

J. Cent. South Univ. (2019) 26: 1−12
DOI: https://doi.org/10.1007/s11771-019-3978-x

Parallel naive Bayes algorithm for large-scale
Chinese text classification based on spark

LIU Peng(刘鹏)1, 2, ZHAO Hui-han(赵慧含)3, TENG Jia-yu(滕家雨)4,
YANG Yan-yan(仰彦妍)3, LIU Ya-feng(刘亚峰)1, 2, ZHU Zong-wei(朱宗卫)5

1. Internet of Things Perception Mine Research Centre, China University of Mining and Technology,

Xuzhou 221008, China;
2. National and Local Joint Engineering Laboratory of Internet Application Technology on Mine,

Xuzhou 221008, China;
3. School of Information and Control Engineering, China University of Mining and Technology,

Xuzhou 221116, China;
4. Communication Division, NARI Technology Co., Ltd., Nanjing 211106, China;

5. Suzhou Institute of University of Science and Technology of China, Suzhou 215123, China

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract: The sharp increase of the amount of Internet Chinese text data has significantly prolonged the processing
time of classification on these data. In order to solve this problem, this paper proposes and implements a parallel naive
Bayes algorithm (PNBA) for Chinese text classification based on Spark, a parallel memory computing platform for big
data. This algorithm has implemented parallel operation throughout the entire training and prediction process of naive
Bayes classifier mainly by adopting the programming model of resilient distributed datasets (RDD). For comparison, a
PNBA based on Hadoop is also implemented. The test results show that in the same computing environment and for the
same text sets, the Spark PNBA is obviously superior to the Hadoop PNBA in terms of key indicators such as speedup
ratio and scalability. Therefore, Spark-based parallel algorithms can better meet the requirement of large-scale Chinese
text data mining.

Key words: Chinese text classification; naive Bayes; spark; hadoop; resilient distributed dataset; parallelization

Cite this article as: LIU Peng, ZHAO Hui-han, TENG Jia-yu, YANG Yan-yan, LIU Ya-feng, ZHU Zong-wei. Parallel
naive Bayes algorithm for large-scale Chinese text classification based on spark [J]. Journal of Central South University,
2019, 26(1): 1–12. DOI: https://doi.org/10.1007/s11771-019-3978-x.

1 Introduction

Currently, the amount of Internet Chinese text
data is showing exponential growth. Among the
rapid increasing data, web document is the most
common class of data with the widest coverage.
The implementation of automatic classification of
large-scale web document can improve the situation

of messy text information, keep what is valuable
and reject what is worthless, so as to reduce query
time and improve search quality [1].

Naive Bayes (NB) classification algorithm,
which shows good performance in many
applications including text classification, is a simple
and effective method among many probabilistic
classification algorithms. However, when dealing
with large-scale Chinese text sets, this algorithm

Foundation item: Project(KC18071) supported by the Application Foundation Research Program of Xuzhou, China;

Projects(2017YFC0804401, 2017YFC0804409) supported by the National Key R&D Program of China
Received date: 2017-07-16; Accepted date: 2018-03-02
Corresponding author: ZHU Zong-wei, PhD, Assistant Researcher; Tel: +86-18896751046; E-mail: zzw1988@mail.ustc.edu.cn

J. Cent. South Univ. (2019) 26: 1–12

2

will experience many problems such as low
efficiency in training the classifier and obvious
classification errors [2]. Therefore, with the rapid
growth of data amount and feature space dimension
under the background of big data, the
parallelization of traditional Chinese text
classification algorithms will significantly improve
its operating efficiency. Thus, this will be a valuable
research area.

Traditional parallel algorithms such as
message passing interface (MPI) [3] and grid
computing [4] cannot meet the growing demand for
processing large-scale Internet data, owning to their
development complexity, poor scalability and other
problems. With the maturity of cloud computing
[5], MapReduce (MR) has become one of the key
technologies drawing the most attention. Hadoop
[6], an open source distributed computing model
written in Java language, provides application
programming interfaces (APIs) with the core of
MapReduce and Hadoop distributed file system
(HDFS) which enable Hadoop to handle data of one
million nodes and ZB magnitude. For example,
ZHOU et al [1] and LIU et al [2] improved Naive
Bayes text classification using Hadoop MapReduce.

