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Abstract

We study multi-agent games within the innovative framework of decision-
dependent games, which establishes a feedback mechanism that population data
reacts to agents’ actions and further characterizes the strategic interactions among
agents. We focus on finding the Nash equilibrium of decision-dependent games
in the bandit feedback setting. However, since agents are strategically coupled,
classical gradient-based methods are infeasible without the gradient oracle. To over-
come this challenge, we model the strategic interactions by a general parametric
model and propose a novel online algorithm, Online Performative Gradient Descent
(OPGD), which leverages the ideas of online stochastic approximation and projected
gradient descent to learn the Nash equilibrium in the context of function approx-
imation for the unknown gradient. In particular, under mild assumptions on the
function classes defined in the parametric model, we prove that the OPGD algorithm
finds the Nash equilibrium efficiently for strongly monotone decision-dependent
games. Synthetic numerical experiments validate our theory.

1 Introduction

The classical theory of learning and prediction fundamentally relies on the assumption that data
follows a static distribution. This assumption, however, does not account for many dynamic real-
world scenarios where decisions can influence the data involved. Recent literature on performative
classification (Hardt et al., 2016; Dong et al., 2018; Miller et al., 2020) and performative prediction
(Perdomo et al., 2020) offers a variety of examples where agents are strategic, and data is performative.
For instance, in the ride-sharing market, both passengers and drivers engage with multiple platforms
using various strategies such as “price shopping". Consequently, these platforms observe performative
demands, and the pricing policy becomes strategically coupled.

In this paper, we explore the multi-agent performative prediction problem, specifically, the multi-
agent decision-dependent games, as proposed by Narang et al. (2022). We aim to develop algorithms
to find Nash equilibria with the first-order oracle. In this scenario, agents can only access their utility
functions instead of gradients through the oracle. Finding Nash equilibria in decision-dependent
games is a challenging task. Most existing works primarily focus on finding performative stable
equilibria within the single-agent setting, an approach that approximates the Nash equilibrium and is
relatively straightforward to compute (Mendler-Dünner et al., 2020; Wood et al., 2021; Drusvyatskiy
and Xiao, 2022; Brown et al., 2022; Li and Wai, 2022).

There are two major challenges associated with this problem: (i) the distribution shift induced by
performative data, and (ii) the lack of first-order information for the performative gradient. To address
these two challenges, we propose a novel online gradient-based algorithm, Online Performative
Gradient Descent (OPGD). In particular, our algorithm employs a general parametric framework to
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model the decision-dependent distribution, which provides an unbiased estimator for the unknown
gradient, and leverages online stochastic approximation methods to estimate the parametric functions.

1.1 Major Contributions

Our work provides new fundamental understandings of decision-dependent games. Expanding
upon the linear parametric assumption in Narang et al. (2022), we propose a more comprehensive
parametric framework that models decision-dependent distributions of the observed data. We also
derive sufficient conditions under this parametric framework that guarantee a strongly monotone
decision-dependent game, thereby ensuring a unique Nash equilibrium.

From the algorithmic perspective, we propose OPGD , the first online algorithm to find the Nash
equilibrium under linear and kernel parametric models. The core problem in decision-dependent
games is estimating the performative gradient. We remark that the existing algorithm only handles
the linear case and cannot be extended to the non-linear parametric model (Section 3), and OPGD uses
an essentially different method to learn the strategic interaction. To elaborate, under the proposed
parametric framework, learning the Nash equilibrium in decision-dependent games can be formulated
as a bilevel problem, where the lower level is learning the strategic model and the upper level is
finding equilibriums. The OPGD algorithm leverages the ideas of online stochastic approximation
for the lower problem and projected gradient descent to learn the Nash equilibrium. Moreover,
we acknowledge this learning framework bridges online optimization and statistical learning with
time-varying models.

We further prove that under mild assumptions, OPGD converges to the Nash equilibrium. For the
linear function class, OPGD achieves a convergence rate ofO(t−1), matching the optimal rate of SGD
in the strongly-convex setting, where t represents the number of iterations. For the kernel function
class H associated with a bounded kernel K, we posit that the parametric functions reside within
the power spaceHβ and evaluate the approximation error of OPGD under the α-power norm, where
α represents the minimal value that ensures the power space Hα possesses a bounded kernel. We
present the first analysis for online stochastic approximation under the power norm (Lemma 4), in
contrast to the classical RKHS norm (Tarres and Yao, 2014; Pillaud-Vivien et al., 2018; Lei et al.,
2021). The difference between the RKHSH and the power spaceHβ makes the standard techniques
fail under the power norm, and we use novel proof steps to obtain the estimation error bound. We
demonstrate that OPGD leverages the embedding property of the kernel K to accelerate convergence
and achieves the rate of O(t−

β−α
β−α+2 ). Moreover, OPGD can handle the challenging scenario, where

parametric functions are outside the RKHS. See Section 4.2 for more details.

