PERSONAAGENT: WHEN LARGE LANGUAGE MODEL AGENTS MEET PERSONALIZATION AT TEST TIME

Anonymous authors

000

001

002 003 004

006

008

010 011

012

013

014

015

016

017

018

019

021

025

027

028

029

031

034

040

041

042 043

044

045

048

052

Paper under double-blind review

ABSTRACT

Large Language Model (LLM) empowered agents have recently emerged as advanced paradigms that exhibit impressive capabilities in a wide range of domains and tasks. Despite their potential, current LLM agents often adopt a one-size-fits-all approach, lacking the flexibility to respond to users' varying needs and preferences. This limitation motivates us to develop **PersonaAgent**, the first personalized LLM agent framework designed to address versatile personalization tasks. Specifically, PersonaAgent integrates two complementary components - a personalized memory module that includes episodic and semantic memory mechanisms; a personalized action module that enables the agent to perform tool actions tailored to the user. At the core, the *persona* (defined as unique system prompt for each user) functions as an intermediary: it leverages insights from personalized memory to control agent actions, while the outcomes of these actions in turn refine the memory. Based on the framework, we propose a **test-time user-preference alignment** strategy that simulate the latest n interactions to optimize the persona prompt, ensuring real-time user preference alignment through textual loss feedback between simulated and ground-truth responses. Experimental evaluations demonstrate that PersonaAgent significantly outperforms other baseline methods by not only personalizing the action space effectively but also scaling during test-time real-world applications. These results underscore the feasibility and potential of our approach in delivering tailored, dynamic user experiences.

Figure 1: Axes of personal intelligence and four representative frameworks. The product rating task examples demonstrate that personalized LLM agents enable user-level preference optimization, going beyond human-level alignment and simple personal interaction data storage.

1 Introduction

056

058

060

061 062

063

064

065

066

067

068

069

071

072

073

074

075

076

077

079

081

083

084

085

087

090

092 093

095 096 097

098

099

100

101 102

103

104

105

106

107

For a long time, humanity has pursued the ambitious goal of creating artificial intelligence capable of matching or surpassing human-level cognitive capabilities (Turing, 2009), thereby effectively assisting, augmenting, and enhancing human activities across numerous domains. This pursuit has been driven by two fundamental principles: achieving superior intelligence (Bubeck et al., 2023; Phan et al., 2025) and enhancing personalization (Rafieian & Yoganarasimhan, 2023; Kirk et al., 2024) as shown in Figure 1. Towards superior intelligence, large language models (LLMs), such as GPT (Achiam et al., 2023), Claude (Anthropic, 2024), and LLaMa (Touvron et al., 2023), have revolutionized various domains, demonstrating emergent capabilities in reasoning (Wei et al., 2022), language comprehension (Achiam et al., 2023), and instruction following (Ouyang et al., 2022). Beyond standalone LLMs, LLM-empowered agents (Luo et al., 2025) represent a paradigm shift, integrating external tools (Qin et al., 2024; Wei et al., 2025), memory mechanisms (Zhong et al., 2024), and goal-directed reasoning (Yao et al., 2023a) to enhance their utility and autonomy. However, to truly harness the potential of these intelligent systems in everyday human contexts, it must capable of adapting tailored behaviors and interactions to cater to different users (Fischer, 2001). Despite their impressive versatility, existing LLMs and agents, primarily trained on generic large-scale datasets (Achiam et al., 2023; Touvron et al., 2023) or armed with general action tools (Yao et al., 2023b; Schick et al., 2023), inherently lack the capacity to dynamically utilize the user personal data and adapt to evolving preferences unique to each user.

Personalization, therefore, emerges as a critical factor for enabling agents to deliver more relevant responses, foster deeper user engagement, and establish trust through tailored interactions (Bickmore & Picard, 2005; Zhang et al., 2025a;b). As Table 1 highlights, achieving effective personalization intelligence can be measured from four critical perspectives: agentic intelligence, real-world applicability, personal data utilization, and preference alignment. Yet, balancing these dimensions simultaneously remains a fundamental challenge. Early efforts for aligning LLMs with human preferences, such as supervised fine-tuning (Zhang et al., 2023) and reinforcement learning from human feedback (RLHF) (Schulman et al., 2017; Rafailov et al., 2023), have improved the naturalness of instructionfollowing behaviors for generalized human preference but fall short in individual user preference alignment and personal data utilization. Recent advances, such as user-specific fine-tuning (Tan et al., 2024b;a), enable individual-level personalization but face tremendous real-world application challenges due to their computational complexity, increasing dynamically with large-scale users and demanding frequent model updates. Alternatively, non-parametric personalization workflows (Salemi et al., 2024b;a; Richardson et al., 2023) become popular due to their efficiency, though relying on fixed workflows with limited data retrieval capabilities. Consequently, they fail to provide personalization in complex scenarios that demand continuous adaptation and holistic user understanding.

Table 1: Comparison among representative approaches for personalization intelligence

Approach Categories	Agentic Intelligence	Real-world Applicability	Personal Data Utilization	Preference Alignment	
Human-Preference Aligned	X	×	Х	×	
User-Specific Fine-Tuning	X	X	×	×	
Personalized LLM Workflow	×	×	×	✓	
General LLM Agent	✓	✓	×	×	
Personalized LLM Agent (ours)	✓	✓	✓	✓	

^{✓:} fully covered, ✓: partially covered, X: not covered at all.

Real-world applicability: enabled by real-world **action execution** and **scalability** across a large user base. Personal data utilization: utilize **long-horizon** user interaction data for **real-time** action decisions. User preference alignment: this requires **individual-level** and **user-centric** preference alignment.

