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Abstract

Black-box attacks play a pivotal role in adversarial
attacks. However, existing approaches often focus
predominantly on attacking from a data-centric per-
spective, neglecting crucial aspects of the models.
To address this issue, we propose a novel approach
in this paper, coined Decision Boundary Adapta-
tion (DBA). Our approach innovatively adopts a
model-centric viewpoint, leveraging operations on
the model to attain properties that enhance trans-
ferability. We observe that a flatter curvature of
the statistical manifold, influenced by both sam-
ples and model parameters, leads to stronger trans-
ferability of the adversarial attacks. To leverage
this, we introduce the concept of local flatness,
providing an evaluation method for local flatness
property along with a detailed mathematical proof.
Additionally, we demonstrate a consistent relation-
ship between local flatness, the model’s decision
boundary, and the gradient descent process, show-
ing how flatness can be achieved through gradi-
ent descent at the model parameter level. Through
extensive evaluation using state-of-the-art adver-
sarial attack techniques, our DBA approach sig-
nificantly enhances the black-box attack capabil-
ities of all the tested adversarial attack methods.
The implementation of our method is available at
https://github.com/LMBTough/DBA.

1 INTRODUCTION

Artificial intelligence (AI), especially Deep neural networks
(DNNs), has showcased impressive success in computer
vision tasks, such as image classification [He et al., 2016a,
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Huang et al., 2017, Sandler et al., 2018, Li, 2022, Gulzar,
2023]. However, the vulnerability of DNNs to adversarial
attacks poses critical concerns regarding model safety. Even
minor, imperceptible perturbations to input data can lead
to erroneous predictions [Goodfellow et al., 2014], signif-
icantly undermining the model integrity. To enhance the
trustworthiness of DNNs, it is important to proactively iden-
tify the potential vulnerabilities in the models. Therefore,
developing novel adversarial attack methods against DNNs
becomes a critical approach to provide holistic and novel
insights of the vulnerabilities in the models.

In particular, the growing prevalence of AI-empowered web
applications and online services has introduced both new
opportunities and challenges for adversarial attacks. Web
services, such as cloud-based machine learning platforms
and online APIs, often expose machine learning models to
external parties, creating potential attack surfaces. Attack-
ers can exploit the web interfaces by launching black-box
or query-based attacks, probing for vulnerabilities without
direct access to the model. Moreover, with the widespread
image recognition and natural language processing tech-
niques on online platforms, the threat of adversarial attacks
on the web has become a major security concern [Apruzzese
et al., 2022, Omara and Kantarci, 2024].

Adversarial attacks are broadly categorized into white-box
and black-box approaches [Papernot et al., 2017]. Initially,
most adversarial attacks are white-box, where attackers have
full knowledge of the target model, such as its architecture,
parameters, etc [Kurakin et al., 2018, Madry et al., 2017].
However, white-box attacks are often impractical in real-
world scenarios. As a result, black-box attacks that do not
require any knowledge of the target model have become pop-
ular. In black-box attacks, query-based methods simulate
the model behaviour by querying the target model for its out-
puts. While effective, these methods often require frequent
and extensive querying to the target model, potentially re-
ducing the stealthiness of the attack. In contrast, transferable
attacks do not require any access to the target model, provid-
ing better stealth and greater development potential [Dong

https://github.com/LMBTough/DBA


et al., 2018, 2019, Lin et al., 2019, Zhang et al., 2022, Long
et al., 2022]. Our work focuses on enhancing transferable
black-box attacks.

Figure 1 shows a simplified model training process with dif-
ferent emphasis of the attack techniques. Recent methods,
such as DI-FGSM [Xie et al., 2019] and MI-FGSM [Dong
et al., 2018], enhance the transferability of attacks through
data transformations, while others like NAA [Zhang et al.,
2022], DANAA [Jin et al., 2023], and MIG [Ma et al., 2023]
improve attack transferability by modifying the loss func-
tion. SSA optimizes the Backpropagation steps to enhance
the attack transferability [Long et al., 2022]. While most
approaches optimize based on data or gradients, we note
the techniques like LGV [Gubri et al., 2022] and DBA, pro-
posed in this work, enhance attack transferability from the
model-centric perspective. More discussion is included in
Section. 2.

We observe that, the effectiveness of transferable attacks
is closely related to gradient information. Smaller gradi-
ent values can enhance the attack transferability [Ge et al.,
2023], as they indicate a flatter curvature of the statistical
manifold under the combined influence of samples and cur-
rent parameters, contributing to the generalization [Zhao
et al., 2022]. However, relying solely on the magnitude of
gradients calculated by Lp norms, within a Euclidean space
loss function, may not be optimal. In particular, using such
information to assess flatness only considers the first-order
property of functions. We further investigate the function
curvature with second-order information, such as leveraging
the Hessian matrix.

In this paper, we introduce a more general definition of local
flatness in loss function curvature from an adversarial attack
perspective, providing an approximate calculation method
and a thorough proof. We also investigate how the gradient
descent process of model parameters helps find a flatter cur-
vature of the loss function during adversarial attack. Our
experiments demonstrate a remarkable consistency between
local flatness and decision boundaries. With these findings,
we discuss the effectiveness of our method from multiple
perspectives: local flatness, decision boundaries, and adver-
sarial defense. We summarise the contributions as follows:

• We provide a definition of local flatness during the
adversarial attack process, along with a detailed proof,
as well as proposing a novel method to achieve flatness.

• We discuss and validate the correlations between local
flatness, gradient descent, adversarial defense training,
and transferability, and propose DBA method to effec-
tively leverage the gradient descent process to enhance
the transferability of adversarial attacks.

• We conduct extensive experiments to compare DBA
method against a broad spectrum of transferable attack
methods. Significantly, DBA enhances the transferable
capability of all methods in the experiments, demon-

strating that DBA is a universal and effective approach
for improving the transferability of adversarial attacks.

2 RELATED WORK

2.1 WHITE-BOX ATTACKS

White-box attacks are classical methods that grant the ad-
versary access to the target model for the information of
structure and parameters. Several methods include Fast Gra-
dient Sign Method (FGSM) [Goodfellow et al., 2014], Basic
Iterative Method (BIM) [Kurakin et al., 2018], PGD [Madry
et al., 2017], and Carlini&Wagner method (C&W) [Carlini
and Wagner, 2017].

FGSM leverages gradient information of the input data to
generate adversarial examples by introducing small pertur-
bations in the direction indicated by the sign function. BIM
enhances adversarial attacks by iteratively applying subtle
perturbations, thereby increasing the attack effectiveness. In
parallel, PGD algorithm extended BIM by incorporating a
projection step in each iteration to ensure that adversarial
examples remain within a predefined perturbation range,
thus enhancing the controllability and efficacy of the attack.
Conversely, C&W employs a distinct strategy by optimizing
a tailored objective function to craft adversarial examples. It
focuses on minimizing the size of the perturbations required,
aiming to produce high-quality adversarial examples that
are imperceptible.

2.2 BLACK-BOX ATTACKS

Black-box attacks aim to address the limited access to the tar-
get model’s internals. While there are different approaches,
they typically share a common goal of improving the effec-
tiveness and transferability of adversarial examples.

Traditional method, such as gradient-based attacks, serves as
the cornerstone of attack techniques. Several exemplar meth-
ods include DI-FGSM [Xie et al., 2019], MI-FGSM [Dong
et al., 2018], TI-FGSM [Dong et al., 2019], and SINI-
FGSM [Lin et al., 2019]. DI-FGSM employs random trans-
formations to improving the transferability. MI-FGSM and
TI-FGSM add momentum and translation invariance, re-
spectively, to refine attack robustness and success rate. SINI-
FGSM further uses Nesterov accelerated gradient with scale-
invariance, boosting the robustness and transferability.

In addition to traditional gradient-based methods, Structure
Invariant Attack (SIA) [Wang et al., 2023] and Momentum
Integrated Gradients (MIG) [Ma et al., 2023] introduce in-
novative strategies to augment attack transferability. SIA
preserves the structural integrity of images through region-
specific transformations (i.e., rotation and scaling), while
MIG uses integrated gradients and a momentum term to
enhance the transferability across models. Other methods
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Figure 1: Comparison of adversarial attacks. Solid right-
pointing arrows represent forward propagation; Dashed re-
verse arrows indicate backward propagation

include Penalizing Gradient Norm (PGN) [Ge et al., 2023],
Neural Attribution Attack (NAA) [Zhang et al., 2022], and
their variants. PGN enhances transferability by exploring the
flat regions of a model’s loss surface, leveraging flat minima
characteristics through repeated gradient ascent on samples,
aiming to find a flat direction. For NAA and its advanced
form, the Dual Adversarial Neural Attribution Attack [Jin
et al., 2023], they target intermediate neurons to create more
transferable adversarial examples. These methods assess the
significance of neurons, attributing the model’s output com-
prehensively and employing complex formulas to enhance
attack efficiency.