1.2 Related Work

Performative prediction. The multi-agent decision-dependent game in this paper is inspired by
the performative prediction framework (Perdomo et al., 2020). This framework builds upon the
pioneering works of strategic classification (Hardt et al., 2016; Dong et al., 2018; Miller et al., 2020),
and extends the classical statistical theory of risk minimization to incorporate the performativity
of data. Perdomo et al. (2020); Mendler-Dünner et al. (2020); Miller et al. (2021) introduce the
concepts of performative optimality and stability, demonstrating that repeated retraining and stochastic
gradient methods converge to the performatively stable point. Miller et al. (2021), in pursuit of
the performatively optimal point, model the decision-dependent distribution using location families
and propose a two-stage algorithm. Similarly, Izzo et al. (2021) develop algorithms to estimate the
unknown gradient using finite difference methods. More recently, Narang et al. (2022); Piliouras and
Yu (2022) expand the performative prediction to the multi-agent setting, deriving algorithms to find
the performatively optimal point.
Learning in continuous games. Our work aligns closely with optimization in continuous games.
Rosen (1965) lays the groundwork, deriving sufficient conditions for a unique Nash equilibrium in
convex games. For strongly monotone games, Bravo et al. (2018); Mertikopoulos and Zhou (2019);
Lin et al. (2021) achieve the convergence rate and iteration complexity of stochastic and derivative-
free gradient methods. For monotone games, the convergence of such methods is established by
Tatarenko and Kamgarpour (2019, 2020). Additional with bandit feedback settings, zeroth-order
methods (or derivative-free methods) achieve convergence (Bravo et al., 2018; Lin et al., 2021;
Drusvyatskiy et al., 2022; Narang et al., 2022), albeit with slow convergence rates (Shamir, 2013;
Lin et al., 2021; Narang et al., 2022). Relaxing the convex assumption, Ratliff et al. (2016); Agarwal
et al. (2019); Cotter et al. (2019) study non-convex continuous games in various settings.
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Learning with kernels. Our proposed algorithm closely relies on stochastic approximation, utiliz-
ing online kernel regression for the RKHS function class. Prior research investigates the generalization
capability of least squares and ridge regression in RKHS De Vito et al. (2005); Caponnetto and
De Vito (2007); Smale and Zhou (2007); Rosasco et al. (2010); Mendelson and Neeman (2010).
Meanwhile, extensive works study algorithms for kernel regression. For instance, Yao et al. (2007);
Dieuleveut and Bach (2016); Pillaud-Vivien et al. (2018); Lin and Rosasco (2017); Lei et al. (2021)
propose offline algorithms with optimal convergence rates under the RKHS norm and L2 norm using
early stopping and stochastic gradient descent methods, while Ying and Pontil (2008); Tarres and
Yao (2014); Dieuleveut and Bach (2016) design online algorithms with optimal convergence rates.
The convergence of kernel regression in power norm (or Sobolev norm) is studied in Steinwart et al.
(2009); Fischer and Steinwart (2020); Liu and Li (2020); Lu et al. (2022), with offline spectral filter
algorithms achieving the statistical optimal rate under the power norm (Pillaud-Vivien et al., 2018;
Blanchard and Mücke, 2018; Lin and Cevher, 2020; Lu et al., 2022).

Notation. We introduce some useful notation before proceeding. Throughout this paper, we denote the
set 1, 2, · · · , n by [n] for any positive integer n. For two positive sequences {an}n∈N and {bn}n∈N,
we write an = O(bn) or an ≲ bn if there exists a positive constant C such that an ≤ C · bn. For
any integer d, we denote the d-dimensional Euclidean space by Rd, with inner produce ⟨·, ·⟩ and the
induced norm ∥·∥ =

√
⟨·, ·⟩. For a Hilbert spaceH, let ∥·∥H be the associated Hilbert norm. For a

set X and a probability measure ρX on X , let L2
ρX

be the L2 space on X induced by the measure ρX ,
equipped with inner product ⟨·, ·⟩ρX and L2 norm ∥ · ∥ρX=

√
⟨·, ·⟩ρX . For any matrix A = (aij),

the Frobenius norm and the operator norm (or spectral norm) of A are ∥A∥F = (
∑

i,j a
2
ij)

1/2 and
∥A∥op = σ1(A), where σ1(A) stands for the largest singular value of A. For any square matrix
A = (aij), denote its trace by tr(A) =

∑
i aii. For any y ∈ Rd, we denote its projection onto a set

X ⊂ Rd by projX (y) = argminx∈X ∥x− y∥. The set denoted by NX (x) represents the normal cone
to a convex set X at x ∈ X , namely, NX (x) = {v ∈ Rd : ⟨v, y − x⟩ ≤ 0, ∀y ∈ X}. For any metric
space Z with metric d(·, ·), the symbol P(Z) will denote the set of Radon probability measures µ on
Z with a finite first moment Ez∼µ[d(z, z0)] <∞ for some z0 ∈ Z .

