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Abstract

Current reinforcement learning (RL) models are often claimed to explain animal1

behavior. However, they are designed for artificial agents that sense, think, and react2

much faster than the brain, and they tend to fail when operating under human-like3

sensory and reaction times. Despite using slow neurons, the brain achieves precise4

and low-latency control through a combination of predictive and sequence learning.5

The basal ganglia is hypothesized to learn compressed representations of action6

sequences, allowing the brain to produce a series of actions for a given input. We7

present the Hindsight-Sequence-Planner (HSP), a model of the basal ganglia and8

the prefrontal cortex that operates under "brain-like" conditions: slow information9

processing with quick sensing and actuation. Our "temporal recall" mechanism is10

inspired by the prefrontal cortex’s role in sequence learning, where the agent uses11

an environmental model to replay memories at a finer temporal resolution than its12

processing speed while addressing the credit assignment problem caused by scalar13

rewards in sequence learning. HSP employs model-based training to achieve model-14

free control, resulting in precise and efficient behavior that appears low-latency15

despite running on slow hardware. We test HSP on various continuous control16

tasks, demonstrating that it not can achieve comparable performance ’human-like’17

frequencies by relying on significantly fewer observations and actor calls (actor18

sample complexity).19

1 Introduction20

Biological and artificial agents must learn behaviors that maximize rewards to thrive in complex21

environments. Reinforcement learning (RL), a class of algorithms inspired by animal behavior,22

facilitates this learning process (1). The connection between neuroscience and RL is profound.23

The Temporal Difference (TD) error, a key concept in RL, effectively models the firing patterns of24

dopamine neurons in the midbrain (2; 3; 4). Additionally, a longstanding goal of RL algorithms is to25

match and surpass human performance in control tasks (5; 6; 7; 8; 9; 10)26

However, most of these successes are achieved by leveraging large amounts of data in simulated27

environments and operating at speeds orders of magnitude faster than biological neurons. For example,28

the default timestep for the Humanoid task in the MuJoCo environment (11) in OpenAI Gym (12)29

is 15 milliseconds. In contrast, human reaction times range from 150 milliseconds (13) to several30

seconds for complex tasks (14). When RL agents are constrained to human-like reaction times, even31

state-of-the-art algorithms struggle to perform in simple environments.32

The primary reason for this difficulty is the implicit assumption in RL that the environment and the33

agent operate at a constant timestep. Consequently, in embodied agents, all components—sensors,34
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compute units, and actuators—are synchronized to operate at the same frequency. Typically, this35

frequency is limited by the speed of computation in artificial agents (15). As a result, robots often36

require fast onboard computing hardware (CPU or GPU) to achieve higher control frequencies37

(16; 17; 18).38

In contrast, biological agents achieve precise and seemingly fast control using much slower hard-39

ware. This is possible because biological agents effectively decouple the computation frequency40

from the actuation frequency, allowing them to achieve high actuation frequencies even with slow41

computational speeds. Consequently, biological agents demonstrate robust, adaptive, and efficient42

control.43

To allow the RL agent to observe and react to changes in the environment quickly, RL algorithms are44

forced to set a high frequency. Even in completely predictable environments, when the agent learns45

to walk or move, a small timestep is required to account for the actuation frequency required for the46

task, but it is not necessary to observe the environment as often or compute new actions as frequently.47

As a result, RL algorithms suffer from many problems such as low sample efficiency, failure to learn48

tasks with sparse rewards, jerky control, high compute cost, and catastrophic failure due to missing49

inputs.50

In this work, we propose Hindsight-Sequence-Planner (HSP), a model for sequence learning based on51

the role of the basal ganglia (BG) and the prefrontal cortex (PFC). Our model learns open-loop control52

utilizing a slow hardware and low attention, and hence also low energy. Additionally, the algorithm53

utilizes a simultaneously learned model of the environment during its training but can act without it54

for fast and cheap inference. We demonstrate the algorithm achieves competitive performance on55

difficult continuous control tasks while utilizing a fraction of observations and calls to the policy. To56

the best of our knowledge, HSP is the first to achieve this feat.57

2 Neural Basis for Sequence Learning58

Unlike artificial RL agents, learning in the brain does not stop once an optimal solution has been59

found. During initial task learning, brain activity increases as expected, reflecting neural recruitment.60

However, after training and repetition, activity decreases as the brain develops more efficient repre-61

sentations of the action sequence, commonly referred to as muscle memory (19). This phenomenon62

is further supported by findings that sequence-specific activity in motor regions evolves based on the63

amount of training, demonstrating skill-specific efficiency and specialization over time (20).64

The neural basis for action sequence learning involves a sophisticated interconnection of different65

brain regions, each making a distinct contribution:66

1. Basal ganglia (BG): Action chunking is a cognitive process by which individual actions are67

grouped into larger, more manageable units or "chunks," facilitating more efficient storage,68

retrieval, and execution with reduced cognitive load (21). Importantly, this mechanism69

allows the brain to perform extremely fast and precise sequences of actions that would be70

impossible if produced individually. The BG plays a crucial role in chunking, encoding71

entire behavioral action sequences as a single action (22; 21; 23; 24; 25; 26). Dysfunction72

in the BG is associated with deficits in action sequences and chunking in both animals73