Complementary techniques like Gradient Relevance Attack
(GRA) [Zhu et al., 2023a] and frequency domain meth-
ods such as Spectrum Simulation Attack (SSA) [Long
et al., 2022] and Frequency-based Stationary Point Search
(FSPS) [Zhu et al., 2023b] represent novel directions. GRA
reduces perturbation fluctuations via a gradient relevance
framework. SSA manipulates spectral components for better
transferability, while FSPS uses frequency information to
find effective adversarial directions.

In Figure 1, we outline the model training process where
each method targets improving attack transferability, primar-
ily through data or gradient-based strategies. LGV [Gubri
et al., 2022] leverages model parameter to simulate multi-
ple models, akin to DI-FGSM’s strategy of utilising similar
semantic information. However, LGV requires extensive
training data, and the data quality could significantly impact
the attack effectiveness. Thus, in this work, we focus on
model parameters through the lens of local flatness, which
results from the interaction between a single sample and
the model. This approach is independent of data quality,
providing a more robust framework. Unlike LGV, which
does not specifically address decision boundaries or flatness
properties, our proposed DBA method directly targets these
aspects. By optimizing for local flatness, DBA enhances the
transferability of attacks across different methods, making
it a universal and effective optimization framework.

Furthermore, unlike PGN [Ge et al., 2023], which explores
flat regions of the loss surface by manipulating gradients,
our method works by adjusting model parameters to iden-
tify attack directions that better promote flatness. In the next
section, we provide a more detailed discussion of our DBA
method and its advantages in enhancing attack transferabil-
ity.

3 OUR PROPOSED METHOD

In this section, we first provide definitions for adversarial
attacks and transferability in the attacks. We then introduce
the local flatness and decision boundary adaptation of mod-
els and elucidate their impacts on transferability. We finally
discuss the consistency between parameter gradient descent
and transferability, decision boundary adaptation, and local
flatness from multiple perspectives.

3.1 PROBLEM DEFINITION

For adversarial attacks, an adversarial example for a given
input sample x and a source model with parameters θs is
defined as xadv = x + δ, where x ∈ Rm, θs ∈ Rn, and δ
represents a small perturbation crafted to mislead the model.
The objective can be mathematically formulated as:

max
δ

L(yt|x+ δ, θs) s.t. ||δ||p ≤ ϵ (1)

where L is the loss function, y is the true label for x, ϵ is the
perturbation constraint ensuring the perturbation is small,
and || · ||p denotes the Lp norm, typically p =∞ for image
data, imposing a maximum change ϵ to any element of x.

We define the transferability T of an adversarial example
xadv from a source model with parameters θs to a well-
trained target model with parameters θt as:

T (xadv, θs, θt) =
1

k

k∑
i=1

I
[
ft(x

adv
i ) ̸= ft(xi)

]
(2)

where ft(x) represents the classification function of the tar-
get model, k denotes the number of adversarial samples, and
I[·] is the indicator function, yielding 1 if the condition holds
true otherwise 0. High transferability implies that T must
be higher value, signifying that a greater number of adver-
sarial examples generated on the source model effectively
manipulate the prediction of target model.

3.2 LOCAL FLATNESS

Smaller gradient values of the loss function indicate a flatter
loss function landscape at the gradient computation loca-
tion [Zhao et al., 2022]. The flat local maxima induced by
smaller gradients can enhance the transferability of adver-
sarial attacks [Ge et al., 2023]. However, assessing flatness



values based solely on gradient magnitudes constitutes an
evaluation utilizing only first-order properties in Euclidean
space. More generally, we aim to observe the curvature of
the statistical manifold, which is influenced by both the
current sample and model parameters. This notion, termed
local flatness, refers to the flatness of the loss function lo-
cally around a single sample x and model parameters θ.
Evaluating local flatness typically involves the Fisher in-
formation matrix [Lehmann and Casella, 2006]. Moreover,
starting from the definition of local flatness, we find that
transferability arises not only from the gradient of the cur-
rent sample and its variants but also from the combined
effects of the sample and model parameters, an important
aspect overlooked by nearly all current transferable adver-
sarial attack methods.

Inspired by the methods of computing Fisher information
in [Martin and Elster, 2020], Fisher information inherently
serves to assess the amount of information about the sample
collected by the model, as discussed in [Ly et al., 2017].
Equation 4 illustrates that as training progresses, the amount
of information gathered from the sample decreases, leading
to a flatter Fisher information matrix. This flattening effect
due to parameter updates (training) is the reason for the
increase in flatness. Therefore, we extend this to the sample
space to assess its association with local flatness.

Theorem 1 (Directional Finite Difference Estimation).
Given a function f with independent variable x, we can
estimate ∆x · ∂f(x)∂x by applying a fixed-direction perturba-
tion ∆x to x, as follows:

∆x · ∂f(x)
∂x

≈ f(x+ ϵ ·∆x)− f(x)

ϵ

≈ f(x+ ϵ ·∆x)− f(x− ϵ ·∆x)

2ϵ

(3)

where ϵ is a scalar. Theorem 1 will be used later to reduce
the complexity of computing Fisher information. The proof
is provided in the appendix.

Theorem 2 (Estimation of Curvature on Statistical Man-
ifold). Given an adversarial example x and the current
model parameters θ, we can employ the Fisher information
matrix to estimate the curvature of the statistical manifold.

Iθ(x) = Eyc∼P (y|x,θ)

[
∂ logPyc(x, θ)⊤

∂x
· ∂ logPyc(x, θ)

∂x

]
= −Eyc∼P (y|x,θ) [H

c] s.t. Hc
ij =

∂2 logP (yc|x, θ)
∂xi∂xj

(4)

where Eyc∼P (y|x,θ)[·] denotes the expectation over the con-
ditional distribution of class yc given input x and parameters
θ, ∂ logPyc (x,θ)

∂x represents the gradient of the logarithm of
the conditional probability of class yc with respect to in-
put x, and Hc is the Hessian matrix of the logarithm of
the conditional probability with respect to x, with elements
Hc

ij =
∂2 logP (yc|x,θ)

∂xi∂xj
.

The Hessian matrix Hc represents the curvature of the statis-
tical manifold and serves as an effective tool for assessing
the flatness of the manifold. As illustrated in Theorem 2,
if we consider the curvature of all neural network output
class functions, the Fisher information matrix can be em-
ployed. Furthermore, the Fisher information matrix can also
be regarded as a crucial tool for evaluating the changes in
the KL divergence of the model’s output distribution due
to variations in x, as analyzed in the appendix. It is im-
portant to note that the magnitude of gradients considers
only the output of a single class, −log Pyt(x, θ), where t
represents the target label (the computation method of cross-
entropy loss function under hard label conditions) [Ge et al.,
2023]. However, in reality, for model outputs transformed
into a probability distribution, enhancing the output values
of other classes can also be an important means to diminish
the probability of the current class.

Considering the high computational complexity of Iθ(x) ∈
Rm×m, we can estimate the impact of Iθ(x) using the trace
of Iθ(x), tr(Iθ(x)). However, using the trace neglects the
contribution of many off-diagonal dimensions to curvature.
We use the quadratic form of tr(Iθ(x)) for analysis:

tr(Iθ(x)) =
m∑
i=1

eiIθ(x)ei (5)

where ei ∈ Rm and the i-th dimension of ei is 1, with the
rest being 0. Changes in the dimension that ei is 0 of x are
not considered in the curvature calculation. More generally,
we define:

flat(Iθ(x)) = ∆x⊤Iθ(x)∆x (6)

as a measure to evaluate the flatness score of x’s curvature.
With Theorem 1, we can approximate and derive Theo-
rem 3.

Theorem 3 (Assessment of Local Flatness). This allows us
to assess local flatness using flat(Iθ(x)) with the following
approximation.

flat(Iθ(x)) ≈
1

4ε2

〈
∂Py(x+ ε ·∆x, θ)

∂x
− ∂Py(x− ε ·∆x, θ)

∂x
,

∂ logPy(x+ ε ·∆x, θ)

∂x
− ∂ logPy(x− ε ·∆x, θ)

∂x

〉
∝

〈
∂Py(x+ ε ·∆x, θ)

∂x
− ∂Py(x− ε ·∆x, θ)

∂x
,

∂ logPy(x+ ε ·∆x, θ)

∂x
− ∂ logPy(x− ε ·∆x, θ)

∂x

〉
(7)

where ⟨·, ·⟩ denotes the dot product, we choose ∆x as the
iterative update vector in adversarial attacks, allowing us to
observe the level of flatness during the adversarial attack
process. Additionally, we compute the flatness with respect
to model parameters θ as follows:
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Figure 2: (a) and (b) depict the flatness analysis of
flat(Iθ(x)) and flat(Ix(θ)) during training. The results
are obtained using the Inception-v3 model on the ImageNet
dataset.
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Figure 3: (a) and (b) are the flatness analysis of flat(Iθ(x))
and flat(Ix(θ)) during the attack process. The experiments
are conducted using Inception-v3 on the ImageNet dataset.

flat(Ix(θ)) ∝
〈
∂Py(x, θ + ε ·∆θ)

∂θ
− ∂Py(x, θ − ε ·∆θ)

∂θ
,

∂ logPy(x, θ + ε ·∆θ)

∂θ
− ∂ logPy(x, θ − ε ·∆θ)

∂θ

〉 (8)

The proof of Theorem 3 is provided in the appendix. Fisher
information can be employed to assess the compatibility
between parameters and samples [Martin and Elster, 2020],
where a higher flat(Iθ(x)) indicates that the sample is
extracting more information from the parameters θ (poten-
tially leading to overfitting in attacks). From the perspective
of flat(Ix(θ)), a larger value suggests that the sample is
unusual for the parameters θ and is near the decision bound-
ary, characterizing it as an Out-of-Distribution (OOD) sam-
ple. Therefore, it is crucial to minimize flat(Iθ(x)) and
flat(Ix(θ)) during the attack process, for which gradient
descent will be employed. Furthermore, we will discuss
why samples close to the decision boundary are non-flat
and detrimental to the transferability of adversarial attacks,
highlighting a consistency between the two.