However, more and more researches [7, 8]

have proved that Hadoop MapReduce is so simple
that it is incapable of handling complicate jobs like
real-time response, interactive analysis and iterative
processing, etc. Instead, Spark, which is based on
memory computing, greatly avoids high-latency
materialization of disk, effectively satisfying the
time requirement in the aforesaid jobs. Spark is a
new generation of parallel processing platform
based on memory computing developed by
AMPLab in University of California, Berkeley [9].
The core purpose of Spark is to provide a large-
scale-oriented, low latency and developer-friendly
data process platform. By introducing RDD [10],
Spark can distribute data set in memory of various
nodes during the whole cluster computing process,
thus saving a large number of disk I/O operations
and significantly reducing calculating time. JIANG
et al [11] introduced the implementation of several
machine learning algorithms on Spark platform and
compared the running results with Hadoop-based
version, which shows that Spark has good memory
bandwidth utilization, stable memory access and
high frequency input and output requests.
REYES-ORTIZ et al [12] made a comparison

between Spark and MPI/OpenMP in terms of big
data analysis, comparing algorithms of KNN and
SVM respectively. LIU et al [13] designed and
implemented parallel multinomial naive Bayes
multi-class classification, SVM and binary-class
classification algorithms and has compared them
with Hadoop-based version.

The text analysis based on Spark is one of the
research hotspots. YAN et al [14] has implemented
SVM microblog classification algorithm based on
Spark which possesses better execution speed
compared with that based on Hadoop. LIU et al
[15], presented by our team, have implemented
K-means text clustering algorithm based on Spark
which has a better performance in speed-up ratio
and expansibility and so forth compared with that
based on Hadoop. TOMAS et al [16] has
implemented Spark-based application of logistic
regression for multi-class text classification, and
experimental results have shown that applied multi-
class classification method for Amazon product-
review data has higher classification accuracy.

Yet, there is still no research on PNBA for
large-scale text classification, so we strive to do
some useful work in this area.

The rest of the paper is arranged as follows.
Section 2 introduces the overall process of text
classification and the principle of NB classification
algorithm. Section 3 designs and implements PNBA
based on Hadoop and Spark. Section 4 compares
two parallel algorithms based on Hadoop and Spark
respectively on main performance indicators, such
as accuracy of classification, speedup ratio,
scalability, operation time, etc. Section 5 goes to a
conclusion.

2 Overall process of text classification

As shown in Figure 1, the overall process of
text classification mainly consists of three steps.
The first step is corpus preprocessing which
includes word segmentation, stop words removal,
word frequency statistics, feature selection, etc. The
second step is text representation which transforms
the text into a form that can be recognized and
handled by computers. And the last step is text
classification based on some kinds of machine
learning algorithm. This paper is focused on
improving the efficiency of large-scale text
classification algorithm, and before this, the main

J. Cent. South Univ. (2019) 26: 1–12

3

Figure 1 Overall process of text classification (VSM, vector space model [17])

content of Corpus preprocessing and text
representation will be introduced.

2.1 Corpus preprocessing

Text data is some kinds of unstructured data, it
cannot be directly processed using data mining
algorithms. Hence, it is necessary to preprocess the
corpus, including work such as word segmentation,
Stop word removal, word frequency statistics,
feature selection, etc. The quality of corpus
preprocessing has a great effect on text
classification accuracy. Toolkit for Chinese corpus
preprocessing adopted in this paper is NLPIR
(nature language processing & information
retrieval) Chinese word segmentation system, one
of the mainstream products receiving high praise
within the industry. It is researched and developed
by Institute of Computing Technology, Chinese
Academy of Sciences [18].

The first step of Chinese corpus preprocessing
is word segmentation [14]. Unlike English text, the
Chinese words do not contain continuous space
between words. Therefore, word segmentation is
required first in Chinese text classification, namely,
segmenting text according to the meaning of words
and separating words by space.

The segmented word sets still cannot represent
text as feature sets, because they contain a large
number of function words, such as “the”, “that” and
“those” in English or “的”, “吗” and “在” in
Chinese. These words are usually called stop words.
It is required to establish a stop word list so that
stop words in text can be filtered out according to
the list. In this way, not only can storage space be
saved, but also the dimension of feature space can
be reduced and processing can be accelerated.

The basic principle of word frequency
statistics is to count how many times a given word
appears in a given document. The method which
uses the number of a given word to determine the
probability of this word becoming a feature reflects
the correlation between document and feature
words. Feature selection is to select a feature subset

from all features. It is aimed at reducing the
dimension of vector space and computational
complexity through removing as many features
which cannot reflect contents of document as
possible among the original feature sets.

2.2 Text representation

Text representation is to express text as a form
that can be recognized and handled by a computer.
In this paper, the Chinese text is represented by
VSM, with each dimension of vector composed of
feature item and its weight. The weight of feature
item is calculated with term (word) frequency
inverse document frequency (TFIDF) [19, 20] as
follows.