(27; 28; 29) and humans (30; 31; 21). However, the neural basis for the compression of74

individual actions into sequences remains poorly understood.75

2. Prefrontal cortex (PFC): The PFC is critical for the active unbinding and dismantling76

of action sequences to ensure behavioral flexibility and adaptability (32). This suggests77

that action sequences are not merely learned through repetition; the PFC modifies these78

sequences based on context and task requirements. Recent research indicates that the PFC79

supports memory elaboration (33) and maintains temporal context information (34) in action80

sequences. The prefrontal cortex receives inputs from the hippocampus.81

3. Hippocampus (HC) replays neuronal activations of tasks during subsequent sleep at speeds82

six to seven times faster. This memory replay may explain the compression of slow actions83

into fast chunks. The replayed trajectories from the HC are consolidated into long-term84

cortical memories (35; 36). This phenomenon extends to the motor cortex, which replays85

motor patterns at accelerated speeds during sleep (37).86

2



3 Related Work87

3.1 Model-Based Reinforcement Learning88

Model-Based Reinforcement Learning (MBRL) algorithms leverage a model of the environment,89

which can be either learned or known, to enhance RL performance (38). Broadly, MBRL algorithms90

have been utilized to:91

1. Improve Data Efficiency: By augmenting real-world data with model-generated data, MBRL92

can significantly enhance data efficiency (39; 40; 41).93

2. Enhance Exploration: MBRL aids in exploration by using models to identify potential or94

unexplored states (42; 43; 44).95

3. Boost Performance: Better learned representations from MBRL can lead to improved96

asymptotic performance (45; 46).97

4. Transfer Learning: MBRL supports transfer learning, enabling knowledge transfer across98

different tasks or environments (47; 48).99

5. Online Planning: Models can be used for online planning with a single-step policy (49).100

However, this approach increases model complexity as each online planning step requires an101

additional call to the model, making it nonviable for energy and computationally constrained102

agents like the brain and robots.103

Compared to online planning, our algorithm maintains a model complexity of zero after training, elim-104

inating the need for any model calls post-training. This significantly reduces the computational and105

energy requirements, making it more suitable for practical applications in constrained environments.106

Additionally, the performance of online planning algorithms relies heavily on the accuracy of the107

model. In contrast, our approach can leverage even an inaccurate model to learn a better-performing108

policy than online planning, using the same model.109

3.2 Macro-Actions110

Reinforcement Learning (RL) algorithms that utilize macro-actions demonstrate many benefits,111

including improved exploration and faster learning (50). However, identifying effective macro-112

actions is a challenging problem due to the curse of dimensionality, which arises from large action113

spaces. To address this issue, some approaches have employed genetic algorithms (51) or relied on114

expert demonstrations to extract macro-actions (52). However, these methods are not scalable and115

lack biological plausibility.116

In contrast, our approach learns macro-actions using the principles of RL, thus requiring little117

overhead while combining the flexibility of primitive actions with the efficiency of macro-actions.118

3.3 Action Repetition and Frame-skipping119

To overcome the curse of dimensionality while gaining the benefits of macro-actions, many approaches120

utilize frame-skipping and action repetition, where macro-actions are restricted to a single primitive121

action that is repeated. Frame-skipping and action repetition serve as a form of partial open-loop122

control, where the agent selects a sequence of actions to be executed without considering the123

intermediate states. Consequently, the number of actions is linear in the number of time steps124

(53; 54; 55; 56; 57).125

For instance, FiGaR (56) shifts the problem of macro-action learning to predicting the number of126

steps that the outputted action can be repeated. TempoRL (55) improved upon FiGaR by conditioning127

the number of repetitions on the selected actions. However, none of these algorithms can scale to128

continuous control tasks with multiple action dimensions, as action repetition forces all actuators129

and joints to be synchronized in their repetitions, leading to poor performance for longer action130

sequences.131
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Figure 1: The Hindsight-Sequence-Planner (HSP) model. The HSP takes inspiration from the
function of the basal ganglia (BG) (Top/Orange) and the prefrontal cortex (PFC) (Bottom/Blue). We
train an actor with a gated recurrent unit that can produce sequences of arbitrary lengths given a
single state. This is achieved by utilizing a critic and a model that acts at a finer temporal resolution
during training/replay to provide an error signal to each primitive action of the action sequence.

4 Hindsight Sequence Planner132

Based on the insights presented in Section 2, we introduce a novel reinforcement learning model133

capable of learning sequences of actions (macro-actions) by replaying memories at a finer temporal134

resolution than the action generation, utilizing a model of the environment during training.135

Components136

The Hindsight-Sequence-Planner (HSP) algorithm learns to plan "in-the-mind" using a model during137

training, allowing the learned action-sequences to be executed without the need for model-based138

online planning. This is achieved using an actor-critic setting where the actor and critic operate at139

different frequencies, representing the observation/computation and actuation frequencies, respec-140

tively. Essentially, the critic is only used during training/replay and can operate at any temporal141

resolution, while the actor is constrained to the temporal resolution of the slowest component in the142

sensing-compute-actuation loop. Denoting the actor’s timestep as t′ and the critic’s timestep as t, our143

algorithm includes three components:144

Model : st+1 = mϕ(st, at)

Critic : qt = qψ(st, at)
Actor : at′ = at, at′+t, at′+2t.. ∼ πω(st′)

(1)

We denote individual actions in the action sequence generated by actor using the notation πω(st′)t to145

represent the action at′+t146

1. Model: Learns the dynamics of the environment, predicting the next state st+1 given the147

current state st and primitive action at.148

2. Critic: Takes the same input as the model but predicts the Q-value of the state-action pair.149

3. Actor: Produces a sequence of actions given an observation at time t′. Observations from150

the environment can occur at any timestep t or t′, where we assume t′ > t. Specifically, in151

our algorithm, t′ = Jt where J > 1; J ∈ Z.152

Each component of our algorithm is trained in parallel, demonstrating competitive learning speeds.153

