
ARC: A Generalist Graph Anomaly Detector
with In-Context Learning

Yixin Liu1,∗, Shiyuan Li2,∗, Yu Zheng3, Qingfeng Chen2,†, Chengqi Zhang4, Shirui Pan1,†
1Griffith University, 2Guangxi University, 3La Trobe University,

4The Hong Kong Polytechnic University
yixin.liu@griffith.edu.au, shiy.li@alu.gxu.edu.cn, yu.zheng@latrobe.edu.au

qingfeng@gxu.edu.cn, chengqi.zhang@polyu.edu.hk, s.pan@griffth.edu.au

Abstract

Graph anomaly detection (GAD), which aims to identify abnormal nodes that differ
from the majority within a graph, has garnered significant attention. However,
current GAD methods necessitate training specific to each dataset, resulting in high
training costs, substantial data requirements, and limited generalizability when
being applied to new datasets and domains. To address these limitations, this paper
proposes ARC, a generalist GAD approach that enables a “one-for-all” GAD model
to detect anomalies across various graph datasets on-the-fly. Equipped with in-
context learning, ARC can directly extract dataset-specific patterns from the target
dataset using few-shot normal samples at the inference stage, without the need for
retraining or fine-tuning on the target dataset. ARC comprises three components
that are well-crafted for capturing universal graph anomaly patterns: 1) smoothness-
based feature Alignment module that unifies the features of different datasets
into a common and anomaly-sensitive space; 2) ego-neighbor Residual graph
encoder that learns abnormality-related node embeddings; and 3) cross-attentive
in-Context anomaly scoring module that predicts node abnormality by leveraging
few-shot normal samples. Extensive experiments on multiple benchmark datasets
from various domains demonstrate the superior anomaly detection performance,
efficiency, and generalizability of ARC. The source code of ARC is available at
https://github.com/yixinliu233/ARC.

1 Introduction

Graph anomaly detection (GAD) aims to distinguish abnormal nodes that show significant dis-
similarity from the majority of nodes in a graph. GAD has broad applications across various
real-world scenarios, such as fraud detection in financial transaction networks [1] and rumor detec-
tion in social networks [2]. As a result, GAD has attracted increasing research attention in recent
years [3, 4, 5, 6, 7, 8]. Conventional GAD methods employ shallow mechanisms to model node-level
abnormality [9, 10, 11]; however, they face limitations in handling high-dimensional features and com-
plex interdependent relations on graphs. Recently, graph neural network (GNN)-based approaches
have emerged as the go-to solution for the GAD problem due to their superior performance [4, 6].
Some GNN-based GAD approaches regard GAD as a supervised binary classification problem and
use specifically designed GNN architectures to capture anomaly patterns [6, 12, 13, 14]. Another line
of approaches targets the more challenging unsupervised paradigm, employing various unsupervised
learning objectives and frameworks to identify anomalies without relying on labels [4, 15, 16, 17].

∗Equal Contribution.
†Corresponding Authors.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/yixinliu233/ARC

Generalist
GAD ModelTrain

Train

Train

…

…

GAD
Model

…

…

(c) Generalist GAD Paradigm (ours)

Training Stage Inference Stage

Supervised
GAD ModelTrain GAD

Model

Unsupervised
GAD ModelTrain GAD

Model

(a) Supervised GAD Paradigm

(b) Unsupervised GAD Paradigm

Abnormal NodeNormal Node Unlabeled Node Training Stage Inference Stage

Figure 1: Sketch maps of (a) supervised, (b) unsupervised, and (c) generalist GAD paradigms.

Despite their remarkable detection performance, the existing GAD approaches follow a “one model
for one dataset” learning paradigm (as shown in Fig. 1 (a) and (b)), necessitating dataset-specific
training and ample training data to construct a detection model for each dataset. This learning
paradigm inherently comes with the following limitations: ❶ Expensive training cost. For each
dataset, we need to train a specialized GAD model from scratch, which incurs significant costs for
model training, especially when dealing with large-scale graphs. ❷ Data requirements. Training a
reliable GAD model typically needs sufficient in-domain data, sometimes requiring labels as well.
The data requirements pose a challenge when applying GAD to scenarios with sparse data, data
privacy concerns, or high label annotation costs. ❸ Poor generalizability. On a new-coming dataset,
existing GAD methods require hyperparameter tuning or even model architecture modifications to
achieve optimal performance, which increases the cost of applying them to new data and domains.

