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ABSTRACT

Large Language Model (LLM) empowered agents have recently emerged as ad-
vanced paradigms that exhibit impressive capabilities in a wide range of domains
and tasks. Despite their potential, current LLM agents often adopt a one-size-fits-all
approach, lacking the flexibility to respond to users’ varying needs and preferences.
This limitation motivates us to develop PersonaAgent, the first personalized LLM
agent framework designed to address versatile personalization tasks. Specifically,
PersonaAgent integrates two complementary components - a personalized memory
module that includes episodic and semantic memory mechanisms; a personalized
action module that enables the agent to perform tool actions tailored to the user. At
the core, the persona (defined as unique system prompt for each user) functions as
an intermediary: it leverages insights from personalized memory to control agent
actions, while the outcomes of these actions in turn refine the memory. Based on
the framework, we propose a test-time user-preference alignment strategy that
simulate the latest n interactions to optimize the persona prompt, ensuring real-time
user preference alignment through textual loss feedback between simulated and
ground-truth responses. Experimental evaluations demonstrate that PersonaAgent
significantly outperforms other baseline methods by not only personalizing the
action space effectively but also scaling during test-time real-world applications.
These results underscore the feasibility and potential of our approach in delivering
tailored, dynamic user experiences.

Figure 1: Design principles for personal intelligence and four representative frameworks. Note
that personalized LLM agents perform personal-level alignment, whereas the others achieve only
human-level alignment or merely store personal information.
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1 INTRODUCTION

For a long time, humanity has pursued the ambitious goal of creating artificial intelligence capable
of matching or surpassing human-level cognitive capabilities (Turing, 2009), thereby effectively
assisting, augmenting, and enhancing human activities across numerous domains. This pursuit
has been driven by two fundamental principles: achieving superior intelligence (Bubeck et al.,
2023; Wooldridge & Jennings, 1995; Phan et al., 2025) and enhancing personalization (Rafieian
& Yoganarasimhan, 2023; Kirk et al., 2024) as shown in Figure 1. Towards superior intelligence,
large language models (LLMs), such as GPT (Achiam et al., 2023), Claude (Anthropic, 2024),
and LLaMa (Touvron et al., 2023), have revolutionized various domains, demonstrating emergent
capabilities in reasoning (Wei et al., 2022), language comprehension (Achiam et al., 2023), and
instruction following (Ouyang et al., 2022). Beyond standalone LLMs, LLM-empowered agents (Luo
et al., 2025) represent a paradigm shift, integrating external tools (Qin et al., 2024; Yuan et al., 2024;
Wei et al., 2025), memory mechanisms (Hatalis et al., 2023; Zhong et al., 2024), and goal-directed
reasoning (Yao et al., 2023b;a) to enhance their utility and autonomy. These agents move closer
to human-like intelligence, capable of performing complex tasks and interacting with users more
naturally and effectively. However, to truly harness the potential of these intelligent systems in
everyday human contexts, it must capable of adapting tailored behaviors and interactions to cater
to different users (Fischer, 2001). Despite their impressive versatility, existing LLMs and agents,
primarily trained on generic large-scale datasets (Achiam et al., 2023; Anthropic, 2024; Touvron
et al., 2023) or armed with general action tools (Yao et al., 2023b; Schick et al., 2023), inherently lack
the capacity to dynamically utilize the user personal data and adapt to evolving preferences unique to
each user.

Personalization, therefore, emerges as a critical factor for enabling agents to deliver more relevant re-
sponses, foster deeper user engagement, and establish trust through tailored interactions (Bickmore &
Picard, 2005; Zhang et al., 2025a;b). As Table 1 highlights, achieving effective personalization intel-
ligence can be measured from four critical perspectives: agentic intelligence, real-world applicability,
personal data utilization, and preference alignment. Yet, balancing these dimensions simultaneously
remains a fundamental challenge. Early efforts for aligning LLMs with human preferences, such
as supervised fine-tuning (Zhang et al., 2023) and reinforcement learning from human feedback
(RLHF) (Schulman et al., 2017; Rafailov et al., 2023), have improved the naturalness of instruction-
following behaviors for generalized human preference but fall short in individual user preference
alignment and personal data utilization. Recent advances, such as user-specific fine-tuning (Tan et al.,
2024b;a), enable individual-level personalization but face real-world application challenges due to
their computational complexity, which increases dynamically with large-scale users and demands
frequent model updates. Alternatively, non-parametric personalization workflows (Salemi et al.,
2024b;a; Richardson et al., 2023), utilize external personalized data but rely on fixed workflows with
limited data retrieval capabilities. Consequently, they fail to provide personalization in complex
scenarios that demand continuous adaptation and holistic user understanding.

Table 1: Comparison among representative approaches for personalization intelligence
Approach Categories Agentic Real-world Personal Data Preference

Intelligence Applicability Utilization Alignment

Human-Preference Aligned ✗ ✓✗ ✗ ✓✗
User-Specific Fine-Tuning ✗ ✗ ✓✗ ✓✗
Personalized LLM Workflow ✓✗ ✓✗ ✓✗ ✓
General LLM Agent ✓ ✓ ✓✗ ✓✗
Personalized LLM Agent (ours) ✓ ✓ ✓ ✓

✓: fully covered, ✓✗: partially covered, ✗: not covered at all.
Real-world applicability: enabled by real-world action execution and scalability across a large user base.
Personal data utilization: fully utilize user data in both textual space and action space for model inference.
User preference alignment: this requires individual-level and real-time user preference alignment.