We follow the Soft-Actor-Critic (SAC) algorithm (58) for learning the actor-critic. Exploration and154

uncertainty are critical factors heavily influenced by timestep size and planning horizon. Many155

model-free algorithms like DDPG (59) and TD3 (60) explore by adding random noise to each action156

during training. However, planning a sequence of actions over a longer timestep can result in additive157

noise, leading to poor performance during training and exploration. The SAC algorithm addresses this158

by maximizing the entropy of each action in addition to the expected return, allowing our algorithm159

to automatically lower entropy for deeper actions farther from the observation.160
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Learning the Model161

The model is trained to minimize the Mean Squared Error of the predicted states. For a trajectory τ =162

(st, at, st+1) drawn from the replay buffer D, the predicted state is taken from s̃t+1 ∼ mϕ(st, at).163

The loss function is:164

Lϕ = Eτ∼D(s̃t+1 − st+1)
2 (2)

For this work, the model is a feed-forward neural network with two hidden layers. In addition to the165

current model mϕ, we also maintain a target model mϕ− that is the exponential moving average of166

the current model.167

Learning Critic168

The critic is trained to predict the Q-value of a given state-action pair q̃t = qψ(st, at) using the target169

value from the modified Bellman equation:170

q̂t = rt + γEat+1∼πω(st+1)0 [qψ−(st+1, at+1)− α log πω(at+1|st+1)] (3)

Here, qψ− is the target critic, which is the exponential moving average of the critic. Following the171

SAC algorithm, we train two critics and use the minimum of the two qψ− values to train the current172

critics. The loss function is:173

Lψ = Eτ∼D[(q̃tk − q̂t)2]∀k ∈ 1, 2 (4)

Both critics are feed-forward neural networks with two hidden layers.174

Learning Policy175

The HSP policy utilizes two hidden layers followed by a Gated-Recurrent-Unit (GRU) (61) that takes176

as input the previous action in the action sequence, followed by two linear layers that output the mean177

and standard deviation of the Gaussian distribution of the action. This design allows the policy to178

produce action sequences of arbitrary length given a single state and the last action.179

A naive approach to training a sequence of actions would be to augment the action space to include180

all possible actions of the sequence length. However, this quickly leads to the curse of dimensionality,181

as each sequence is considered a unique action, dramatically increasing the policy’s complexity.182

Additionally, such an approach ignores the temporal information of the action sequence and faces the183

difficult problem of credit assignment, with only a single scalar reward for the entire action sequence.184

To address these problems, we use different temporal scales for the actor and critic. The critic assigns185

value to each segment of the action sequence, bypassing the credit assignment problem caused by the186

single scalar reward. However, using collected transitions to train the action sequence is impractical,187

as changing the first action in the sequence would render all future states inaccurate. Thus, the model188

populates intermediate states, which the critic then uses to assign value to each primitive action in the189

sequence.190

Therefore, given a trajectory τ = (at−1, st, at, st+1), we first produce the J-step action sequence191

using the policy: ãt:t+J = πϕ(st). We then iteratively apply the target model to get the intermediate192

states s̃t+1:t+J−1. Finally, we use the critic to calculate the loss for the actor as follows:193

Lω = Eτ∼D

[
α log πω(ãt|st)− qψ(st, ãt) +

J∑
j=1

α log πω(ãt+j |s̃t+j)− qψ(s̃t+j , ãt+j)
]

(5)

5 Experiments194

Overview195

We evaluate our HSP approach on several continuous control tasks, comparing it against the SAC196

baseline and the TempoRL algorithm (55). Our focus is on environments with multi-dimensional197

actions, ranging from the simple LunarLanderContinuous (2 action dimensions) to the complex198

Humanoid environment (17 action dimensions). This allows us to highlight the benefits of HSP over199

traditional action repetition approaches. We utilize the OpenAI gym (62) implementation of the200

MuJoCo environments (11).201
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Experiemental Setup202

We train HSP with four different action sequence lengths (ASL), J = 2, 4, 8, 16, referred to as HSP-J .203

During training, HSP is evaluated based on its J value, processing states only after every J actions.204

All hyperparameters are identical between HSP and SAC, except for the actor update frequency: HSP205

updates the actor every 4 steps, while SAC updates every step. Thus, SAC has four more actor update206

steps compared to HSP. Additionally, HSP learns a model in parallel with the actor and critic.207

Learning Curves208

Figure 2: Learning curves of HSP-J and Soft-Actor Critic (SAC) (58) over continuous control tasks.
HSP and SAC are evaluated under different settings: SAC receives input after every primitive action,
while HSP receives input after J primitive actions. Yet it demonstrates competitive performance on
all environments, even outperforming SAC on LunarLander, Hopper and Humanoid environments.
HSP demonstrates stable learning even with the added model and generative replay training. All
curves are averaged over 5 trials, with shaded regions representing standard error.