In this work, we propose **PersonaAgent**, the first agentic framework for various personalization tasks. Our approach advances personalization along two key dimensions: personal data utilization and user preferences alignment (Table 1). As illustrated in the product rating example in Figure 1, existing personalized LLM workflows typically collecting user feedback for post-training human-level preference alignment or only storing such interaction data for later one-time retrieval. In contrast, our proposed framework involves autonomous memory mechanism for long-term user data utilization and conduct user-level alignment at test-time. Specifically, PersonaAgent incorporates a personalized

memory module that combines episodic memory for capturing detailed, context-rich user interactions and semantic memory for generating stable, abstracted user profiles. Complementing this, the personalized action module takes memory insights to dynamically tailor the agent's actions and tools, including memory retrieval/update, and personalized search/reasoning. Central to this system is the persona, an unique system prompt for each user serving as an intermediary that continuously evolves by integrating user-data-driven memory to guide agent actions and refining the memory based on the action results. The major advantage over general LLM agent is that the *persona* will enforce personalization over the action space and guide the action decision in every step. To improve user preference modeling and real-time adaptability, we introduce a novel **test-time user-preference alignment** strategy, simulating recent interactions to optimize the *persona* prompt through textual loss optimization (Yuksekgonul et al., 2025). This unified framework uniquely addresses the limitations of existing approaches, delivering intelligent, scalable, and dynamic personalization suitable for diverse real-world applications. We validate our approach through comprehensive experiments across four personalization tasks in different domains, demonstrating superior performance compared to other personalization and agentic baselines. Through ablation studies, we investigate the significance of individual components. Furthermore, we validate the effectiveness of test-time preference alignment through persona analysis, including case studies with distribution visualization and examine test-time scaling effects of the user-alignment strategy in the PersonaAgent.

The contribution of this paper is summarized as follows:

- We introduce PersonaAgent, the first personalized LLM agent framework for versatile personalization tasks within a unified memory-action design.
- We propose user-specific persona for the LLM agent as the intermediary to bridge the gap between designed personalized memory and action modules, achieving personalization over action spaces.
- To further approximate the user behavior, we propose a novel test-time user preference alignment strategy via persona optimization to seamless adapt to the user with real-time update.
- We demonstrate that our PersonaAgent with test-time alignment achieves state-of-the-art results on various personalized decision making tasks over different personalization and agentic baselines.

2 METHODOLOGY

2.1 PersonaAgent Framework

As in Figure 1, PersonaAgent extends general LLM agent architectures by incorporating user-specific personalization via two complementary modules, personalized memory and action, interconnected through a dynamically evolving *persona*. This design enables the agent to adapt its behavior based on each individual's context and preferences, yielding more coherent and tailored interactions.

The Definition of "Persona" for Personalized LLM Agents

A *persona* is a structured representation that unifies persistent user-specific memory (e.g., long-term preferences) and explicit agent instructions (e.g., tool usage guidelines), forming the unique system prompt for each user that governs all personalized user-agent interactions.

Episodic Memory Episodic memory retains individualized experiences, allowing people to reason about what happened, when, and in what context (Dickerson & Eichenbaum, 2010). In PersonaAgent, episodic memory records fine-grained, time-stamped user interactions to support context-aware personalization. Inspired by cognitive memory theory (Tulving et al., 1972), we maintain for each user u an episodic buffer

$$\mathcal{D}^{u} = \left\{ (q_i, r_i^{\text{gt}}, m_i) \right\}_{i=1}^{N^u}, \tag{1}$$

where q_i is a past query, $r_i^{\rm gt}$ the corresponding true user response, m_i auxiliary metadata (e.g., timestamp, session context), and N^u is the total number of interaction histories. Upon receiving a new query q^* , its embedding $\mathbf{h}_{q^*} = f_{\rm enc}(q^*)$ is computed and compared it to stored memory events embeddings $\mathbf{h}_i = f_{\rm enc}(\mathcal{D}_i^u)$. The top-K most similar memories,

$$\mathcal{R}^{u}(q^*) = \underset{i \in [1, N^{u}]}{\text{TopK}} \quad \sin(\mathbf{h}_{q^*}, \mathbf{h}_i), \tag{2}$$

163

164 165

166

167

168

170

171

172

173

174

175

176

177 178

179

181

182

183

184 185

186

187

188

189 190

191

192

193

194

195

196

197

199

200

201

202

203

204

205

206

207

208

209210

211

212

213

214

215

are retrieved and used to ground the agent's next response and action. After each real user-agent interaction, the new event is automatically updated into episodic memory for future adaptation.

Semantic Memory Semantic memory mirrors the brain's storage of abstract knowledge independent of specific events or contexts (Tulving et al., 1972). Unlike episodic memory, which captures detailed personal experiences linked to particular times, semantic memory explicitly focuses on generalizing user-centric knowledge, encapsulating consistent characteristics and preferences derived from repeated interactions. In PersonaAgent, semantic memory abstracts and consolidates stable user traits, such as enduring preferences and long-term goals, into a compact profile that persists across sessions. Formally, we define a summarization function f_s that integrates the episodic memory events into a coherent profile:

$$\mathcal{P}^u = f_s(S_t, \mathcal{D}^u),\tag{3}$$

where S_t is the task-based summarization prompt. This profile \mathcal{P}^u serves as a long-term user knowledge base, ensuring that the agent's behavior remains aligned with stable user characteristics even when specific episodic events are not recalled. It also initializes the *persona* together with general tool instructions, and is further refined through test-time preference alignment.

Personalized Actions We consider the setting of an agent interacting with an environment to assist a paticular user to solve tasks. At each time step t, the agent receives an observation $o_t \in \mathcal{O}$ from the environment and selects an action $a_t \in \mathcal{A}$ based on its policy $\pi(a_t|c_t)$. Different from general LLM-based agents adopting general tools \mathcal{A} and fixed policies π , this personalized action module governs how the agent selects and parametrizes its actions in service of the user. At each time step t, the agent observes $o_t \in \mathcal{O}$ and, conditioned on the context including actions and observations $c_t = (o_1, a_1, \ldots, o_{t-1}, a_{t-1}, o_t)$ and the current *persona* P, determines action a_t according to

$$a_t \sim \pi_P(\cdot \mid c_t), \qquad a_t \in \hat{\mathcal{A}}.$$
 (4)

We augment the fundamental action space $\hat{A} = A \cup D$ with tools to access personalized user data and histories D. The *persona* P modulates the policy π_P , thereby tailoring both general tools (e.g., web search) and personalized operations (e.g., memory retrieval) to the specific user.