In this work, we propose PersonaAgent, the first agentic framework for various personalization
tasks. Our approach advances personalization along two key dimensions: effective utilization of
personalized data and enhanced alignment with user preferences and intentions, as illustrated in
Figure 1. PersonaAgent incorporates a personalized memory module that combines episodic memory
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for capturing detailed, context-rich user interactions and semantic memory for generating stable,
abstracted user profiles. Complementing this, the personalized action module takes memory insights to
dynamically tailor the agent’s actions and tools, including memory retrieval/update, and personalized
search/reasoning. Central to this system is the persona, a unique system prompt for each user serving
as an intermediary that continuously evolves by integrating user-data-driven memory to guide agent
actions and refining the memory based on the action results. The major advantage over general LLM
agent is that the persona will enforce personalization over the action space and guide the action
decision in every step. To improve user preference modeling and real-time adaptability, we introduce
a novel test-time user-preference alignment strategy, simulating recent interactions to optimize the
persona prompt through textual loss optimization (Yuksekgonul et al., 2025). This unified framework
uniquely addresses the limitations of existing approaches, delivering intelligent, scalable, and dynamic
personalization suitable for diverse real-world applications. We validate our approach through
comprehensive experiments across four personalization tasks in different domains, demonstrating
superior performance compared to other personalization and agentic baselines. Through ablation
studies, we investigate the significance of individual components. Furthermore, we validate the
effectiveness of test-time preference alignment through persona analysis, including case studies with
distribution visualization and examine test-time scaling effects of the user-alignment strategy in the
PersonaAgent.

The contribution of this paper is summarized as follows:

• We introduce PersonaAgent, the first personalized LLM agent framework for versatile personaliza-
tion tasks within a unified memory-action design.

• We propose user-specific persona for the LLM agent as the intermediary to bridge the gap between
designed personalized memory and action modules, achieving personalization over action spaces.

• To further approximate the user behavior, we propose a novel test-time user preference alignment
strategy via persona optimization to seamless adapt to the user with real-time update.

• We demonstrate that our PersonaAgent with test-time alignment achieves state-of-the-art results on
various personalized decision making tasks over different personalization and agentic baselines.

2 METHODOLOGY

2.1 PERSONAAGENT FRAMEWORK

As in Figure 1, PersonaAgent extends general LLM agent architectures by incorporating user-specific
personalization via two complementary modules—personalized memory and action—interconnected
through a dynamically evolving persona. This design enables the agent to adapt its behavior based
on each individual’s context and preferences, yielding more coherent and tailored interactions.

The Definition of “Persona” for Personalized LLM Agents

A persona is a structured representation that unifies persistent user-specific memory (e.g.,
long-term preferences) and explicit agent instructions (e.g., tool usage guidelines), forming
the unique system prompt for each user that governs all personalized user–agent interactions.

Episodic Memory To overcome the limitation of existing methods in modeling long-horizon user
behavior, episodic memory retains fine-grained, temporally grounded user experiences, enabling
the agent to reason about what happened, when, and in what context (Dickerson & Eichenbaum,
2010). In PersonaAgent, episodic memory records fine-grained, time-stamped user interactions to
support context-aware personalization. Inspired by cognitive memory theory (Tulving et al., 1972),
we maintain for each user u an episodic buffer

Du =
{
(qi, r

gt
i ,mi)

}Nu

i=1
, (1)

where qi is a past query, rgt
i the corresponding true user response, mi auxiliary metadata (e.g.,

timestamp, session context), and Nu is the total number of interaction histories. Upon receiving a
new query q∗, its embedding hq∗ = fenc(q

∗) is computed and compared it to stored memory events
embeddings hi = fenc(Du

i ). The top-K most similar memories,
Ru(q∗) = TopK

i∈[1,Nu]

sim(hq∗ ,hi), (2)
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are retrieved and used to ground the agent’s next response, thereby preserving alignment and consis-
tency with the user’s behavior history.

Semantic Memory To support scalable and stable user-level personalization beyond accumulating
event-level interactions, semantic memory is designed to capture and consolidate abstract user traits
that persist across time and contexts (Tulving et al., 1972). Unlike episodic memory, which captures
detailed personal experiences linked to particular times, semantic memory explicitly focuses on
generalizing user-centric knowledge, encapsulating consistent characteristics and preferences derived
from repeated interactions. In PersonaAgent, semantic memory abstracts and consolidates stable
user traits—such as enduring preferences and long-term goals—into a compact profile that persists
across sessions. Formally, we define a summarization function fs that integrates the episodic memory
events into a coherent profile:

Pu = fs
(
St,Du

)
, (3)

where St is the task-based summarization prompt. This profile Pu serves as a long-term user
knowledge base, ensuring that the agent’s behavior remains aligned with the user’s established
characteristics even as individual events are not recalled from the episodic memory.

Personalized Actions We consider the setting of an agent interacting with an environment to assist
a paticular user to solve tasks. At each time step t, the agent receives an observation ot ∈ O from
the environment and selects an action at ∈ A based on its policy π(at|ct). Different from general
LLM-based agents adopting general tools A and fixed policies π, this personalized action module
governs how the agent selects and parametrizes its actions in service of the user. At each time step
t, the agent observes ot ∈ O and, conditioned on the context including actions and observations
ct = (o1, a1, . . . , ot−1, at−1, ot) and the current persona P , determines action at according to

at ∼ πP

(
· | ct

)
, at ∈ Â. (4)

We augment the fundamental action space Â = A ∪D with tools to access personalized user data
and histories D. The persona P modulates the policy πP , thereby tailoring both general tools (e.g.,
web search) and personalized operations (e.g., memory retrieval) to the specific user.

2.2 TEST-TIME USER PREFERENCE ALIGNMENT

Algorithm 1 Test-Time User Preference Alignment
1: Input: Test User data D, Initial persona P
2: Output: Optimized persona P ∗

3: procedure OPTIMIZATION(Dbatch, P )
4: Initialize empty lists for loss gradients ∇̂
5: for each (q, r̂, rgt) in Dbatch do
6: Compute ∇ ← LLMgrad(q, r̂, r

gt)

7: Add loss gradient/feedback ∇ to ∇̂
8: end for
9: Gradient update P ∗ ← LLMupdate(∇̂, P )

10: return updated persona P ∗

11: end procedure
12: for iteration = 1 to E do
13: Obtain batch Dbatch from user data D
14: Add agent responses to Dbatch

15: P ∗ ← OPTIMIZATION(Dbatch, P )
16: end for

To achieve individual-level user preference
alignment during real-world deployment,
we design test-time user-preference align-
ment mechanism that dynamically adapts
the agent’s decisions and tool usage to
each specific user. In particular, we op-
timize the persona prompt by simulating
recent interactions and minimizing textual
discrepancies between simulated agent re-
sponses and user ground-truth responses.
Given n recent user interaction batch data
Dbatch = {(qj , r̂j , rgtj )}nj=1, where qj is
query, r̂j is agent response, and rgtj is the
ground-truth responses, we optimize the
persona P for each iteration via text gra-
dients (Yuksekgonul et al., 2025) using a
textual loss function L:

P ∗ = argmin
P

n∑
j=1

L(r̂j , r
gt
j |qj), (5)

where r̂j is simulated responses generated by the agent conditioned on the persona P .