2 Problem Formulation and Preliminaries

We briefly introduce the formulation of n-agent decision-dependent games based on Narang et al.
(2022). In this setting, each agent i ∈ [n] takes the action xi ∈ Xi from an action set Xi ⊂ Rdi .
Define the joint action x := (x1, x2, · · · , xn) ∈ X and the joint action set X = X1×· · ·×Xn ⊂ Rd,
where d :=

∑n
i=1 di. For all i ∈ [n], we write x = (xi, x−i), where x−i denotes the vector of all

coordinates except xi. Let Li : X → R be the utility function of agent i. In the game, each agent i
seeks to solve the problem

min
xi∈Xi

Li(xi, x−i), where Li(x) := E
zi∼Di(x)

ℓi(x, zi). (1)

Here zi ∈ Zi represents the data observed by agent i, where the sample space Zi is assumed to be
Zi = Rp with p ∈ N throughout this paper. Moreover, Di : X → P(Zi) is the distribution map,
and ℓi : Rd × Zi → R denotes the loss function. During play, each agent i performs an action xi
and observes performative data zi ∼ Di(x), where the performativity is modeled by the decision-
dependent distribution Di(x). In the round t, the agent i only has access to z1i , · · · , z

t−1
i as well as

x1, · · · , xt−1 and seeks to solve the ERM version of (1). We assume the access to the first-order
oracle, namely, loss functions ℓi are known to agents but distribution maps Di are unknown.
Definition 1. (Nash equilibrium). In the game (1), a joint action x∗ = (x∗1, x

∗
2, · · · , x∗n) is a Nash

equilibrium (Nash Jr, 1996) if all agents play the best response against other agents, namely,

x∗i = argmin
xi∈Xi

Li(xi, x
∗
−i) = argmin

xi∈Xi

E
zi∼Di(xi,x∗

−i)
ℓi(xi, x

∗
−i, zi), ∀i ∈ [n]. (2)

In general continuous games, Nash equilibria may not exist or there might be multiple Nash equilibria
(Fudenberg and Tirole, 1991). The existence and uniqueness of a Nash equilibrium in a continuous
game depend on the game’s structure and property. In general, finding the unique Nash equilibrium is
only possible for convex and strongly monotone games (Debreu, 1952).
Definition 2. (Convex game). Game (1) is a convex game if sets Xi are non-empty, compact, convex
and utility functions Li(xi, x−i) are convex in xi when x−i are fixed.
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Suppose that utility functions Li are differentiable, we use∇iLi(x) to denote the gradient of Li(x)
with respect to xi (the i-th individual gradient). We say the game (1) is C1-smooth if the gradient
∇iLi(x) exists and is continuous for all i ∈ [n]. Using this notation, we define the gradient H(x)
comprised of individual gradients

H(x) := (∇1L1(x), · · · ,∇nLn(x)).

Definition 3. (Strongly monotone game). For a constant τ ≥ 0, a C1-smooth convex game (1) is
called τ -strongly monotone if it satisfies

⟨H(x)−H(x′), x− x′⟩ ≥ τ∥x− x′∥2, for all x, x′ ∈ X .
Note that a τ -strongly monotone game (τ > 0) over a compact and convex action set X admits a
unique Nash equilibrium (Rosen, 1965). According to the optimal conditions in convex optimization
(Boyd et al., 2004), this Nash equilibrium x∗ is characterized by the variational inequality

0 ∈ H(x∗) +NX (x∗). (3)

We briefly talk about the challenges and our idea of designing the algorithm. In decision-dependent
games, the classical theory of risk minimization does not work. The primary obstacles to finding
the Nash equilibrium in the game (1) include: (i) the distribution shift induced by performative
data, and (ii) the lack of first-order information (gradient). To make it clear, standard methods,
such as gradient-based algorithms, necessitate the gradient H(x). However, H(x) is unknown since
distributions Di are unknown, and estimating H(x) is complex due to the dependency between
Di(x) and x. Mathematically, assuming C1-smoothness, the chain rule directly yields the following
expression for the gradient

∇iLi(x) = E
zi∼Di(x)

∇iℓi(xi, x−i, zi) +
d

dui
E

zi∼Di(ui,x−i)
ℓi(xi, x−i, zi)

∣∣∣
ui=xi

, (4)

where∇iℓi(x, zi) denotes the gradient of ℓi(x, zi) with respect to xi. The main difficulty is estimating
the second term in (4) due to the absence of closed-form expressions.

To estimate the unknown gradient H(x), we impose a parametric assumption on the observed data
zi and model the distribution maps Di using parametric functions. Note that the linear parametric
assumption was first proposed in Narang et al. (2022). In this paper, we extend this assumption
to a general framework and show that under the parametric assumption, the gradient H(x) has a
closed-form expression, which yields an unbiased estimator for H(x).
Assumption 1. (Parametric assumption). Suppose there exists a function class F and p-dimensional
functions fi : X → Rp over the joint action set X such that fi ∈ F p and

zi ∼ Di(x)⇐⇒ zi = fi(x) + ϵi, ∀i ∈ [n],

where ϵi ∈ Rp are zero-mean noise terms with finite variance σ2, namely, Eϵi = 0 and E∥ϵi∥2 ≤ σ2.