2.2 Test-Time User Preference Alignment

To achieve real-time adaptation and precise alignment with individual user preferences, we introduce a test-time user-preference alignment strategy. In particular, we optimize the *persona* prompt by simulating recent interactions and minimizing textual discrepancies between simulated agent responses and user ground-truth responses. Given n recent user interaction batch data $\mathcal{D}_{batch} = \{(q_j, \hat{r}_j, r_j^{gt})\}_{j=1}^n$, where q_j is query, \hat{r}_j is agent response, and r_j^{gt} is the ground-truth responses, we optimize the *persona* P for each iteration using a textual loss function L:

$$P^* = \arg\min_{P} \sum_{j=1}^{n} L(\hat{r}_j, r_j^{gt} | q_j), \quad (5)$$

where \hat{r}_j is simulated responses generated by the agent conditioned on the *persona* P.

```
1: Input: Test User data \mathcal{D}, Initial persona P
  2: Output: Optimized persona P
  3: procedure OPTIMIZATION(\mathcal{D}_{batch}, P)
           Initialize empty lists for loss gradients \hat{\nabla}
  4:
           for each (q, \hat{r}, r^{gt}) in \mathcal{D}_{batch} do
  5:
               Compute \nabla \leftarrow LLM_{grad}(q, \hat{r}, r^{gt})
  6:
               Add loss gradient/feedback \nabla to \hat{\nabla}
  7:
  8:
           end for
           Gradient update P^* \leftarrow LLM_{update}(\nabla, P)
  9:
10:
           return updated persona P*
11: end procedure
12: for iteration = 1 to \mathcal{E} do
           Obtain batch \mathcal{D}_{batch} from user data \mathcal{D}
13:
14:
           Add agent responses to \mathcal{D}_{batch}
```

 $P^* \leftarrow \text{OPTIMIZATION}(\mathcal{D}_{batch}, P)$

Algorithm 1 Test-Time User Preference Alignment

As shown in Algorithm 1, the optimization involves iteratively simulating agent responses, computing the textual feedback loss, and updating the *persona* prompt using textual gradient optimization. While the set \hat{A} remains fixed, the agent's behavior emerges from the personalized policy $\pi_{P^*}(a_t|c_t)$ which leverages the optimized *persona* P^* to choose optimal actions $a_t \in \mathcal{A}$ and corresponding action parameters such as search query. This iterative optimization ensures the *persona* continuously approximates real-time user preferences and intentions, enabling adaptive, personalized interactions suitable for dynamic, real-world scenarios. The textual optimization prompt can be found in Appendix A.

16: **end for**

15:

		Non-Personalized		Personalized LLM		General Agent		
Dataset	Metrics	Prompt	ICL	RAG	PAG	ReAct	MemBank	
LaMP-1: Personalized Citation Identification	Acc. ↑	0.772	0.780	0.715	0.837	0.837	0.862	0.919
	F1 ↑	0.771	0.766	0.714	0.837	0.853	0.861	0.918
LaMP-2M: Personalized Movie Tagging	Acc. ↑	0.387	0.283	0.427	0.430	0.450	0.470	0.513
	F1 ↑	0.302	0.217	0.386	0.387	0.378	0.391	0.424
LaMP-2N: Personalized News Categorization	Acc. ↑	0.660	0.388	0.742	0.768	0.639	0.741	0.796
	F1 ↑	0.386	0.145	0.484	0.509	0.381	0.456	0.532
LaMP-3: Personalized Product Rating	$MAE\downarrow$	0.295	0.277	0.313	0.339	0.313	0.321	0.241
	$RMSE\downarrow$	0.590	0.543	0.713	0.835	0.590	0.582	0.509

Table 2: The performance comparison of PersonaAgent with baselines including non-personalized, personalized LLM workflow, and general agents on four personalized decision-making tasks.

3 EXPERIMENTS

216217218219220221222

233

234235236

237238

239

240241

242

243

244

245

246

247

248

249

250

251

252

253

254 255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

3.1 EXPERIMENTAL SETTINGS

Baselines & Experimental Details We compare Persona Agent with a comprehensive set of baselines across three major categories: non-personalized methods, personalized workflow approaches, and general-purpose agentic systems. Non-personalized models include direct prompting, as well as in-context learning (ICL) (Liu et al., 2022) that prepends a few-shot demonstration of examples into the prompt without explicit modeling of user preferences. Personalized workflow methods include retrieval-based models RAG (Salemi et al., 2024b), and PAG (Richardson et al., 2023), which introduces profile-augmented generation beyond RAG. In addition, we benchmark against two prominent general agent baselines: ReAct (Yao et al., 2023b), which integrates tool use and reasoning via interleaved action planning, and MemBank (Zhong et al., 2024), which introduces an explicit long-term memory module to support task generalization. Unless otherwise specified, All models are evaluated using Claude-3.5 Sonnet (Anthropic, 2024) under a unified evaluation pipeline with identical inputs and output formats, ensuring a fair comparison. For all retrieval operations, we follow Salemi et al. (2024b); Tan et al. (2024b) to use BM25 (Trotman et al., 2014). For PersonaAgent, the persona initialization prompt is detailed in Appendix B, and the personalized action and tool implementations are provided in Appendix C. To ensure reproducibility, we further provide more experimental details in Appendix D.

Benchmarks & Datasets We evaluate Persona Agent on the LaMP (Salemi et al., 2024b) benchmarks including 4 decision-making tasks and 2 text generation tasks to assess the effectiveness of personalized agents in diverse personalization domains. Among these, we place emphasis on decision-making tasks to better reflect agent capability of making concrete, personalized choices for real-world actions beyond pure language modeling. Specifically, the evaluation consists of: (1) Personalized Citation Identification (LaMP-1), a binary classification task where agents determine which paper should be cited to a user-specific context when drafting a paper; (2) Personalized Movie Tagging (LaMP-2M), a multi-classification task involving movie tagging most aligned to user preferences; (3) Personalized News Categorization (LaMP-2N), which requires categorizing news article based on user interests; and (4) Personalized Product Rating (LaMP-3), a multi-classification task for predicting numeric ratings (1-5) grounded in historical user-item interactions including ratings. More detailed dataset descriptions and task formulations are provided in Appendix E. For completeness, we also evaluate PersonaAgent with all baselines on two personalized text generation tasks: Personalized News Headline Generation (LaMP-4) and Personalized Scholarly Title Generation (LaMP-5). Since these primarily assess stylistic alignment rather than decision-oriented actions, we present their results separately in Appendix F.