Given the above limitations, a natural question arises: Can we train a “one-for-all” GAD model that
can generalize to detect anomalies across various graph datasets from different application domains,
without any training on the target data? Following the trend of artificial general intelligence and
foundation models, a new paradigm termed “generalist anomaly detection”, originating from image
anomaly detection, is a potential answer to this question [18]. As shown in Fig. 1 (c), in the generalist
paradigm, we only need to train the GAD model once; afterward, the well-trained generalist GAD
model can directly identify anomalies on diverse datasets, without any re-training or fine-tuning.
Considering the diversity of graph data across different domains and datasets, the labels of few-shot
normal nodes are required during the inference stage to enable the model to grasp the fundamental
characteristics of the target dataset. Compared to conventional paradigms, the generalist paradigm
eliminates the need for dataset-specific training, resulting in fewer computations, lower data costs,
and stronger generalizability when applying GAD models to new datasets.

Nevertheless, due to the unique characteristics of graph data and GAD problem, it is non-trivial to
design a generalist GAD approach. The challenge is three-fold: C1 - Feature alignment. Unlike image
data, which are typically represented in a consistent RGB feature space, the feature dimensionality
and semantic space can vary significantly across different graph datasets. Substituting features with
unified representations generated by large language models may be a potential solution [19]; however,
this approach is limited to specific feature semantics and cannot address more general cases [20].
C2 - Representation encoding. As the core of a generalist GAD model, a GNN-based encoder is
expected to learn dataset-agnostic and abnormality-aware node embeddings for anomaly detection.
However, in the absence of universal pre-trained foundation models [18] for graph data, crafting
a potent encoder for a generalist GAD model presents a challenge. C3 - Few-shot sample-guided
prediction. Existing GAD methods typically focus on single dataset settings, where dataset-specific
knowledge is embedded in the model through training, enabling it to predict abnormality for each
node independently. In contrast, a generalist GAD model should derive such knowledge from a small
number of normal nodes. In this case, how to effectively utilize the few-shot normal samples during
inference remains an open question.

To tackle these challenges, we introduce ARC, a generalist GAD approach based on in-context
learning. ARC comprises three meticulously designed modules, each targeting a specific challenge. To
address C1, we introduce a smoothness-based feature Alignment module, which not only standardizes
features across diverse datasets to a common dimensionality but also arranges them in an anomaly-
sensitive order. To deal with C2, we design an ego-neighbor Residual graph encoder. Equipped
with a multi-hop residual-based aggregation scheme, the graph encoder learns attributes that indicate
high-order affinity and heterophily, capturing informative and abnormality-aware embeddings across
different datasets. Last but not least, to solve C3, we propose a cross-attentive in-Context anomaly
scoring module. Following the in-context learning schema, we treat the few-shot normal nodes
as context samples and utilize a cross-attention block to reconstruct the embeddings of unlabeled

2

samples based on the context samples. Then, the reconstruction distance can serve as the anomaly
score for each unlabeled node. In summary, this paper makes the following contributions:

• Problem. We, for the first time, propose to investigate the generalist GAD problem, aiming to detect
anomalies from various datasets with a single GAD model, without dataset-specific fine-tuning.

• Methodology. We propose a novel generalist GAD method ARC, which can detect anomalies in
new graph datasets on-the-fly via in-context learning based on few-shot normal samples.

• Experiments. We conduct extensive experiments to validate the anomaly detection capability,
generalizability, and efficiency of ARC across multiple benchmark datasets from various domains.

2 Related Work

In this section, we offer a brief review of pertinent related works, with a more extensive literature
review available in Appendix A.

Anomaly Detection. Anomaly detection (AD) aims to identify anomalous samples that deviate from
the majority of samples [21]. Mainstream AD methods focus on unsupervised settings and employ
various unsupervised techniques to build the models [22, 23, 24, 25, 26, 27, 28, 29]. To enhance
the generalizability of AD methods across diverse datasets, RegAD [30] considers few-shot setting
and trains a single generalizable model capable of being applied to new in-domain data without
re-training or fine-tuning. WinCLIP [31] utilizes visual-language models (VLMs, e.g., CLIP [32])
with well-crafted text prompts to perform zero/few-shot AD for image data. InCTRL [18], as the first
generalist AD approach, integrates in-context learning and VLMs to achieve domain-agnostic image
AD with a single model. However, due to their heavy reliance on pre-trained vision encoders/VLMs
and image-specific designs, these approaches excel in AD for image data but face challenges when
applied to graph data.

