
conditions for monotonicity, and monotonicity is guaranteed.

To prove (i), suppose δ(α, β) > 0. Let Z2 be supported on points z1, z2, 0 < z1 < 1 < z2, with
probabilities (z2 − 1)/(z2 − z1) and (1 − z1)/(z2 − z1) so that E[Z2] = 1. Choose z2 large enough that
αz2 + β > 1/δ(α, β). By definition, κ > 0 solves

z2 − 1

z2 − z1
(αz1 + β)κ/2 +

1− z1
z2 − z1

(αz2 + β)κ/2 = 1. (44)

Consider a sequence of distributions with z2 fixed and z1 approaching 1 from below. If κ were bounded,
then as z1 ↑ 1, the second term in (44) would vanish and the first term would remain bounded away from
1; hence, lim supκ = ∞ as z1 ↑ 1. As in (44),

φ
(κ
2
− 1

)
=

z2 − 1

z2 − z1
(αz1 + β)κ/2−1 +

1− z1
z2 − z1

(αz2 + β)κ/2−1.

For the last term, (44) and our choice of z2 yield

1− z1
z2 − z1

(αz2 + β)κ/2−1 ≤ 1

αz2 + β
< δ(α, β),

so
φ
(κ
2
− 1

)
< (αz1 + β)κ/2−1 + δ(α, β).

Taking any subsequence through which z1 ↑ 1 and κ → ∞, we eventually have φ(κ/2 − 1) < δ(α, β),
where κ monotonicity fails.
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B.1 Extremal Case.

Theorem 5.2 will follow from two lemmas.

Lemma B.1. For s > 1, the function x 7→ φBx(s), x ≥ 1, is continuous and strictly increasing, mapping
(1,∞) onto ((α + β)s,∞). For s ∈ (0, 1), the function is continuous and strictly decreasing, mapping
(1,∞) onto (βs, (α+ β)s).

Proof. Continuity is evident from (28). Letting gs(x) = (αx + β)s, we have φBx(s) = gs(0) +
1
x [gs(x) −

gs(0)]. For s > 1, gs is strictly convex so 1
x [gs(x) − gs(0)] (hence φBx(s)) is strictly increasing in x.

For s < 1, gs is strictly concave so φBx(s) is strictly decreasing in x. The range of φBx(s) follows by
evaluating its limits as x→ {1,∞}.

Lemma B.2. Let Z be any admissible innovation with associated generating function φ. For any s ∈
(1, 2), let x1 > 1 be the unique solution to φBx1

(s− 1) = φ(s− 1). Then φBx1
(s) ≤ φ(s).

Proof. For any admissible innovation, βs−1 < φ(s−1) < (α+β)s−1, so the existence and uniqueness of x1
follow from Lemma B.1. The last claim in the lemma follows from results of Karlin and Studden (1966).
The power functions (ts−1, t) and (ts−1, t, ts) form Tchebycheff systems on [β,∞), so E[(αZ2 + β)s] is
minimized over all distributions for Z2 with fixed values of E[αZ2 + β] and E[(αZ2 + β)s−1] by the lower
principal representation, which is precisely the distribution of αBx1 +β; this is a special case of Theorem
5.1 of Karlin and Studden (1966). The theorem requires that the point (E[αZ2 + β],E[(αZ2 + β)s−1]) be
in the interior of the corresponding moment space. This condition holds because if Z is admissible then
Z2 is nondegenerate.

Proof. (Theorem 5.2.) With κ ∈ (2, 4) satisfying φ(κ/2) = 1, it follows from Lemma B.1 that there is just
one x2 at which φBx2

(κ/2) = 1. Similarly, let x1 be the parameter for which φBx1
(κ/2− 1) = φ(κ/2− 1).

Lemma B.2 implies that φBx1
(κ/2) ≤ φ(κ/2) = φBx2

(κ/2) and thus x1 ≤ x2. But then

φ(κ/2− 1) = φBx1
(κ/2− 1) ≥ φBx2

(κ/2− 1),

so if κ monotonicity holds with squared innovations Bx2 , it holds for all squared innovations with the
same κ.

Proof. (Corollary 5.1) For any x > 1 and s ≥ 0, we have

(αx+ β)φBx(s− 1) = αβs−1(x− 1) + φBx(s).

Taking s = κ/2 and x = x2, where, as in the proof of Theorem 5.2, x2 > 1 solves φBx2
(κ/2) = 1, yields

(αx2 + β)φBx2
(κ/2− 1) = αβκ/2−1(x2 − 1) + 1.

Algebraic simplification now shows that the condition φBx2
(κ/2− 1) ≥ δ(α, β) is equivalent to x2 ≤ x∗.

As φBx(κ/2) is increasing in x, the condition x2 ≤ x∗ is equivalent to φBx∗ (κ/2) ≥ 1. The last claim in
the corollary follows from (26).

B.2 Unimodal Innovations.

Proof. (Theorem 5.3.) By Theorem V.9, p.158, in Feller (1971), any unimodal random variable Z with
mode zero can be represented as Z = V X, with V uniform on [0, 1] and X independent of V . As
E[Z2] = 1 and E[V 2] = 1/3, we must have E[X2] = 3. For s ≥ 1, Jensen’s inequality for conditional
expectations yields

E[(αV 2X2 + β)s|V ] ≥ (3αV 2 + β)s.
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But 3V 2 has the same distribution as U2, so taking the expectation of both sides we get φ(s) ≥ φU (s),
s ≥ 1.