Under Assumption 1, assuming that fi are differentiable and letting Pi be the distribution of the noise
term ϵi, we derive the following expression for the utility functions Li(x) = Ezi∼Di(x)ℓi(x, zi) =
Eϵi∼Piℓi(x, fi(x) + ϵi). Then the individual gradient would be∇iLi(x) = ∇iEzi∼Di(x)ℓi(x, zi) =
∇i[Eϵi∼Pi

ℓi(x, fi(x) + ϵi)]. Consequently, the chain rule directly implies the following expression

∇iLi(x) = E
zi∼Di(x)

∇iℓi(x, zi) +

(
∂fi(x)

∂xi

)⊤

E
zi∼Di(x)

∇ziℓi(x, zi), (5)

where ∇ziℓi(x, zi) denotes the gradient of ℓi(x, zi) with respect to zi. Given a joint action x, each
agent i observes data zi ∼ Di(x). Equation (5) suggests the following unbiased estimator for H(x):

Ĥ(x) :=
(
∇̂iLi(x)

)
i∈[n]

=

(
∇iℓi(x, zi) +

(
∂fi(x)

∂xi

)⊤

∇ziℓi(x, zi)

)
i∈[n]

. (6)

However, direct computation of Ĥ(x) is infeasible because fi are unknown. To overcome this
challenge, we approximate the unknown functions fi with the function class F p. In fact, the
estimation of fi can be formed as a non-parametric regression problem, namely,

f̂i = argmin
f∈Fp

∫
X×Zi

∥zi − f(x)∥2dρi, ∀i ∈ [n], (7)

where ρi is the joint distribution of (x, zi) induced by x ∼ ρX and zi ∼ Di(x). Here ρX is a
user-specified sampling distribution on X .
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3 The OPGD Algorithm
In this section, we consider F to be the linear and kernel function classes and derive gradient-based
online algorithms to find the Nash equilibrium in the game (1), namely, the Online Performative
Gradient Descent (OPGD). In each iteration t, assuming that xt := (xt1, · · · , xtn) is the output of the
previous iteration, OPGD performs the following update for all i ∈ [n]:

(i) (Estimation update). Update the estimation of fi by online stochastic approximation for (7).

(ii) (Individual gradient update). Compute the estimator (6) and perform projected gradient steps

xt+1
i = projXi

(xti − ηt∇̂iLi(x
t)), ∀i ∈ [n].

Linear Function Class. Let F be the linear function class, namely, fi(x) = Aix for i ∈ [n],
where Ai ∈ Rp×d are unknown matrices. Then (7) becomes the least square problem Ai =
argminA∈Rp×d E(ui,yi)∼ρi

∥yi − Aiui∥2 with random variables ui ∼ ρX , yi ∼ Di(ui). We use
the gradient of the least square objective ∥yi − Aiui∥2 to derive the online least square update:
Anew ← A− ν(Aui − yi)u⊤i (Dieuleveut et al., 2017; Narang et al., 2022). In each iteration t, we
suppose that At−1

i is the estimation of Ai from the previous iteration, OPGD samples uti ∼ ρX and
yti ∼ Di(u

t
i) and performs the following estimation update:

(i) At
i = At−1

i − νt
(
At−1

i uti − yti
)
(uti)

⊤. (8)

Recalling (5), the individual gradient is ∇iLi(x) = Ezi∼Di(x)

[
∇iℓi(x, zi) +A⊤

ii∇ziℓi(x, zi)
]
,

where Aii = ∂fi(x)/∂xi ∈ Rp×di denotes the submatrix of Ai whose columns are indexed by the
agent i. After step (i), OPGD draws a sample zti ∼ Di(x

t) and compute the estimator (6) to perform
the projected gradient step:

(ii) xt+1
i = projXi

(
xti − ηt

(
∇iℓi(x

t, zti) + (At
ii)

⊤∇ziℓi(x
t, zti)

))
. (9)

Kernel Function Class. Now we consider F as the kernel function class, namely, we suppose
fi ∈ (H)p, where H is an RKHS induced by a Mercer kernel K : X × X → R and a user-
specified probability measure ρX . By the reproducing property of H, fi can be represented as
fi(x) = ⟨fi, ϕx⟩H, where ϕ : X → H is the feature map, i.e. ϕx := K(·, x) ∈ H for any
x ∈ X . Therefore, (7) becomes the kernel regression argminf∈Fp E(ui,yi)∼ρi

∥yi − ⟨f, ϕui
⟩H∥2.