Figure 6 presents the learning curves of HSP and SAC across six continuous control tasks. We observe209

that HSP outperforms SAC in four out of six tasks (excluding Ant and HalfCheetah). Notably, HSP-16210

achieves competitive performance on LunarLander and Hopper tasks, showcasing the algorithm’s211

capability to learn long action sequences from scratch. Surprisingly, HSP also outperforms SAC in212

the Humanoid environment with fewer inputs and actor updates while concurrently learning a model,213

demonstrating the efficacy of the algorithm on environments with higher action dimensions.214

Action Sequence Length (ASL) Performance215

Learning curves alone do not fully capture HSP’s performance and benefits. For instance, HSP-16216

shows poor performance on Ant in the learning curve, yet it demonstrates competitive performance217

when tested on shorter action sequences. Figure 3 presents the performance of trained algorithms218

across different action sequence lengths (ASL).219

We select the largest J that shows competitive performance (greater than 75% of the SAC when220

evaluated on primitive actions) for each environment and test it for sequence lengths up to 30. For221

SAC and HSP, we fix the length of action sequences while TempoRL is designed to dynamically pick222

the best ASL, therefore we report the avg. action sequence length for TempoRL. HSP demonstrates223
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Figure 3: Performance of HSP, SAC, and TempoRL (55) at different Action Sequence Lengths (ASL).
SAC and TempoRL repeat the same action for the duration, while HSP can perform a sequence of
actions. Since it implements dynamic action repetition, we present the average ASL for TempoRL
instead of a range of ASL. HSP demonstrates robust performance even at human-like reaction times
(>150ms). All markers are averaged over 5 trials, with the error bars representing standard error.
Going from left to right then top to bottom, the selected training ASL J for HSP are: 16, 16, 4, 16, 4,
8.

competitive performance on longer action sequences, approaching human-like reaction times in224

some environments. Unlike SAC, which fails with action sequences of 2 or 3, HSP shows a gradual225

degradation of performance. Additionally, HSP generalizes well in environments like LunarLander226

and Ant, even though the actor is trained only on sequence lengths of 16.227

Comparing HSP to TempoRL, we find that TempoRL prefers shorter repetitions and struggles in228

more difficult environments. TempoRL does not incentivize longer actions and suffers from the229

curse of dimensionality to some extent, as it needs to learn the number of repetitions for each unique230

state-action pair. Furthermore, action repetitions are not suitable for multi-dimensional actions, as231

they force synchronized repetition across all actuators resulting in poor performance in environments232

with high action dimensions like Ant and HalfCheetah environments.233

Comparison to Model-based Online Planning234

In addition to action repetition, model-based online planning is another approach that allows the RL235

agent to reduce its observational frequency. However, it often requires a highly accurate model of236

the environment and incurs increased model complexity due to the use of the model during control.237

Despite these challenges, comparing HSP to model-based online planning is essential since it is useful238

when the actor cannot produce long sequences of actions and does not require the hyper-parameter J .239

With access to an accurate model of the environment, the agent’s performance might generalize to240

arbitrary ASL.241

Since HSP incorporates a model of the environment that is learned in parallel, we compare the242

performance of the HSP actor utilizing the actor-generated action sequences against model-based243

online planning, where the actor produces only a single action between each simulated state.244
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Figure 4: Performance of HSP and model based online planning on different ASL. Both HSP and
Online Planning utilize the same actor and model. HSP utilizes the actor to generate a sequence
of actions while online planning utilizes the actor and the model to generate a sequence of actions.
The same model is used to train the HSP action sequences. Yet, we find that while the model is
not accurate enough to sustain performance for longer sequences, it can train the actor to produce
accurate action sequences.

Figure 4 shows the performance of online planning using the model in HSP versus the action245

sequences generated by the HSP policy. We see that HSP can learn action sequences that perform246

better than model-based online planning using the same model. Thus, HSP can leverage inaccurate247

models to learn accurate action sequences, further reducing the required computational complexity248

during training. We hypothesize that this superior performance is due to the fact that the actor learns249

a J-step action sequence concurrently, while online planning only produces one action at a time.250

Consequently, HSP is able to learn and produce long, coherent action sequences, whereas single-step251

predictions tend to drift, similar to the "hallucination" phenomenon observed in transformer-based252

language models.253

Generative Replay in Latent Space254

Figure 5: Left: Learning curve of HSP with latent state-space on the Walker2d-v2 environment.
Right: Performance of latent HSP-16 on different ASL, compared to SAC and TempoRL. Utilizing a
latent representation for state space is especially beneficial for the Walker2d environment so that it
outperforms SAC even when training upto sequence lengths of J = 16.

Previous studies have shown that generative replay benefits greatly from latent representations (63).255

Recently, Simplified Temporal Consistency Reinforcement Learning (TCRL) (64) demonstrated256

that learning a latent state-space improves not only model-based planning but also model-free RL257
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algorithms. Building on this insight, we introduced an encoder to encode the observations in our258

algorithm. We provide the complete implementation details in the Appendix.259

We did not observe any benefits of using the encoder and temporal consistency for HSP in most260

environments (results in the appendix). However, for the Walker environment, utilizing the latent261

space for generative replay significantly improved performance, making it competitive even at 16262

steps (128ms) (Figure 5).263

6 Discussion, Limitations and Future Work264

We introduce the Hindsight-Sequence-Planner (HSP) algorithm, a biologically plausible model for265

sequence learning. It represents a significant step towards achieving robust control at brain-like266

speeds. The key contributions of HSP include its ability to generate long sequences of actions from a267

single state, its resilience to reduced input frequency, and its lower computational complexity per268

primitive action.269

The current RL framework encourages synchrony between the environment and the components270

of the agent. However, the brain utilizes components that act at different frequencies and yet is271

capable of robust and accurate control. HSL provides an approach to reconcile this difference272

between neuroscience and RL, while remaining competitive on current RL benchmarks. HSP offers273

substantial benefits over traditional RL algorithms, particularly in the context of autonomous agents274

such as self-driving cars and robots. By enabling operation at slower observational frequencies and275

providing a gradual decay in performance with reduced input frequency, HSP addresses critical276

issues related to sensor failure and occlusion, and energy consumption. Additionally, HSP generates277

long sequences of actions from a single state, which can enhance the explainability of the policy278

and provide opportunities to override the policy early in case of safety concerns. HSP also learns279

a latent representation of the action sequence, which could be used in the future to interface with280

large language models for multimodal explainability and even hierarchical reinforcement learning281

and transfer learning.282

Limitations283

Despite its advantages, HSP has some limitations. It shows slightly reduced performance in the284