Assumption 1 (Attack Transferability). Given an input
sample x, and model parameters θ, a smaller flat(Iθ(x))
leads to stronger attack transferability.

Assumption 1 constitutes our core assumption, which is an
optimized form of the hypothesis regarding the relationship
between flatness and transferability proposed in [Ge et al.,

Attack Success on Surrogate Model

Attack Success on Target Model

In Distribution

Out of Distribution

Correct Attack Direction

Divergent Attack Direction

Surrogate Model Decision Boundary

Target Model Decision Boundary

Figure 4: Gradient direction information near the decision
boundary is divergent and unstable. With DBA, the sample
will be converted from Divergent Attack Direction to Cor-
rect Attack Direction. (Here we take samples close to the
decision boundary as an example, as once a small perturba-
tion is added to these samples, the classification results of
the model may change)

2023]. As demonstrated in Figure 2, our DBA method ef-
fectively reduces flat(Iθ(x)) and flat(Ix(θ)) during the
training process.

In Figure 3, taking BIM as an example, when integrated with
our DBA method, it consistently sustains lower flat(Iθ(x))
and flat(Ix(θ)) throughout the attack process compared
to when used without DBA. Lower values of these metrics
indicate a flatter curvature of the statistical manifold.

3.3 DECISION BOUNDARY

Neural networks operate as continuous mappings, where the
transition of samples across the decision boundary (resulting
in class changes) is a gradual process without abrupt, large-
scale shifts in outcomes. This implies that samples near the
decision boundary are of lower confidence and more prone
to class changes. Training data exhibit high confidence on a
well-trained model and are distant from decision boundary.
Data close to the training data distribution are considered
in-distribution (ID) data, whereas those near the decision
boundary are deemed out-of-distribution (OOD) data.

In Figure 4, once an adversarial example approaches the
vicinity of the decision boundary, gradient direction informa-
tion becomes more divergent and unstable. To ensure data
remains within the ID range, gradient descent on individ-
ual samples can be applied to push them from the decision
boundary. The distance from the decision boundary can be
inferred from the variation in loss function values during
the adversarial attack; the greater the distance, the harder
it is to increase the loss function value. Figure 5 illustrates
that the difficulty of attacking increases with gradient de-
scent (Samples Distant from the Decision Boundary). It’s
important to emphasize that the methodologies for calculat-
ing the distance to the decision boundary and local flatness
are solely dependent on the current model, the sample, and
the task itself, and are not influenced by the method used
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to compute the gradient of adversarial samples during the
attack process. Therefore, the approach remains valid even
in scenarios involving complex loss functions.

min
θ

E(x,yt)∼D[max
δ

L(θ, x+ δ, y)] (9)

(From the perspective of adversarial training) Furthermore,
applying gradient descent to adversarial examples can be
seen as simulating the process of adversarial defense train-
ing, as shown in Equation 9, where adversarial defense train-
ing of θ employs gradient descent [Shaham et al., 2018].
Utilizing gradients obtained from adversarially trained pa-
rameters and adversarial examples can facilitate attack ef-
fectiveness on adversarially trained models. We also experi-
ment the transferability tests on such models.

3.4 DECISION BOUNDARY ADAPTATION (DBA)

We have discussed how gradient descent operations can dis-
tance samples from the decision boundary, obtaining more
general adversarial gradient information, and effectively in-
crease the flatness of the curvature of the statistical manifold.
In this context, we simply introduce gradient descent opera-
tions during the process of enhancing attack transferability.

θt = θt−1 − η · ∂L(y
t|xt−1

i , θt−1)

∂θt−1
(10)

where θ0 represents the model’s initial parameters, and xt−1

denotes the adversarial sample iterated t− 1 times. In each
iteration of the adversarial sample, θt replaces the original
model parameters. Furthermore, as adversarial attack algo-
rithms often iterate over multiple samples simultaneously,
the DBA algorithm can perform batch gradient descent op-
erations during parameter updates:

θt = θt−1 − η
1

k

k∑
i=1

∂L(yt|xt−1
i , θt−1)

∂θt−1
(11)

The update to θ affecting xt−1
i is by ∂L(yt|xt−1

i ,θt−1)

∂θt−1 , which
also facilitates distancing from the decision boundary. This
approach significantly enhances the efficiency of DBA, serv-
ing as an approximation of the single-step DBA, which in-
troduces only one additional forward and backward gradient
propagation, and it is negligible compared to the numerous
propagations in methods like SSA and NAA. Therefore,
there is some increase in computational cost but the added
computational cost is manageable and acceptable. Detailed
experimental results and pseudocode are in the Appendix G.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset To ensure a rigorous experiment design, we
use the same dataset in the NAAZhang et al. [2022] and
SSA [Long et al., 2022], thus ensuring consistency in the
experimental conditions across all baseline methods, includ-
ing our algorithm. Accordingly, we conduct the evaluations
using a standard image classification dataset that encom-
passes 1000 randomly chosen images from the ILSVRC
2012 validation set [Russakovsky et al., 2015].

Models We evaluated adversarial robustness across eleven
models, including six without defense training: Inception-
v3 (Inc-v3) [Szegedy et al., 2016], Inception-v4 (Inc-
v4) [Szegedy et al., 2017], Inception-ResNet-v2 (IncRes-
v2) [Szegedy et al., 2017], ResNet-50 (Res-50), ResNet-101
(Res-101), and ResNet-152 (Res-152) [He et al., 2016b],
along with two Vision Transformer models, ViT-B/16 [Doso-
vitskiy et al., 2020] and MaxViT-T [Tu et al., 2022]. Among
them, four models (Inc-v3, Inc-v4, IncRes-v2, Res-152)
served as surrogates for attack generation.

We also evaluated three defense-trained models: Inception-
v3 Ensemble 3 (Inc-v3-ens3), Inception-v3 Ensemble 4 (Inc-
v3-ens4), and Inception-ResNet-v2 Ensemble (IncRes-v2-
ens) [Tramèr et al., 2017], which employ ensemble tech-
niques to enhance adversarial robustness. Inc-v3-ens3 and
Inc-v3-ens4 aggregate multiple Inception-v3 models, while
IncRes-v2-ens extends this approach to Inception-ResNet-
v2.

Baseline Methods To evaluate the performance of the
models under adversarial attacks, we apply ten baseline ad-
versarial attack methods representing a diverse range of com-
mon attacks: BIM [Kurakin et al., 2018], PGD [Madry et al.,
2017], DI-FGSM [Xie et al., 2019], TI-FGSM [Dong et al.,
2019], MI-FGSM [Dong et al., 2018], SINI-FGSM [Lin
et al., 2019], SSA [Long et al., 2022], FSPS [Zhu et al.,
2023b], SIA [Wang et al., 2023] and MIG [Ma et al., 2023].

Metrics The main evaluation metric employed to gauge
the performance of the models under adversarial attacks is



Table 1: ASR on Defensive Training Models. Each data
point represents Baseline/Baseline+DBA(Gap), Green in-
dicating improvement by DBA over the original method,
and Red indicates a decrease.

Model Method Inc-v3-ens3 Inc-v3-ens4 IncRes-ens Average

BIM 12.5/12.6(0.1) 13.1/14.0(0.9) 4.7/6.7(2.0) 10.1/11.1(1.0)
DI-FGSM 17.3/17.7(0.4) 17.4/19.2(1.8) 9.0/9.1(0.1) 14.57/15.33(0.77)

MIG 40.3/46.1(5.8) 39.6/43.8(4.2) 21.4/27.4(6.0) 33.77/39.1(5.33)
MI-FGSM 22.5/21.4(-1.1) 22.5/21.5(-1.0) 10.5/11.0(0.5) 18.5/17.97(-0.53)

PGD 12.1/12.1(0.0) 12.6/12.9(0.3) 6.5/6.8(0.3) 10.4/10.6(0.2)
PGN 20.8/23.9(3.1) 20.8/24.9(4.1) 9.7/12.8(3.1) 17.1/20.53(3.43)
SIA 63.6/63.5(-0.1) 61.9/60.8(-1.1) 36.5/38.6(2.1) 54.0/54.3(0.3)

SINI-FGSM 39.6/47.3(7.7) 36.7/45.6(8.9) 23.0/26.6(3.6) 33.1/39.83(6.73)
SSA 74.3/77.2(2.9) 75.0/77.1(2.1) 60.0/64.1(4.1) 69.77/72.8(3.03)

