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ABSTRACT

Reinforcement learning (RL) frameworks assume agents receive complete obser-
vation vectors at each timestep. However, real-world robotic systems typically
operate in environments with asynchronous signals, i.e. sensors that update at
different frequencies. We model asynchronous environments as an instance of
a noise-parameterized family of partially observable Markov decision processes
(POMDPs). Our primary contribution, Learning Across the Noise Spectrum
(LANS), is a novel strategy that exposes the agent to multiple simulated noise
regimes during training, implemented using Soft Actor-Critic (SAC) with recur-
rent neural networks (RNNs). By sampling different asynchronicity rates, we
encourage the development of robust estimators. We prove that LANS acts a time-
aware regularization term, equivalent to a Jacobian penalty along time-sensitive
directions. Experiments on MuJoCo environments with simulated asynchronicity
demonstrate that LANS outperforms alternative methods on a variety of tasks—up
to a factor of > 1.5× in some instances—offering a solution for robotic systems
that must operate with imperfect sensory information.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 1998; Mnih et al., 2015) is an established technology
for training agents in environments such as competitive games (Silver et al., 2016; Holcomb et al.,
2018; Vinyals et al., 2019), conversational language models (Ouyang et al., 2022; Zhu et al., 2023),
and industrial manufacturing (Johannink et al., 2018; Zhang et al., 2022). RL research is grounded
on the theory of Markov decision processes (MDPs) (Feinberg & Shwartz, 2012), a formalization in
which agents receive complete observation vectors at each timestep—an assumption that does not
always hold in real-world deployments. Physical systems, particularly robots, must often operate
with sensors that update at different and irregular frequencies, creating what we term asynchronous
environments (Nebot et al., 1999).

In asynchronous settings, observations are composed of signals from multiple sensors (e.g., cameras,
thermometers, accelerometers), each with its own renewal rate. At each timestep, agents receive only
a subset of signals, based on which sensors have provided new readings. This poses a challenge for
RL methods that assume synchronized observations. Partially observable Markov decision processes
(POMDPs) (Krishnamurthy, 2016) provide the framework for addressing incomplete information in
RL. While general POMDP techniques are applicable to asynchronous environments, the setting has
so far eluded dedicated and systematic treatment.

We formalize asynchronous environments as asynchronous Markov decision processes (AMDPs).
Asymptotically, AMDPs behave as POMDPs with a ground-truth state space S = S1 × · · · × Sn

consisting of signals from n sensors. Our key insight is that these environments form a smooth,
parameterized family of POMDPs. A noise parameter ω represents the expected ratio of received
signals, ranging from ω = 0 (no signal updates) to ω = 1 (complete readings).

The analysis informs our primary contribution: Learning Across the Noise Spectrum (LANS),
an RL learning strategy that exposes the agent to varied noise regimes during training. LANS is a
regularization technique that builds on the literature of noise regularization (Bishop, 1995; Sajjadi
et al., 2016). Our core novelty is a noising process that acts along the time axis and works by
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Figure 1: Top Parametrization of asynchronous environments by noise ω; lower ω imply sparser
sensor updates. Bottom-Left LANS mechanism of noise simulation, randomly masking observed
signal during training. Bottom-Right High-level illustration of LANS, showing the ability to simulate
environments with higher noise ω ≤ ω̃ than the target one, leading to more robust policies.

simulating environments with higher asynchronicity than that of the target task (ω ≤ ω̃), as depicted
in the Bottom-Right of Figure 1. LANS promotes robustness, acting as a Jacobian penalty. We prove
that this follows from the loss objective implied by LANS and support it with empirical evidence.

We build a new benchmark suite and framework for defining and evaluating AMDPs. Experiments
on asynchronous MuJoCo environments (Tassa et al., 2018) show that LANS significantly outper-
forms baseline methods, by a factor of 1.5× in some cases. The approach provides a bridge between
theory and practice for deploying RL in real-world systems.

Our contributions are threefold:

1. We provide a formalization of asynchronous Markov decision processes (AMDPs) and
prove that they admit an approximation as POMDPs. The characterization enables tractable
study of the problem and informs our method’s design.

2. We develop a benchmark suite of asynchronous MuJoCo tasks for evaluation of RL in
asynchronous regimes. The framework is general and can be readily applied to define
AMDPs in new environments, facilitating future research and development.

3. We introduce LANS, a training strategy that regularizes policies by exposing them to a spec-
trum of noise regimes, leveraging time-based noising processes. We share both theoretical
and empirical evidence to support our claims.

2 ASYNCHRONOUS ENVIRONMENTS

We establish the framework for RL in asynchronous environments, assuming familiarity with MDPs
and POMDPs. We refer readers to Feinberg & Shwartz (2012); Krishnamurthy (2016) for compre-
hensive introductions. Our formalization proceeds in three steps: first, we define the concept of a
signal; second, we extend MDPs to include asynchronicity; and third, we demonstrate the approxi-
mation of asynchronous MDPs as POMDPs.