Ant and HalfCheetah environments, which we believe can be mitigated through improved models285

and hyperparameter tuning. HSP also requires more computational resources during training due286

to the parallel training of an environment model and introduces more hyperparameters, particularly287

the training ASL (J). In this work, we do not optimize the neural network architecture of the actor288

to reduce the compute, as a result, the total compute per primitive action is still larger than SAC.289

However, we believe producing a sequence of actions will be more efficient than producing a single290

primitive action per state after optimization. Larger ASL values may not perform well in stochastic291

environments. Moreover, HSP currently uses a constant ASL, but ideally, the ASL should adapt292

based on the environment’s predictability.293

Future Work294

We believe the HSP model contributes to both artificial agents and the study of biological control.295

Future work will incorporate biological features like attention mechanisms and knowledge transfer.296

Additionally, HSP can benefit from existing Model-Based RL approaches as it naturally learns a297

model of the world. In deterministic environments, a capable agent should achieve infinite horizon298

control for tasks like walking and hopping from a single state. This is an important research direction299

that is currently underexplored, as many environments are partially observable or have some degree300

of stochasticity. Current approaches rely on external information at every state, which increases301

energy consumption and vulnerability to adversarial or missing inputs. Truly autonomous agents will302

need to impl ement multiple policies simultaneously, and simple tasks like walking can be performed303

without input states if learned properly. Our future work will focus on extending the action sequence304

horizon until deterministic tasks can be performed using a single state and implementing a mechanism305

to dynamically pick the action sequence horizon based on context and predictability of the state.306

Serotonin is an important neuromodulator that has been demonstrated to signal the availability of307

time and resources in the brain to enable the decision on the planning horizon and the use of compute308

(65). In the future, we hope to introduce a mechanism to replicate the effect of serotonin in HSP.309
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1. Claims489

Question: Do the main claims made in the abstract and introduction accurately reflect the490

paper’s contributions and scope?491

Answer: [Yes]492

Justification: The abstract and introduction accurately reflect the paper’s contributions and493

scope.494

Guidelines:495

• The answer NA means that the abstract and introduction do not include the claims496

made in the paper.497

• The abstract and/or introduction should clearly state the claims made, including the498

contributions made in the paper and important assumptions and limitations. A No or499

NA answer to this question will not be perceived well by the reviewers.500

• The claims made should match theoretical and experimental results, and reflect how501

much the results can be expected to generalize to other settings.502

• It is fine to include aspirational goals as motivation as long as it is clear that these goals503

are not attained by the paper.504

2. Limitations505

Question: Does the paper discuss the limitations of the work performed by the authors?506

Answer: [Yes]507

Justification: Limitations are provided in Section 6508

Guidelines:509

• The answer NA means that the paper has no limitation while the answer No means that510

the paper has limitations, but those are not discussed in the paper.511

• The authors are encouraged to create a separate "Limitations" section in their paper.512

• The paper should point out any strong assumptions and how robust the results are to513

violations of these assumptions (e.g., independence assumptions, noiseless settings,514

model well-specification, asymptotic approximations only holding locally). The authors515

should reflect on how these assumptions might be violated in practice and what the516

implications would be.517

• The authors should reflect on the scope of the claims made, e.g., if the approach was518

only tested on a few datasets or with a few runs. In general, empirical results often519

depend on implicit assumptions, which should be articulated.520

• The authors should reflect on the factors that influence the performance of the approach.521

For example, a facial recognition algorithm may perform poorly when image resolution522

is low or images are taken in low lighting. Or a speech-to-text system might not be523

used reliably to provide closed captions for online lectures because it fails to handle524

technical jargon.525

• The authors should discuss the computational efficiency of the proposed algorithms526

and how they scale with dataset size.527

• If applicable, the authors should discuss possible limitations of their approach to528

address problems of privacy and fairness.529

• While the authors might fear that complete honesty about limitations might be used by530

reviewers as grounds for rejection, a worse outcome might be that reviewers discover531

limitations that aren’t acknowledged in the paper. The authors should use their best532

judgment and recognize that individual actions in favor of transparency play an impor-533

tant role in developing norms that preserve the integrity of the community. Reviewers534

will be specifically instructed to not penalize honesty concerning limitations.535

3. Theory Assumptions and Proofs536

Question: For each theoretical result, does the paper provide the full set of assumptions and537

a complete (and correct) proof?538

Answer: [NA]539
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Justification: The paper does not include theoretical results.540

Guidelines:541

• The answer NA means that the paper does not include theoretical results.542

• All the theorems, formulas, and proofs in the paper should be numbered and cross-543

referenced.544

• All assumptions should be clearly stated or referenced in the statement of any theorems.545

• The proofs can either appear in the main paper or the supplemental material, but if546

they appear in the supplemental material, the authors are encouraged to provide a short547

proof sketch to provide intuition.548

• Inversely, any informal proof provided in the core of the paper should be complemented549

by formal proofs provided in appendix or supplemental material.550

• Theorems and Lemmas that the proof relies upon should be properly referenced.551

4. Experimental Result Reproducibility552

Question: Does the paper fully disclose all the information needed to reproduce the main ex-553

perimental results of the paper to the extent that it affects the main claims and/or conclusions554

of the paper (regardless of whether the code and data are provided or not)?555

Answer: [Yes]556

Justification: We provide a complete algorithm and list of hyperparameters in the appendix.557