Inc-v3

TI-FGSM 21.8/24.7(2.9) 24.1/27.2(3.1) 12.5/15.9(3.4) 19.47/22.6(3.13)

BIM 10.5/12.5(2.0) 11.5/12.6(1.1) 7.1/7.3(0.2) 9.7/10.8(1.1)
DI-FGSM 16.0/20.7(4.7) 17.3/20.1(2.8) 10.8/13.1(2.3) 14.7/17.97(3.27)

MIG 61.8/65.2(3.4) 56.4/58.1(1.7) 44.0/47.7(3.7) 54.07/57.0(2.93)
MI-FGSM 21.2/24.4(3.2) 21.9/22.6(0.7) 12.8/15.0(2.2) 18.63/20.67(2.03)

PGD 11.9/12.1(0.2) 12.4/12.4(0.0) 6.7/7.8(1.1) 10.33/10.77(0.43)
PGN 21.9/23.4(1.5) 22.1/24.2(2.1) 14.7/16.6(1.9) 19.57/21.4(1.83)
SIA 72.4/72.1(-0.3) 63.6/65.2(1.6) 51.7/51.9(0.2) 62.57/63.07(0.5)

SINI-FGSM 54.7/62.2(7.5) 48.9/53.8(4.9) 38.7/44.0(5.3) 47.43/53.33(5.9)
SSA 80.3/82.2(1.9) 76.7/77.4(0.7) 76.8/77.0(0.2) 77.93/78.87(0.93)

IncRes-v2

TI-FGSM 27.0/34.8(7.8) 28.2/32.9(4.7) 24.8/31.6(6.8) 26.67/33.1(6.43)

BIM 11.3/15.6(4.3) 11.7/15.2(3.5) 4.8/7.7(2.9) 9.27/12.83(3.57)
DI-FGSM 17.1/21.5(4.4) 16.8/22.7(5.9) 9.3/14.7(5.4) 14.4/19.63(5.23)

MIG 28.0/35.3(7.3) 26.5/32.2(5.7) 15.1/18.8(3.7) 23.2/28.77(5.57)
MI-FGSM 19.9/23.5(3.6) 19.5/24.0(4.5) 10.3/13.2(2.9) 16.57/20.23(3.67)

PGD 10.9/13.4(2.5) 12.5/13.5(1.0) 6.1/7.3(1.2) 9.83/11.4(1.57)
PGN 18.8/21.9(3.1) 21.2/24.5(3.3) 12.3/13.3(1.0) 17.43/19.9(2.47)
SIA 53.4/54.9(1.5) 49.0/50.5(1.5) 31.9/32.4(0.5) 44.77/45.93(1.17)

SINI-FGSM 26.3/36.8(10.5) 26.0/32.9(6.9) 13.6/18.2(4.6) 21.97/29.3(7.33)
SSA 77.9/82.7(4.8) 77.2/80.4(3.2) 68.5/73.4(4.9) 74.53/78.83(4.3)

Res-152

TI-FGSM 27.2/35.1(7.9) 30.5/34.8(4.3) 21.3/28.1(6.8) 26.33/32.67(6.33)

BIM 21.2/24.1(2.9) 24.4/28.0(3.6) 14.8/16.8(2.0) 20.13/22.97(2.83)
DI-FGSM 40.7/43.9(3.2) 43.1/45.9(2.8) 33.1/35.6(2.5) 38.97/41.8(2.83)

MIG 56.7/58.5(1.8) 56.8/58.7(1.9) 50.3/52.2(1.9) 54.6/56.47(1.87)
MI-FGSM 45.9/46.2(0.3) 46.4/47.5(1.1) 38.5/40.7(2.2) 43.6/44.8(1.2)

PGD 18.7/20.2(1.5) 20.6/22.0(1.4) 12.8/12.8(0.0) 17.37/18.33(0.97)
PGN 29.8/35.3(5.5) 32.9/38.0(5.1) 21.7/27.5(5.8) 28.13/33.6(5.47)
SIA 82.7/85.0(2.3) 83.2/84.2(1.0) 76.8/77.6(0.8) 80.9/82.27(1.37)

SINI-FGSM 56.6/57.5(0.9) 56.3/58.5(2.2) 51.1/50.2(-0.9) 54.67/55.4(0.73)
SSA 71.0/71.4(0.4) 71.8/72.7(0.9) 66.3/68.9(2.6) 69.7/71.0(1.3)

ViT-B/16

TI-FGSM 30.3/35.2(4.9) 34.6/38.0(3.4) 25.4/29.0(3.6) 30.1/34.07(3.97)

Attack Success Rate (ASR). It quantifies the percentage of
adversarial examples that successfully induce misclassifica-
tions. A higher attack success rate indicates that the attack
method performs better on a specific model. The primary
parameter adjusted in our DBA method is the learning rate,
with the batch size set to 1 and the training strategy encom-
passing all steps. Full details on the parameters can be found
in the Appendix H and our code repository.

4.2 RESULT

Experimental results are shown in Tables 2 and 1. Each
table’s results are separated by a forward slash, with the left
side representing the original attack success rates of baseline
methods on various models, and the right side displaying the
success rates after applying our DBA algorithm. The values
in parentheses indicate the difference in attack success rates
between with and without the use of the DBA method. The
last column presents the average attack success rates for both
the baseline methods and DBA. For additional experimental
data, please refer to the appendix.

In Table 2, the transferability of nearly all attack methods on
models without defense training is significantly enhanced

under the black-box setting of DBA, with results up to 97%.
Only in a minority of cases does DBA’s performance slightly
decline. Specifically, when using Res-152 as the surrogate
model, DBA exhibited higher improvements than the other
three models, with an average increase of 8.66%, possibly
due to the more general decision boundaries of Res-152.
Meanwhile, other three models showed average improve-
ments of 5.41%, 3.45%, and 2.44%, respectively.

For models with defense training, DBA also sustained sig-
nificant performance enhancements. As depicted in Table 1,
DBA continued to be highly effective in these more chal-
lenging scenarios, achieving effectiveness in 96% of cases.
With defensively trained models, the average Attack Success
Rate (ASR) increased by 2.81% after applying DBA.

It is important to note that while the improvement in trans-
ferability for certain methods like SIA and SSA might not
appear significant, the consistency in the enhancements pro-
vided by our DBA method across various attack methods is
crucial. This consistency is valuable, as it indicates that our
work can be effectively integrated with future algorithms
and methods. Such a feature of consistency is commonly
appreciated in fields like object detection, evident in the
updates within the YOLO series. Our approach lays a foun-
dational strategy that can be universally applied, underscor-
ing its potential for broad applicability and adaptability in
advancing adversarial attack methodologies.

4.3 ABLATION EXPERIMENT
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TI-FGSM, LR=0.00001
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Figure 6: Performance of different attack methods under the
influence of various learning rates using the proposed DBA
technique on ResNet-152 as the source model.

4.3.1 Impact of Learning Rates on DBA Performance

In this section, ResNet-152 is employed as the source model
to investigate the impact of different learning rates on the
performance of DBA. The learning rates are set to 0.001,
0.0001, and 0.00001, respectively. As shown in Figure 6, it
is observed that for enhancing the BIM attack, the learning
rate of 0.001 leads to the best performance, while for the
TI-FGSM and SSA methods, a learning rate of 0.0001 yields
the optimal results.



Table 2: ASR on models without defense training. Each data group follows the pattern: Baseline/Baseline+DBA (Gap),
where Green indicates an improvement by DBA relative to the original method, Red denotes a decrease, and Grey
represents white-box attacks, which are not our focus.

Model Method Inc-v3 Inc-v4 IncRes-v2 Res-50 Res-101 Res-152 ViT-B/16 MaxViT-T Average

BIM - 27.9/36.8(8.9) 19.7/29.9(10.2) 24.1/30.5(6.4) 21.9/27.7(5.8) 18.7/25.1(6.4) 9.2/11(1.8) 9.8/11.4(1.6) 18.76/24.63(5.87)
DI-FGSM - 48.2/52.1(3.9) 40.1/41.4(1.3) 38.4/42.1(3.7) 35.9/39.1(3.2) 32.5/36.3(3.8) 12.6/13.5(0.9) 14.8/16.5(1.7) 31.79/34.43(2.64)

MIG - 70.8/81.8(11) 68.5/81.8(13.3) 69.8/79.8(10.0) 64.7/77.1(12.4) 63.9/75.7(11.8) 32.8/37(4.2) 32.4/42.7(10.3) 57.56/67.99(10.43)
MI-FGSM - 50.2/56.3(6.1) 46.5/54.3(7.8) 47.0/51.4(4.4) 41.3/46.4(5.1) 41.6/45.9(4.3) 20.8/21.5(0.7) 20.9/23(2.1) 38.33/42.69(4.36)