Graph Anomaly Detection (GAD). In this paper, we focus on the node-level AD on graphs and refer
to it as “graph anomaly detection (GAD)” following [6, 33, 34]. While shallow methods [9, 10, 11]
show limitations in handling complex real-world graphs [4], the advanced approaches are mainly
based on GNNs [35]. The GNN-based approaches can be divided into supervised and unsupervised
approaches [3, 5, 7]. Supervised GAD approaches assume that the labels of both normal and
anomalous nodes are available for model training [7]. Hence, related studies mainly introduce
GAD methods in a binary classification paradigm [6, 12, 13, 14, 36, 37]. In contrast, unsupervised
GAD approaches do not require any labels for model training. They employ several unsupervised
learning techniques to learn anomaly patterns on graph data, including data reconstruction [4, 34, 38],
contrastive learning [15, 39, 40], and other auxiliary objectives [16, 17, 41, 42]. Nevertheless, all the
above methods adhere to the conventional paradigm of “one model for one dataset”. Although some
GAD approaches [43, 44] can handle cross-domain scenarios, their requirement for high correlation
(e.g., aligned node features) between source and target datasets limits their generalizability. Differing
from existing methods, our proposed ARC is a “one-for-all” GAD model capable of identifying
anomalies across target datasets from diverse domains, without the need for re-training or fine-tuning.

In-Context Learning (ICL). ICL enables a well-trained model to be effectively (fine-tuning-free)
adapted to new domains, datasets, and tasks based on minimal in-context examples (a.k.a. context
samples), providing powerful generalization capability of large language models (LLMs) [45, 46, 47]
and computer vision (CV) models [18, 48, 49, 50]. Two recent approaches, PRODIGY [51] and
UniLP [52] attempt to use ICL for GNNs to solve the node classification and link prediction tasks,
respectively. However, how to use ICL to deal with the generalist GAD problem where only normal
context samples are available still remains open.

3 Problem Statement

Notations. Let G = (V, E ,X) be an attributed graph with n nodes and m edges, where V =
{v1, · · · , vn} and E are the set of nodes and edges, respectively. The node-level attributes are
included by feature matrix X ∈ Rn×d, where each row Xi indicates the feature vector for node vi.
The inter-node connectivity is represented by an adjacency matrix A ∈ {0, 1}n×n, where the i, j-th
entry Aij = 1 means vi and vj are connected and vice versa.

3

… …

Smoothness-Based
Feature Alignment

Ego-Neighbor Residual
Graph Encoder

Prop.

Prop.

MLP

MLP

MLP

Shared
Weight

Shared
Weight

Cross-Attentive In-Context
Anomaly Scoring

𝐖𝑘

0.82
0.30
0.28
0.23
0.21

Feature
Projection

Smoothness-
Based

Feature
Sorting

𝐙[𝟎]

𝐙[1]

𝐙[2]

𝐑[1]

𝐑[2]

𝐇

𝐇𝑘

𝐇𝑞

𝐖𝑞𝐊

𝐐

෩𝐇𝑞

Figure 2: The overall pipeline of ARC, the proposed generalist GAD approach.

Conventional GAD Problem. GAD aims to differentiate abnormal nodes Va from normal nodes
Vn within a given graph G = (V, E ,X), where Va and Vn satisfy Va ∪ Vn = V , Va ∩ Vn = ∅, and
|Va| ≪ |Vn|. An anomaly label vector y ∈ {0, 1}n can be used to denote the abnormality of each
node, where the i-th entry yi = 1 iff v ∈ Va and yi = 0 iff v ∈ Vn. Formally, the goal of GAD
is to learn an anomaly scoring function (i.e., GAD model) f : V → R such that f(v′) > f(v) for
∀v′ ∈ Va and ∀v ∈ Vn. In the conventional GAD setting of “one model for one dataset”, the GAD
model f is optimized on the target graph dataset D = (G,y) with a subset of anomaly labels (in
supervised setting) or without labels (in unsupervised setting). After sufficient training, the model f
can identify anomalies within the target graph G during the inference phase.

Generalist GAD Problem. In this paper, we investigate the generalist GAD problem, wherein we
aim to develop a generalist GAD model capable of detecting abnormal nodes across diverse graph
datasets from various application domains without any training on the specific target data. Formally,
we define the generalist GAD setting, aligning it with its counterpart in image AD as introduced by
Zhu et al. [18]. Specifically, let Ttrain = {D(1)

train, · · · ,D
(N)
train} be a collection of training datasets,

where each D(i)
train = (G(i)train,y

(i)
train) is a labeled dataset from an arbitrary domain. We aim to

train a generalist GAD model f on Ttrain, and f is able to identify anomalies within any test graph
dataset D(i)

test ∈ Ttest, where Ttest = {D(1)
test, · · · ,D

(N ′)
test } is a collection of testing datasets. Note

that Ttrain ∩ Ttest = ∅ and the datasets in Ttrain and Ttest can be drawn from different distributions
and domains. Following [18], we adopt a “normal few-shot” setting during inference: for each D(i)

test,
only a handful of nk normal nodes (nk ≪ n) are available, and the model f is expected to predict
the abnormality of the rest nodes without re-training and fine-tuning.