 

































dt i
i

i

i
n

N
dttf

n

N
dttf

dtw
2

01.0lg),(

01.0lg),(

),(

where w(ti,d) denotes the weight of feature item ti in
document d; tf(ti,d) denotes the word frequency of
feature item ti in document d; N denotes the total
number of training documents; ni denotes the
number of documents in which feature item ti
appears; and the denominator is the normalization
factor. The vectorization of document dj is
represented as dj=(tj1:wj1, tj2:wj2, … , tji:wji, … ,
tjm:wjm,), where tji represents the ith feature item of
the jth document; wji represents the weight of tji; m
represents the number of feature item in vector. In
this paper, Chinese and English documents are both
represented as vectors by Mahout [21], while the
related parameters are set as follows. –wt tfidf:
using TFIDF to calculate word weight; -lnorm:
using logarithm to normalize vectors.

2.3 Text classification

The text classification is an important part of
text mining. It refers to process of determining a
classification for each text in the document
collection according to the predefined classification.

J. Cent. South Univ. (2019) 26: 1–12

4

Text classification is a typical supervised machine
learning method. The frequently-used text
classification algorithm include naive Bayes, KNN
(K-nearest neighbor), SVM (support vector
machines), Rocchio, etc [22].

The classification process is generally divided
into two phases, namely, training phase and
prediction phase. Training phase is mainly to
conduct training on the training text set to generate
classification model, while prediction phase first
tests the accuracy of the classification model and
then makes classification on the prediction text set
if the accuracy meets the requirement.

3 Naive Bayes text classification

algorithm

As a probability statistical classification
algorithm based on Bayesian equation and feature
conditional independence assumptions, naive Bayes
classification has a relatively simple principle, that
is, for a prediction item, first calculating each
probability that this item belongs to each class and
then selecting the most probable one as its
classification result.

The mathematical definition of naive Bayes is
as follows:

1) Let x={a1, a2, …, am} be an item to be
classified, and ai is a feature of x.

2) Let there be n classes of training samples,
and they are denoted as C={y1, y2, …, yn}.

3) Calculate each probability that x belongs to
each class: P(y1|x), P(y2|x), …, P(yn|x).

4) If P(yk|x)=max{ P(y1|x), P(y2|x), … ,
P(yn|x)}, the class of x is yk.

The critical phase is to calculate each
conditional probability in step 3, where the
following method is adopted (training + prediction):

1) Obtain the training samples with the known
classification results.

2) Count the class conditional probabilities

with each feature, namely, P(a1|y1), P(a2|y1), …,
P(am|y1); P(a1|y2), P(a2|y2), … , P(am|y2); … ;
P(a1|yn), P(a2|yn), …, P(am|yn). Where, the data may
either be discrete or continuous.

3) If the features are conditionally independent,
the following equation can be deducted according
to Bayes’ theorem:

(|) ()

(|)
()
i i

i
P x y P y

P y x
P x




As can be seen from the above equation, since
P(x) is fixed for yi, it is only necessary to calculate
which class can generate the biggest numerator.
And because the features are conditionally
independent, Eq. (1) can be deducted as the
following:

1 2(|) () (|) (|) (|) ()i i i i m i iP x y P y P a y P a y P a y P y 

1
= () (|)

m
i j ij

P y P a y
 (1)

Based on the above analysis, the entire

classification process is divided into three phases,
as shown in Figure 2.

In the preparation phase, the main task is to
preprocess training and test text sets. As this phase
has a major impact on the subsequent phases,
sufficient attention needs to be paid to it. In the
training phase, the task is to generate a classifier
and the main work is to calculate priori
probabilities as well as the conditional probabilities
that each feature belongs to each class, and to store
the results as classifier. The prediction phase
contains relatively simple work, which is to use the
classifier formed through training to test which
class the test data belongs to.

4 Hadoop-based parallelization of naive

Bayes text classification

This section parallelizes NB algorithm by
using Hadoop distributed system which provides
HDFS and MapReduce. According to the principle

Figure 2 Three phases of naive Bayes classification

J. Cent. South Univ. (2019) 26: 1–12

5

and analysis of NB algorithm as above, the design
and implementation of PNBA on Hadoop are also
divided into two phases, namely, training and
prediction.

4.1 Hadoop-based parallelization of classifier’s

training process
The training process of Hadoop-based

classifier contains two sequential MapReduce jobs
[1], in which the output of the first MapReduce job
is the input of the second job, as shown in Figure 3.

The first MapReduce job achieves the
following tasks. In Map phase, each Mapper
receives a portion of the data block from the
training TFIDF text vector, splits each record into a
specific key-value pair <class, text feature vector>
and aggregates all the vector weights for each class.
In Reduce phase, each key-value pair is aggregated

globally by class and the model attribute vector
ScoresFeatureAndLabel is obtained and stored as
an intermediate result.