As shown in Algorithm 1, the optimization involves iteratively simulating agent responses, computing
the textual feedback loss, and updating the persona prompt using textual gradient optimization.
While the set Â remains fixed, the agent’s behavior emerges from the personalized policy πP∗(at|ct)
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Non-Personalized Personalized LLM General Agent
PersonaAgent

Dataset Metrics Prompt ICL RAG PAG ReAct MemBank

LaMP-1: Personalized
Citation Identification

Acc. ↑ 0.772 0.780 0.715 0.837 0.837 0.862 0.919

F1 ↑ 0.771 0.766 0.714 0.837 0.853 0.861 0.918

LaMP-2M: Personalized
Movie Tagging

Acc. ↑ 0.387 0.283 0.427 0.430 0.450 0.470 0.513

F1 ↑ 0.302 0.217 0.386 0.387 0.378 0.391 0.424

LaMP-2N: Personalized
News Categorization

Acc. ↑ 0.660 0.388 0.742 0.768 0.639 0.741 0.796

F1 ↑ 0.386 0.145 0.484 0.509 0.381 0.456 0.532

LaMP-3: Personalized
Product Rating

MAE ↓ 0.295 0.277 0.313 0.339 0.313 0.321 0.241

RMSE ↓ 0.590 0.543 0.713 0.835 0.590 0.582 0.509

Table 2: The performance comparison of PersonaAgent with baselines including non-personalized,
personalized LLM workflow, and general agents on four personalized decision-making tasks.

which leverages the optimized persona P ∗ to choose optimal actions at ∈ A and corresponding
action parameters such as search query. This iterative optimization ensures the persona continuously
approximates real-time user preferences and intentions, enabling adaptive, personalized interactions
suitable for dynamic, real-world scenarios. The textual optimization mechanism and prompt can be
found in Appendix A and Appendix B.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Baselines & Experimental Details We compare PersonaAgent with a comprehensive set of base-
lines across three major categories: non-personalized methods, personalized workflow approaches,
and general-purpose agentic systems. Non-personalized models include direct prompting, as well
as in-context learning (ICL) (Liu et al., 2022) that prepends a few-shot demonstration of examples
into the prompt without explicit modeling of user preferences. Personalized workflow methods
include retrieval-based models RAG (Salemi et al., 2024b), and PAG (Richardson et al., 2023),
which introduces profile-augmented generation beyond RAG. In addition, we benchmark against
two prominent general agent baselines: ReAct (Yao et al., 2023b), which integrates tool use and
reasoning via interleaved action planning, and MemBank (Zhong et al., 2024), which introduces an
explicit long-term memory module to support task generalization. Unless otherwise specified, all
models are evaluated using Claude-3.5 Sonnet (Anthropic, 2024) under a unified evaluation pipeline
with identical inputs and output formats, ensuring a fair comparison. For PersonaAgent, the persona
initialization prompt is detailed in Appendix C, and the personalized action and tool implementations
are provided in Appendix D. Further experimental details can be found in Appendix E.

Benchmarks & Datasets We evaluate PersonaAgent on the LaMP (Salemi et al., 2024b) bench-
marks and use four decision-making tasks to assess the effectiveness of personalized agents in
diverse personalization domains. Specifically, the evaluation consists of: (1) Personalized Citation
Identification (LaMP-1), a binary classification task where agents determine which paper should be
cited to a user-specific context when drafting a paper; (2) Personalized Movie Tagging (LaMP-2M), a
multi-classification task involving movie tagging most aligned to user preferences; (3) Personalized
News Categorization (LaMP-2N), which requires categorizing news article based on user interests;
and (4) Personalized Product Rating (LaMP-3), a multi-classification task for predicting numeric
ratings (1-5) grounded in historical user-item interactions including ratings. More details about the
datasets and task formulation can be found in Appendix F.
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LaMP-1: Personalized
Citation Identification

LaMP-2M: Personalized
Movie Tagging

LaMP-2N: Personalized
News Categorization

LaMP-3: Personalized
Product Rating

Variants Acc. ↑ F1 ↑ Acc. ↑ F1 ↑ Acc. ↑ F1 ↑ MAE ↓ RMSE ↓

PersonaAgent 0.919 0.918 0.513 0.424 0.796 0.532 0.241 0.509

w/o alignment 0.894 0.893 0.487 0.403 0.775 0.502 0.259 0.560

w/o persona 0.846 0.855 0.463 0.361 0.769 0.483 0.277 0.542

w/o Memory 0.821 0.841 0.460 0.365 0.646 0.388 0.348 0.661

w/o Action 0.764 0.789 0.403 0.329 0.626 0.375 0.375 0.756

Table 3: Ablation study of different components of PersonaAgent.

3.2 OVERALL PERFORMANCE

As shown in Table 2, PersonaAgent achieves the best performance across all four decision-making
tasks, outperforming non-personalized, personalized, and agentic baselines. On LaMP-1 (Citation
Identification), LaMP-2M (Movie Tagging), and LaMP-2N (News Categorization), where success
depends on capturing topic-level user interests, PersonaAgent substantially improves over RAG-4,
PAG-4, and MemBank, indicating its superior ability to model nuanced user intent via memory and
persona alignment. Note that when few-shot examples are irrelevant to the user preference, ICL
often underperforms compared to direct prompting, underscoring the importance of personalization
techniques for user-specific tasks. In the LaMP-3 (Product Rating) task—which challenges user
understanding by requiring personalized numeric predictions from user descriptions—PersonaAgent
achieves the lowest MAE and RMSE, demonstrating that its test-time alignment mechanism effec-
tively generalizes to personalized rating scenarios. In contrast, both other personalized workflows and
general-purpose agents fail to outperform direct prompting. These results highlight the effectiveness
of integrating personalized memory, action, and persona prompt optimization for dynamic and
fine-grained personalization across domains.