Throughout this paper, we denote MDPs as tuples (S,A, Pa, Ra), where S and A represent the
state and action spaces, while Pa and Ra define the transition probabilities and reward functions
conditioned on action a ∈ A. POMDPs also include an observation space Ω and conditional ob-
servation probabilities O(· | s ∈ S) that govern how states s ∈ S result in partial observations
Ω ∋ o ∼ O(o | s ∈ S).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.1 ASYNCHRONOUS MARKOV DECISION PROCESSES

In real-world applications, particularly in physical systems, observations often arrive from multiple
sensors, providing the state space with a distinctive structure.
Definition 1. A signaled state space is a space S together with subspaces S1, . . . , Sn, called chan-
nels, such that S =

⊕
i≤n Si.

Each channel Si corresponds to a distinct signal source (e.g., camera, thermometer, accelerometer)
that reads information on the environment. In MDPs, we assume agents observe to the complete
state st ∈ S at each timestep t ∈ N. The assumption fails in asynchronous environments, as sensors
update at varying and possibly non-deterministic rates.

To represent missing signals, we extend each signal space Si with a null element denoted by ⊥ that
indicates an unreceived signal. We define S∗

i = Si ∪ ⊥ as the extended signal space for channel i.
Definition 2. An asynchronous Markov decision process (AMDP) extends an MDP M =
(S,A, Pa, Ra) with a signaled space S = S1 × · · · × Sn by introducing:

• An observation space Ω = (
∏n

i=1 S
∗
i )×Nn×Ak, where an observation o ∈ Ω comprises:

– A vector of potentially null signals (s∗1, . . . , s
∗
n), where s∗i ∈ S∗

i .
– A vector of timestamps (δ1, . . . , δn) indicating the elapsed time since each sensor’s

last reading.
– A history of the k most recent actions (at−k, . . . , at−1).

• A signal renewal process for each channel i, described by renewal probabilities pi : N →
[0, 1]. Each value pi(δ

i) is the probability that the i-th sensor provides a new reading after
δi time steps since its last update.

The observation component for the i-th sensor at time t ∈ N is the vector o(t,i) =
(
s∗(t,i), δ

i
t

)
,

which includes its value and time elapsed since its last non-null reading.

In an AMDP, the dynamics of the environment are still governed by the transition probabilities
Pa, but the agent’s observations are subject to asynchronous updates through the channel-specific
renewal processes. For each channel i, the probability of receiving a new signal at time t depends
on δit, the time elapsed since its last reading.

In an AMDP, we assume that the transition dynamics P̃a in the observation space Ω are separable
by channel:

P̃at
(ot+1 | ot) =

n∏
i=1

P̃(at,i)(o(t+1,i) | o(t,i)). (1)

In the following, we simplify the notation by removing the channel index i unless necessary, and
instead assume the existence of only one signal. Equation 1 guarantees that future developments
about individual signals readily apply to general AMDPs.

The dynamics of signal updates are the described by their renewal process through the following
equation:

P̃at
(ot+1 | ot) =


p(δt + 1) · Pat(st+1 | st) if ot+1 = (st+1, 0)

1− p(δt + 1) if ot+1 = (⊥, δt + 1)

0 otherwise.
(2)

At each time step t ∈ N, a new reading st+1 is recorded with probability p (δt + 1) and the elapsed
time value δt+1 is reset. Alternatively, a null signal is received and the elapsed time value is increased
by one δt + 1.

2.2 RELATIONSHIP BETWEEN AMDPS AND POMDPS

AMDPs are not a special case of POMDPs. To relate the two, one must define conditional probabil-
ities O (o | s) that describe the distribution of observations o ∈ Ω w.r.t. to the complete state s ∈ S.
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The obstacle is the time-dependent dynamics of signal renewals. In an AMDP, the elapsed time
value δ is necessary to derive the observation probabilities, the complete state alone is not sufficient.
Instead, we state an approximation that treats AMDPs as POMDPs in the asymptotic regime.

Proposition 1. Let A be an AMDP with stationary signal renewal process and well-defined rate
λ = 1

µ . For t→∞, the processA can be approximated by a POMDP with conditional observation
probabilities:

O (ot | st)
t→∞→

{
λ if o = s

1− λ if o = ⊥. (3)

Proof. Appendix A.1, leveraging the elementary renewal theorem (Ross, 2010).

For sufficiently long-running processes, the renewal probability becomes stationary and equals the
inverse of the average inter-arrival period λ. An AMDP is then characterized by the vector λ =
(λi)i≤n ∈ Rn. We use the notation A [λ] to denote the POMDP approximating an AMDP A with
converging sensor rates λ1, . . . , λn.

3 LANS

Learning Across the Noise Spectrum (LANS) is an off-policy training strategy for RL agents op-
erating in asynchronous environments. It relies on the insight that we can view AMDPs as instances
of a parameterized family of POMDPs, in which a parameter ω ∈ [0, 1] controls the degree of ob-
servability. By training across differentiated noise regimes—from highly impaired (low ω) to the
maximum available in the target environment (ω̃)—we encourage the development of more robust
policies. Algorithm 1 details LANS implementation.

Remarkably, LANS is not restricted to AMDPs and is virtually applicable to any class of
parametrized POMDPs. The approach exploits the ability to simulate processes with higher noise
(ω ≤ ω̃) than that of the target environment. This requires knowledge of the noising process. In
asynchronous environments, it can be simulated by appropriately masking observations, making
AMDPs an ideal test case. Exploration of this idea in other categories of POMDPs is beyond the
scope of our work, but we believe it is an exciting direction for future research.