		Personalized dentification	LaMP-2M: Personalized Movie Tagging			: Personalized egorization	LaMP-3: Personalized Product Rating	
Variants	Acc. ↑	F1 ↑	Acc. ↑	F1 ↑	Acc. ↑	F1 ↑	MAE ↓	$RMSE \downarrow$
PersonaAgent	0.919	0.918	0.513	0.424	0.796	0.532	0.241	0.509
w/o alignment	0.894	0.893	0.487	0.403	0.775	0.502	0.259	0.560
w/o persona	0.846	0.855	0.463	0.361	0.769	0.483	0.277	0.542
w/o Memory	0.821	0.841	0.460	0.365	0.646	0.388	0.348	0.661
w/o Action	0.764	0.789	0.403	0.329	0.626	0.375	0.375	0.756

Table 3: Ablation study of different components of PersonaAgent.

3.2 Overall Performance

As shown in Table 2, PersonaAgent achieves the best performance across all four decision-making tasks, outperforming non-personalized, personalized, and agentic baselines. On LaMP-1 (Citation Identification), LaMP-2M (Movie Tagging), and LaMP-2N (News Categorization), where success depends on capturing topic-level user interests, PersonaAgent substantially improves over RAG-4, PAG-4, and MemBank, indicating its superior ability to model nuanced user intent via memory and persona alignment. Note that when few-shot examples are irrelevant to the user preference, ICL often underperforms compared to direct prompting, underscoring the importance of personalization techniques for user-specific tasks. In the LaMP-3 (Product Rating) task, which challenges user understanding by requiring personalized numeric predictions from user descriptions, PersonaAgent achieves the lowest MAE and RMSE, demonstrating that its test-time alignment mechanism effectively generalizes to personalized rating scenarios. In contrast, both other personalized workflows and general-purpose agents fail to outperform direct prompting. These results highlight the effectiveness of integrating personalized memory, action, and *persona* prompt optimization for dynamic and fine-grained personalization across domains.

3.3 ABLATION STUDY

To assess the contribution of each module within PersonaAgent, we conduct an ablation study across all four LaMP tasks. As shown in Table 3, removing the test-time alignment module leads to a noticeable drop in performance across the board, confirming its critical role in adapting to real-time user preferences. Omitting the *persona* prompt, thereby removing the centralized controller between memory and actions, results in further degradation, especially in F1 scores for classification tasks (e.g., a drop from 0.893 to 0.855 on LaMP-1), suggesting its importance for bridging memory-driven insights and agent behavior. Removing the personalized memory module has a more pronounced effect on LaMP-2N and LaMP-3, indicating its key role in modeling historical user context. Finally, removing the action module leads to a significant performance drop across all tasks, highlighting that reasoning alone is insufficient—adaptive tool usage guided by personalized data is essential for effective decision-making. Overall, each component of PersonaAgent contributes substantially to its success, and the complete system delivers the strongest and most balanced performance.

3.4 Persona Analysis

To better understand the impact of test-time alignment on *persona* for user modeling, we visualize the optimized *persona* embeddings using t-SNE (Van der Maaten & Hinton, 2008) on LaMP-2M. In Figure 2, each point corresponds to a learned *persona* after the test-time user preference alignment, and we highlight three representative users (A, B, C) alongside the initial system prompt template. The learned personas are well-separated in the latent space, suggesting that the optimization procedure effectively captures user-specific traits. User A and B, for instance, both focus on historical and classic films, and their prompts reflect similar semantic distributions. User C, on the other hand, displays clear divergence, with interests in sci-fi, action, and book-to-film adaptations, emphasizing literary context in responses. Note that, due to space limitations, only partial personas are presented here; the full versions are available in Appendix G. These qualitative differences, emerging from test-time user preference alignment, confirm that the *persona* opmization mechanism enables the agent to evolve

Figure 2: Persona case studies on the LaMP-2M movie tagging task.

beyond general behavior instructions and adapt to rich, fine-grained user preferences. Beyond that, the complete Jaccard similarity matrix of all learned personas is provided in Appendix H.

Figure 3: Test-time scaling effects on PerosnaAgent.

3.5 TEST-TIME SCALING

A distinctive strength of PersonaAgent is its ability to continuously refine personalization at test time without retraining. This property directly connects to the emerging paradigm of *test-time scaling* (TTS), where LLMs improve their capabilities by leveraging more computation or context during inference in the general domain, such as math, coding, and QA (Muennighoff et al., 2025). In our context, we extend this perspective by showing that TTS also benefits user modeling and preference alignment. In this section, we systematically explore the impact of scaling alignment batch samples, alignment iterations, and retrieved memory on LaMP-2M task.

Scaling alignment batch samples Larger alignment batch sizes of n—i.e., using more recent interaction samples for each optimization iteration—result in improved alignment quality. As batch size increases, the model benefits from a more comprehensive snapshot of recent user behavior, which leads to better persona refinement and stronger personalization performance.

Scaling alignment iterations We observe that increasing the number of alignment iterations leads to consistent gains in both accuracy and F1 score up to around 3 iterations, after which performance plateaus or slightly declines. This indicates that a small number of update steps is sufficient for effective preference alignment, allowing PersonaAgent to remain computationally efficient while adapting quickly at test time.

Scaling retrieved memory Retrieving more memory entries for alignment and generation significantly enhances performance, suggesting that richer user context strengthens the grounding of both reasoning and response generation. These improvements validate the importance of episodic memory retrieval in dynamically shaping the agent's behavior to match evolving user preferences.

3.6 EFFECTS OF BASE LLM CAPABILITY

Figure 4: Effects on LLM base model capability.

To evaluate the robustness of PersonaAgent across different foundation models, we vary the underlying LLM backbone using Mistral-Small (Mistral AI team, 2024b), Mistral-Large (Mistral AI team, 2024a), Claude-3.5 (Anthropic, 2024), and Claude-3.7 (Anthropic, 2025). As shown in Figure 4, PersonaAgent consistently outperforms all baselines regardless of the base model's capability. Notably, even with small models like Mistral-Small, PersonaAgent achieves strong gains over prompting, RAG, PAG, and agentic methods including ReAct and MemBank, highlighting the model-agnostic improvement based on test-time user preference alignment. As model capability increases, PersonaAgent still maintains its lead, achieving 55.0% accuracy with Claude-3.7, the highest across all settings. These results demonstrate that the proposed personalization framework scales effectively with model intelligence, while still offering distinct advantages in lower-resource LLM regimes suitable for local edge devices.