3.3 ABLATION STUDY

To assess the contribution of each module within PersonaAgent, we conduct an ablation study across
all four LaMP tasks. As shown in Table 3, removing the test-time alignment module leads to a
noticeable drop in performance across the board, confirming its critical role in adapting to real-time
user preferences. Omitting the persona prompt—thereby removing the centralized controller between
memory and actions—results in further degradation, especially in F1 scores for classification tasks
(e.g., a drop from 0.893 to 0.855 on LaMP-1), suggesting its importance for bridging memory-driven
insights and agent behavior. Removing the personalized memory module has a more pronounced
effect on LaMP-2N and LaMP-3, indicating its key role in modeling historical user context. Finally,
removing the action module leads to a significant performance drop across all tasks, highlighting
that reasoning alone is insufficient—adaptive tool usage guided by personalized data is essential for
effective decision-making. Overall, each component of PersonaAgent contributes substantially to its
success, and the complete system delivers the strongest and most balanced performance.

3.4 PERSONA ANALYSIS

To better understand the impact of test-time alignment on persona for user modeling, we visualize
the optimized persona embeddings using t-SNE (Van der Maaten & Hinton, 2008) on LaMP-2M. In
Figure 2, each point corresponds to a learned persona after the test-time user preference alignment,
and we highlight three representative users (A, B, C) alongside the initial system prompt template.
The learned personas are well-separated in the latent space, suggesting that the optimization procedure
effectively captures user-specific traits. User A and B, for instance, both focus on historical and
classic films, and their prompts reflect similar semantic distributions. User C, on the other hand,
displays clear divergence, with interests in sci-fi, action, and book-to-film adaptations, emphasizing
literary context in responses. Note that, due to space limitations, only partial personas are presented
here; the full versions are available in Appendix H. These qualitative differences, emerging from
test-time user preference alignment, confirm that the persona opmization mechanism enables the
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Initial System Prompt:

STRICT RULES: when using tools, always:
1. Think step-by-step about what
information you need.
2. MUST use at least TWO tools to answer
the question.
...

  Persona for User A:

- Extensive knowledge of classic and cult films

- Interest in historical films, documentaries, and the intersection of politics, social

commentary, and cinema

- Analytical thinker with a focus on dark comedy and satirical films

...

Provide historically accurate and factual information, particularly for historical films.

  Persona for User B:

- Cinephile with deep knowledge of film history, genres, and iconic directors

- Appreciates cultural context and diversity in cinema

- Interested in classic, critically acclaimed, and influential films

- Enjoys analyzing the intersection of real-world issues and artistic representation

when responde:

Tailor responses to align with the user's interests in global cinema and historical films

  Persona for User C:

- Extensive knowledge of literature, popular book series, and their film adaptations

- Preference for sci-fi and action genres

- Likely to ask questions about book-to-film adaptations or literary elements in movies

When responding to queries:
1. Prioritize literary connections and book-to-film adaptations when relevant.
2. When searching, focus on:

   - Book-to-film adaptations, especially for popular series
   - Sci-fi and action genre elements
   - Underlying themes and genre-specific elements in movie descriptions

Figure 2: Persona case studies on the LaMP-2M movie tagging task.

agent to evolve beyond general behavior instructions and adapt to rich, fine-grained user preferences.
Beyond that, the complete Jaccard similarity matrix of all learned personas is provided in Appendix I.
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Figure 3: Test-time scaling effects on PerosnaAgent.

3.5 TEST-TIME SCALING

Achieving effective personalization in PersonaAgent relies significantly on various scaling factors
during the alignment process. In this section, we systematically explore the impact of scaling
alignment batch samples, alignment iterations, and retrieved memory on LaMP-2M task.

Scaling alignment batch samples Larger alignment batch sizes of n—i.e., using more recent
interaction samples for each optimization iteration—result in improved alignment quality. As batch
size increases, the model benefits from a more comprehensive snapshot of recent user behavior, which
leads to better persona refinement and stronger personalization performance.
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Scaling alignment iterations We observe that increasing the number of alignment iterations leads
to consistent gains in both accuracy and F1 score up to around 3 iterations, after which performance
plateaus or slightly declines. This indicates that a small number of update steps is sufficient for
effective preference alignment, allowing PersonaAgent to remain computationally efficient while
adapting quickly at test time.

Scaling retrieved memory Retrieving more memory entries for alignment and generation signifi-
cantly enhances performance, suggesting that richer user context strengthens the grounding of both
reasoning and response generation. These improvements validate the importance of episodic memory
retrieval in dynamically shaping the agent’s behavior to match evolving user preferences.

3.6 EFFECTS OF BASE LLM CAPABILITY

Mistral-Small Mistral-Large Claude-3.5 Claude-3.70
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Figure 4: Effects on LLM base model capability.

To evaluate the robustness of PersonaAgent across different foundation models, we vary the underly-
ing LLM backbone using Mistral-Small (Mistral AI team, 2024b), Mistral-Large (Mistral AI team,
2024a), Claude-3.5 (Anthropic, 2024), and Claude-3.7 (Anthropic, 2025). As shown in Figure 4, Per-
sonaAgent consistently outperforms all baselines regardless of the base model’s capability. Notably,
even with small models like Mistral-Small, PersonaAgent achieves strong gains over prompting,
RAG, PAG, and agentic methods including ReAct and MemBank, highlighting the model-agnostic
improvement based on test-time user preference alignment. As model capability increases, PersonaA-
gent still maintains its lead, achieving 55.0% accuracy with Claude-3.7, the highest across all settings.
These results demonstrate that the proposed personalization framework scales effectively with model
intelligence, while still offering distinct advantages in lower-resource LLM regimes suitable for local
edge devices.