Additionally we also released the code and trained models.558

Guidelines:559

• The answer NA means that the paper does not include experiments.560

• If the paper includes experiments, a No answer to this question will not be perceived561

well by the reviewers: Making the paper reproducible is important, regardless of562

whether the code and data are provided or not.563

• If the contribution is a dataset and/or model, the authors should describe the steps taken564

to make their results reproducible or verifiable.565

• Depending on the contribution, reproducibility can be accomplished in various ways.566

For example, if the contribution is a novel architecture, describing the architecture fully567

might suffice, or if the contribution is a specific model and empirical evaluation, it may568

be necessary to either make it possible for others to replicate the model with the same569

dataset, or provide access to the model. In general. releasing code and data is often570

one good way to accomplish this, but reproducibility can also be provided via detailed571

instructions for how to replicate the results, access to a hosted model (e.g., in the case572

of a large language model), releasing of a model checkpoint, or other means that are573

appropriate to the research performed.574

• While NeurIPS does not require releasing code, the conference does require all submis-575

sions to provide some reasonable avenue for reproducibility, which may depend on the576

nature of the contribution. For example577

(a) If the contribution is primarily a new algorithm, the paper should make it clear how578

to reproduce that algorithm.579

(b) If the contribution is primarily a new model architecture, the paper should describe580

the architecture clearly and fully.581

(c) If the contribution is a new model (e.g., a large language model), then there should582

either be a way to access this model for reproducing the results or a way to reproduce583

the model (e.g., with an open-source dataset or instructions for how to construct584

the dataset).585

(d) We recognize that reproducibility may be tricky in some cases, in which case586

authors are welcome to describe the particular way they provide for reproducibility.587

In the case of closed-source models, it may be that access to the model is limited in588

some way (e.g., to registered users), but it should be possible for other researchers589

to have some path to reproducing or verifying the results.590

5. Open access to data and code591

Question: Does the paper provide open access to the data and code, with sufficient instruc-592

tions to faithfully reproduce the main experimental results, as described in supplemental593

material?594
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Answer: [Yes]595

Justification: We include code to reproduce the results.596

Guidelines:597

• The answer NA means that paper does not include experiments requiring code.598

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/599

public/guides/CodeSubmissionPolicy) for more details.600

• While we encourage the release of code and data, we understand that this might not be601

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not602

including code, unless this is central to the contribution (e.g., for a new open-source603

benchmark).604

• The instructions should contain the exact command and environment needed to run to605

reproduce the results. See the NeurIPS code and data submission guidelines (https:606

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.607

• The authors should provide instructions on data access and preparation, including how608

to access the raw data, preprocessed data, intermediate data, and generated data, etc.609

• The authors should provide scripts to reproduce all experimental results for the new610

proposed method and baselines. If only a subset of experiments are reproducible, they611

should state which ones are omitted from the script and why.612

• At submission time, to preserve anonymity, the authors should release anonymized613

versions (if applicable).614

• Providing as much information as possible in supplemental material (appended to the615

paper) is recommended, but including URLs to data and code is permitted.616

6. Experimental Setting/Details617

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-618

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the619

results?620

Answer: [Yes]621

Justification: We provide code, and list of all hyperparameters in appendix622

Guidelines:623

• The answer NA means that the paper does not include experiments.624

• The experimental setting should be presented in the core of the paper to a level of detail625

that is necessary to appreciate the results and make sense of them.626

• The full details can be provided either with the code, in appendix, or as supplemental627

material.628

7. Experiment Statistical Significance629

Question: Does the paper report error bars suitably and correctly defined or other appropriate630

information about the statistical significance of the experiments?631

Answer: [Yes]632

Justification: Error bars are reported for all results presented.633

Guidelines:634

• The answer NA means that the paper does not include experiments.635

• The authors should answer "Yes" if the results are accompanied by error bars, confi-636

dence intervals, or statistical significance tests, at least for the experiments that support637

the main claims of the paper.638

• The factors of variability that the error bars are capturing should be clearly stated (for639

example, train/test split, initialization, random drawing of some parameter, or overall640

run with given experimental conditions).641

• The method for calculating the error bars should be explained (closed form formula,642

call to a library function, bootstrap, etc.)643

• The assumptions made should be given (e.g., Normally distributed errors).644

• It should be clear whether the error bar is the standard deviation or the standard error645

of the mean.646
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• It is OK to report 1-sigma error bars, but one should state it. The authors should647

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis648

of Normality of errors is not verified.649

• For asymmetric distributions, the authors should be careful not to show in tables or650

figures symmetric error bars that would yield results that are out of range (e.g. negative651

error rates).652

• If error bars are reported in tables or plots, The authors should explain in the text how653

they were calculated and reference the corresponding figures or tables in the text.654

8. Experiments Compute Resources655

Question: For each experiment, does the paper provide sufficient information on the com-656

puter resources (type of compute workers, memory, time of execution) needed to reproduce657

the experiments?658

Answer: [Yes]659

Justification: A description of compute resources used is provided in the appendix660

Guidelines:661

• The answer NA means that the paper does not include experiments.662

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,663

or cloud provider, including relevant memory and storage.664

• The paper should provide the amount of compute required for each of the individual665

experimental runs as well as estimate the total compute.666

• The paper should disclose whether the full research project required more compute667

than the experiments reported in the paper (e.g., preliminary or failed experiments that668

didn’t make it into the paper).669

9. Code Of Ethics670

Question: Does the research conducted in the paper conform, in every respect, with the671

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?672

Answer: [Yes]673

Justification: the research conducted in the paper conforms, in every respect, with the674