4 RELATED WORK

4.1 PARAMETRIC PERSONALIZATION OF LLMS

Early efforts to align LLMs with human preferences primarily relied on supervised fine-tuning (Zhang et al., 2023) and reinforcement learning from human feedback (RLHF) (Schulman et al., 2017; Rafailov et al., 2023). These approaches have successfully enabled more natural and human-aligned instruction-following behavior but are still constrained by a coarse, population-level preference

 alignment. Moving toward personalized alignment, recent works (Chen et al., 2024) have begun to define alignment objectives along dimensions such as expertise, informativeness, and stylistic preference. However, they still overlook the rich variability in individual user preferences, limiting their ability to support fine-grained, user-specific alignment. More recent personalization approaches, such as parameter-efficient fine-tuning (PEFT) methods (Tan et al., 2024b;a), have made considerable progress by enabling user-specific adjustments to model parameters. Yet, these methods face significant scalability hurdles since their computational complexity increases linearly with the user base, severely limiting practicality in large-scale deployments. Moreover, the necessity for frequent re-tuning to incorporate new user interactions exacerbates computational demands and latency.

4.2 Personalization Workflow of LLMs

User profiling through predefined character personas offers a straightforward and intuitive workflow for personalizing Large Language Models (LLMs). Such methods enable advanced and natural responses via role-playing capabilities (Shao et al., 2023; Wang et al., 2024a; Hu & Collier, 2024). However, these personas are typically static, making it difficult to capture fine-grained and dynamically evolving user-specific traits, an essential requirement for long-term personalization requiring further research. Alternatively, personalized workflows such as retrieval-augmented generation (RAG) (Salemi et al., 2024b;a) and profile-augmented generation (PAG) (Richardson et al., 2023) provide a non-parametric route to personalization by incorporating external, personalized user data into model responses. However, these approaches typically follow a fixed pipeline and rely on retrieving only limited relevant interactions or trivial user data summarization. This limitation prevents personalized workflows from achieving comprehensive and adaptive personalization, particularly in complex scenarios requiring holistic understanding and continuous adaptation to user preferences and historical behaviors.

4.3 Personalization of LLM Agents for Specific Domains

Recent studies have developed LLM-powered personalized agents explicitly for particular domains. For example, Li et. (Li et al., 2024) focus on long-term dialogues with specially designed event memory modules, while personalized web agents (Cai et al., 2024) integrate user-specific data and instructions primarily for web navigation tasks. In the medical domain, LLM-based medical assistant (Zhang et al., 2024b) employ short- and long-term memory coordination specifically for healthcare interactions. Conversational health agents, exemplified by openCHA (Abbasian et al., 2023), leverage domain-specific knowledge integration techniques but remain confined to health-related dialogue contexts. In recommendation systems, generative agents, including RecMind (Wang et al., 2024b) and Agent4Rec (Zhang et al., 2024a), primarily focus on utilizing external knowledge bases to improve content recommendations. Their methodologies, while effective within the recommendation context, lack flexibility for addressing diverse personalization tasks outside their designed domain. These domain-specific methods significantly limit the versatility and generalizability of personalized LLM applications. In contrast, our proposed PersonaAgent framework offers a versatile and adaptable approach suitable for various personalization tasks across multiple domains.

5 CONCLUSION

In this paper, we introduce **PersonaAgent**, the first personalized LLM agent framework for versatile personalization tasks through a unified memory-action architecture. PersonaAgent integrates episodic and semantic memory modules with personalized actions to deliver highly adaptive and aligned user experiences. Within the framework, we define the concept of persona—user-specific system prompts dynamically refined via proposed novel test-time user-preference alignment mechanism. Extensive experiments across diverse personalization tasks demonstrate that PersonaAgent consistently outperforms SOTA non-personalized, personalized workflow, and general agentic baselines. Ablation studies and persona analysis confirm the critical contributions of each framework component, particularly highlighting the persona's role in connecting memory insights and personalized actions. Further evaluation on test-time scaling and different LLM backbones illustrate PersonaAgent's superiority to capture nuanced, evolving user preferences when scaling the inference cost.

REFERENCES

- Mahyar Abbasian, Iman Azimi, Amir M Rahmani, and Ramesh Jain. Conversational health agents: A personalized llm-powered agent framework. *arXiv preprint arXiv:2310.02374*, 2023.
 - Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Amazon Web Services. Amazon bedrock. https://aws.amazon.com/bedrock/, 2023. Accessed: 2025-05-16.
 - Anthropic. Introducing claude 3.5 sonnet. https://www.anthropic.com/news/claude-3-5-sonnet, 2024. Accessed: 2025-05-15.
 - Anthropic. Claude 3.7 sonnet and claude code. https://www.anthropic.com/news/claude-3-7-sonnet, February 2025.
 - Timothy W Bickmore and Rosalind W Picard. Establishing and maintaining long-term human-computer relationships. *ACM Transactions on Computer-Human Interaction (TOCHI)*, 12(2): 293–327, 2005.
 - Sébastien Bubeck, Varun Chadrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence: Early experiments with gpt-4, 2023.
 - Hongru Cai, Yongqi Li, Wenjie Wang, Fengbin Zhu, Xiaoyu Shen, Wenjie Li, and Tat-Seng Chua. Large language models empowered personalized web agents. arXiv preprint arXiv:2410.17236, 2024.
 - Harrison Chase. Langchain: A framework for developing applications powered by language models. https://github.com/langchain-ai/langchain, 2022. Accessed: 2025-05-16.
 - Ruizhe Chen, Xiaotian Zhang, Meng Luo, Wenhao Chai, and Zuozhu Liu. Pad: Personalized alignment of llms at decoding-time. *arXiv preprint arXiv:2410.04070*, 2024.
 - Bradford C Dickerson and Howard Eichenbaum. The episodic memory system: neurocircuitry and disorders. *Neuropsychopharmacology*, 35(1):86–104, 2010.
 - Gerhard Fischer. User modeling in human–computer interaction. *User modeling and user-adapted interaction*, 11:65–86, 2001.
 - Tiancheng Hu and Nigel Collier. Quantifying the persona effect in llm simulations. In *Proceedings* of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 10289–10307, 2024.
 - Hannah Rose Kirk, Bertie Vidgen, Paul Röttger, and Scott A Hale. The benefits, risks and bounds of personalizing the alignment of large language models to individuals. *Nature Machine Intelligence*, 6(4):383–392, 2024.
 - Hao Li, Chenghao Yang, An Zhang, Yang Deng, Xiang Wang, and Tat-Seng Chua. Hello again! llm-powered personalized agent for long-term dialogue. *arXiv preprint arXiv:2406.05925*, 2024.
 - Jiachang Liu, Dinghan Shen, Yizhe Zhang, William B Dolan, Lawrence Carin, and Weizhu Chen. What makes good in-context examples for gpt-3? In *Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures*, pp. 100–114, 2022.
- Junyu Luo, Weizhi Zhang, Ye Yuan, Yusheng Zhao, Junwei Yang, Yiyang Gu, Bohan Wu, Binqi
 Chen, Ziyue Qiao, Qingqing Long, et al. Large language model agent: A survey on methodology,
 applications and challenges. arXiv preprint arXiv:2503.21460, 2025.
 - Mistral AI team. Mistral large. https://mistral.ai/news/mistral-large/, February 2024a.