4 RELATED WORK

4.1 PARAMETRIC PERSONALIZATION OF LLMS

Early efforts to align LLMs with human preferences primarily relied on supervised fine-tuning (Zhang
et al., 2023) and reinforcement learning from human feedback (RLHF) (Schulman et al., 2017;
Rafailov et al., 2023). These approaches have successfully enabled more natural and human-aligned
instruction-following behavior but are still constrained by a coarse, population-level preference
alignment. Moving toward personalized alignment, recent works (Chen et al., 2024) have begun
to define alignment objectives along dimensions such as expertise, informativeness, and stylistic
preference. However, they still overlook the rich variability in individual user preferences, limiting
their ability to support fine-grained, user-specific alignment. More recent personalization approaches,
such as parameter-efficient fine-tuning (PEFT) methods (Tan et al., 2024b;a), have made consider-
able progress by enabling user-specific adjustments to model parameters. Yet, these methods face
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significant scalability hurdles since their computational complexity increases linearly with the user
base, severely limiting practicality in large-scale deployments. Moreover, the necessity for frequent
re-tuning to incorporate new user interactions exacerbates computational demands and latency.

4.2 PERSONALIZATION WORKFLOW OF LLMS

User profiling through defining character personas for Large Language Models (LLMs) represents
a straightforward and intuitive personalization workflow. These approaches facilitates advanced
and natural LLM responses with role-playing capabilities (Shao et al., 2023; Wang et al., 2024a;
Hu & Collier, 2024). However, capturing fine-grained, dynamically evolving user-specific personas
remains an open challenge requiring further research. Alternatively, personalized workflows such as
retrieval-augmented generation (RAG) (Salemi et al., 2024b;a) and profile-augmented generation
(PAG) (Richardson et al., 2023) provide a non-parametric route to personalization by incorporating
external, personalized user data into model responses. However, these approaches typically follow a
fixed pipeline and rely on retrieving only limited relevant interactions or trivial user data summariza-
tion. This limitation prevents personalized workflows from achieving comprehensive and adaptive
personalization, particularly in complex scenarios requiring holistic understanding and continuous
adaptation to user preferences and historical behaviors.

4.3 PERSONALIZATION OF LLM AGENTS FOR SPECIFIC DOMAINS

Recent studies have developed LLM-powered personalized agents explicitly for particular domains.
For example, Li et. (Li et al., 2024) focus on long-term dialogues with specially designed event
memory modules, while personalized web agents (Cai et al., 2024) integrate user-specific data
and instructions primarily for web navigation tasks. In the medical domain, LLM-based medical
assistant (Zhang et al., 2024b) employ short- and long-term memory coordination specifically for
healthcare interactions. Conversational health agents, exemplified by openCHA (Abbasian et al.,
2023), leverage domain-specific knowledge integration techniques but remain confined to health-
related dialogue contexts. In recommendation systems, generative agents, including RecMind (Wang
et al., 2024b) and Agent4Rec (Zhang et al., 2024a), primarily focus on utilizing external knowledge
bases to improve content recommendations. Their methodologies, while effective within the recom-
mendation context, lack flexibility for addressing diverse personalization tasks outside their designed
domain. These domain-specific methods significantly limit the versatility and generalizability of
personalized LLM applications. In contrast, our proposed PersonaAgent framework offers a versatile
and adaptable approach suitable for various personalization tasks across multiple domains.

5 LIMITATIONS AND BROADER IMPACTS.

Despite the strong performance and flexibility across diverse personalization scenarios, our proposed
PersonaAgent exhibits potential limitations and broad society impacts. On the positive side, its
scalable, test-time personalization can easily can be deployed in real-world applications—tailoring
educational content and boosting professional productivity through context-aware assistance aligned
with users’ workflows. On the negative side and limitations, its reliance on textual feedback for
preference alignment may overlook implicit or multi-modal user signals (e.g., emotional or visual
cues). In addition, though we have avoided large-scale user data training via test-time personalization,
the intensive use of personalized data introduces privacy risks, highlighting the need for future work
on privacy-preserving mechanisms such as federated learning (Zhang et al., 2021).

6 CONCLUSION

In this paper, we introduce PersonaAgent, the first personalized LLM agent framework for versatile
personalization tasks through a unified memory-action architecture. PersonaAgent integrates episodic
and semantic memory modules with personalized actions to deliver highly adaptive and aligned user
experiences. Within the framework, we define the concept of persona—user-specific system prompts
dynamically refined via proposed novel test-time user-preference alignment mechanism. Extensive
experiments across diverse personalization tasks demonstrate that PersonaAgent consistently out-
performs SOTA non-personalized, personalized workflow, and general agentic baselines. Ablation
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studies and persona analysis confirm the critical contributions of each framework component, particu-
larly highlighting the persona’s role in connecting memory insights and personalized actions. Further
evaluation on test-time scaling and different LLM backbones illustrate PersonaAgent’s superiority to
capture nuanced, evolving user preferences when scaling the inference cost.
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A TEXTUAL GRADIENT OPTIMIZATION

This section provides a detailed illustration of the optimization mechanism in TextGrad (Yuksekgonul
et al., 2025), which forms the core of our user-preference alignment framework.

Backpropagation over LLM computation graphs. Consider a system composed of two sequential
large language model (LLM) calls:

Prediction = LLM(Prompt + Question), (6)

Evaluation = LLM(EvalInst + Prediction). (7)

TextGrad overloads the classical derivative notation to support non-differentiable components. The
textual analogue of backpropagation is defined as:

∂ Evaluation
∂ Prediction

≜ ∇LLM(Prediction,Evaluation), (8)

and

∂ Evaluation
∂ Prompt

=
∂ Evaluation
∂ Prediction

· ∂ Prediction
∂ Prompt

≜ ∇LLM

(
Prompt, Prediction,

∂ Evaluation
∂ Prediction

)
. (9)

Here, the Prompt is the optimization target, and gradients are represented as natural language critiques
rather than numerical tensors. Note that in our PersonaAgent, the optimization target is Persona P
and the first LLM could be a LM agent with multi-turn function calls before the final response.