4 ARC: A generalist GAD approach

In this section, we introduce ARC, a generalist GAD approach capable of identifying anomalies
across diverse graph datasets without the need for specific fine-tuning. The overall pipeline of ARC is
demonstrated in Fig. 2. Firstly, to align the features of different datasets, we introduce a smoothness-
based feature alignment module (Sec. 4.1), which not only projects features onto a common plane
but also sorts the dimensions in an anomaly-sensitive order. Next, to capture abnormality-aware
node embeddings, we propose a simple yet effective GNN model termed ego-neighbor residual
graph encoder (Sec. 4.2), which constructs node embeddings by combining residual information
between an ego node and its neighbors. Finally, to leverage knowledge from few-shot context samples
for predicting node-level abnormality, we introduce a cross-attentive in-context anomaly scoring
module (Sec. 4.3). Using the cross-attention block, the model learns to reconstruct query node
embeddings based on context node embeddings. Ultimately, the drift distance between the original
and reconstructed query embeddings can quantify the abnormality of each node.

4

4.1 Smoothness-Based Feature Alignment

Graph data from diverse domains typically have different features, characterized by differences in
dimensionality and unique meanings for each dimension. For example, features in a citation network
usually consist of textual and meta-information associated with each paper, whereas in a social
network, the features may be the profile of each user. Therefore, in the first step, we need to align the
features into a shared feature space. To achieve this, we introduce the feature alignment module in
ARC, consisting of two phases: feature projection, which aligns dimensionality, and smoothness-
based feature sorting, which reorders features according to their smoothness characteristics.

Feature Projection. At the first step of ARC, we employ a feature projection block to unify the feature
dimensionality of multiple graph datasets [20]. Specifically, given a feature matrix X(i) ∈ Rn(i)×d(i)

of D(i) ∈ Ttrain ∪ Ttest, the feature projection is defined by a linear mapping:

X̃(i) ∈ Rn(i)×du = Proj
(
X(i)

)
= X(i)W(i), (1)

where X̃(i) is the projected feature matrix for D(i), du is a predefined projected dimension shared
across all datasets, and W(i) ∈ Rd(i)×du is a dataset-specific linear projection weight matrix. To
maintain generality, W(i) can be defined using commonly used dimensionality reduction approaches
such as singular value decomposition [53] (SVD) and principal component analysis [54] (PCA).

Smoothness-Based Feature Sorting. Although feature projection can align dimensionality, the
semantic meaning of each projected feature across different datasets remains distinct. Considering
the difficulty of semantic-level matching without prior knowledge and specific fine-tuning [19, 20],
in this paper, we explore an alternative pathway: aligning features based on their contribution to
anomaly detection tasks. Through analytical and empirical studies, we pinpoint that the smoothness
of each feature is strongly correlated with its contribution to GAD. Building on this insight, in ARC,
we propose to sort the features according to their contribution as our alignment strategy.

80-100% 60-80% 40-60% 20-40% 0-20%

high sk → low sk
 Percentile w.r.t. Smoothness

25

50

75

A
U

R
O

C
 (%

)

DOMINANT
CoLA
TAM

(a) Cora

80-100% 60-80% 40-60% 20-40% 0-20%

high sk → low sk
 Percentile w.r.t. Smoothness

25

50

75

DOMINANT
CoLA
TAM

(b) Facebook

Figure 3: AUROC on data with 5 groups of features.

From the perspective of graph signal
processing, Tang et al. [6] have demon-
strated that the inverse of the low-
frequency energy ratio monotonically in-
creases with the anomaly degree. In other
words, high-frequency graph signals tend
to play a more significant role in detect-
ing anomalies. Similar findings have also
been observed from the standpoint of spa-
tial GNNs [37, 55], where heterophily in-
formation has been shown to be crucial
in discriminating anomalies. Motivated
by these findings, can we develop a met-
ric to gauge the contribution of each feature to GAD based on its frequency/heterophily? Considering
its correlation to frequency [56] and heterophily [57, 58, 59, 60], in this paper, we select feature-
level smoothness as the measure for contribution. Formally, given a graph G = (V, E ,X) with a
normalized feature matrix X, the smoothness of the k-th feature dimension is defined as:

sk(X) = − 1

|E|
∑

(vi,vj)∈E

(Xik −Xjk)
2
, (2)

where a lower sk indicates a significant change in the k-th feature between connected nodes, implying
that this feature corresponds to a high-frequency graph signal and exhibits strong heterophily.