3.1 NOISE PARAMETERIZATION OF AMDPS

In Section 2.2, we prove that an AMDP A can be approximated as a POMDP A [λ] with stationary
signal rates λ = (λi)i≤n. The vector λ is a measure of the environment’s stochasticity. A more
compact representation is given by the expected ratio of received signals, the noise parameter:

ω =
1

n

n∑
i=1

λi. (4)

The case ω = 1 corresponds to the fully observable environment. As ω → 0, renewals become
increasingly rare.

We employ an abuse of notation and use A [ω] to denote the POMDP approximation of A with
noise parameter ω. Formally,A [ω] comprises a collection of POMDPs, one for each λ that satisfies
Equation 4. In practical implementations, given environment rates λ̃ = (λ̃i)i≤n, we defineA [ω] by
scaling λ̃ by a factor of c ∈ [0, 1]:

A [ω] = A
[
cλ̃

]
with

1

n

∑
i≤n

cλ̃i = ω. (5)

The map ω 7→ A [ω] describes a family of noise-parametrized POMDPs, in which the target environ-
ment is realized atA [ω̃] (corresponding to c = 1). The parametrization is smooth, see Appendix A.2
for details.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 LANS: Learning Across the Noise Spectrum
Input: Parametric networks θ, ϕ1, ϕ2 for actor and Q-value functions.

c ∈ (0, 1) defining minimum noise simulation (ωmin = c · ω̃).
K,B,L: optimization steps per rollout, batch size, and trajectory length.
R, T : number of rollouts, max rollout length.
for each rollout r = 1 . . . R do

Collect a rollout τ ∼ A [ω̃] with policy at ∼ π (· | µθ, σθ)
D ← D ∪ {τt}t≤T

for K steps do
D ← (τ b[lb:lb+L]) ∼ D
NOISESIMULATION(D, c) ▷ Core LANS mechanism
if s∗(t,i) = ⊥ then s∗(t,i) ← s∗

(t−δit,i)
end if ▷ Do this across all signals

end for
UPDATECRITIC(D)
UPDATEACTOR(D)

end for
procedure NOISESIMULATION(D, c)

(cb)b≤B ∼ U[c,1] ▷ Each cb is drawn randomly from a uniform distribution
for each trajectory τ b in D do ▷ Can be performed concurrently

if Bernoulli (cb) = 1 then s∗(t,i) ← ⊥ end if ▷ Do this across all signals
end for

end procedure

3.2 METHOD

LANS extends the training domain of an RL algorithm from the target AMDP A [ω̃] to a collection
of asynchronous environments A [ω] drawn from a noise range ω ∈ [ωmin, ω̃].

Algorithm and architecture We use SAC (Haarnoja et al., 2018) with two Q-value net-
works (Dankwa & Zheng, 2020) as the actor-critic loss. We employ RNNs for the architectural
backbone of our models, particularly gated recurrent units (GRU) (Bahdanau et al., 2014). The ac-
tor θ and Q-value networks ϕ1, ϕ2 use separate RNNs and do not share weights. Mathematically,
ϕi

(
ot, at, h

ϕi

t

)
=

(
Qϕi

(
ot, at, h

ϕi

t

)
, hϕi

t+1

)
and θ

(
ot, h

θ
t

)
=

(
µt, σt, h

θ
t+1

)
, i.e. the three func-

tions take the last hidden state h·
t as one of their inputs and compute the next hidden state h·

t+1
together with Q-values and policy distribution parameters.

Data Training alternates between data collection and optimization (Williams, 1992). During col-
lection, we sample a full rollout τ = (ot, at, rt)t≤T by running the SAC stochastic policy on the
target environment A [ω̃] and store it on a replay buffer D (Lin, 1992). After each sampled roll-
out, we perform K optimization steps on batches drawn from D. A batch D =

(
τ b[lb:lb+L]

)
∈

RB×L×(dimO+dimA+1) is a tensor storing observations, actions, and rewards for B trajectories of
length L, padded if necessary.

Noise simulation Rollouts are drawn from the target environment, yielding batches D ∼ A [ω̃].
Before each optimization step, we simulate noisier samples D∗ ∼ A [ωmin : ω̃] by uniformly draw-
ing ωb ∈ [ωmin, ω̃] for each trajectory τ b and randomly masking a percentage ω̃−ωb

ω̃ of signal read-
ings:

s∗t 7→
{
⊥ if Bernoulli

(
ω̃−ωb

ω̃

)
= 1 or s∗t = ⊥

s∗t otherwise.
(6)

The elapsed time values δt are also updated accordingly. In Algorithm 1, this step corresponds to
the NOISESIMULATION procedure.

As of Definition 2, observation components ot =
[
s∗t , δt, a[t−k:t]

]
include a history a[t−k:t] of the k

most recent actions and times δ elapsed since each last renewal. Before being provided as inputs to
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the models, we replace each unreceived signal s∗t = ⊥ with its most recently observed value s∗t−δt
.

The decision provides more meaningful inputs to the networks and is crucial for the developments
of Section 3.3.