- Mistral AI team. Mistral small. https://mistral.ai/news/mistral-large/, February 2024b.
- Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time scaling. *arXiv preprint arXiv:2501.19393*, 2025.
 - Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35:27730–27744, 2022.
 - Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity's last exam. *arXiv preprint arXiv:2501.14249*, 2025.
 - Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe Zhou, Yufei Huang, Chaojun Xiao, et al. Tool learning with foundation models. ACM Computing Surveys, 57(4):1–40, 2024.
 - Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in Neural Information Processing Systems*, 36:53728–53741, 2023.
 - Omid Rafieian and Hema Yoganarasimhan. Ai and personalization. *Artificial Intelligence in Marketing*, pp. 77–102, 2023.
 - Chris Richardson, Yao Zhang, Kellen Gillespie, Sudipta Kar, Arshdeep Singh, Zeynab Raeesy, Omar Zia Khan, and Abhinav Sethy. Integrating summarization and retrieval for enhanced personalization via large language models. *arXiv preprint arXiv:2310.20081*, 2023.
 - Alireza Salemi, Surya Kallumadi, and Hamed Zamani. Optimization methods for personalizing large language models through retrieval augmentation. In *Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pp. 752–762, 2024a.
 - Alireza Salemi, Sheshera Mysore, Michael Bendersky, and Hamed Zamani. Lamp: When large language models meet personalization. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 7370–7392, 2024b.
 - Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Eric Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to use tools. *Advances in Neural Information Processing Systems*, 36:68539–68551, 2023.
 - John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 - Yunfan Shao, Linyang Li, Junqi Dai, and Xipeng Qiu. Character-llm: A trainable agent for role-playing. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 13153–13187, 2023.
 - Zhaoxuan Tan, Zheyuan Liu, and Meng Jiang. Personalized pieces: Efficient personalized large language models through collaborative efforts. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 6459–6475, 2024a.
 - Zhaoxuan Tan, Qingkai Zeng, Yijun Tian, Zheyuan Liu, Bing Yin, and Meng Jiang. Democratizing large language models via personalized parameter-efficient fine-tuning. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp. 6476–6491, 2024b.
 - Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

- Andrew Trotman, Antti Puurula, and Blake Burgess. Improvements to bm25 and language models examined. In *Proceedings of the 19th Australasian Document Computing Symposium*, pp. 58–65, 2014.
- Endel Tulving et al. Episodic and semantic memory. *Organization of memory*, 1(381-403):1, 1972.
 - Alan M Turing. Computing machinery and intelligence. Springer, 2009.
 - Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of machine learning research*, 9(11), 2008.
 - Noah Wang, Zy Peng, Haoran Que, Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu, Hongcheng Guo, Ruitong Gan, Zehao Ni, Jian Yang, et al. Rolellm: Benchmarking, eliciting, and enhancing role-playing abilities of large language models. In *Findings of the Association for Computational Linguistics ACL 2024*, pp. 14743–14777, 2024a.
 - Yancheng Wang, Ziyan Jiang, Zheng Chen, Fan Yang, Yingxue Zhou, Eunah Cho, Xing Fan, Yanbin Lu, Xiaojiang Huang, and Yingzhen Yang. Recmind: Large language model powered agent for recommendation. In *Findings of the Association for Computational Linguistics: NAACL 2024*, pp. 4351–4364, 2024b.
 - Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
 - Zhepei Wei, Wenlin Yao, Yao Liu, Weizhi Zhang, Qin Lu, Liang Qiu, Changlong Yu, Puyang Xu, Chao Zhang, Bing Yin, et al. Webagent-r1: Training web agents via end-to-end multi-turn reinforcement learning. *arXiv* preprint arXiv:2505.16421, 2025.
 - Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Advances in neural information processing systems*, 36:11809–11822, 2023a.
 - Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. React: Synergizing reasoning and acting in language models. In *International Conference on Learning Representations (ICLR)*, 2023b.
 - Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Pan Lu, Zhi Huang, Carlos Guestrin, and James Zou. Optimizing generative ai by backpropagating language model feedback. *Nature*, 639(8055):609–616, 2025.
 - An Zhang, Yuxin Chen, Leheng Sheng, Xiang Wang, and Tat-Seng Chua. On generative agents in recommendation. In *Proceedings of the 47th international ACM SIGIR conference on research and development in Information Retrieval*, pp. 1807–1817, 2024a.
 - Kai Zhang, Yangyang Kang, Fubang Zhao, and Xiaozhong Liu. Llm-based medical assistant personalization with short-and long-term memory coordination. In *Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 2386–2398, 2024b.
 - Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. *arXiv* preprint arXiv:2308.10792, 2023.
 - Weizhi Zhang, Yuanchen Bei, Liangwei Yang, Henry Peng Zou, Peilin Zhou, Aiwei Liu, Yinghui Li, Hao Chen, Jianling Wang, Yu Wang, et al. Cold-start recommendation towards the era of large language models (llms): A comprehensive survey and roadmap. *arXiv preprint arXiv:2501.01945*, 2025a.
 - Weizhi Zhang, Liangwei Yang, Wooseong Yang, Henry Peng Zou, Yuqing Liu, Ke Xu, Sourav Medya, and Philip S Yu. Llminit: A free lunch from large language models for selective initialization of recommendation. *arXiv* preprint arXiv:2503.01814, 2025b.
 - Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large language models with long-term memory. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 19724–19731, 2024.

A TEST-TIME USER PREFERENCE ALIGNMENT

Loss Gradient/Feedback Prompt

You are a meticulous and critical evaluator of personalized AI agent responses.

Analyze the following and give the feedback on how to improve the system prompt to align with the user's preferences.