However, asH is generally an infinite-dimensional space, the aforementioned regression problem
might lead to ill-posed solutions. Consequently, we consider the regularized kernel ridge regression
argminf∈Fp E(ui,yi)∼ρi

∥yi − ⟨f, ϕui
⟩H∥2/2 + λt∥f∥2H. In each iteration t, we suppose that f t−1

i

is the estimation of fi from the previous iteration, the OPGD algorithm samples uti ∼ ρX , yti ∼ Di(u
t
i)

and takes gradient steps on the kernel ridge objective ∥yti − ⟨f, ϕut
i
⟩H∥2/2 + λt∥f∥2H, i.e. it takes

the online kernel ridge update (Tarres and Yao, 2014; Dieuleveut and Bach, 2016):

(i) f ti = f t−1
i − νt

[(
f t−1
i (uti)− yti

)
ϕut

i
+ λtf

t−1
i

]
. (10)

We suppose that the kernel K is 2-differentiable, i.e., K ∈ C2(X ,X ). Define ∂iϕ : X → H as the
partial derivative of the feature map ϕ with respect to xi, namely, ∂iϕx = ∂iK(x, ·) = ∂K(x, ·)/∂xi.
Steinwart and Christmann (2008, Lemma 4.34) shows that ∂iϕx exists, continuous and ∂iϕx ∈ H.
By the reproducing property ∂fi(x)/∂xi = ∂⟨fi, ϕx⟩H/∂xi = ⟨fi, ∂iϕx⟩H, the individual gradient
∇iLi(x) has the form∇iLi(x) = Ezi∼Di(x)[∇iℓi(x, zi) + (⟨fi, ∂iϕx⟩H)

⊤∇ziℓi(x, zi)]. After step
(i), OPGD draws a sample zti ∼ Di(x

t) and performs the projected gradient step:

(ii) xt+1
i ← projXi

(
xti − ηt

(
∇iℓi(x

t, zti) + (⟨f ti , ∂iϕxt⟩H)⊤∇ziℓi(x
t, zti)

))
. (11)

We remark that the gradient steps ηt, νt and regularization terms λt should be chosen carefully to
ensure convergence (see Theorem 2). Specifically, the regularization terms λt must shift to 0 gradually.
If λt is a constant, f ti in (10) converges to the solution of a regularized kernel ridge regression, which
is a biased estimator of fi. Thus (11) fails to converge because the gradient estimation has a constant
bias. We present the pseudocode of OPGD for the linear setting as Algorithm 1 and for the RKHS
setting as Algorithm 2 in Appendix A.
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Comparison with Narang et al. (2022). We clarify the difference between OPGD and the Adaptive
Gradient Method (AGM) proposed in Narang et al. (2022). To elaborate, AGM samples zti ∼ Di(x

t)
at current the action and let agents play again with an injected noise ut to obtain qti ∼ Di(x

t+ut). The
algorithm is based on the fact that E[qti − zti |ut, xt] = Aiu

t, which is not related to xt. Thus, Ai can
be estimated by online least squares. We remark that E[qti − zti |ut, xt] depends on agents’ actions in
the non-linear (RKHS) cases, because E[qti−zti |ut, xt] = fi(x

t+ut)−fi(xt) = ⟨fi, ϕxt+ut−ϕxt⟩H.
Thus, the change of action will bring additional error that makes the estimation fail to converge. In
contrast, OPGD lets agents play uti ∼ ρX to explore the action space and learn the strategic behavior
of other agents. OPGD estimates the parametric function by solving the ERM version of (7) using
online stochastic approximation (8) and (10). This learning framework can be applied to RKHS and
potentially beyond that, such as overparameterized neural networks using the technique of neural
tangent kernel (Allen-Zhu et al., 2019).

4 Theoretical Results
We provide theoretical guarantees for OPGD in both linear and RKHS settings. We first impose some
mild assumptions. Similar assumptions are adopted in Mendler-Dünner et al. (2020); Izzo et al.
(2021); Narang et al. (2022); Cutler et al. (2022).
Assumption 2. (τ -strongly monotone). The game (1) is τ -strongly monotone.
Assumption 3. (Smoothness). H(x) is L-Lipschitz continuous:

H(x1)−H(x2) ≤ L∥x1 − x2∥, ∀x1, x2 ∈ X .

Assumption 4. (Lipschitz continuity in z). Define D = D1 ×D2 × · · · ×Dn : X → P(Z), where Z
is the sample space Z = Z1 ×Z2 × · · · × Zn. For all i ∈ [n], x ∈ X , there exists a constant δ > 0,

E
z∼D(x)

√√√√ n∑
i=1

∥∇ziℓi(x, zi)∥2 ≤ δ.

Assumption 5. (Finite variance). There exists a constant ζ > 0,

E
zi∼Di(x)

∥∇i,ziℓi(x, zi)− E
zi∼Di(x)

∇i,ziℓi(x, zi)∥2 ≤ ζ2, ∀i ∈ [n],∀x ∈ X ,

where∇i,ziℓi denotes the gradient of ℓi(x, zi) with respect to xi and zi.

We remark that Assumption 3 is the standard smoothness assumption for the utility functions Li(x)
(Boyd et al., 2004; Nesterov et al., 2018). Since X is a compact set within Rd, Assumption 4
holds if ℓi(x, zi) is Lipschitz continuous in zi and the gradient∇ziℓi(x, zi) is continuous in x, and
Assumption 5 holds if ℓi(x, zi) is Lipschitz in x and zi (thus ∇i,ziℓi(x, zi) has a bounded norm).
Assumption 5 implies that the variances of ∇iℓi(x, zi) and∇ziℓi(x, zi) are both bounded by ζ2 for
any x ∈ X and zi ∼ Di(x). We provide sufficient conditions for Assumption 2 in Appendix B.1.