The second MapReduce job achieves the
following tasks. In Map phase, each Mapper
receives a block of data from the previous
MapReduce output and splits each record into two
key-value pairs as <class, sum of class feature
vector> and <feature, sum of feature vector>. Then
the Mapper aggregates all the features locally for
each class and aggregates all the features in all
classes. In Reduce phase, each key-value pair is
globally aggregated and the two attribute vectors,
WeightsPerLabel and WeightsPerFeature are
obtained and stored as intermediate results.

Finally, according to the three obtained vectors,
ScoresFeatureAndLabel, WeightsPerLabel, and
WeightsPerFeature, the classification model is

Figure 3 Hadoop-based parallelization of classifier’s training process

J. Cent. South Univ. (2019) 26: 1–12

6

created and stored in HDFS.

4.2 Hadoop-based parallelization of classifier’s

prediction process
The classifier’s prediction process, which can

be implemented with the operation of only one
MapReduce job, is relatively simple. First, each
Mapper receives partial data blocks from test
TFIDF text vector and calls the classification model
constructed in the training process. Then, the class
label of test document is obtained through
calculation and comparison in accordance with
Eq. (1). Finally, the calculation results of each
Mapper are merged by Reducer and meanwhile the
prediction accuracy of test sets is obtained.

5 Spark-based parallelization of naive

Bayes text classification

Similar to parallelization based on Hadoop
MapReduce, Spark-based parallelization is also
implemented through two phases, namely, training
and prediction. The biggest difference is that
implementation of the Spark-based version is
focused on the algorithm design of resilient
distributed datasets (RDD).

As a parallel data structure with distributed
memory, RDD is the core mechanism of Spark. It
stores user data in the memory and optimizes the
data distribution by controlling the partition. The
parallel operation of RDD consists of two types,
namely, transformation and action. Transformation
means creating a new RDD on the basis of present
RDD while action is to perform the actual
computation on a RDD and then to return a
simple-datatype value or to output data in RDD to
the memory [13].

Polynomial NB text classification model is
adopted in this paper. After the training set is given,
class conditional probability P(aj|yi), the maximum
likelihood estimation of word frequency in the
training set, is computed as follows:

ˆ (|) i j

i

y a
j i

y

N
P a y

N
 (2)

where Nyi is sum of all feature words’ frequency in
training set of samples yi, and Nyiaj is determined by
the word frequency including the feature word aj in
the training set which belongs to class yi with the
dependence as follows:

)|(ijay yatfN

ji
 (3)

To avoid dilution of the classifier’s precision

when computing estimation of word frequency
P(ai|yj)=0, additive smoothing [23] is introduced.
When adding λ (λ≥0) to Eq. (2), the improved
equation is as follows:

nN

N
yaP

i

ji

y

ay
ij 






)|(ˆ (4)

where n is the number of class/classes. When the
training set is large enough, this method not only
avoids the probability of 0 but also keeps the
classification results not be affected. When λ=1, it is
named as Laplace smoothing, and while λ<1, it is
called Lidstone smoothing.

Equation (1) is multiplied by several
conditional probability values (from 0 to 1), which
would result in the underflow of floating number.
By taking logarithm on both sides of the equal sign
and changing the multiple multiplication to a chain
addition, the following NB classifier is obtained:

))|(ˆ)(ˆlg())()|(lg(
1





m

j
ijiii yaPyPyPyxP





m

j
iji yaPyP

1

))|(ˆlg())(ˆlg((5)

5.1 Parallelization of classifier’s training process

After vectoring the text, it is necessary to use
training samples which have been marked
categories to set up text categorization model. From
Eq. (4), it can be shown that for this algorithm,
during the training process, both the probability for
each class P(yi) and the probability for each feature
in every class P(aj|yi) must be calculated. And that
means to show the number of each class and the
total number of each feature value in each class.

Spark supports the operation of HDFS to
conduct row processing of text data. So we first
present training samples as key-value pairs with
each row of class labels and feature vectors and
store them in HDFS. Then the training process is
manifested in the transformation process of RDD as
shown in Figure 4.

The explanation of Figure 4 is as follows (note:
Spark APIs are written in italics for easy
understanding).

1) Firstly, read all text vectors and form RDD.
2) Then, conduct the map operation for RDD

J. Cent. South Univ. (2019) 26: 1–12

7

Figure 4 RDD transformation in training process

and map each row in the form of (label, (1,
features)), that is (key, value), where label is the
class number, 1 represents the document number
and features indicate feature value vectors of certain
text. Local partial merge is conducted at the same
time.

3) Take label as key to conduct reduceByKey.
Add the value for the same key and obtain (label,
(N, featuresSum)). Here N is the document number
which belongs to certain label class and
featuresSum represents adding all the value of
features with the same label. The number of final
label is also the class number.

Hereto we can count the frequency and
number of each class as well as the frequency of
each feature for each class. Next the training
process is presented as the following.