Question: [Question]

Expected Answer: [Ground Truth]
Agent Response: [Response]

Your feedback should focus on how to adjust the persona system prompt to tailor the agent's responses to the individual user's unique characteristics. Make sure the feedback is concise and and clear.

Tips:

- 1. Explain on how to improve the search keywords of tools for this
- 2. Take the user's prior interactions, preferences, and any personalization aspects into consideration.
- 3. Provide explicit description for user profile and preferences that is not specific to this task.

Feedback:

Gradient Update Prompt

You are a prompt engineering assistant tasked with refining the personal agent system prompts for improved user preference alignment.

Current system prompt: [Current Persona]
Provided Feedback: [Aggregated Feedback]

Based on the feedback above, generate an updated system prompt that explicitly highlights the user's unique preferences. Ensure that the prompt instructs the agent to align its responses with the user's preferences, including detailed user profile or preferences. Please maintain a helpful and clear tone in the system prompt.

New system prompt:

B PERSONA PROMPT INITIALIZATION

Initial System Prompt (Persona Initialization)

You are a helpful personalized assistant. Take more than two actions to infer the user preference and answer the question. User summary: [Initial Semantic Memory]

STRICT RULES: when using tools, always:

- 1. Think step-by-step about what information you need.
- 2. MUST use at least TWO tools to answer the question.
- 3. Use tools precisely and deliberately and try to get the most accurate information from different tools.

4. Provide clear, concise responses. Do not give explanation in the final answer.

C PERSONALIZED ACTIONS AND TOOLS

Here, we detail two tool description utilized in PersonaAgent. Note that we limit the number of tools: one tool (Wikipedia search) for general information access and one tool (episodic memory) for personal data retrieval since we want to highlight the effectiveness of memory-action framework and the test-time user-preference alignment over *persona* rather the extra benefits from a variety of tools.

Wikipedia API for General Knowledge

Use this tool to get a brief summary from Wikipedia about a specific topic.

Best for: getting general background information, learning basic facts, and understanding historical events or people.

Input: a clear, specific topic name (e.g., 'Albert Einstein',
'World War II').

Output: returns a concise Wikipedia summary.

Note: use precise topic names for better results.

RAG API for Personalized Episodic Memory

Retrieve top-k relevant items/histories from the user memory using RAG (Retrieval-Augmented Generation).

Best for: finding detailed information on related items, answering specific questions from personal data, and incorporating user preferences into the final answer.

Input: a specific search query or question about the content.

Output: relevant interaction histories from the user memory.

Note: more specific queries yield more accurate results.

Requirement: must use this tool at least once to answer the question.

D EXPERIMENTAL DETAILS

We implement all agentic method on top of LangChain (Chase, 2022). For the tools including the wiki search and memory retrieval, the description prompts are detailed in Appendix C. We follow PAG (Richardson et al., 2023) to summarize the user behaviors into user profile for our initial semantic memory. In the test-time user-preference alignment, we set alignment batch size n as 3 and alignment iterations as 1 to ensure fast adaptation and achieve a tradeoff between the performance and efficiency. Following the setting in LaMP (Salemi et al., 2024b), the number of retrieved memories is set as 4 by default. To ensure reproducibility, we fix the LLM sampling temperature at 0.1, rendering outputs effectively deterministic. All experiments were run on Amazon Bedrock (Amazon Web Services, 2023). For the performance evaluation, we follow the official LaMP benchmark protocol across the four decision-making and two text generation tasks, using the prescribed metrics. For the classification tasks (LaMP-1, LaMP-2M and LaMP-2N), we report both accuracy and F1 score. For

the regression task (LaMP-3), we report mean absolute error (MAE) and root mean squared error (RMSE), while for generation task (LaMP-4 and LaMP-5), we evaluate with ROUGE-1/ROUGE-L.

E DATASETS AND TASKS

Following the data processing steps in (Tan et al., 2024b), we underscore the importance of rich historical user data in enabling effective personalization. Accordingly, our test set consists of the 100 users with the most extensive activity histories, selected from the time-ordered version of the LaMP (Salemi et al., 2024b) dataset. For each user, the data is chronologically ordered and partitioned into two subsets: a profile set representing their historical behaviors, and a test set reserved for final evaluation. We provide more details about the task formulation for each dataset as follows:

- LaMP-1: Personalized Citation Identification. This task evaluates a model's ability to predict which paper a researcher is more likely to cite, framing citation recommendation as a binary classification problem. For each interactions sample, one real citation from the paper is used as the positive candidate, while a negative citation is sampled from the citing papers from the other users in original training data.
- LaMP-2M: Personalized Movie Tagging. This task measures a model's capacity to assign appropriate tags to movies based on an individual user's unique tagging habits. For each task instance, the model is provided with the description of a movie, the user's prior movie-tag pairs as the user history, and must predict which tag the user would assign. This setup encourages the model to adapt to individual tagging preferences, capturing the subjectivity of how users interpret movie content.
- LaMP-2N: Personalized News Categorization. The task is designed to assess how well a model can categorize news articles while incorporating individual user preferences. The dataset was refined by filtering out infrequent labels. For each prediction instance, the model receives an article and the author's historical profile to predict the article's category.
- LaMP-3: Personalized Product Rating. This task evaluates a model's ability to predict how a specific user would rate a product based on the content of their review, conditioned on their past reviewing behavior. Each task sample presents a review text as input, with the model expected to predict the user's rating (from 1 to 5), treating this as a multi-class classification task. The personalization signal can be derived from the user's past reviews and ratings, which inform their writing style, sentiment expression, and rating tendencies, tailoring to each user accordingly.
- LaMP-4: Personalized News Headline Generation. The task aims to generate headlines for news articles reflecting distinct stylistic tendencies of individual authors. For each task instance, the model is provided with the content of a news article together with a series of articles drafted by the author and must produce a headline that aligns with the author's style and preference. This setup go beyond generic summarization and adapt to personalized writing preferences.
- LaMP-5: Personalized Scholarly Title Generation. This task assesses a model's ability to generate research paper titles that reflect the stylistic and research preference of individual authors. Each instance provides the abstract of a paper as input, along with personal data consisting of the author's historical abstract—title pairs. The model must generate an appropriate title for the paper that aligns with the author's prior title-writing patterns, testing the model's adaptability to personalized scholarly writing styles.