Textual gradient operator. Here we define how textual gradients are instantiated in practice.
Instead of computing numeric derivatives, TextGrad queries an LLM to produce structured natural-
language feedback:

∂L

∂x
≜ ∇LLM

(
x, y, ∂L

∂y

)
= LLM

(
“Here is a conversation with an LLM: {x | y}.

Below are the criticisms on y :
∂L

∂y
.

Explain how to improve x.”
)
.

(10)

This operator produces a human-interpretable critique that serves as a functional analogue to ∂L/∂x
in classical backpropagation.
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Textual Gradient Descent. Once a variable-level textual gradient is obtained, TextGrad updates
the variable via textual gradient descent (TGD):

xnew = TGD.step
(
x, ∂L

∂x

)
= LLM

(
“Below are the criticisms on: x.

Criticisms: ∂L
∂x .

Incorporate the criticisms and produce a new variable.”
)
.

(11)

This step replaces classical gradient descent with a language-model–driven rewrite operation. Each
TGD iteration consists of:

1. A forward pass to compute intermediate variables.
2. A backward pass where ∇LLM produces textual gradients.
3. A TGD update that rewrites variables to improve the global objective.

General form. For a general computation graph G = (V,E), where each node v ∈ V represents
a variable (typically unstructured text), each directed edge (v, w) ∈ E denotes that v is an input
to a function fw that produces w, and Succ(v) denotes the successor set of v, the textual gradient
aggregation follows:

∂L

∂v
=

⋃
w∈Succ(v)

∇fw

(
v, w,

∂L

∂w

)
. (12)

Here, L denotes the objective function, which may be non-differentiable and implemented as an
LLM-based evaluator, simulator, or external black-box system. The operator∇fw denotes a textual
gradient operator appropriate for the function fw (e.g., an LLM or Agent call).

Variable updates are then performed as:

v(t+1) = TGD.step

(
v(t),

∂L

∂v(t)

)
. (13)

This design enables TextGrad to perform automatic optimization over non-differentiable, black-box
LLM systems using natural-language feedback as gradients.

B TEST-TIME USER PREFERENCE ALIGNMENT

Loss Gradient/Feedback Prompt

You are a meticulous and critical evaluator of personalized AI
agent responses.

Analyze the following and give the feedback on how to improve the
system prompt to align with the user’s preferences.

Question: [Question]
Expected Answer: [Ground Truth]
Agent Response: [Response]

Your feedback should focus on how to adjust the persona system
prompt to tailor the agent’s responses to the individual user’s
unique characteristics. Make sure the feedback is concise and and
clear.

Tips:
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1. Explain on how to improve the search keywords of tools for this
user.
2. Take the user’s prior interactions, preferences, and any
personalization aspects into consideration.
3. Provide explicit description for user profile and preferences
that is not specific to this task.

Feedback:

Gradient Update Prompt

You are a prompt engineering assistant tasked with refining
the personal agent system prompts for improved user preference
alignment.

Current system prompt: [Current Persona]
Provided Feedback: [Aggregated Feedback]

Based on the feedback above, generate an updated system prompt
that explicitly highlights the user’s unique preferences. Ensure
that the prompt instructs the agent to align its responses with the
user’s preferences, including detailed user profile or preferences.
Please maintain a helpful and clear tone in the system prompt.

New system prompt:

C PERSONA PROMPT INITIALIZATION

Initial System Prompt (Persona Initialization)

You are a helpful personalized assistant. Take more than two
actions to infer the user preference and answer the question. User
summary: [Initial Semantic Memory]

STRICT RULES: when using tools, always:
1. Think step-by-step about what information you need.
2. MUST use at least TWO tools to answer the question.
3. Use tools precisely and deliberately and try to get the most
accurate information from different tools.
4. Provide clear, concise responses. Do not give explanation in
the final answer.

D PERSONALIZED ACTIONS AND TOOLS

Here, we detail two tool description utilized in PersonaAgent. Note that we limit the number of
tools: one tool (Wikipedia search) for general information access and one tool (episodic memory) for
personal data retrieval since we want to highlight the effectiveness of memory-action framework and
the test-time user-preference alignment over persona rather the extra benefits from a variety of tools.

Wikipedia API for General Knowledge

Use this tool to get a brief summary from Wikipedia about a
specific topic.

Best for: getting general background information, learning basic
facts, and understanding historical events or people.
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Input: a clear, specific topic name (e.g., ’Albert Einstein’,
’World War II’).

Output: returns a concise Wikipedia summary.

Note: use precise topic names for better results.

RAG API for Personalized Episodic Memory

Retrieve top-k relevant items/histories from the user memory using
RAG (Retrieval-Augmented Generation).

Best for: finding detailed information on related items, answering
specific questions from personal data, and incorporating user
preferences into the final answer.

Input: a specific search query or question about the content.

Output: relevant interaction histories from the user memory.

Note: more specific queries yield more accurate results.

Requirement: must use this tool at least once to answer the
question.

E EXPERIMENTAL DETAILS

We implement all agentic method on top of LangChain (Chase, 2022). For the tools including
the wiki search and memory retrieval, the description prompts are detailed in Appendix D. We
follow PAG (Richardson et al., 2023) to summarize the user behaviors into user profile for our initial
semantic memory. All baselines are faithfully adapted to the LaMP benchmark following their
original papers to ensure fair and consistent comparison. In particular, prompting (Salemi et al.,
2024b), RAG (Salemi et al., 2024b), and PAG (Richardson et al., 2023) are implemented using
the official LaMP experimental protocols, while agentic baselines (ReAct (Yao et al., 2023b) and
MemBank (Zhong et al., 2024)) are implemented under a unified tool interfaces. In the test-time
user-preference alignment, we set alignment batch size n as 3 and alignment iterations as 1 to
ensure fast adaptation and achieve a tradeoff between the performance and efficiency. Following the
setting in LaMP (Salemi et al., 2024b), the number of retrieved memories is set as 4 by default. To
ensure reproducibility, we fix the LLM sampling temperature at 0.1, rendering outputs effectively
deterministic. All experiments were run on Amazon Bedrock (Amazon Web Services, 2023). For
agentic baselines, we enable Wikipedia search tools where applicable, and for MemBank we follow
the original memory mechanism while adapting the stored memory units to LaMP-style interaction
events to ensure compatibility with the dataset and fairness in comparison. For the performance
evaluation, we follow the official LaMP benchmark protocol across the four decision-making and two
text generation tasks, using the prescribed metrics. For the classification tasks (LaMP-1, LaMP-2M
and LaMP-2N), we report both accuracy and F1 score. For the regression task (LaMP-3), we report
mean absolute error (MAE) and root mean squared error (RMSE), while for generation task (LaMP-4
and LaMP-5), we evaluate with ROUGE-1/ROUGE-L.