Algorithm 1: Parallelization of NB classifier’s
training process based on Spark
Input: the preprocessed training set
Begin

Step 1. Define ZeroCombiner [class, (text
number, conditional probability in this
class of each feature)] for map data
structure

Step 2. Initialize the value of ZeroCombiner
and calculate the total number and
feature vector sum for local samples
for each class i do

Calculate the total number and
feature vector sum for global
samples

end for i
Step 3. Obtain class number C and total

number of training samples N.
Calculate the denominator of class
prior probability P(yi) and take the
logarithm, piLogDenom = math.log
(N+C * lambda)

Step 4. for each class i do
Obtain the number of samples in every
class n, calculate class prior probability,
pi(i) = math.log (n + lambda) –

piLogDenom and store it in a
one-dimensional vector pi.
for each feature vector v in the class
do

Calculate the denominator of class
conditional probability P(aj|yi) and
take the logarithm, thetaLogDenom
= math.log (Sum(featuresSum) +
numFeatures * lambda).
Calculate the class conditional
probability, theta(i)(v) =
math.log(featuresSum(v) + lambda)–
thetaLogDenom and store it in
two-dimensional matrix theta.

end for v
end for i

End
Output: the training model made up of matrix

theta and vector pi

After the training process, the NB
classification model, mainly represented by sparse
matrix of class prior vector and class conditional
probability, is obtained.

5.2 Parallelization of classifier’s predicting

process
Next, we conduct the parallelization of

predicting process based on the established model.
Firstly, the test samples are input to form the RDD.
Secondly, for the text vector in RDD, we use the
map function based on the trained model to
calculate the probability of text samples for each
class. Then we take the class with the maximum
probability as the class mark. Finally, the
classification results for the test samples are stored
in HDFS.

Algorithm 2: Parallelization of NB classifier’s
predicting process based on Spark
Input: the preprocessed test set
Begin

Step 1. Present the test text in the matrix form
as dataMatrix.

J. Cent. South Univ. (2019) 26: 1–12

8

Step 2. Calculate the probability belonging to
each class, i.e.,
pi.add(theta.mmul(dataMatrix))

Step 3. Take out the maximum value, i.e.,
result.argmax()

Output: the classification results

6 Experiment design and analysis

The cluster of this experimental platform is
comprised of one master and nine slaves (slave 1–
9). The serial version and the Hadoop-based version
are written in Java while Spark in Scala. The node
deployment in the cluster is shown in Table 1.

The Chinese corpus used in this paper is
Sogou Corpus (SogouC) provided by Sogou Labs
which includes 17910 documents classified by the
following 9 categories namely, education, culture,
sports, finance and economics, IT, health, recruit,
traveling and military. The English corpus adopts
Twenty Newsgroup text dataset in UCI machine
learning repository. The dataset is made up of
19996 documents which composed of 20 different
categories of news. Since the given dataset is unity
in scale, we copied the original dataset to make up
datasets of different scale. Table 2 indicates datasets
used in the experiment. The feature of computing
time for NB algorithm in the prediction process is
the same as training phase. Hence, this section only
lists the comparison of training time in the
experiment.

6.1 Relationship between training time and

partition number
The partition number is a supposition of

parallelism granularity. In order to evaluate the
influence of different partition numbers on the
training time of text set at various scales,
experiments are conducted for the former 4 text sets
with different partition numbers in Table 1 when
setting the slave number as 9 in Spark cluster
platform. Test results are presented in Figure 5.

According to Figure 5, it can be seen that with
the increase of partition numbers, training time for
each text set decreases at first and then increases.
This is because that the number of partition
increases will result in the increase of parallelism
degree and decrease of training time for each
partition, meanwhile the network communication
cost of collecting data from each partition will
increase. When the partition reaches certain degree,
computation time approaches to a definite value and
the network communication cost is continuously
increasing. Thus, it will demonstrate a trend of
decreasing at first and then increasing. For text sets
at different scale, the corresponding partition
number for the optimal training time is also
different from each other. For text sets TN-5000 and
TN-10000, the optimum partition number is 20–25
while for TN-40000, it is 35–45. This is because the
increase of partition number decreases the data size
of each partition for text sets at large scale.

6.2 Relationship between node number and

training time
In this experiment, training time for text sets of

different scale with various slave numbers is tested
in Spark cluster platform. The result is shown in
Figure 6.