4.1 Convergence Rate in the Linear Setting

We introduce two assumptions necessary to derive theoretical guarantees for the linear function class.
Assumption 6. (Linear assumption). Suppose that the parametric assumption holds (Assumption 1)
and fi(x) = Aix for i ∈ [n], where Ai ∈ Rp×d are unknown matrices.
Assumption 7. (Sufficiently isotropic). There exists constants l1, l2, R > 0 such that

l1I ⪯ Eu∼ρX uu
⊤, Eu∼ρX ∥u∥2 ≤ l2, Eu∼ρX

[
∥u∥2uu⊤

]
⪯ REu∼ρX uu

⊤.

Assumption 7 has been studied in the literature on online least squares regression (Dieuleveut et al.,
2017; Narang et al., 2022). Essentially, this requires the distribution ρX to be sufficiently isotropic
and non-singular, and it ensures the random variable uti ∼ ρX in the online estimation update step (8)
can explore all the "directions" of Rp. A simple example that satisfies Assumption 7 is the uniform
distribution ρX = U [0, 1], in which case l1 = l2 = 1/3, R = 3/5.

The next theorem provides the convergence rate of OPGD under the linear setting.
Theorem 1. (Convergence in the linear setting). Suppose that Assumptions 2, 3, 4, 5, 6, and 7 hold.
Set ηt = 2/(τ(t+ t0)), νt = 2/(l1(t+ t0)), where t0 is a constant that satisfies t0 ≥ 2l2R/l

2
1. For
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all iterations t ≥ 1, the xt generated by the OPGD algorithm in Section 3 for linear function class
satisfies

E∥xt − x∗∥2 ≤ (4D1 + 2D2(t0 + 1)τ)(t0 + 2)2/(t0 + 1)2

τ2(t+ t0)
+

(t0 + 1)2∥x1 − x∗∥2

(t+ t0)2
, (12)

where D1 and D2 are constants that

D1 := 4ζ2(1+2(M/(t0+1)+sup
i∈[n]

∥Ai∥2F )), D2 := 2δ2M, M :=
2t40
∑n

i=1∥A0
i −Ai∥2F

(t0 + 1)3
+
8nl2σ

2(t0 + 2)2

l21(t0 + 1)2
.

We refer the reader to Appendix C.1 for complete proof. Next, we illustrate the parameters involved
in Theorem 1: τ is the strongly monotone parameter of the game (1), l1, l2, R are intrinsic parameters
describing the isotropy of the distribution ρX (Assumption 7), σ2 is the variance of the noise term ϵi
defined in Assumption 1, ζ and δ describe the continuity of ℓi (Assumption 4, 5), t0 is a sufficiently
large value, A0

i is the initial estimation of Ai, x1 is the initial input. Theorem 1 is a combination
of Lemma 2 and Lemma 3, where Lemma 2 is the statistical error of the online approximation step
(8) and Lemma 3 is the one-step optimization error of the projected gradient step (9). Theorem 1
implies the convergence rate of OPGD in the linear setting is O(t−1), which matches the optimal rate
of stochastic gradient descent in the strongly-convex setting.

4.2 Convergence Rate in the RKHS Setting

Suppose that K : X ×X → R is a continuous Mercer kernel, by Mercer’s theorem, it has the spectral
representation K =

∑∞
i=1 µiei⊗ ei, where {µi}∞i=1 are eigenvalues, {ei}∞i=1 are eigenfunctions, and

⊗ denotes the tensor product. Moreover, {ei}∞i=1 is an orthogonal basis of L2
ρX

and {µ1/2
i ei}∞i=1 is

the orthogonal basis ofH, which induces the representationH = {
∑∞

i=1 aiµ
1/2
i ei : {ai}∞i=1 ∈ ℓ2}.

Definition 4. (Power space). For a constant α ≥ 0, the α-power space of an RKHSH is defined by

Hα =

{ ∞∑
i=1

aiµ
α/2
i ei : {ai}∞i=1 ∈ ℓ2

}
,

equipped with the α-power norm ∥·∥α and inner product ⟨·, ·⟩α, where ∥
∑∞

i=1 aiµ
α/2
i ei∥α :=(∑∞

i=1 a
2
i

)1/2
and ⟨

∑∞
i=1 aiµ

α/2
i ei,

∑∞
i=1 biµ

α/2
i ei⟩α =

∑∞
i=1 aibi.

We remark that: (i)H1 = H andHα ⊂ Hβ for any α > β, (ii) ∥·∥1 = ∥·∥H and ∥·∥0 = ∥·∥ρX , and
(iii) Hα is an RKHS on X with kernel Kα :=

∑∞
i=1 µ

α
i ei ⊗ ei and measure ρX . We review more

properties of RKHS and power spaces in Appendix Sections B.3 and B.4.

We present assumptions on the kernel function class, similar assumptions can be found in the literature
on kernel regression and stochastic approximation (Caponnetto and De Vito, 2007; Steinwart et al.,
2009; Dicker et al., 2017; Pillaud-Vivien et al., 2018; Fischer and Steinwart, 2020).