F DATASETS AND TASKS

We adopt LaMP as the primary evaluation benchmark because it is currently the only widely adopted
dataset that provides real user data with longitudinal, time-ordered interaction histories over multiple
personalization tasks. This uniquely enables the evaluation of user-centric preference alignment,
which is the central research objective of this paper. We view the interactive dialogue evaluation
using datasets that provide real-user, long-session conversational histories as an important future
direction, but outside the intended scope of this work.
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Following the data processing steps in (Tan et al., 2024b), we underscore the importance of rich
historical user data in enabling effective personalization. Accordingly, our test set consists of the
100 users with the most extensive activity histories, selected from the time-ordered version of the
LaMP (Salemi et al., 2024b) dataset. For each user, the data is chronologically ordered and partitioned
into two subsets: a profile set representing their historical behaviors, and a test set reserved for final
evaluation. We provide more details about the task formulation for each dataset as follows:

• LaMP-1: Personalized Citation Identification. This task evaluates a model’s ability to predict
which paper a researcher is more likely to cite, framing citation recommendation as a binary
classification problem. For each interactions sample, one real citation from the paper is used as
the positive candidate, while a negative citation is sampled from the citing papers from the other
users in original training data.

• LaMP-2M: Personalized Movie Tagging. This task measures a model’s capacity to assign
appropriate tags to movies based on an individual user’s unique tagging habits. For each task
instance, the model is provided with the description of a movie, the user’s prior movie-tag pairs
as the user history, and must predict which tag the user would assign. This setup encourages the
model to adapt to individual tagging preferences, capturing the subjectivity of how users interpret
movie content.

• LaMP-2N: Personalized News Categorization. The task is designed to assess how well a
model can categorize news articles while incorporating individual user preferences. The dataset
was refined by filtering out infrequent labels. For each prediction instance, the model receives an
article and the author’s historical profile to predict the article’s category.

• LaMP-3: Personalized Product Rating. This task evaluates a model’s ability to predict how a
specific user would rate a product based on the content of their review, conditioned on their past
reviewing behavior. Each task sample presents a review text as input, with the model expected
to predict the user’s rating (from 1 to 5), treating this as a multi-class classification task. The
personalization signal can be derived from the user’s past reviews and ratings, which inform their
writing style, sentiment expression, and rating tendencies, tailoring to each user accordingly.

• LaMP-4: Personalized News Headline Generation. The task aims to generate headlines for
news articles reflecting distinct stylistic tendencies of individual authors. For each task instance,
the model is provided with the content of a news article together with a series of articles drafted
by the author and must produce a headline that aligns with the author’s style and preference. This
setup go beyond generic summarization and adapt to personalized writing preferences.

• LaMP-5: Personalized Scholarly Title Generation. This task assesses a model’s ability to
generate research paper titles that reflect the stylistic and research preference of individual authors.
Each instance provides the abstract of a paper as input, along with personal data consisting of
the author’s historical abstract–title pairs. The model must generate an appropriate title for the
paper that aligns with the author’s prior title-writing patterns, testing the model’s adaptability to
personalized scholarly writing styles.

G EVALUATION ON PERSONALIZED TEXT GENERATION

Across both LaMP-4 and LaMP-5, non-personalized methods (Prompt, ICL) perform the weakest,
indicating that generic prompting strategies are insufficient for capturing user-specific writing pat-
terns. Personalized workflow models (RAG, PAG) improve performance by incorporating profile
information, but the gains are relatively limited, particularly in the news headline setting where
stylistic variation is more pronounced. General-purpose agentic systems (ReAct, MemBank) achieve
competitive results, suggesting that reasoning, search, and memory mechanisms can partially sup-
port personalization the text generation tasks, though they lack test-time adaptation. PersonaAgent
achieves the strongest performance in both tasks, with especially notable improvements. This demon-
strates the effectiveness of explicit persona modeling in capturing long-term stylistic preferences and
domain-specific text generation.
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Non-Personalized Personalized LLM General Agent
PersonaAgent

Dataset Metrics Prompt ICL RAG PAG ReAct MemBank

LaMP-4: Personalized News
Headlines Generation

ROUGE-1. ↑ 0.129 0.140 0.161 0.160 0.167 0.160 0.178

ROUGE-L ↑ 0.118 0.127 0.145 0.143 0.150 0.142 0.166

LaMP-5: Personalized
Scholarly Title Generation

ROUGE-1 ↑ 0.455 0.444 0.475 0.472 0.468 0.463 0.503

ROUGE-L ↑ 0.384 0.380 0.424 0.413 0.407 0.399 0.434

Table 4: The performance comparison of PersonaAgent with baselines including non-personalized,
personalized LLM workflow, and general agents on two personalized text generation tasks.

H PERSONA CASE STUDY

Persona of User A

You are a highly personalized assistant tailored to a user with the
following profile:

- Strong interest in film analysis, genre classification, and
cinematic themes
- Preference for concise, direct communication without unnecessary
elaboration
- Appreciates nuanced genre classifications and subgenres in media
- Values accuracy and precision in categorization tasks
- Extensive knowledge of classic and cult films
- Interest in historical films, documentaries, and the intersection
of politics, social commentary, and cinema
- Analytical thinker with a focus on dark comedy and satirical films

When responding:
1. Prioritize brevity and directness, especially when explicitly
requested.
2. Assume a high level of film knowledge and use sophisticated
film terminology when appropriate.
3. Provide historically accurate and factual information,
particularly for historical films.
4. Identify and categorize films based on themes, plot elements,
and overarching narratives, not just explicit genre labels.
5. When using tools, always:
a. Think step-by-step about what information you need.
b. Use at least TWO tools to answer the question.
c. Use tools precisely and deliberately to get the most accurate
information.
d. Prioritize film databases, critic resources, and historical
sources in your searches.
6. Tailor your responses to include brief historical context when
relevant, but offer more detailed information only if requested.
7. Be prepared to suggest related films or documentaries based on
the user’s interests.
8. Strictly adhere to any specific instructions given by the user
regarding response format or content.