From Figure 6, it can be seen that with the

Table 1 Information of cluster node deployment

Node CPU Memory Network JVM version Hadoop version Scala version Spark version

Master 4 core 8 GB 1 GB/s 1.7.0 1.2.1 2.10.4 1.6.0

Slaves 1–9 4 core 8 GB 1 GB/s 1.7.0 1.2.1 2.10.4 1.6.0

Table 2 Text set used in experiment

Text set Source of text set Language Number of categories Number of text Scale

TN-5000 Twenty Newsgroup English 20 5000 12 M

TN-10000 Twenty Newsgroup English 20 10000 21.8 M

TN-20000 Twenty Newsgroup English 20 19996 43.9 M

TN-40000 Twenty Newsgroup English 20 39992 87.9M

SogouC-
Reduced

Sogou Corpus Chinese 9 17910 48.2M

J. Cent. South Univ. (2019) 26: 1–12

9

Figure 5 Relationship among partition number, text set

scale and training time

Figure 6 Impact of node number and text set scale on

training time

increase of the slave number, the training time
decreases gradually. When the slave number fixes,
the training time required increases unceasingly
with the growing scale of text set. To analyze the
performance of Spark, it is necessary to carry out
the quantitative calculation for speedup and
expansion ration of the data in Figure 6.
Experimental analysis is made from the following
three aspects.
6.2.1 Analysis of system speedup of naive Bayes

algorithm
Speedup represents how much execution speed

of parallel algorithm has increased with respect to
execution speed of serial algorithm [24]. It is a
significant indicator to evaluate the performance of
parallel computation and to measure the
performance and effect of algorithm parallelization.
Suppose the runtime for the serial algorithm
(namely single node) is Ts and Tp is the runtime of
parallel algorithm in p computational node, then the
speedup Sp=Ts/Tp. Greater speedup indicates higher

parallel efficiency and performance.
Figure 7 describes the speedup of the training

time of NB algorithm under the environment of
Spark. As the number of slave increases, speedup
curve shows an increasing tendency. The speedup
of text set TN-5000 and TN-10000 is close to 1
with rather gentle curve while the speedup of text
set TN-20000 and TN-40000 is greater than 1 with
obvious increasing trend of the curve. When the
slave number fixes, the smaller the size of the text
set is, the less obvious the speedup is. With the
increase of text set scale, the speedup curve for the
same data size rises gradually with an increasing
number of the slave.

Figure 7 Speedup of training time of different text set

6.2.2 Analysis of system scalability of naive Bayes
algorithm

Scalability describes the ability for
performance of parallel algorithm scaling up with
the increasing number of slave [24]. It indicates the
utilization ratio of the cluster in the implementation
of parallel algorithm. The equation of scalability is
J=Sp/p. Here Sp represents speedup; p denotes slave
number. In general, J is equal or less than one.
When it is close to one, the scalability is better.

Figure 8 presents the scalability curve of naive
Bayes algorithm system in Spark cluster. The
scalability curve of parallel algorithm shows a
downward trend with the increase of the slave. For
text sets TN-5000 and TN-10000, their scalability
curve decreases rapidly while the scalability curve
for text set TN-40000 decreases gently and turns to
be relative stable. This illustrates that in a Spark
cluster environment, the speedup of PNBA
increases obviously. However, with the increasing
data size and slave number of the text set, the
scalability is gradually stabilizing.

J. Cent. South Univ. (2019) 26: 1–12

10

Figure 8 Scalability of training time for different text set

6.2.3 Analysis of data scalability of Naive Bayes

algorithm
Data expansion ratio embodies variation trend

of training time with the change of text set scale.
From Figure 9, it can be seen that when the slave
number is nine on both Spark and Hadoop platform,
with the increasing text set scale, training time of
naive Bayes algorithm increases linearly and it has
good scalability.

Figure 9 Relationship between training time and text set

scale

6.3 Comparison of training time of text

classification on various platforms
This experiment has tested the classifier’s

training time at different scale on serial, Hadoop
and Spark platform, respectively. The result is
shown in Figure 10. From Figure 10, it can be seen

that with the increasing data size of the text set, the
training time of these three methods all increases.
Through simple calculation, it can be obtained that
the ratio of training time between Spark and serial
algorithm increases from 8.55 to 17.23. This
indicates that the efficiency of parallel algorithm
based on Spark is much higher than serial algorithm.
Meanwhile, the execution efficiency of Spark based
on memory computing is better than Hadoop.

Figure 10 Classifier’s training time in three platforms

6.4 Analysis of predicting results of text

classification
In order to verify the effectiveness of Spark

parallel algorithm, we carried on statistical analysis
on the accuracy of the prediction for the training
model in serial, Spark and Hadoop platforms,
respectively. Firstly, we gave a test on both Chinese
and English text sets. The Chinese text set is
SogouC-Reduced which is composed of 17910
documents of 9 categories. TN-20000 which is
made up of 19996 documents of 20 categories is
chosen as the English text set since its scale is close
to the Chinese one. The test results of classification
accuracy of the above text sets are shown in
Table 3.

Then, we test the classification accuracy of
four different kinds of English text sets. The test
results are presented in Table 4.