Assumption 8. (Source condition). Suppose Assumption 1 holds and there exists an RKHS,H, with
a bounded differentiable Mercer kernel, K, and constants β, κ > 0 such that supx∈X K(x, x) ≤ κ2
and fi ∈

(
Hβ
)p

for all i ∈ [n].

Assumption 9. (Embedding property). There exist constants α ∈ (0, 1], A > 0 such thatKα(x, x) =∑∞
i=1 µ

α
i e

2
i (x) ≤ A2, for all x ∈ X .

Assumption 10. (Lipschitz kernel). Suppose Assumption 9 holds and there exists ξ > 0 such that
∥∂iϕαx∥α ≤ ξ for any i ∈ [n] and x ∈ X , where ϕαx : X → Hα is the feature map of the kernel Kα.

Assumption 8 holds when K is bounded, differentiable, and each coordinate of parametric functions
fi lies in the power spaceHβ . When β < 1, Assumption 8 includes the challenging scenario, namely,
fi /∈ (H)p. Assumption 9 holds if there exists a power spaceHα such that the kernel Kα is bounded.
Thus, Assumption 9 holds with α = 1 for any bounded kernel K. We further propose Proposition
1 as sufficient conditions for the embedding property following Mendelson and Neeman (2010).
Recalling the definition of partial derivative ∂iϕα : X → Hα (Section 3), Assumption 10 holds if
∂i∂i+dK

α(x, x) = ∥∂iϕαx∥2α ≤ ξ2 for any x ∈ X , i.e. it holds for any Lipschitz kernel Kα.
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Proposition 1. (Sufficient conditions for Assumption 9) Suppose there exist constants C,D, p > 0
and q ∈ (0, 1) such that

sup
i∈N

µp
i ∥ei∥∞ ≤ C and µi ≤ Di−1/q,

where ∥·∥∞ denotes the L∞ norm. Then Assumption 9 holds for any α > 2p+ q.

Proposition 1 follows from the inequality: supx∈X K
α(x, x) = supx∈X

∑∞
i=1(µ

p
i ei(x))

2µα−2p
i ≤

C2Dα−2p
∑∞

i=1 i
−(α−2p)/q <∞. We refer readers to Appendix B.4 for examples that satisfy these

assumptions. Next, we provide the convergence of the proposed algorithm under the RKHS setting.

Theorem 2. (Convergence in the RKHS setting). Suppose that Assumptions 2, 3, 4, 5 hold, Assump-
tion 8 holds for some β ∈ (0, 2], and Assumptions 9, 10 hold for some α ∈ (0, 1] and α < β. For
all iterations t ≥ 1 and positive constant a, define t = t + t0, where t0 is a constant that satisfies
t0 ≥ (aκ2 + 1)2. Set the gradient steps and regularization terms as

ηt = (τt)−1, νt = a · t−
β−α+1
β−α+2 , λt = a−1 · t−

1
β−α+2 .

If a <
√
(β − α+ 2)/(β − α)(t0 + 1)/(t0 + 2)κα−2A−1, the xt generated by the OPGD algorithm

in Section 3 using kernel K for online estimation steps (10) and projected gradient steps (11) satisfies

E∥xt − x∗∥2 ≲ O(t−
β−α

β−α+2 ). (13)

See Appendix C.2 for complete proof. We remark that bounding the estimation error E∥f ti − fi∥2γ
under the γ-power norm for some γ ∈ [α, β) and γ ≤ 1 (Lemma 4) plays a key role in the proof of
Theorem 2, and we regard this lemma as the most challenging part of our theory. Lemma 4 extends
the classical theory of online stochastic approximation under the RKHS norm ∥·∥H into a continuous
scale. For β > 1 and γ = 1, this rate would be O(t−(β−1)/(β+1)) and matches the optimal rate
under the RKHS norm Ying and Pontil (2008); Tarres and Yao (2014). If the embedding property
(Assumption 9) holds for some α < 1, we choose γ = α to achieve a faster rateO(t−(β−α)/(β−α+2))
(which further leads to Theorem 2). To prove Lemma 4, we derive novel proof steps, where we
decouple the power norm by considering semi-population iteration and recursive decomposition, we
refer the reader to Appendix E.1 for more explanations.

We demonstrate the parameters involved in Theorem 2. Parameters α, β, κ, τ, A are intrinsic: β, κ,A
are determined by source condition (Assumption 8), α is determined by embedding property (As-
sumption 9), and τ is the strongly monotone parameter. Parameters a, t0 are user-specified: t0 is
a sufficiently large value, a is characterized by the inequality a <

√
(β − α+ 2)/(β − α)(t0 +

1)/(t0 + 2)κα−2A−1 when t0 is determined, a smaller a leads to a larger constant term in (13).
Theorem 2 implies that OPGD leverages the embedding property (Assumption 9) to obtain better
convergence rates. For any bounded kernel, Assumption 9 holds for α = 1, thus Theorem 2 guaran-
tees the rate O(t−

β−1
β+1 ). Moreover, suppose that the kernel satisfies some good embedding property,

that is, α < 1, since larger β − α leads to faster convergence rates. In that case, we obtain a better
rate O(t−

β−α
β−α+2 ) by setting the gradient steps and regularization terms νt, λt corresponding to α, β.