F EVALUATION ON PERSONALIZED TEXT GENERATION

Across both LaMP-4 and LaMP-5, non-personalized methods (Prompt, ICL) perform the weakest, indicating that generic prompting strategies are insufficient for capturing user-specific writing patterns. Personalized workflow models (RAG, PAG) improve performance by incorporating profile information, but the gains are relatively limited, particularly in the scholarly title setting, where stylistic variation is more pronounced. General-purpose agentic systems (ReAct, MemBank) achieve competitive results, suggesting that reasoning, search, and memory mechanisms can partially support the personalized text generation tasks, though they lack test-time adaptation. PersonaAgent achieves the strongest performance in both tasks, with especially notable improvements. This demon-

		Non-Personalized		Personalized LLM		General Agent		PersonaAgent
Dataset	Metrics	Prompt	ICL	RAG	PAG	ReAct	MemBank	
LaMP-4: Personalized News Headlines Generation	ROUGE-1. ↑	0.129	0.140	0.161	0.160	0.157	0.160	0.172
	$ROUGE\text{-}L\uparrow$	0.118	0.127	0.145	0.143	0.138	0.142	0.154
LaMP-5: Personalized Scholarly Title Generation	ROUGE-1↑	0.455	0.444	0.475	0.472	0.468	0.463	0.503
	ROUGE-L↑	0.384	0.380	0.424	0.413	0.407	0.399	0.434

Table 4: The performance comparison of PersonaAgent with baselines including non-personalized, personalized LLM workflow, and general agents on two personalized text generation tasks.

strates the effectiveness of explicit persona modeling in capturing long-term stylistic preferences for domain-specific text generation.

G PERSONA CASE STUDY

Persona of User A

You are a highly personalized assistant tailored to a user with the following profile:

- Strong interest in film analysis, genre classification, and cinematic themes
- Preference for concise, direct communication without unnecessary elaboration
- Appreciates nuanced genre classifications and subgenres in media
- Values accuracy and precision in categorization tasks
- Extensive knowledge of classic and cult films
- Interest in historical films, documentaries, and the intersection of politics, social commentary, and cinema
- Analytical thinker with a focus on dark comedy and satirical films

When responding:

- 1. Prioritize brevity and directness, especially when explicitly requested.
- 2. Assume a high level of film knowledge and use sophisticated film terminology when appropriate.
- 3. Provide historically accurate and factual information, particularly for historical films.
- 4. Identify and categorize films based on themes, plot elements, and overarching narratives, not just explicit genre labels.
- 5. When using tools, always:
- a. Think step-by-step about what information you need.
- b. Use at least TWO tools to answer the question.
- c. Use tools precisely and deliberately to get the most accurate information.
- d. Prioritize film databases, critic resources, and historical sources in your searches.
- 6. Tailor your responses to include brief historical context when relevant, but offer more detailed information only if requested.
- 7. Be prepared to suggest related films or documentaries based on the user's interests.
- 8. Strictly adhere to any specific instructions given by the user regarding response format or content.

Remember, the user values efficiency and accuracy in information retrieval. Provide clear, concise responses without further

explanation unless asked. Continuously adapt your communication style based on user feedback and previous interactions."

Persona of User B

You are a personalized assistant for a user with the following profile:

- Cinephile with deep knowledge of film history, genres, and iconic directors $% \left(1\right) =\left(1\right) +\left(1$
- Prefers concise, factual responses without unnecessary elaboration
- Appreciates cultural context and diversity in cinema
- Interested in classic, critically acclaimed, and influential films
- Values efficiency in information retrieval
- Enjoys analyzing the intersection of real-world issues and artistic representation

When responding:

- 1. Provide direct, accurate answers without additional explanations unless explicitly requested.
- 2. Assume a high level of film knowledge and use appropriate terminology.
- 3. Prioritize factual information from reputable film criticism sources and academic film studies.
- 4. Include brief references to film theory, analysis, or cultural impact when relevant.
- 5. Take at least two actions using different tools to gather and verify information.
- 6. Use precise search terms related to cinema, including specific directors, film techniques, and genre classifications.
- 7. Tailor responses to align with the user's interests in global cinema and hitorical films.

STRICT RULES:

- 1. Always think step-by-step about what information you need.
- 2. Use at least TWO tools to answer each question.
- 3. Use tools deliberately to obtain the most accurate information.
- 4. Provide clear, concise responses that align with the user's preferences.
- 5. DO NOT give any further explanation in the final answer unless specifically requested.

Remember to consider the user's most popular tag preference: $\mbox{dystopia."}$

Persona of User C

You are a highly personalized assistant for a user with the following profile:

- $\mbox{-}$ Adult with a strong interest in film analysis and genre classification
- Extensive knowledge of literature, popular book series, and their film adaptations
- Preference for sci-fi and action genres
- Appreciates concise, direct answers without unnecessary explanations
- Likely to ask follow-up questions about book-to-film adaptations or literary elements in movies

When responding to queries:

1. Provide brief, precise answers without additional explanation unless specifically requested.

Prioritize literary connections and book-to-film adaptations when relevant. Use at least TWO tools (e.g., Wiki, RAG) to gather accurate information. When searching, focus on: - Book-to-film adaptations, especially for popular series - Sci-fi and action genre elements - Underlying themes and genre-specific elements in movie descriptions For movie tagging tasks: Analyze descriptions for key elements (plot, themes, settings) that correspond to specific genres or tags. Provide only the most relevant single tag, prioritizing literary connections when applicable. - Consider sci-fi and action elements slightly more favorably, aligning with user preferences. Assume the user is well-versed in popular culture, literature, and film. Avoid stating the obvious. Be prepared to engage in deeper discussions about cinema studies, genre theory, or literary adaptations if prompted. Remember to always think step-by-step about what information you need and use tools precisely to get the most accurate information. Your goal is to provide valuable, concise responses that align with the user's sophisticated understanding of film and literature. PERSONA SIMILARITY MATRIX Η The heatmap shows pairwise Jaccard similarities between the personas inferred for each of the 100 users. Bright red values along the main diagonal (1.0) indicate self-consistency for each user, while the predominantly cool-blue off-diagonal entries (similarities mostly ≤ 0.4) reveal minimal overlap between different users' profiles. This clear separation underscores the effectiveness of our test-time preference-alignment mechanism in capturing and preserving each individual's unique persona. Persona Similarity Matrix

Figure 5: Jaccard similarity of learned personas on LaMP-2M.