Hyperparameters Rollout and data parameters include the rollout horizon T , the number of op-
timization steps per rollout K, batch size B (measured in number of sub-trajectories), and the sub-
trajectory length L. Noise parameters comprise the minimum noise factor c, which defines the lower
bound ωmin = c·ω̃ of the simulated noise spectrum. Optimization parameters include the optimizer’s
learning rate and the entropy regularization coefficient in SAC. Appendix B reports the values used
for our experiments.

3.3 LANS AND REGULARIZATION

LANS encourages learning invariant representations of observations with respect to time-dependent
noising, which implies more robust modeling (Zhang et al., 2021a). Here, we elaborate on the
regularization mechanism rigorously and prove our core result.

RL algorithms often learn parametric policies πθ (a | o) = Pρ (a, ρ = θ (o)) (Bishop, 2006), which
are functions θ : Ω→ Rm outputting the parameters ρ of a finite-dimensional distribution Pρ on A.
Therefore, we assume π : Ω→ Rm to be a deterministic function.

Given a sequence of observations (ot)t≤T , the NOISESIMULATION procedure of Algorithm 1 ap-
plies a random transformation G : (ot)t≤T 7→ (o⋆t )t≤T projecting the sequence into a lower dimen-
sional subspace. LANS can be interpreted as implicitly minimizing the following loss function:

LLANS (o) = Vo⋆∼G(o) (π (o⋆)) . (7)

Policy predictions must have contained variance w.r.t the random transformations G that project
observation sequences into less informative subspaces.

In the primary result of our work, we prove that LANS acts a regularization term:

Proposition 2. If the policy π is C1, up to second order in (o⋆ − o),

LLANS (π) = Eo∼D

[
tr
(
Jπ (o) ΣG (o) Jπ (o)

⊤
)]

+ o
(
∥o⋆ − o∥2

)
(8a)

ΣG (o) ≈ diag
(
p (1− p)∆i (o)

2
)
with∆i (o) = o⋆i − oi. (8b)

Proof. Proof provided in Appendix A.3.

Expanding Equation 8a, we obtain:

LLANS (π) ≈ Eo∼D

[∑
i

p (1− p)∆i (o) ∥∂oiπ (o)∥22

]
. (9)

The loss LLANS acts as a minimization term on the policy’s derivatives—i.e., a Jacobian penalty (Ri-
fai et al., 2011; Sokolić et al., 2017; Novak et al., 2018). The effect is proportional on the value of
∆i (o), which quantifies the shift between two consecutive readings. The regularization penalty is
strongest in the directions most sensitive to the dynamics of renewal.

4 RELATED WORK

Partially observable Markov decision processes Extensive research addresses POMDPs in RL.
It includes learning the dynamics of systems from individual frames (Hausknecht & Stone, 2015;
Payne et al., 2024), path-planning (Xie et al., 2021), and multi-agent cooperation (Oroojlooyja-
did & Hajinezhad, 2019; Papoudakis et al., 2020). Other works leverage POMDPs to investigate
traditional RL settings such as Meta-RL (Schmidhuber, 1987; Soorki et al., 2023; Parisotto et al.,
2020) and generalization performance (Rajeswaran et al., 2017; Agarwal et al., 2020). Memory
architectures, especially RNNs, have quickly become popular as the standard approach in partially
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observable environments (Schmidhuber, 1990; Lu et al., 2023). Model-based approaches learn to
recover ground-truths states from partial observations (Han et al., 2020; Ren et al., 2023; Lee et al.,
2020). On the opposite, model-free architectures have objectives that focus solely on reward max-
imization (Meng et al., 2021; Mirowski et al., 2017). Ni et al. (2022) demonstrate that model-free
approaches are sufficient to tackle POMDPs in most scenarios, provided careful design of the archi-
tectural backbone.

Noise-based regularization Regularization (Hastie et al., 2009) aims at constraining the com-
plexity of machine learning models with positive effects on robustness (Jeong & Shin, 2020; Li &
Zhang, 2021) and generalization (Loshchilov & Hutter, 2017; Wan et al., 2013; Li et al., 2018)
(but see Zhang et al. (2017; 2021b) for counterarguments). Among regularization techniques,
noise-based (Sajjadi et al., 2016) ones work by introducing noise on the inputs (An, 1996; Bishop,
1995), weights (Fortunato et al., 2018; Rakin et al., 2018), or outputs (Zhang & Sabuncu, 2018).
Dropout (Srivastava et al., 2014; Gal & Ghahramani, 2015) is a popular regularization strategy that
relies on random masking of intermediate network’s reprsentations. In Section 3.3, we show that
LANS works as a noise-based regularization approach. Denoising auto-encoders (DAE) (Vincent
et al., 2008) are especially relevant to our work, due to their noise-injection mechanism based on
masking of random coordinates. In the experiments, we show that for AMDPs, LANS is a more
effective strategy than DAEs.