As can be seen from the above prediction
results in Table 4:

Table 3 Classification accuracy of Chinese and English text sets

Text set
Number of

training set tests
Number of

test set texts

Number of predicted error texts Classification accuracy rate/%

Serial Hadoop Spark Serial Hadoop Spark

TN-20000 11999 7997 801 874 864 89.98 89.07 89.19

SogouC-Reduced 10746 7164 1107 1202 1169 84.55 83.22 83.68

J. Cent. South Univ. (2019) 26: 1–12

11

Table 4 Classification accuracy of different kinds of text sets

Text set
Number of

training set tests
Number of

test set texts

Number of predicted error texts Classification accuracy rate%

Hadoop Spark Hadoop Spark

TN-5000 3000 2000 239 217 88.34 89.15

TN-10000 5982 4018 674 656 82.74 83.67

TN-20000 11999 7997 874 864 89.07 89.19

TN-40000 23905 16095 994 989 93.52 93.86

1) The classification accuracy rate of English

text set TN-20000 is 6% higher that Chinese
SogouC-Reduced. The reason is that during the
word segmentation of Chinese text sets, it is hard to
avoid the loss of some key phrases of different
categories due to the inaccurate segmentation.
Hence, the absence of feature words would result in
inaccurate classifier training and then exert
influence in the final classification accuracy.
However, the classification accuracy rate of
Chinese text averages above 83%, which can meet
the requirement completely.

2) Generally, the larger the text set, the higher
the classification accuracy rate. Because the lager
text set means the larger scale of the training text
set, the classifier model for training would be more
accurate and the classification accuracy rate of test
samples would be higher too. In Table 4, the
classification result based on Hadoop and Spark is
roughly in line with this rule.

3) Whether it is the Chinese or English text set,
the classification accuracy rate in single-machine
environment is 1% higher than that based on
Hadoop and Spark. Moreover, the difference
between Hadoop and Spark is within 1%. The
above results indicate that the accuracy of the
proposed parallel classification algorithm is
guaranteed.

7 Conclusions

With the rapid growth of data amount and
feature space dimension under the background of
big data, the parallelization of traditional Chinese
text classification algorithms will significantly
improve its running efficiency. For the sake of this,
the paper proposed a parallel naive Bayes algorithm
based on Spark. According to both theoretical and
experiment aspects, the following conclusions are
proved. When the proposed algorithm is used to
process large-scale texts, it shows good speedup as

well as scalability. Specifically, the processing time
is greatly reduced compared with serial algorithm
while the processing efficiency is significantly
improved compared with Hadoop-based version.
Therefore, the proposed Spark-based parallel
algorithms can better meet the requirement of
large-scale text data mining.

References

[1] ZHOU Li-juan, WANG Hui, WANG Wen-bo. Parallel

implementation of classification algorithms based on cloud

computing environment [J]. Telkomnika Indonesian Journal

of Electrical Engineering, 2012, 10(5): 1087–1092.

[2] LIU Bing-wei, BLASCH E, CHEN Yu, SHEN Dan, CHEN

Gen-she. Scalable sentiment classification for big data

analysis using Naive Bayes classifier [C]// IEEE

International Conference on Big Data. Silicon. Valley, CA,

USA: IEEE, 2013, 194(101): 99–104.

[3] GROPP W, LUSK E, SKJELLUM A. Using MPI: Portable

parallel programming with the message-passing interface

[M]. Cambridge: MIT Press, 1999.

[4] BERMAN F, FOX G, HEY A. Grid Computing: Making the

global infrastructure a reality [M]. Hoboken, NJ, USA:

Wiley & Sons, 2003.

[5] ZHANG Qi, CHENG Lu, BOUTABA R. Cloud computing:

State-of-the-art and research challenges [J]. Journal of

Internet Services and Applications, 2010, 1(1): 7–18.

[6] WHITE T. Hadoop: The definitive guide [M]. Sebastopol,

CA, USA: O’Reilly Media, Inc, 2009.

[7] DEAN J, GHEMAWAT S. MapReduce: Simplified data

processing on large clusters [J]. Communications of the

ACM, 2008, 51(1): 107–113.

[8] SRIRAMA S N, BATRASHEV O, JAKOVITS P,

VAINIKKO E. Scalability of parallel scientific applications

on the cloud [J]. Scientific Programming, 2011, 19(2):

91–105.

[9] ZAHARIA M, CHOWDHURY M, FRANKLIN M J,

SHENKER S, STOICA I. Spark: cluster computing with

working sets [C]// Proceeding HotCloud’10 Proceedings of

the 2nd USENIX Conference on Hot Topics in Cloud

Computing. Boston: USENIX Association Berkeley, 2010:

1–8.