At s = 2, by evaluating E[U4] = 9/5 and E[U2] = 1, we get

φU (2) = 9α2/5 + 2αβ + β2 ≤ 1,

and therefore κU/2 ≥ 2. We then have φ(κU/2) ≥ φU (κU/2) = 1, so the strictly positive root of
φ(κ/2) = 1 satisfies κ ≤ κU . The condition κ ≥ 4 then implies that 1 ≤ κ/2− 1 ≤ κU/2− 1, so

φ(κ/2− 1) ≥ min
s∈[1,κU/2−1]

φU (s) ≥ δ(a, b),

in light of (29), and κ monotonicity follows.

C Proof for Section 6

Proof. (Theorem 6.1.) If Z2 ∈ Bs(µ1, µ2), then X3 ⪯3−cx Z
2, and E[g(Xs)] ≤ E[g(Z2)], for all 3-convex

g. With g(x) = (αx+ β)u, x ≥ 0, we have g′′′(x) = α3u(u− 1)(u− 2)(αx+ β)u−3. This is non-negative
for all u ∈ [0, 1] and u ∈ [2,∞), which implies that g is 3-convex for this range of u, and −g is 3-convex
for u ∈ [1, 2]. Thus,

ϕ3(u) ≤ φ(u), u ∈ [0, 1] ∪ [2,∞) and ϕ3(u) ≥ φ(u), u ∈ [1, 2]. (45)

Under the condition in (30) we have φ(κ/2− 1) ≥ δ(α, β).
Similarly, the fourth derivative g(4) is non-negative for all u ∈ [1, 2] and u ≥ 3, which implies that g

is 4-convex for this range of u. If Z2 ∈ Bs(µ1, µ2, µ3), then X4 ⪯4−cx Z
2, and

ϕ4(u) ≤ φ(u), u ∈ [1, 2] ∪ [3,∞) and ϕ4(u) ≥ φ(u), u ∈ [0, 1] ∪ [2, 3]. (46)

Under the condition in (31) we have φ(κ/2− 1) ≥ δ(α, β).

D Proof of Theorem 7.1

We evaluate the limit of φ(s) = E[(αZ2+β)s] as s→ ∞ and α→ 0 with sα approaching a constant. Let
θ̄ be as in (36).

Lemma D.1. For c/2 ∈ [0, θ̄), suppose sα→ c/2, then

lim
β→1,α=r(1−β)

φ(s) = e−
c
2rE[e

1
2
cZ2

] = gZ(c).

Moreover, limβ→1 ακ = a(r), with a(r) as in Theorem 7.1.

Proof. With α = r(1− β), write (αZ2 + β)s as

(r(1− β)Z2 + β)s = βs
(
1 +

r(1− β)

β
Z2

)s

.

With β → 1 and sr(1− β) → c/2, we have

βs → e−
c
2r and

(
1 +

r(1− β)

β
Z2

)s

→ e
1
2
cZ2

. (47)

For any c′/2 ∈ (c/2, θ̄) and all β sufficiently close to 1,(
1 +

r(1− β)

β
Z2

)s

≤ ec
′Z2/2,

23

Electronic copy available at: https://ssrn.com/abstract=3502425



with E[e
1
2
c′Z2

] < ∞, so by the dominated convergence theorem, we may interchange the limit and
expectation as β → 1 to get

lim
β→1

φ(s) = E[ lim
β→1

(αZ2 + β)s] = e−
c
2rE[e

1
2
cZ2

] = gZ(c).

The convexity of gZ combined with gZ(0) = 1, g′Z(0) = E[Z2 − 1/r]/2 < 0, and (36) implies the
existence and uniqueness of a(r) > 0 with gZ(a(r)) = 1 and implies that gZ is increasing at a(r). For
ϵ > 0,

φ

(
a(r)± ϵ

2α

)
→ gZ(a(r)± ϵ).

As g′Z(a(r)) > 0, for sufficiently small ϵ, gZ(a(r)− ϵ) < 1 < gZ(a(r) + ϵ). It follows that (a(r)− ϵ)/2α ≤
κ/2 ≤ (a(r) + ϵ)/2α, for all β sufficiently close to 1, and thus that ακ→ a(r).

Proof. (Theorem 7.1.) Because α(κ− 2) → a(r), Lemma D.1 yields

lim
β→1

φ(κ/2− 1) = 1. (48)

We have

∆β =
1− φ(κ/2− 1)

1− β
=

E[(αZ2 + β)κ/2−1(αZ2 + β − 1)]

1− β

= rE[Z2(αZ2 + β)κ/2−1]− φ(κ/2− 1) . (49)

As in (47), if sα→ c/2 ∈ [0, θ̄), then

z2(αz2 + β)s → z2e−
c
2r e

1
2
cz2 .

Moreover, for some constant C > 0 and c′/2 ∈ (c/2, θ̄), we have, for all z2 ≥ 0,

z2(αz2 + β)s ≤ Ce−
c′
2r e

1
2
c′z2 .

We may therefore interchange limit and expectation to get

E[Z2(αZ2 + β)s] → E[Z2e−
c
2r e

1
2
cZ2

] = 2g′Z(c) + gZ(c)/r, (50)

where the last expression follows from differentiating gZ to get

g′Z(c) =
1

2
e−

c
2rE[(Z2 − 1/r)e

1
2
cZ2

].

For s = κ/2 − 1, c = a(r), and the limit in (50) becomes 2g′Z(a(r)) + 1/r. Taking limits in (49) and
recalling (48) yields

lim
β→1

∆β = r(2g′Z(a(r)) + 1/r)− 1 = 2rg′Z(a(r)).
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