NeurIPS Code of Ethics.675

Guidelines:676

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.677

• If the authors answer No, they should explain the special circumstances that require a678

deviation from the Code of Ethics.679

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-680

eration due to laws or regulations in their jurisdiction).681

10. Broader Impacts682

Question: Does the paper discuss both potential positive societal impacts and negative683

societal impacts of the work performed?684

Answer: [Yes]685

Justification: See section 6686

Guidelines:687

• The answer NA means that there is no societal impact of the work performed.688

• If the authors answer NA or No, they should explain why their work has no societal689

impact or why the paper does not address societal impact.690

• Examples of negative societal impacts include potential malicious or unintended uses691

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations692

(e.g., deployment of technologies that could make decisions that unfairly impact specific693

groups), privacy considerations, and security considerations.694
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• The conference expects that many papers will be foundational research and not tied695

to particular applications, let alone deployments. However, if there is a direct path to696

any negative applications, the authors should point it out. For example, it is legitimate697

to point out that an improvement in the quality of generative models could be used to698

generate deepfakes for disinformation. On the other hand, it is not needed to point out699

that a generic algorithm for optimizing neural networks could enable people to train700

models that generate Deepfakes faster.701

• The authors should consider possible harms that could arise when the technology is702

being used as intended and functioning correctly, harms that could arise when the703

technology is being used as intended but gives incorrect results, and harms following704

from (intentional or unintentional) misuse of the technology.705

• If there are negative societal impacts, the authors could also discuss possible mitigation706

strategies (e.g., gated release of models, providing defenses in addition to attacks,707

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from708

feedback over time, improving the efficiency and accessibility of ML).709

11. Safeguards710

Question: Does the paper describe safeguards that have been put in place for responsible711

release of data or models that have a high risk for misuse (e.g., pretrained language models,712

image generators, or scraped datasets)?713

Answer: [NA]714

Justification: the paper poses no such risks.715

Guidelines:716

• The answer NA means that the paper poses no such risks.717

• Released models that have a high risk for misuse or dual-use should be released with718

necessary safeguards to allow for controlled use of the model, for example by requiring719

that users adhere to usage guidelines or restrictions to access the model or implementing720

safety filters.721

• Datasets that have been scraped from the Internet could pose safety risks. The authors722

should describe how they avoided releasing unsafe images.723

• We recognize that providing effective safeguards is challenging, and many papers do724

not require this, but we encourage authors to take this into account and make a best725

faith effort.726

12. Licenses for existing assets727

Question: Are the creators or original owners of assets (e.g., code, data, models), used in728

the paper, properly credited and are the license and terms of use explicitly mentioned and729

properly respected?730

Answer: [Yes]731

Justification: We cite original papers for each algorithm and envrionment used732

Guidelines:733

• The answer NA means that the paper does not use existing assets.734

• The authors should cite the original paper that produced the code package or dataset.735

• The authors should state which version of the asset is used and, if possible, include a736

URL.737

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.738

• For scraped data from a particular source (e.g., website), the copyright and terms of739

service of that source should be provided.740

• If assets are released, the license, copyright information, and terms of use in the741

package should be provided. For popular datasets, paperswithcode.com/datasets742

has curated licenses for some datasets. Their licensing guide can help determine the743

license of a dataset.744

• For existing datasets that are re-packaged, both the original license and the license of745

the derived asset (if it has changed) should be provided.746
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• If this information is not available online, the authors are encouraged to reach out to747

the asset’s creators.748

13. New Assets749

Question: Are new assets introduced in the paper well documented and is the documentation750

provided alongside the assets?751

Answer: [Yes]752

Justification: The documentation for the released code is provided753

Guidelines:754

• The answer NA means that the paper does not release new assets.755

• Researchers should communicate the details of the dataset/code/model as part of their756

submissions via structured templates. This includes details about training, license,757

limitations, etc.758

• The paper should discuss whether and how consent was obtained from people whose759

asset is used.760

• At submission time, remember to anonymize your assets (if applicable). You can either761

create an anonymized URL or include an anonymized zip file.762

14. Crowdsourcing and Research with Human Subjects763

Question: For crowdsourcing experiments and research with human subjects, does the paper764

include the full text of instructions given to participants and screenshots, if applicable, as765

well as details about compensation (if any)?766

Answer: [NA]767

Justification: paper does not involve crowdsourcing nor research with human subjects.768

Guidelines:769

• The answer NA means that the paper does not involve crowdsourcing nor research with770

human subjects.771

• Including this information in the supplemental material is fine, but if the main contribu-772

tion of the paper involves human subjects, then as much detail as possible should be773

included in the main paper.774

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,775

or other labor should be paid at least the minimum wage in the country of the data776

collector.777

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human778

Subjects779

Question: Does the paper describe potential risks incurred by study participants, whether780

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)781

approvals (or an equivalent approval/review based on the requirements of your country or782

institution) were obtained?783

Answer: [NA]784

Justification: the paper does not involve crowdsourcing nor research with human subjects.785

Guidelines:786

• The answer NA means that the paper does not involve crowdsourcing nor research with787

human subjects.788

• Depending on the country in which research is conducted, IRB approval (or equivalent)789

may be required for any human subjects research. If you obtained IRB approval, you790

should clearly state this in the paper.791

• We recognize that the procedures for this may vary significantly between institutions792

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the793

guidelines for their institution.794

• For initial submissions, do not include any information that would break anonymity (if795

applicable), such as the institution conducting the review.796
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A Appendix / supplemental material797