PGD - 24.4/31.5(7.1) 15.9/28(12.1) 22.4/28.1(5.7) 18.8/25.4(6.6) 18.3/21.6(3.3) 9.6/10.8(1.2) 8.3/10.6(2.3) 16.81/22.29(5.47)
PGN - 28.9/37.4(8.5) 19.4/29.9(10.5) 27.0/33.2(6.2) 22.7/29.3(6.6) 20.9/27.4(6.5) 13.8/15.8(2) 8.8/12.5(3.7) 20.21/26.5(6.29)
SIA - 96.5/96.9(0.4) 95.4/95.6(0.2) 92.3/93.9(1.6) 91.6/92.1(0.5) 90.2/90.9(0.7) 48.2/50.6(2.4) 65/67.3(2.3) 82.74/83.9(1.16)

SINI-FGSM - 76.6/87.9(11.3) 75.5/86.6(11.1) 72.9/84.3(11.4) 69.0/81.9(12.9) 66.9/79.1(12.2) 32.1/39.6(7.5) 35/43.7(8.7) 61.14/71.87(10.73)
SSA - 88.3/90.9(2.6) 86.4/88.8(2.4) 80.7/84.6(3.9) 80.0/83.7(3.7) 80.7/83.4(2.7) 52.2/56(3.8) 49.1/51.5(2.4) 73.91/76.99(3.07)

Inc-v3

TI-FGSM - 32.9/40(7.1) 16.5/23.1(6.6) 24.2/27.8(3.6) 20.8/25.5(4.7) 20.7/24.3(3.6) 14/15.2(1.2) 10.6/12.3(1.7) 19.96/24.03(4.07)

BIM 33.7/41.4(7.7) 27.7/34(6.3) - 24.3/29.7(5.4) 20.8/26.2(5.4) 20.4/26(5.6) 9.5/10.2(0.7) 10/12(2) 20.91/25.64(4.73)
DI-FGSM 55.8/64.2(8.4) 48.8/59.3(10.5) - 40.0/48.7(8.7) 38.2/47.1(8.9) 37/45.1(8.1) 13.6/14.2(0.6) 16.9/21.2(4.3) 35.76/42.83(7.07)

MIG 88.2/89.3(1.1) 84.2/85.8(1.6) - 83.0/83.5(0.5) 80.3/83.5(3.2) 77.5/81.8(4.3) 42.9/43.6(0.7) 43.8/45.8(2) 71.41/73.33(1.91)
MI-FGSM 60.1/68.2(8.1) 54/61(7) - 48.4/54.2(5.8) 45.1/52.0(6.9) 43.5/47.8(4.3) 21/21.4(0.4) 20.7/25.2(4.5) 41.83/47.11(5.29)

PGD 32.1/38.5(6.4) 23.7/29.5(5.8) - 22.0/26.1(4.1) 19.3/21.0(1.7) 17.5/20.6(3.1) 8.9/10.1(1.2) 8.5/10.2(1.7) 18.86/22.29(3.43)
PGN 39.7/42.2(2.5) 30.2/33(2.8) - 30.6/31.4(0.8) 27.0/28.0(1.0) 24.5/26(1.5) 13.3/14.9(1.6) 11.5/12.1(0.6) 25.26/26.8(1.54)
SIA 96.5/95.7(-0.8) 95.8/95(-0.8) - 92.7/92.8(0.1) 91.4/91.6(0.2) 91.6/90.9(-0.7) 50.4/51.4(1) 67.2/68.5(1.3) 83.66/83.7(0.04)

SINI-FGSM 87.7/92.5(4.8) 84.2/89.7(5.5) - 78.8/86.1(7.3) 78.2/83.1(4.9) 77.6/82.5(4.9) 37.1/40.9(3.8) 41/45.1(4.1) 69.23/74.27(5.04)
SSA 90.6/89.8(-0.8) 89.4/89.5(0.1) - 86.2/86.3(0.1) 84.6/84.6(0.0) 85.5/85.3(-0.2) 60/62.4(2.4) 57.3/57.4(0.1) 79.09/79.33(0.24)

IncRes-v2

TI-FGSM 42.8/48.6(5.8) 40.6/47.8(7.2) - 31.5/36.5(5.0) 28.1/35.1(7.0) 29/34.1(5.1) 16.6/20.7(4.1) 12.9/15.2(2.3) 28.79/34.0(5.21)

BIM 27.4/48.3(20.9) 21.1/43.2(22.1) 11.8/29.5(17.7) 29.6/50.3(20.7) 26.3/46.8(20.5) - 9.3/14.2(4.9) 10.8/20.8(10) 19.47/36.16(16.69)
DI-FGSM 55.1/58.9(3.8) 52.1/55.5(3.4) 41.5/45.3(3.8) 58.8/65.1(6.3) 56.0/63.0(7.0) - 14.4/19.7(5.3) 24.5/31.6(7.1) 43.2/48.44(5.24)

MIG 66.9/78(11.1) 60.5/74.7(14.2) 52.5/68.2(15.7) 71.7/81.7(10.0) 68.5/81.1(12.6) - 22.2/29.9(7.7) 31/36.3(5.3) 53.33/64.27(10.94)
MI-FGSM 54.6/67.6(13) 48.3/63(14.7) 40/53.3(13.3) 57.2/70.9(13.7) 53.0/68.8(15.8) - 19.4/24.9(5.5) 24.9/34.9(10) 42.49/54.77(12.29)

PGD 22.6/42.9(20.3) 18.8/37.4(18.6) 10.2/24.3(14.1) 25.5/44.3(18.8) 21.7/41.7(20.0) - 9.2/12.8(3.6) 8.4/16.6(8.2) 16.63/31.43(14.8)
PGN 29.8/34.6(4.8) 26.1/28.6(2.5) 16.7/20.2(3.5) 36.5/39.7(3.2) 32.7/35.3(2.6) - 16.6/17.6(1) 12.5/14(1.5) 24.41/27.14(2.73)
SIA 94.7/95.4(0.7) 95.7/96.1(0.4) 91.3/93(1.7) 95.9/96.9(1.0) 95.9/96.3(0.4) - 46.3/47(0.7) 71.9/75.6(3.7) 84.53/85.76(1.23)

SINI-FGSM 67.8/81.6(13.8) 62.5/79.9(17.4) 53.8/73.6(19.8) 72.4/86.8(14.4) 68.3/84.2(15.9) - 22.6/27.9(5.3) 28.3/38.6(10.3) 53.67/67.51(13.84)
SSA 90.3/92.4(2.1) 89.2/91.5(2.3) 86.4/89(2.6) 92.7/93.4(0.7) 91.7/92.9(1.2) - 62.9/68.2(5.3) 59.6/66.1(6.5) 81.83/84.79(2.96)

Res-152

TI-FGSM 37.3/43(5.7) 38.2/43.9(5.7) 21.7/30(8.3) 38.3/44.4(6.1) 35.4/39.6(4.2) - 24.1/29.9(5.8) 16.7/21.9(5.2) 30.24/36.1(5.86)

BIM 30.4/33.8(3.4) 24.3/26.6(2.3) 17.4/20.5(3.1) 28.4/29.8(1.4) 25.4/29.4(4.0) 23.5/26.5(3) - 22.8/25(2.2) 24.6/27.37(2.77)
DI-FGSM 49.9/52.1(2.2) 44.2/47.2(3) 38.3/40.7(2.4) 46.7/49.9(3.2) 43.2/47.9(4.7) 40.6/44.9(4.3) - 42.5/48(5.5) 43.63/47.24(3.61)

MIG 67.9/70.5(2.6) 62.1/63.8(1.7) 55.8/57.1(1.3) 66.0/67.5(1.5) 62.4/63.8(1.4) 61.1/61.9(0.8) - 54.3/56.9(2.6) 61.37/63.07(1.7)
MI-FGSM 57.7/59(1.3) 53.8/54.1(0.3) 45.9/47.7(1.8) 56.4/56.4(0.0) 54.0/54.1(0.1) 50.7/52.2(1.5) - 48.6/50.7(2.1) 52.44/53.46(1.01)

PGD 28/30.9(2.9) 21.2/23.5(2.3) 15.6/18.3(2.7) 27.1/29.7(2.6) 23.4/26.6(3.2) 22.2/24.9(2.7) - 21.1/24.2(3.1) 22.66/25.44(2.79)
PGN 37.2/43.9(6.7) 31.8/35.9(4.1) 22.9/29.8(6.9) 34.2/41.4(7.2) 31.2/37.4(6.2) 30.2/36(5.8) - 28.1/34.6(6.5) 30.8/37.0(6.2)
SIA 89.9/90.5(0.6) 87.6/87.2(-0.4) 84.2/86(1.8) 88.6/88.5(-0.1) 87.4/87.6(0.2) 85.9/85.8(-0.1) - 89.8/91.1(1.3) 87.63/88.1(0.47)

SINI-FGSM 68.3/70.7(2.4) 64.6/66.5(1.9) 59.1/59.7(0.6) 68.0/68.0(0.0) 64.0/64.5(0.5) 60.5/60.4(-0.1) - 54.8/57.5(2.7) 62.76/63.9(1.14)
SSA 77.2/77.6(0.4) 72.1/74.4(2.3) 70.3/70.5(0.2) 76.1/75.9(-0.2) 73.3/74.9(1.6) 71.9/74(2.1) - 62.8/65.2(2.4) 71.96/73.21(1.26)

ViT-B/16

TI-FGSM 32.4/35.2(2.8) 29.6/33.2(3.6) 19.3/22.8(3.5) 26.7/30.4(3.7) 26.1/28.9(2.8) 26/29.3(3.3) - 24.1/28.3(4.2) 26.31/29.73(3.41)

Inc-v3
Inc-v4

Inc-Res-v2

ResNet-50

ResNet-101

Inc-v3-ens3

Inc-v3-ens4

Inc-Res-v2-ens

20

40

60

80

A
SR

 (%
)

Attack and Strategy
BIM, Early Phase
BIM, Late Phase
BIM, Alternate Steps
BIM, Full Training
TI-FGSM, Early Phase
TI-FGSM, Late Phase
TI-FGSM, Alternate Steps
TI-FGSM, Full Training
SSA, Early Phase
SSA, Late Phase
SSA, Alternate Steps
SSA, Full Training

Figure 7: Comparative summary of attack method perfor-
mances using the ResNet-152 source model under four dis-
tinct training strategies with the implementation of the pro-
posed DBA technique. The strategies include Early Phase
(First 50%), Late Phase (Last 50%), Alternate Steps (Every
1-step interval), and Full Training (All steps), each demon-
strating the effectiveness of the DBA technique in enhancing
attack robustness across different phases of training.