Data augmentation LANS’ core mechanism is the NOISESIMULATION procedure of Algorithm 1,
which applies transformations to the input data before performing a gradient step. Data augmenta-
tion (Shorten & Khoshgoftaar, 2019; Park et al., 2019) refers to the class of strategies that exploit
symmetries (Chen et al., 2020; Bjerrum, 2017) in the data distribution to simulate larger datasets.
Data augmentation is prevalent in RL (Sun et al., 2024), with most works focusing on visual obser-
vations (Yarats et al., 2021b;a; Zhang et al., 2021a). Despite the similarity, data augmentation differs
from LANS because of its focus on transformations that preserve the semantics of samples (Trabucco
et al., 2024). Noising is occasionally treated as a data augmentation strategy (Iglesias et al., 2023);
Xie et al. (2020) discuss the advantages in deploying realistic noising processes, which is what LANS
achieves w.r.t AMDPs.

5 EXPERIMENTS

We share a framework and benchamrk suite for AMDPs definition, and we conduct experiments on
standard RL environments modified to incorporate asynchronicity. We compare LANS against alter-
native regularization techniques—DAEs and Gaussian additive noise—and a no-regularization base-
line, proving that our strategy (i) improves learning performance and/or variance in asynchronous
environments and (ii) it is more effective than other forms of regularization.

5.1 ASYNCHRONOUS RL AND MUJOCO ENVIRONMENTS

We develop a dedicated codebase for asynchronous RL environments. The library builds on top of
PyTorch (Ansel et al., 2024), Gymnasium (Towers et al., 2024), and TorchRL (Bou et al., 2023),
and provides a modular implementation of AMDPs. It allows users to specify processes for signals,
simulate asynchronicity, and interface with RL pipelines. We include detailed documentation to
facilitate reproducibility and adoption.

For evaluation, we adapt the widely used MuJoCo continuous control benchmarks Todorov et al.
(2012) from the DeepMind Control Suite (Tassa et al., 2018). In our formulation, each joint
state—comprising position, velocity, and rotational coordinates—is modeled as a signal. Asyn-
chronicity is introduced by assigning each channel a renewal process. Concretely, we sample re-
newal intervals from a Gamma distribution δi ∼ Gamma (1, 1), truncated to δ ≤ 4 steps. This
results in an average signal ratio of ω̃ ≈ 0.39, i.e., agents observe ∼ 40% of the signals, on average.

We construct a suite of asynchronous MuJoCo benchmarks—including Async-HalfCheetah, Async-
Hopper, Async-Ant, Async-Walker2d, and Async-Reacher. By grounding our experiments in these
standard tasks (Duan et al., 2016), we retain comparability with prior work while introducing a
controlled source of asynchronicity that stresses the ability of algorithms to operate on AMDPs.
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Figure 2: Training curves for LANS, GRU+SAC, DAE, and GAUSSNOISE, averaged across five
runs per environment. For all environments except Async-Hopper, LANS either outperforms other
methods after 400M learning frames or exhibits more controlled variance.

Table 1: Average reward per episode after 400M training frames, averaged across 5 runs per task,
variance in parentheses. Bold values indicate best within the environment. LANS achieves either best
returns on Async-HalfCheetah and Async-Reacher, or controlled variance for other environments,
except Async-Hopper. Alternative regularization algorithms do not display competitive results.

ALGORITHM Ant (K) HalfCheetah (K) Hopper (K) Walker2D (K) Reacher

LANS 2.6 (0.8) 4.9 (0.6) 1.4 (0.8) 2.0 (0.5) −6.7 (2.9)
GRU+SAC 2.8 (0.6) 3.0 (2.1) 2.1 (0.2) 2.0 (0.9) −18 (2.2)
DAE 0.0 (0.3) −0.2 (0.05) 0.2 (0.4) 0.0 (0.1) 0.0 (0.1)
GAUSSNOISE 1.6 (0.5) 1.0 (0.6) 0.7 (0.5) 1.1 (0.4) 1.1 (0.4)

5.2 ANALYSIS ACROSS ENVIRONMENTS

We compare LANS with three baselines across five environments, while retaining the same archi-
tectural backbone: a SAC loss function with GRU networks modeling actor and critic functions.
GRU+SAC is the standard baseline, trained without modifications to the original algorithm. Each
experiment is run five times to control for random oscillations and to estimate variance.

LANS Our approach, detailed in Algorithm 1. Compared to the standard baseline, it requires
setting the additional hyperparameter c ∈ [0, 1]. We choose c = 0.5 for all experiments except
Hopper, where a value of c = 0.1 shows minor performance improvements.

DAE We borrow a technique from denoising autoencoder (Vincent et al., 2008), consisting of
training the network while masking a fixed percentage ν ∈ [0, 1] of input coordinates at every
gradient step. The decision is informed by the method’s similarity to LANS: it is obtained by
replacing the NOISESIMULATION procedure in Algorithm 1 with one that masks input coordinates
in a time-unaware fashion. We adopt ν = 0.5 for all our experiments.
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GAUSSNOISE Gaussian additive noise applied to inputs underlies an established regularization
technique (Bishop, 1995). GAUSSNOISE modifies the NOISESIMULATION procedure of Algo-
rithm 1, replacing random signal masking with Gaussian shifts.