Remember, the user values efficiency and accuracy in information
retrieval. Provide clear, concise responses without further
explanation unless asked. Continuously adapt your communication
style based on user feedback and previous interactions."
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Persona of User B

You are a personalized assistant for a user with the following
profile:
- Cinephile with deep knowledge of film history, genres, and iconic
directors
- Prefers concise, factual responses without unnecessary elaboration
- Appreciates cultural context and diversity in cinema
- Interested in classic, critically acclaimed, and influential films
- Values efficiency in information retrieval
- Enjoys analyzing the intersection of real-world issues and
artistic representation

When responding:
1. Provide direct, accurate answers without additional
explanations unless explicitly requested.
2. Assume a high level of film knowledge and use appropriate
terminology.
3. Prioritize factual information from reputable film criticism
sources and academic film studies.
4. Include brief references to film theory, analysis, or cultural
impact when relevant.
5. Take at least two actions using different tools to gather and
verify information.
6. Use precise search terms related to cinema, including specific
directors, film techniques, and genre classifications.
7. Tailor responses to align with the user’s interests in global
cinema and historical films.

STRICT RULES:
1. Always think step-by-step about what information you need.
2. Use at least TWO tools to answer each question.
3. Use tools deliberately to obtain the most accurate information.
4. Provide clear, concise responses that align with the user’s
preferences.
5. DO NOT give any further explanation in the final answer unless
specifically requested.

Remember to consider the user’s most popular tag preference:
dystopia."

Persona of User C

You are a highly personalized assistant for a user with the
following profile:
- Adult with a strong interest in film analysis and genre
classification
- Extensive knowledge of literature, popular book series, and their
film adaptations
- Preference for sci-fi and action genres
- Appreciates concise, direct answers without unnecessary
explanations
- Likely to ask follow-up questions about book-to-film adaptations
or literary elements in movies

When responding to queries:
1. Provide brief, precise answers without additional explanation
unless specifically requested.
2. Prioritize literary connections and book-to-film adaptations
when relevant.
3. Use at least TWO tools (e.g., Wiki, RAG) to gather accurate
information. When searching, focus on:
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- Book-to-film adaptations, especially for popular series
- Sci-fi and action genre elements
- Underlying themes and genre-specific elements in movie
descriptions

4. For movie tagging tasks:
- Analyze descriptions for key elements (plot, themes, settings)
that correspond to specific genres or tags.
- Provide only the most relevant single tag, prioritizing literary
connections when applicable.
- Consider sci-fi and action elements slightly more favorably,
aligning with user preferences.

5. Assume the user is well-versed in popular culture, literature,
and film. Avoid stating the obvious.

6. Be prepared to engage in deeper discussions about cinema
studies, genre theory, or literary adaptations if prompted.

Remember to always think step-by-step about what information you
need and use tools precisely to get the most accurate information.
Your goal is to provide valuable, concise responses that align with
the user’s sophisticated understanding of film and literature.

I PERSONA SIMILARITY MATRIX

The heatmap shows pairwise Jaccard similarities between the personas inferred for each of the 100
users. Bright red values along the main diagonal (1.0) indicate self-consistency for each user, while
the predominantly cool-blue off-diagonal entries (similarities mostly ≤ 0.4) reveal minimal overlap
between different users’ profiles. This clear separation underscores the effectiveness of our test-time
preference-alignment mechanism in capturing and preserving each individual’s unique persona.

Figure 5: Jaccard similarity of learned personas on LaMP-2M.

J AGENT FULL EXECUTION
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Persona (System Prompt for the Agent):
You are an assistant to serve a user who strongly prefers light-hearted, humor-driven narratives
and fantasy elements. The user refers comedy-oriented interpretations when humor is present;
frequently watches fantasy stories ...
Strict Rules:

• Always prioritize the user’s historical tagging behavior over general genre definitions.
...

Instruction:
Which tag does the user categorize this movie into? tags: [sci-fi, . . . , classic] ...
Description: “A married workaholic, Michael Newman, gets a magical remote that allows him
to bypass life’s little distractions with increasingly hysterical results...”

Thought:
The movie involves a magical remote control, which could be interpreted as sci-fi, but the
tone is clearly exaggerated and humorous. I should first check more movie information.

Action: Wikipedia API for General Knowledge
Action Input: “A married workaholic gets a magical remote ...”

Observation:
No matching Wikipedia page is found for the provided description.

Thought:
The Wikipedia search did not return a relevant match, so general factual knowledge is insuffi-
cient. According to the strict rules, I should rely on the user’s historical tagging behavior and
personalized episodic memory to resolve the ambiguity.

Action: RAG API for Personalized Episodic Memory
Action Input: “fantasy elements related to magical remote control”

Observation: Retrieved Top-K User Memory
Here are the past relevant user-tagged movies:

• “Intrepid young reporter, Tintin, and his loyal dog, Snowy . . . ” → action

• “After being set-up and betrayed by the man . . . ” → comedy

• “An interstellar teleportation device, found in Egypt . . . ” → sci-fi

• “A group of people are trapped in an elevator high above . . . ” → twist ending

Thought:
From the user’s historical tagging behavior, humorous and exaggerated scenarios are consistently
labeled as comedy, even when sci-fi elements are present. Given the dominance of humor
in the current movie and the strict rules, I should prioritize the comedy tag over the technical
sci-fi label.

Final Answer:
comedy ✓

Figure 6: Step-by-step example of PersonaAgent full execution process in personalized movie tagging.
The agent first attempts to use Wikipedia for more general information, then switches to personalized
episodic memory and persona-guided reasoning to produce the user-aligned tag comedy.
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