4.3.2 Impact of Training Strategies on DBA
Performance

In this section, ResNet-152 is employed as the source model
to investigate the influence of four distinct training strategies
on DBA performance. The strategies consist of training for
the first 50% steps, training for the last 50% steps, training
at every 1-step interval, and training all steps. The unified
learning rate is set to 0.0001. As shown in Figure 7, when
enhancing the BIM attack, the strategies of training for the
first 50% steps and all steps consistently better. On the other
hand, for enhancing the TI-FGSM and SSA methods, the
performance of training all steps significantly outperform
the other three strategies.

5 CONCLUSION

In this paper, we introduced the Decision Boundary Adap-
tation (DBA) approach, a simple, efficient, and easily im-
plementable method to enhance adversarial attack transfer-
ability across DNN models. DBA exploits the similarity
between source and target model decision boundaries, im-



proving adversarial example transferability through bound-
ary manipulation. We evaluated DBA on state-of-the-art
adversarial attacks, demonstrating its effectiveness in en-
hancing black-box attack performance. Our results show
that DBA significantly improves adversarial transferabil-
ity, achieving state-of-the-art performance. However, DBA
introduces additional computational overhead (∼ 5% on
average), which, though manageable, may challenge deploy-
ment on resource-limited servers. Overall, DBA provides
valuable insights for future research on strengthening DNN
robustness against black-box adversarial attacks.
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A PROOF OF THEOREM 1

Proof of Theorem 1. Consider an infinitesimal O.

Given f(x+ ϵ ·∆x) = f(x)+ ϵ ·∆x · ∂f(x)∂x +O, we can express the incremental change in f(x) due to a small perturbation
ϵ ·∆x as:

f(x+ ϵ ·∆x)− f(x)

ϵ
= ∆x · ∂f(x)

∂x
+
O
ϵ

(12)

This expression implies that the rate of change of f(x) with respect to ϵ approximates the directional derivative along ∆x,
with O/ϵ representing the higher-order terms that become negligible as ϵ→ 0.

To prove f(x+ϵ·∆x)−f(x−ϵ·∆x)
2ϵ follows similarly, we utilize the symmetric difference quotient, which accounts for the

function value at x+ ϵ ·∆x and x− ϵ ·∆x, providing a more accurate approximation of the derivative:

f(x+ ϵ ·∆x)− f(x− ϵ ·∆x)

2ϵ
= ∆x · ∂f(x)

∂x
+
O
ϵ

(13)

This symmetric formulation further reduces the error in the approximation, leading to a more accurate estimation of the
directional derivative in the limit as ϵ→ 0.

B PROOF OF THEOREM 2:

Proof of Theorem 2. The Fisher information matrix Iθ(x) can be expressed as:

Iθ(x) = Eyc∼P (y|x,θ)

[
∂ logPyc(x, θ)⊤

∂x
· ∂ logPyc(x, θ)

∂x

]
(14)

This can be expanded as:

Iθ(x) =
c∑

i=1

∂ logPyc(x, θ)⊤

∂x
· ∂ logPyc(x, θ)

∂x
· Pyc(x, θ) (15)

Considering the expectation of the second derivative of Pyc(x, θ) with respect to x normalized by Pyc(x, θ):

Eyc∼P (y|x,θ)

[
∂2Pyc(x, θ)

∂x2
· 1

Pyc(x, θ)

]
=

∂2

∂x2

∑
Pyc(x, θ) = 0 (16)

The second derivative of logPyc(x, θ) is given by:

∂2

∂x2
logPyc(x, θ) =

∂2Pyc (x,θ)
∂x2

Pyc(x, θ)
−

(
∂Pyc (x,θ)

∂x

)⊤
· ∂Pyc (x,θ)

∂x

P 2
yc(x, θ)

(17)

Therefore, the expectation of the product of the gradients of the log likelihoods is equivalent to the negative expectation of
the Hessian matrix of the log likelihood:

Eyc∼P (y|x,θ)

[
∂ logPyc(x, θ)⊤

∂x
· ∂ logPyc(x, θ)

∂x

]
= −Eyc∼P (y|x,θ) [H

c] (18)

By integrating over the conditional distribution and approximating for all class labels c, we can rewrite the Fisher information
matrix as:

Iθ(x) =
C∑

c=1

∂ logPyc(x, θ)

∂x
· Pyc(x, θ) ·

(
∂ logPyc(x, θ)

∂x

)⊤
(19)



C PROOF OF THEOREM 3:

Proof of Theorem 3. The Fisher information matrix Iθ(x) is given by:

Iθ(x) = Eyc∼P (y|x,θ)

[
∂ logPyc(x, θ)⊤

∂x
· ∂ logPyc(x, θ)

∂x

]
=

C∑
c=1

Pyc(x, θ) · ∂ logPyc(x, θ)⊤

∂x
· ∂ logPyc(x, θ)

∂x

=

C∑
c=1

∂Pyc(x, θ)⊤

∂x
· ∂ logPyc(x, θ)

∂x

(20)

The trace of Iθ(x) is:

tr(Iθ(x)) =
m∑
i=1

eiIθ(x)ei (21)

Considering the flatness of Iθ(x):

flat(Iθ(x)) = ∆xIθ(x)∆x⊤

=

C∑
c=1

∆x · ∂Pyc(x, θ)⊤

∂x
·∆x · ∂ logPyc(x, θ)

∂x

=

〈
∆x · ∂Py(x, θ)

∂x
,∆x · ∂ logPy(x, θ)

∂x

〉 (22)

Given:
∆x · ∂Py(x,θ)

∂x

2ϵ
≈ 1

2ϵ

(
∂Py(x+ ϵ ·∆x, θ)

∂x
− ∂Py(x− ϵ ·∆x, θ)

∂x

)
(23)

∆x · ∂ logPy(x,θ)
∂x

2ϵ
≈ 1

2ϵ

(
∂ logPy(x+ ϵ ·∆x, θ)

∂x
− ∂ logPy(x− ϵ ·∆x, θ)

∂x

)
(24)

Hence, Theorem 3 is proven as:

flat(Iθ(x)) ≈
1

4ε2

〈
∂Py(x+ ε ·∆x, θ)

∂x
− ∂Py(x− ε ·∆x, θ)

∂x
,

∂ logPy(x+ ε ·∆x, θ)

∂x
− ∂ logPy(x− ε ·∆x, θ)

∂x

〉
∝

〈
∂Py(x+ ε ·∆x, θ)

∂x
− ∂Py(x− ε ·∆x, θ)

∂x
,

∂ logPy(x+ ε ·∆x, θ)

∂x
− ∂ logPy(x− ε ·∆x, θ)

∂x

〉
(25)

The same can be proven for flat(Ix(θ)).

D PROOF OF THE RELATIONSHIP BETWEEN KL DIVERGENCE AND FISHER
INFORMATION MATRIX

Proof of the Relationship between KL Divergence and Fisher Information Matrix. The KL divergence between Py(x, θ)
and Py(x+∆x, θ) can be approximated as:

KL(Py(x, θ), Py(x+∆x, θ)) =
1

2
∆x⊤ ·

(
∂2KL(Py(x, θ), Py(x+∆x, θ))

∂(x+∆x)i∂(x+∆x)j

)
∆x→0

∆x+O



The second derivative of the KL divergence at ∆x→ 0 is given by:(
∂2KL(Py(x, θ), Py(x+∆x, θ))

∂(x+∆x)i∂(x+∆x)j

)
∆x→0

= −
C∑

c=1

Py(x, θ) ·
(

∂2 logPy(x+∆x, θ)

∂(x+∆x)i∂(x+∆x)j

)
∆x→0

= [I(θ)]ij

This result demonstrates the equivalence between the second derivative of the KL divergence and the Fisher Information
Matrix I(θ), thereby establishing the relationship between them.

E THE METHOD OF DRAWING VARIATION FIGURE OF flat(·)

For the computations depicted in the above figures, we calculated k curves corresponding to the number of samples,
normalized all flat(·) values to the 0-1 range using their maximum values, and then plotted the average of these k samples.