A.1 HSP Algorithm798

Algorithm 1: Hindsight Sequence Planner
Input: ϕ, ψ1, ψ2, ω. Initial parameters

1 ϕ̄← ϕ, ψ̄1 ← ψ1, ψ̄2 ← ψ2 ; // Initialize target network weights
2 D ← ∅ ; // Initialize an empty replay pool
3 for each iteration do
4 {at, at+1, . . . , at+J−1} ∼ πω({at, at+1, . . . , at+J−1}|st) ; // Sample action

sequence from the policy
5 for each action at in the sequence do
6 st+1 ∼ p(st+1|st, at) ; // Sample transition from the environment
7 D ← D ∪ {(st, at, r(st, at), st+1)} ; // Store transition in the replay pool
8 end
9 for each gradient step do

10 ϕ← ϕ− λm∇ϕLϕ ; // Update the model parameters
11 for i ∈ {1, 2} do
12 ψi ← ψi − λQ∇ψi

Lψi
; // Update the Q-function parameters

13 end
14 {at, at+1, . . . , at+J−1} ∼ πω({at, at+1, . . . , at+J−1}|st) ; // Sample action

sequence from the policy
15 if iteration mod actor_update_frequency == 0 then
16 for j ∈ {1, . . . , J} do
17 sj+1 ∼ mϕ̄(sj+1|sj , aj) ; // Sample transition from the target

model
18 end
19 ϕ← ω − λπ∇ωLω ; // Update policy weights
20 end
21 α← α− λ∇α̂L(α) ; // Adjust temperature
22 for i ∈ {1, 2} do
23 ψ̄i ← τψi + (1− τ)ψ̄i ; // Update target network weights
24 end
25 ϕ̄← τϕ+ (1− τ)ϕ̄ ; // Update target model weights
26 end
27 end

Output: ϕ, ψ1, ψ2, ω; // Optimized parameters

799

Hyperparameters800

The table below lists the hyperparameters that are common between every environment used for all801

our experiments for the SAC and HSP algorithms:802

A.2 Implementation Details803

Due to its added complexity during training, HSP requires longer wall clock time for training when804

compared to SAC. We performed a minimal hyperparameter search over the actor update frequency805

parameter on the Hopper environment (tested values: 1, 2, 4, 8, 16). All the other hyperparamters806

were picked to be equal to the SAC implementation. We also did not perform a hyerparameter search807

over the size of GRU for the actor. It was picked to have the same size as the hidden layers of the feed808

forward network of the actor in SAC. The neural network for the model was also picked to have the809

same architecture as the actor from SAC, thus it has two hidden layers with 256 neurons. Similarly810

the encoder for the latent HSP implementation was also picked to have the same architecture. For the811

latent HSP implementation we also add an additional replay buffer to store transitions of length 5,812

to implement the temporal consistency training for the model. This was done for simplicity of the813

implementation, and it can be removed since it is redundant to save memory.814
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Hyperparameter Value description
Hidden Layer Size 256 Size of the hidden layers in the feed forward

networks of Actor, Critic, Model and Encoder
networks

Updates per step 1 Number of learning updates per one step in the
environment

Target Update Interval 1 Inverval between each target update
γ 0.99 Discount Factor
τ 0.005 Update rate for the target networks (Critic and

Model)
Learning Rate 0.0003 Learning rate for all neural networks
Replay Buffer Size 106 Size of the replay buffer
Batch Size 256 Batch size for learning
Start Time-steps 10000 Initial number of steps where random policy is

followed
Table 1: List of Common hyperparameters

Environment max Timestep Eval frequency
LunarLanderContinuous-v2 500000 2500
Hopper-v2 1000000 5000
Walker2d-v2 1000000 5000
Ant-v2 5000000 5000
HalfCheetah-v2 5000000 5000
Humanoid-v2 10000000 5000

Table 2: List of environment-specific hyperparameters

All experiments were performed on a GPU cluster the Nvidia 1080ti GPUs. Each run was performed815

using a single GPU, utilizing 8 CPU cores of Intel(R) Xeon(R) Silver 4116 (24 core) and 16GB of816

memory.817

We utilize the pytorch implementation of SAC (https://github.com/denisyarats/pytorch_818

sac) (66).819

A.3 Latent State Space Experiments820

Following the TCRL implementation, we use two encoders: an online encoder eθ and a target encoder821

eθ− , which is the exponential moving average of the online encoder:822

Encoder : et = eθ(st) (6)

Thus, the model predicts the next state in the latent space. Additionally, we introduce multi-step823

model prediction for temporal consistency. Following the TCRL work, we use a cosine loss for model824

prediction. The model itself predicts only a single step forward, but we enforce temporal consistency825

by rolling out the model H-steps forward to predict ẽt+1:t+1+H .826

Specifically, for an H-step trajectory τ = (zt, at, zt+1)t:t+H drawn from the replay buffer D, we827

use the online encoder to get the first latent state et = eθ(ot). Then conditioning on the sequence of828

actions at:t+H , the model is applied iteratively to predict the latent states ẽt+1 = mϕ(ẽt, at). Finally,829

we use the target encoder to calculate the target latent states êt+1:t+H+1 = eθ−(ot+1:t+1+H). The830

Loss function is defined as:831

Lθ,ϕ = Eτ∼D

[ H∑
h=0

−γh
(

ẽt+h
||ẽt+h||2

)T(
êt+h
||êt+h||2

)]
(7)

We set H = 5 for our experiments. Both the encoder and the model are feed-forward neural networks832

with two hidden layers.833
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Here, we provide complete learning curves for the latent space HSP.

Figure 6: Learning curves of Latent HSP-n and Soft-Actor Critic (SAC) over continuous control
tasks.

834
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