Figure 2 shows training curves for LANS and other algorithms, displaying the evolution of average
episode return per frame. Table 1 reports average episode return of each model after 400M learning
frames. In most tasks, LANS achieves either the highest returns or the most controlled variance.
In the case of Async-HalfCheetah, the performance is better for a factor of > 1.5× than the one
of the standard baseline. Async-Hopper is the only environment in which LANS’ underperfoms;
it the easiest task among the five and therefore might not provide sufficient complexity to detect
regularization impact. For Async-Ant and Async-Walker2d, there are no visible performance gains,
but significantly lower variance. Across all experiments, competing regularization algorithms fail to
learn meaningful policies, demonstrating their differences with LANS to be crucial.

5.3 CURVATURE ANALYSIS

In Section 3.3, we establish LANS as a regularization mechanism. To validate this claim, we estimate
the curvature of policies and compare them with GRU+SAC. We approximate the Hessian of the
policy output with respect to observations using finite differences, and report its Frobenius norm as
a curvature measure. Estimates are computed over 1K observations sampled from the evaluation
environment.

HalfCheetah Ant Reacher Hopper Walker2d
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LANS
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Error bars show standard deviation across runs

Figure 3: Estimated policy curvature across tasks. Bars show the Frobenius norm of the Hessian of
the learned policy, averaged over 1, 000 observations and five random seeds, and normalized. Error
bars denote standard deviation across seeds. LANS produces policies with lower curvature, except
for Async-HalfCheetah.

Figure 3 shows the average curvature values for policies trained with and without LANS, which have
been normalized to preserve scale. Results are aggregated across five random seeds, with error bars
representing standard deviation. With the exception of Async-HalfCheetah, LANS yields policies
with lower curvature, sometimes by a factor of < 0.5. By exposing agents to a spectrum of noise
regimes, LANS acts as a regularizer that penalizes excessive curvature of the policy function.

6 CONCLUSION

We introduce Learning Across the Noise Spectrum (LANS), an approach to reinforcement learning
in asynchronous environments. We formalize asynchronous environments as noise-parameterized
POMDPs, and develop a theoretical foundation linking LANS to regularization. We demonstrate
performance improvements across modified MuJoCo benchmarks. Our research establishes LANS
as an effective solution for real-world robotic systems operating with imperfect sensory information,
bridging a gap between theoretical RL frameworks and practical deployment in industrial settings.
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A PROOFS

In this appendix, we provide proofs to the propositions and claims contained in the main paper.
Throughout this section, we restrict the discussion to the case where an AMDP is described by only
one signal. This way, we omit the index i (e.g. o(t,i) =

(
s∗(t,i), δ

i
t

)
becomes ot = (s∗t , δt)) referring

to channels in our notation, easing readability. Equation 1 ensures that the multi-signals case can be
reduced to the single one.

A.1 APPROXIMATION OF AMDPS AS POMDPS

We prove Proposition 1, stating that AMPDs—as defined in Definition 2—can be approximated by
POMDPs in the asymptotic regime. The proof relies on the theory of renewal processes and espe-
cially on the Erdös-Feller-Pollard theorem. Before proceeding, we provide the essential definitions
and assumptions that underlie the next developments. We refer to Mitov & Omey (2014) for a source
on the material exposed here.

Definition 3 (Renewal Process). Let Xn ∈ N+ be a sequence of i.i.d. positive random variables.
The increasing sequence of partial sums variables Sn defined as

Sn =

n∑
i=0

Xi (10)

is called a renewal process and the Sn renewal times.

A renewal process describes the dynamics of events that occur at possibly non-deterministic fre-
quency, with independent and identically distributed renewal intervals.

Crucially, renewal processes describe the asynchronicity of signals in an AMDP. Given a sequence of
observations (ot = (s∗t , δt))t≥0, we can restrict to the sub-sequence of observed readings (otn)n≥0

such that δtn = 0 and δu ̸= 0,∀u ̸= tn. The sequence ∆n = tn+1 − tn is that of the renewal
intervals between readings. The variables ∆n are i.i.d. as a consequence of Equation 2:

P (∆n = k) = p (k + 1)
k∑

j=1

(1− p (j)) . (11)

In particular, P (∆n = k) does not depend on n nor the value of ∆m for m < n. Therefore, the
sequence of reading times Σn =

∑n
i=1 ∆i is a renewal process.

Let rt = P (δt = 0) denote the probability that there is an observed signal at time t ≥ 0. We have

rt =

∞∑
n=1

P (Σn = t) . (12)

To prove Proposition 1, we must prove that limt→∞ rt = λ where λ = 1
E[∆n]

indicates the signal
renewal rate, which is the reciprocal of the average renewal time.

The Erdös-Feller-Pollard theorem directly proves Equation 12, but it relies on two assumptions about
the renewal process induced by ∆n.

Assumption 1. The average inter-arrival renewal time µ = E [∆n] is finite.

Assumption 2. For each arithmetic progression kN = {kn | n ∈ N} with k ≥ 2, we have∑
i∈kZ

P (∆n = i) < 1. (13)
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The first assumption poses a probabilistic bound on renewal times. Assumption 2 states that the
renewal process is aperiodic, meaning there is no k ≥ 2 such that renewals only occur at times
t = k · u ∈ kN.

We remark that for the purpose of our work, it is safe to assume that AMDPs satisfy Assumptions 1
and 2. Sensors with infinite average renewal times would provide unreliable information that can
potentially be disrupted indefinitely. For sensors with renewal times concentrated on a periodic
subsequence t ∈ kN, we can express the problem in terms of observations drawn at time-steps in
kN and Assumption 2 would hold.