F PRACTICAL IMPLEMENTATION STEPS OF DBA

More detailed explanations regarding the practical implementation of DBA. The core implementation of DBA is centered
around gradient descent operations to adjust model parameters, optimizing the flatness of decision boundaries. Specifically,
the process is as follows:

• Gradient Information Computation: Compute gradient information for the sample to assess the properties of the
decision boundary in its vicinity.

• Parameter Update: Use the computed gradients to update the model parameters via gradient descent, ensuring that
samples move away from unstable regions near the decision boundary during the attack process.

• Iterative Optimization: Repeat this process iteratively to enhance the stability of attack directions and improve the
transferability of adversarial examples.

This method allows DBA to maintain the efficiency of existing adversarial attack algorithms while significantly enhancing
cross-model attack capabilities through parameter optimization. We validated this implementation extensively in our
experiments, demonstrating that DBA consistently and reliably improves the performance of existing methods.

G DBA IMPLEMENTATION

Algorithm 1 Decision Boundary Adaptation Algorithm

Input: parameter of the source model θ, input x, target y, learning rate of model boundaries α1, learning rate of perturbations
α2, warm up step w

Output: xI

1: Init x0 ← x, θ0 ← θ
2: for i = 1 · · · I do
3: θi = θi−1 + [[i ≥ w]] · α1

(
∂L(y|xi−1,θ

i−1)
∂θi−1

)
4: ηi = α2 · sign

(
∂L(y|xi−1,θ

i−1)
∂(xi−1+ηi−1)

)
5: end for
6: xI = xi−1 + ηi = x0 +

i∑
j=1

ηj = x0 + ηi

H PARAMETERS SETTING

All our experiments are conducted on one NVIDIA RTX 6000 Ada graphics card. In our experiments across all models,
we set the maximum perturbation of all algorithms to 16

255 , with an attack step size of 10. Notably, we set the batch size to



1; the appendix discusses other batch sizes, highlighting the optimal performance enhancement of DBA at a batch size of
1. Additionally, specific parameters were allocated to each baseline attack method to ensure evaluation consistency and
fairness. For the DI-FGSM method, we set the decay parameter to 0, the resize rate to 0.9, and the diversity probability
to 0.5. Similarly, for the TI-FGSM method, the decay parameter was set to 0, employing a Gaussian kernel with a length
of 15 and a standard deviation of 3. The resize rate and diversity probability were set to 0.9 and 0.5, respectively. For the
MI-FGSM method, the decay parameter was set to 1. For the SINI-FGSM method, the decay parameter was set to 1, with
parameter m set to 5. For the SSA method, we used a kernel length of 7, standard deviation of 3, momentum of 1, N of 20,
σ of 16, and ρ of 0.5.

I RESULT OF DBA WITH EXPENDED ATTACK METHOD

We have supplemented our experiments with the RAP [Qin et al., 2022] method by evaluating its performance both with
and without the integration of DBA in Table 3. The results are summarized in the table below. Using Inc-v3 as the source
model, it is evident that our DBA method consistently enhances the transferability of RAP. In nearly all black-box models,
performance improvements are observed, with an average improvement of 0.66%.

Table 3: Result of RAP with and without DBA

RAP
RAP

with DBA Gap

Inc-v3 95.20% 95.10% -0.10%
Inc-v4 46.00% 46.90% 0.90%

IncRes-v2 44.00% 45.10% 1.10%
Res-50 45.70% 45.70% 0.00%

Res-101 41.40% 41.70% 0.30%
Res-152 39.80% 40.70% 0.90%

Inc-v3-ens3 22.30% 23.80% 1.50%
Inc-v3-ens4 22.10% 22.80% 0.70%
IncRes-ens 11.70% 12.80% 1.10%
ViT-B/16 20.60% 20.60% 0.00%
MaxViT-T 21.60% 21.70% 0.10%

J RESULT OF DBA WITH BATCH GRADIENT DESCENT

The data in Table 4 and Table 6 represent the results of all experiments conducted with a batch size of 10. In scenarios
where gradient descent is applied to each sample individually, the batch size does not affect the attack outcome, as the
computations for each sample are independent. Furthermore, regarding the optimization method mentioned in Eq. 11, we
have conducted experiments detailed in this section, which also demonstrate consistent improvement across various settings.

K COMPUTATIONAL EFFICIENCY ANALYSIS OF DBA

Table 5 presents the detailed frame-per-second (FPS) measurements for different adversarial attack methods applied to two
target models, with and without incorporating DBA. The results show that DBA introduces a modest computational overhead
across all configurations. The maximum overhead observed is below 9%, with an average overhead of approximately 5%.
This confirms that DBA is computationally efficient and can be integrated into existing black-box attack pipelines with
minimal runtime impact.



Model Attack Inc-v3 Inc-v4 IncRes-v2 Res-50 Res-101 Res-152 Average

BIM 100/98.2(-1.8) 27.5/32.6(5.1) 20.1/24.2(4.1) 24.1/29.4(5.3) 22.2/24.6(2.4) 18/23.5(5.5) 35.32/38.75(3.43)
PGD 100/100(0) 23.8/27.8(4) 16.6/19.1(2.5) 22.9/23.9(1) 19/20.7(1.7) 18.3/19.6(1.3) 33.43/35.18(1.75)
DI-FGSM 99.8/99.7(-0.1) 46/50.5(4.5) 38.8/41.3(2.5) 37.8/42.8(5) 34.2/37.8(3.6) 32.7/36(3.3) 48.22/51.35(3.13)
TI-FGSM 98.6/98.1(-0.5) 32/40.9(8.9) 17.3/24.5(7.2) 24.8/29.8(5) 21.7/25.8(4.1) 20.8/23.9(3.1) 35.87/40.5(4.63)
MI-FGSM 100/99.8(-0.2) 50.6/64.2(13.6) 45.7/59(13.3) 47.2/58.9(11.7) 42.2/55.2(13) 40.6/54.3(13.7) 54.38/65.23(10.85)
SINI-FGSM 100/100(0) 77.4/88.1(10.7) 75.2/87.5(12.3) 73.3/84.6(11.3) 69.1/82.4(13.3) 69.4/80.5(11.1) 77.4/87.18(9.78)
SSA 99.3/99.4(0.1) 87.5/90.5(3) 86.7/88.7(2) 81.9/84.6(2.7) 79.3/83.7(4.4) 80.4/83.3(2.9) 85.85/88.37(2.53)

Inc-v3

NAA 97.4/97.5(0.1) 87.8/87.9(0.1) 85.8/86.4(0.6) 82.8/83.8(1) 82.4/82.8(0.4) 81.4/81.9(0.5) 86.27/86.72(0.45)

BIM 36.4/41.5(5.1) 99.9/99.6(-0.3) 18.9/26.5(7.6) 23.4/28(4.6) 20.5/25.9(5.4) 19.3/23.7(4.4) 36.4/40.87(4.47)
PGD 33.4/36.6(3.2) 99.9/99.3(-0.6) 14.3/21.4(7.1) 21.3/25.8(4.5) 17.7/20.2(2.5) 17.5/20(2.5) 34.02/37.22(3.2)
DI-FGSM 54.9/59.3(4.4) 99.5/98.6(-0.9) 37.4/43.8(6.4) 35.7/43.9(8.2) 32.3/38.4(6.1) 31/39.2(8.2) 48.47/53.87(5.4)
TI-FGSM 38.7/45.9(7.2) 97.8/97.2(-0.6) 17.6/25.3(7.7) 23.9/28.6(4.7) 20.5/24.9(4.4) 21.2/24.3(3.1) 36.62/41.03(4.41)
MI-FGSM 60.9/68.1(7.2) 99.8/99.8(0) 45.9/53.6(7.7) 45.6/52.4(6.8) 42.2/47.1(4.9) 41.2/46.9(5.7) 55.93/61.32(5.39)
SINI-FGSM 86.6/92.6(6) 100/100(0) 78.7/87.2(8.5) 77.6/83.8(6.2) 73.8/82.2(8.4) 72.8/81(8.2) 81.58/87.8(6.22)
SSA 91.7/91.2(-0.5) 98.9/98.7(-0.2) 86.6/87.9(1.3) 82.8/85.7(2.9) 80.6/83.1(2.5) 82.7/84.7(2) 87.22/88.55(1.33)

Inc-v4

NAA 88/88.2(0.2) 98/98(0) 83.7/83.9(0.2) 82.6/82.2(-0.4) 82.2/82.2(0) 79.9/80(0.1) 85.73/86.9(1.17)