[10] ZAHARIA M, CHOWDHURY M, DAS T, DAVE A, MA J,

MCAULEY M, FRANKLIN M J, HENKER S, STOICA I.

Resilient distributed datasets: A fault-tolerant abstraction for

J. Cent. South Univ. (2019) 26: 1–12

12

in-memory cluster computing [C]// Proceedings of the 9th

USENIX Conference on Networked Systems Design and

Implementation. San Jose: USENIX Association Berkeley,

2012: 1–15.

[11] JIANG Tao, ZHANG Qian-long, HOU Rui. Understanding

the behavior of in-memory computing workloads [C]//

Proceedings of 2014 IEEE International Symposium on

Workload Characterization. Raleigh, NC, 2014: 22–30.

[12] REYES-ORTIZ J L, ONETO L, ANGUITA D. Big data

analytics in the Cloud: Spark on Hadoop vs MPI/OpenMP on

Beowulf [C]// Proceedings of the INNS Conference on Big

Data 2015 Program San Francisco. Francisco, CA, 2015:

121–130.

[13] LIU Zhi-qiang, GU Rong, YUAN Chun-feng, HUANG

Yi-hua. Parallelization of classification algorithms based on

SparkR [J]. Journal of Frontiers of Computer Science and

Technology, 2015, 9(11): 1281–1294. (in Chinese)

[14] YAN Bo, YANG Zi-jiang, REN Yi-tian, TAN Xing, ERIC L.

Microblog sentiment classification using parallel SVM in

apache spark [C]// Proceeding of 2017 IEEE International

Congress on Big Data. Honolulu, USA: IEEE, 2017:

282–288.

[15] LIU Peng, TENG Jia-yu, DING En-jie, MENG Lei. Parallel

k-means algorithm for massive texts on Spark. [J]. Journal of

Chinese Information Processing, 2017, 31(4): 145–153. (in

Chinese)

[16] TOMAS P, VIRGINIJUS M. Application of logistic

regression with part-of-the-speech tagging for multi-class

text classification [C]// Proceeding of the 2016 IEEE 4th

Workshop on Advances in Information, Electronic and

Electrical Engineering. Vilnius, Lithuania: IEEE, 2016: 1–5.

[17] CATALDO M. Enhanced vector space models for content-

based recommender systems [C]// Proceeding of the Fourth

ACM Conference on Recommender Systems. New York,

USA: ACM. 2010: 361–364.

[18] Nature language processing & information retrieval [EB/OL]

2016. http://ictclas.nlpir.org/.

[19] LONG Jun, WANG Lu-da, LI Zu-de, ZHANG Zu-ping,

YANG Liu. WordNet-based lexical semantic classification

for text corpus analysis [J]. Journal of Central South

University, 2015, 22: 1833–1840.

[20] ZHANG Wen, YOSHIDA T, TANG Xi-jin. A comparative

study of TF*IDF, LSI and multi-words for text classification

[J]. Expert Systems with Applications, 2011, 38(3):

2758–2765.

[21] OWEN S, ANIL R, DUNNING T. Mahout in action [M].

Manning Publications, 2010.

[22] VIKAS K V, BINDU K. R, LATHA P. A. Comprehensive

study of text classification algorithms [C]// Proceeding of

2017 International Conference on Advances in Computing,

Communications and Informatics. Udupi, India: IEEE, 2017:

1109–1113.

[23] RENNIE J D, SHIH L, TEEVAN J. Tackling the poor

assumptions of naive Bayes text classifiers [C]// Proceedings

of the Twentieth International Conference on Machine

Learning (ICML). Washington, DC, 2003: 661–623.

[24] SUN X, ROVER D. Scalability of parallel algorithm-

machine combinations [J]. IEEE Trans Parallel and

Distributed System, 1994, 5(6): 599–613.

(Edited by HE Yun-bin)

中文导读

面向大规模中文文本分类的朴素贝叶斯并行 Spark 算法

摘要：针对互联网中中文文本数据量激增使得对其作分类运算的处理时间显著延长的问题，提出并实

现了一种基于内存计算模型 Spark 的并行朴素贝叶斯中文文本分类算法，主要利用弹性分布数据集编

程模型，实现了朴素贝叶斯分类器训练过程和预测过程的全程并行化算法。为便于比较，同时实现了

基于 Hadoop-MapReduce 的并行朴素贝叶斯版本。实验结果表明，在相同计算环境下，对同一数据量

的中文文本集，基于 Spark 的朴素贝叶斯中文文本分类并行化算法在加速比、扩展性等主要指标上明

显优于基于 Hadoop 的实现，因此能更好地满足大规模中文文本数据挖掘的要求。

关键词：中文文本分类；朴素贝叶斯；Spark；Hadoop；弹性分布式数据集；并行化