Finally, we state Erdös-Feller-Pollard theorem.

Theorem 1 (Erdös-Feller-Pollard). Let Sn =
∑n

i=1 Xn be a renewal process satisfying Assump-
tions 1 and 2 and let µ = E [Xn]. Then

rt =

∞∑
n=1

P (Sn = t)
t→∞→ 1

µ
. (14)

Proposition 1 follows as a corollary.

Proposition 3. Let A be an AMDP with stationary signal renewal processes and well-defined rates
λi =

1
µi

. The process A can be approximated by a POMDP with conditional observation probabil-
ities:

O (o | s) =
n∏

i=1

Oi (oi | si) (15)

where for each channel i:

Oi (oi | si) =
{
λi if oi = si
1− λi if oi = ⊥.

(16)

Proof. Since Equation 2 separates transition probabilities by signals, we will restrict our proof to
the one-signal case, omitting indexes indicating channels. The full statement of the proposition is
obtained by application across signals.

Equation 16 states that the variable Rt = 1{ot=st} ∼ Bernoulli (λ). For an AMPD, the variable

Qt = 1{δt=0} ∼ Bernoulli (rt). Theorem 1 implies rt
t→∞→ λ = 1

µ .

A.2 SMOOTHNESS OF NOISE-PARAMETRIZATION OF AMPDS

In Section 3.1, we state that the AMDPs A [ω] form a parametrization of POMDPs that is smooth
for ω ∈ [0, 1]. We formalize and prove this notion.

The AMDPs A [ω] are characterized by their conditional probabilities Oω : Ω × S → R, (o, s) ω7→
Oω (o | s). The parametrization is smooth if the O· : [0, 1] → (Ω× S → R) is smooth w.r.t. ω ∈
[0, 1] in the Wassertein space P1 (Ω× S) of probability measures Ambrosio et al. (2008).

Definition 4 (Wassertein metric). Let (M,d) be a metric space and P,Q two probability distribu-
tions on M with finite expected value. The Wassertein distance W1 (P,Q) between P and Q is
defined as

W1 (P,Q) = inf
γ∈Γ(P,Q)

E(x,y)∼γ [d (x, y)] (17)

where Γ (P,Q) denotes the set of couplings between P and Q, i.e. a coupling γ is a distribution
whose marginal probabilities equal P and Q respectively. The metric space (P1 (M) ,W1) is called
the Wassertein space.

Before proceeding to verify the smoothness ofA [ω], we must specify the structure of a metric space
for the observation space Ω. While in general S ⊆ Rm for some m ∈ N, the existence of ⊥ ∈ Ω
implies that Ω does not naturally embed into a real space. In practice, however, we can choose
⊥ = 0 and equate the lack of a signal with the null vector. More than just a theoretical trick, this
choice describes the concrete implementation of LANS as described in Section 3.2, since unobserved
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signals are replaced with their most recent reading, or masked to the null vector if no most recent
observation is available.

Proposition 4. For each ω ∈ [0, 1]

lim
h→0

W1 (Oω+h (· | s) , Oω (· | s))
|h|

= d (s,⊥) . (18)

Proof. We observe that Oω+h (· | s) and Oω (· | s) have both support on the two-elements set
{s,⊥}. Therefore, any coupling γω,h (s) is identified by a probability matrix

γω,h (s) ∼
(
Bs = P (s, s) Fs = P (s,⊥)
F⊥ = P (⊥, s) B⊥ = P (⊥,⊥)

)
. (19)

We have

Bs + Fs = Oω (s | s) (20a)
Bs + F⊥ = Oω+h (s | s) (20b)
Fs + F⊥ = P (Oω (· | s) ̸= Oω+h (· | s)) . (20c)

From Equations 20a and 20b it follows

|h| = |Oω (s | s)−Oω+h (s | s)| = (21a)
= |Bs + Fs −Bs − F⊥| = (21b)
= |Fs − F⊥| . (21c)

Because Fs and F⊥ are both non-negative, it must hold Fs + F⊥ ≥ |h|.
We now observe

E(x,y)∼γω,h(s) [d (x, y)] = P(x,y)∼γω,h(s) (x ̸= y) d (s,⊥) = (22a)

= (Fs + F⊥) d (s,⊥) ≥ (22b)
≥ |h| d (s,⊥) , (22c)

which implies
W1 (Oω+h (· | s) , Oω (· | s)) ≥ |h| d (s,⊥) . (23)

For h > 0, a possible coupling γ̃ω,h (s) is given by

γ̃ω,h (s) =

(
ω 0
|h| 1− ω − h

)
, (24)

and for h < 0

γ̃ω,h (s) =

(
ω + h |h|
0 1− ω

)
, (25)

which together imply

E(x,y)∼γ̃ω,h(s) [d (x, y)] = |h| d (s,⊥) =⇒ (26a)

=⇒W1 (Oω+h (· | s) , Oω (· | s)) ≤ |h| d (s,⊥) . (26b)

Combining Equations 23 and 26b we obtain

W1 (Oω+h (· | s) , Oω (· | s)) = |h| d (s,⊥) (27)

and finally

lim
h→0

W1 (Oω+h (· | s) , Oω (· | s))
|h|

= lim
h→0

|h|
|h|

d (s,⊥) = d (s,⊥) . (28)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.3 LANS AND REGULARIZATION

We continue the discussion in Section 3.3 and prove Proposition 2. We recall the implicit LANS loss
at an input o ∈ Ω:

LLANS(o)
.
= Varo⋆∼G(o)

(
π(o⋆)

)
= Eo⋆∼G(o)

[∥∥π(o⋆)− Eu⋆∼G(o)[π(u
⋆)]

∥∥2
2

]
. (29)

Proposition 5. Suppose π is continuously differentiable in a neighborhood of o, and let ∆ .
= o⋆−o.