BIM 35.4/43.8(8.4) 29.3/33.7(4.4) 99.2/99.4(0.2) 24.5/30.4(5.9) 21.2/26.7(5.5) 21.4/25(3.6) 38.5/43.17(4.67)
PGD 30.8/37.9(7.1) 23.7/28.4(4.7) 99.4/99.5(0.1) 21.8/24.8(3) 19.7/22.1(2.4) 17.7/19.4(1.7) 35.52/38.68(3.16)
DI-FGSM 56.7/63.8(7.1) 49.4/59.2(9.8) 98/98.7(0.7) 41.7/48.7(7) 38.4/44.1(5.7) 38.6/45(6.4) 53.8/59.92(6.12)
TI-FGSM 42.7/51.9(9.2) 41.7/49.2(7.5) 94.7/94.9(0.2) 30.9/37.7(6.8) 29.6/35.4(5.8) 28.7/36.3(7.6) 44.72/50.9(6.18)
MI-FGSM 61.4/68.9(7.5) 53/60.8(7.8) 99.1/99.5(0.4) 48.2/55.3(7.1) 46.6/51.5(4.9) 44.7/50.1(5.4) 58.83/64.35(5.52)
SINI-FGSM 87.4/92.2(4.8) 83.6/88(4.4) 99.9/99.9(0) 79.2/84.2(5) 77.3/84.9(7.6) 75/81.9(6.9) 83.73/88.52(4.79)
SSA 89.4/90.5(1.1) 89.4/89.5(0.1) 97.7/97.8(0.1) 85.9/87.3(1.4) 83.9/85.6(1.7) 85.7/86.3(0.6) 88.67/89.5(0.83)

IncRes-v2

NAA 83.9/84.3(0.4) 80.5/81.2(0.7) 92.2/92.5(0.3) 79.5/79.8(0.3) 78.1/78.6(0.5) 77.4/77.1(-0.3) 81.93/82.25(0.32)

BIM 25.6/47.8(22.2) 21.6/42.2(20.6) 11.7/31.5(19.8) 28.6/48.6(20) 26.1/45.5(19.4) 24/44.2(20.2) 22.93/43.3(20.37)
PGD 22.9/39.4(16.5) 18.4/32(13.6) 10.5/23.1(12.6) 24.5/43.1(18.6) 21.7/36.8(15.1) 20.4/36.1(15.7) 19.73/35.08(15.35)
DI-FGSM 53.8/59.6(5.8) 51.5/55.2(3.7) 40.1/45.7(5.6) 60.7/63.6(2.9) 57.6/62.1(4.5) 54.9/60.8(5.9) 53.1/57.83(4.73)
TI-FGSM 37.7/45.4(7.7) 37.3/44.2(6.9) 23.3/31.4(8.1) 38.2/44.1(5.9) 34.6/42.5(7.9) 34.7/43.1(8.4) 34.3/41.78(7.48)
MI-FGSM 55/72.7(17.7) 48.8/69.5(20.7) 39.7/60(20.3) 58.3/74.1(15.8) 52.7/72.5(19.8) 52/72(20) 51.08/70.13(19.05)
SINI-FGSM 68.1/86.5(18.4) 63.2/83.8(20.6) 53.6/79.1(25.5) 72.6/90.4(17.8) 68.4/88.8(20.4) 68.3/87(18.7) 65.7/85.93(20.23)
SSA 90.4/91.7(1.3) 89/90.6(1.6) 86.6/88.7(2.1) 92.4/92.9(0.5) 91.9/93(1.1) 92.8/93.4(0.6) 90.52/91.72(1.2)

Res-152

NAA 88.1/89(0.9) 86.9/87.5(0.6) 81.6/83.1(1.5) 89.3/91.1(1.8) 90.2/90.9(0.7) 88.8/89.8(1) 87.48/88.57(1.09)

Table 4: Attack Success Rates on Non-defensive Training Models. Each data group follows this pattern: Base-
line/Baseline+DBA(Gap), with green indicating enhancement by DBA over the original method, while red indicates
a decrease. Importantly, it should be noted that, compared to white-box attacks, more attention should be focused on
black-box attacks.

Table 5: Comparison of attack efficiency in frames per second (FPS) with and without DBA. Although DBA introduces a
slight computational overhead, the decrease in FPS remains marginal (mostly within 5% on average), indicating that DBA
maintains high efficiency across various models and attack methods.

Attack Model FPS (No DBA) FPS (With DBA) Overhead

MIG Inception-v3 0.4524 0.4355 3.88%
MaxViT-T 0.1786 0.1731 3.20%

PGN Inception-v3 0.5919 0.5490 7.83%
MaxViT-T 0.2307 0.2121 8.73%

SIA Inception-v3 0.1659 0.1602 3.62%
MaxViT-T 0.1603 0.1576 1.74%

SSA Inception-v3 0.6360 0.5891 7.97%
MaxViT-T 0.3074 0.2974 3.34%



Model Attack Inc-v3-ens3 Inc-v3-ens4 IncRes-v2-ens Average

BIM 12.4/13.4(1) 13.5/13.3(-0.2) 4.9/6.2(1.3) 10.27/10.97(0.7)
PGD 12.6/12.3(-0.3) 12.4/13.4(1) 6.5/6.2(-0.3) 10.5/10.63(0.13)
DI-FGSM 17/19.2(2.2) 17.5/18.9(1.4) 8/9.3(1.3) 14.17/15.8(1.63)
TI-FGSM 22/27(5) 24.4/28.9(4.5) 12.9/15.5(2.6) 19.77/23.8(4.03)
MI-FGSM 21.8/25.3(3.5) 22.6/26.3(3.7) 10.1/12.9(2.8) 18.17/21.5(3.33)
SINI-FGSM 39.5/47.5(8) 38.1/45.6(7.5) 22.7/27.7(5) 33.43/40.27(6.84)
SSA 74.5/79.6(5.1) 73.4/77.3(3.9) 59.2/64.8(5.6) 69.03/73.9(4.87)

Inc-v3

NAA 57.8/57.1(-0.7) 55.2/56.3(1.1) 34.7/34.2(-0.5) 49.23/49.2(-0.03)

BIM 10.2/11.7(1.5) 12.4/11.9(-0.5) 5.5/6(0.5) 9.37/9.87(0.5)
PGD 11.7/12.1(0.4) 11.5/11.7(0.2) 6/5.5(-0.5) 9.73/9.77(0.04)
DI-FGSM 14/16.7(2.7) 15.4/16.2(0.8) 7.5/9.3(1.8) 12.3/14.07(1.77)
TI-FGSM 19.3/23(3.7) 20.3/26.1(5.8) 13.2/15.8(2.6) 17.6/21.63(4.03)
MI-FGSM 20.6/22.4(1.8) 18.3/19.9(1.6) 10.8/12.1(1.3) 16.57/18.13(1.56)
SINI-FGSM 46.9/54.2(7.3) 43.4/50.8(7.4) 29.4/33.8(4.4) 39.9/46.27(6.37)
SSA 74.9/77.2(2.3) 72.1/77.4(5.3) 63.8/67(3.2) 70.27/73.87(3.6)

Inc-v4

NAA 59.7/59.9(0.2) 56.7/57.3(0.6) 39.8/39.5(-0.3) 52.07/52.23(0.16)

BIM 9.4/11.7(2.3) 9.9/12.4(2.5) 6.5/7.1(0.6) 8.6/10.4(1.8)
PGD 11.8/11.6(-0.2) 10.8/12(1.2) 7/7.1(0.1) 9.87/10.23(0.36)
DI-FGSM 16.3/20.4(4.1) 16.8/18.6(1.8) 10/12.6(2.6) 14.37/17.2(2.83)
TI-FGSM 28.2/35.3(7.1) 28.2/34.8(6.6) 25.3/33.7(8.4) 27.23/34.6(7.37)
MI-FGSM 21.9/25.5(3.6) 22.5/24(1.5) 13.4/16.3(2.9) 19.27/21.93(2.66)
SINI-FGSM 55.8/62.5(6.7) 49/55.1(6.1) 40.9/45.6(4.7) 48.57/54.4(5.83)
SSA 80.7/81.7(1) 77.3/79.4(2.1) 76.9/77.4(0.5) 78.3/79.5(1.2)

IncRes-v2

NAA 63.8/63.7(-0.1) 56.7/57.2(0.5) 50.5/51.2(0.7) 57/57.37(0.37)

BIM 11.8/15.3(3.5) 11.7/17.1(5.4) 5/8.8(3.8) 9.5/13.73(4.23)
PGD 11.9/12.3(0.4) 11.4/12.8(1.4) 5.5/7.2(1.7) 9.6/10.77(1.17)
DI-FGSM 15.9/23(7.1) 16.6/24.5(7.9) 8.6/13.6(5) 13.7/20.37(6.67)
TI-FGSM 28.3/36.8(8.5) 31.1/38.5(7.4) 21.7/29.5(7.8) 27.03/34.93(7.9)
MI-FGSM 19/28.5(9.5) 19.9/28(8.1) 10/15.5(5.5) 16.3/24(7.7)
SINI-FGSM 25.4/41.3(15.9) 26.5/38.7(12.2) 13.3/21(7.7) 21.73/33.67(11.94)
SSA 78.1/80.4(2.3) 77.3/79.1(1.8) 67.3/71.2(3.9) 74.23/76.9(2.67)

Res-152

NAA 41.1/43.5(2.4) 40/41.2(1.2) 23.2/23.9(0.7) 34.77/36.2(1.43)

Table 6: Attack Success Rates on Defensive Training Models. Each data group follows this pattern: Base-
line/Baseline+DBA(Gap), with green indicating enhancement by DBA over the original method, while red indicates
a decrease.
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