Besides, OPGD can handle the challenging scenario (fi /∈ (H)p if β < 1) when the embedding
property of kernel holds for α < β.

5 Numerical Experiments
In this section, we conduct experiments on decision-dependent games in both the linear and the
RKHS settings to verify our theory. All experiments are conducted with Python on a laptop using 14
threads of a 12th Gen Intel(R) Core(TM) i7-12700H CPU.

Basic Setup. We consider two-agent decision-dependent games with 1-dimensional actions.
Namely, for all i ∈ [2], define the game

min
x∈X
Li(x), where Li(x) := E

zi∼Di(x)
ℓi(x, zi), (14)

where X = [0, 1]× [0, 1], x ∈ X , zi ∈ R, and ℓi(x, zi) is the loss function to be determined. Let the
distribution map be Di(x) ∼ N (fi(x), 0.2), where fi is the parametric function determined by the
specific function class. Then the game (14) follows the parametric assumption (Assumption 1) with
zi = fi(x) + ϵi, where ϵi ∼ N (0, 0.2) the independent Gaussian noise term.
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(a) (b)

Figure 1: (a) Linear setting: The X-axis represents the iteration from 1 to 10, 000, while the Y-axis
represents the norm-squared error of xt to the Nash equilibrium x∗ = (1/2, 1), averaged over 20
random seeds. The blue solid line represents the output of OPGD and the orange dashed line represents
the theoretical rate O(t−1). (b) RKHS setting: The X-axis represents the iteration from 1 to 10, 000,
while the Y-axis represents the norm-squared error to the Nash equilibrium x∗ = (1/2, 1/2), averaged
over 400 random seeds. The blue solid line represents the output of OPGD and the orange dashed line
represents the theoretical rate O(t−1/2).

Linear function class. Let the loss function be ℓi(x, zi) = −zi + x2i and set the linear parametric
function as f1(x) = x1 and f2(x) = 2x2, namely, the parametric model is zi = Aix + ϵi where
A1 = [1 0] and A2 = [0 2]. The the game (14) has the gradient H(x) = (2x1 − 1, 2x2 − 2),
therefore, the game (14) is convex, C1-smooth, 1-strongly monotone and the Nash equilibrium is
x∗ = (1/2, 1). We set the sampling distribution as ρX = U [0, 1] × U [0, 1], the initial point as
x0 ∼ ρX , and the initial estimation as zero. Moreover, letting t0 = 10, we set the gradient step sizes
as ηt = 6/(t+ t0), νt = 6/(t+ t0).
Kernel function class. Let X = [0, 1] × [0, 1], ρX = U [0, 1] × U [0, 1], and define the kernel
Q((x1, x2), (y1, y2)) = K(x1, y1) ·K(x2, y2) as the product kernel of K(x, y) = 40B4({x− y}).
Suppose thatH is the RKHS onX induced by the kernelQ and the distribution ρX . Set the parametric
function as the product of two 3-order Bernoulli polynomials, namely, f(x1, x2) = B3(x1) ·
B3(x2) = (x31−3x21/2+x1/2)·(x32−3x22/2+x2/2). Set ℓi(x, zi) = −zi+cos(2πx1) cos(2πx2)−
xi + x2i and let fi(x) = cos(2πx1) cos(2πx2) for i ∈ [2]. Then the gradient of this game is
H(x) = (2x1 − 1, 2x2 − 1), thus, this game is convex, C1-smooth, 1-strongly monotone and the
Nash equilibrium is x∗ = (0.5, 0.5). Following Example 1, Assumption 8, 9, 10 hold for any β > 1
and any α > 1/4. Set t0 = 10, a = 7, ηt = 6/(t+t0), νt = a/(t+t0)

3/4, and λt = 1/(a(t+t0)
1/4).

Following Theorem 2, the convergence rate is O(t−1/2).

Results. We perform experiments for both parametric settings to verify the convergence rates and
compare the theoretical and simulated rates, as shown in Figure 1, where both X and Y axes take
the log scale. Figure 1(a) shows the converge rate of the linear setting within 10, 000 iterations, the
simulated rate matches our prediction, i.e. it is close to O(t−1). Figure 1(b) shows the convergence
rate of the RKHS setting, it implies that the simulated rate is close to the theoretical rate O(t−1/2)
when the iteration t is larger than 1, 000. These results validate Theorems 1 and 2.

6 Conclusion and Discussion
In this paper, we study the problem of learning Nash equilibria in multi-agent decision-dependent
games with access to the first-order oracle. We propose a parametric assumption to handle the
distribution shift and develop a novel online algorithm OPGD in both the linear and RKHS settings.
We derive sufficient conditions to ensure the decision-dependent game is strongly monotone under
the parametric assumption. We show that OPGD converges to the Nash equilibrium at a rate ofO(t−1)

in the linear setting and O(t−
β−α

β−α+2 ) in the RKHS setting.
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