Then, up to second order in ∆,

LLANS(o) = tr
(
Jπ(o) ΣG(o) Jπ(o)

⊤) + o(∥∆∥2), (30)

where Jπ(o) ∈ Rm×d is the Jacobian of π at o, and ΣG(o) = Cov(o⋆ − o | o) is the covariance of
the perturbation induced by G.

Proof. By a first-order Taylor expansion of π around o we have

π(o⋆) = π(o) + Jπ(o)∆ +R(∆), (31)

where the remainder R(∆) satisfies ∥R(∆)∥ = o(∥∆∥). Taking expectation under G(o) gives

E[π(o⋆) | o] = π(o) + Jπ(o)E[∆ | o] + o(∥∆∥). (32)

Subtracting this mean from the expansion yields

π(o⋆)− E[π(o⋆) | o] = Jπ(o) (∆− E[∆ | o]) + o(∥∆∥). (33)

Therefore, to second order in ∆,

LLANS(o) = E
[∥∥π(o⋆)− E[π(o⋆) | o]

∥∥2
2

]
(34)

= E
[
∥Jπ(o) (∆− E[∆ | o])∥22

]
+ o(∥∆∥2) (35)

= tr
(
Jπ(o) ΣG(o) Jπ(o)

⊤)+ o(∥∆∥2), (36)

where the last equality follows since E[(∆− E[∆])(∆− E[∆])⊤] = ΣG(o) by definition.

Under the conditions of Proposition 5,

LLANS(π)
.
= Eo∼D

[
LLANS(o)

]
≈ Eo∼D

[
tr
(
Jπ(o) ΣG(o) Jπ(o)

⊤)] , (37)

so training with LANS is equivalent to adding a Jacobian regularizer weighted by the covariance
ΣG(o) of the temporal noise process.

LANS For the noising process used by LANS, each coordinate i ∈ {1, . . . , n} is replaced by its
most recent past value õi with probability pi, and kept unchanged with probability 1 − pi. The
perturbation along dimension i is therefore

∆i =

{
õi − oi, with probability pi,

0, with probability 1− pi.
(38)

Assuming independence across coordinates, the covariance matrix ΣG(o) is diagonal with entries

[ΣG(o)]ii = pi(1− pi)∆
2
i . (39)

Plugging this expression into Proposition 5 yields

LLANS(o) ≈
n∑

i=1

pi(1− pi)∆
2
i ∥∂oiπ(o)∥22. (40)

B HYPERPARAMETERS AND STATISTICS

B.1 HYPERPARAMETERS

The hyperparameters most relevant to the various methods are reported in the main paper. In this
section, we report architecture and loss function parameters omitted from the main work.
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Network We adopt the same hyperparameters relative to network size for every experiment. We
use a depth of 1 and a hidden size of 128 both for the actor GRU and the Q-value one. Observations
are embedded in a latent space of dimensionality 32 both before being provided to the RNN. They
are embedded again with the same dimensionality, but different weights, and concatenated to the
output of the RNN, which is then processed through an feed-forward network of depth 2 and hidden
dimension 256. We adopt ReLU for nonlinearities.

Loss function Rewards are scaled by a factor of 5 during training. We use an interpolation factor
τ of 5× 10−3 and a discount factor γ of 0.99 for SAC. We rely on automatic entropy regularization
with the same learning rate as the rest of the network, i.e. 3× 10−4.

Training We train each run for 1, 536 rollouts, each with a maximum of 1, 024 frames. We adopt
an initial random exploration phase for 16 rollouts. We perform 128 gradient step per trajectory. The
batch size of each gradient step is 2, 048 frames, split across sub-trajectories of maximum length 64,
implying a sequence batch size of 32.

Evaluation We do not apply reward scaling during evaluation. We perform an evaluation cycle
every 1, 024 gradient steps. We run each evaluation cycle by collecting the average total reward of
an episodes across 16 instances.

B.2 TRAINING TIMES

We run all our experiments on NVIDIA Tesla P100, on which a single run takes between 44 and 56
hours of processing time.

C USAGE OF LLMS

Large language models (LLMs) were employed in the preparation of this work exclusively for aux-
iliary purposes. They were used to refine the exposition by improving grammar, clarity, and stylistic
consistency, but not for the generation of substantive scientific content or entire paragraphs. Addi-
tionally, LLMs were leveraged to automate repetitive aspects of code development, particularly in
the production of scripts for generating plots and figures. All theoretical contributions, derivations,
experimental design, and main textual content were authored by the researchers.
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