To verify whether smoothness can indicate the contribution of features in GAD, we further conduct
empirical analysis (experimental setup and more results can be found in Appendix B). Concretely,
we sort the raw features of each dataset based on the smoothness sk and divide them into 5 groups
according to the percentile of sk. Then, we train different GAD models using each group of features
separately, and the performance is shown in Fig. 3 and 8. On both datasets, a model-agnostic
observation is that the features with lower sk are more helpful in discriminating anomalies. The
consistent trend demonstrates the effectiveness of sk as an indicator of the role of features in GAD.

5

In light of this, given the projected features of different datasets, we can align their feature spaces
by rearranging the permutation of features based on the descending order of sk w.r.t. each projected
feature. For all datasets, the feature in the first column is the one with the lowest sk, which deserves
more attention by ARC; conversely, features with less contribution (i.e. higher sk) are placed at the
end. In this way, the GNN-based model can learn to filter graph signals with different smoothness
levels automatically and predict anomalies accordingly. During inference, the smoothness-related
information remains transferable because we adhere to the same alignment strategy.

4.2 Ego-Neighbor Residual Graph Encoder

Once the features are aligned, we employ a GNN-based graph encoder to learn node embeddings that
capture both semantic and structural information for each node. The learned embedding can be utilized
to predict the abnormality of the corresponding node with the downstream anomaly scoring module.
A naive solution is directly employing commonly used GNNs, such as GCN [61] or GAT [62], as the
graph encoder. However, due to their low-pass filtering characteristic, these GNNs face difficulty in
capturing abnormality-related patterns that are high-frequency and heterophilic [6, 37]. Moreover,
most GNNs, including those tailored for GAD, tend to prioritize capturing node-level semantic
information while disregarding the affinity patterns of local subgraphs [17]. Consequently, employing
existing GNN models as the encoder may overemphasize dataset-specific semantic knowledge, but
overlook the shared anomaly patterns (i.e. local node affinity) across different datasets.

To address the above issues, we design an ego-neighbor residual graph encoder for ARC. Equipped
with a residual operation, the encoder can capture multi-hop affinity patterns of each node, providing
valuable and comprehensive information for anomaly identification. Similar to the “propagation then
transformation” GNN architecture in SGC [63], our graph encoder consists of three steps: multi-hop
propagation, shared MLP-based transformation, and ego-neighbor residual operation. In the first two
steps, we perform propagation on the aligned feature matrix X′ = X[0] for L iterations, and then
conduct transformation on the initial and propagated features with a shared MLP network:

X[l] = ÃX[l−1], Z[l] = MLP
(
X[l]

)
, (3)

where l ∈ {0, · · · , L}, X[l] is the propagated feature matrix at the l-th iteration, Z[l] is the trans-
formed representation matrix at the l-th iteration, and Ã is the normalized adjacency matrix [61, 63].
Note that, unlike most GNNs that only consider the features/representations after L-iter propagation,
here we incorporate both the initial features and intermediate propagated features and transform
them into the same representation space. After obtaining Z[0], · · · ,Z[L], we calculate the residual
representations by taking the difference between Z[l] (1 ≤ l ≤ L) and Z[0], and then concatenate the
multi-hop residual representations to form the final embeddings:

R[l] = Z[l] − Z[0], H = [R[1]|| · · · ||R[L]], (4)

where R[l] is the residual matrix at the l-th iteration, H ∈ Rn×de is the output embedding matrix,
and || denotes the concatenation operator.

Discussion. Compared to existing GNNs, our graph encoder offers the following advantages. Firstly,
with the residual operation, the proposed encoder emphasizes the difference between the ego node and
its neighbors rather than ego semantic information. This approach allows for the explicit modeling of
local affinity through the learned embeddings. Since local affinity is a crucial indicator of abnormality
and this characteristic can be shared across diverse datasets [17], the learned embeddings can offer
valuable discriminative insights for downstream prediction. Second, the residual operation performs
as a high-pass filter on the graph data, aiding ARC in capturing more abnormality-related attributes,
i.e., high-frequency signals and local heterophily. Moreover, unlike existing approaches [15, 17]
that only consider 1-hop affinity, our encoder also incorporates higher-order affinity through the
multi-hop residual design, which enables ARC to capture more complex graph anomaly patterns.
More discussion and comparison to the existing GNNs/GAD methods are conducted in Appendix C.

4.3 Cross-Attentive In-Context Anomaly Scoring

To utilize the few-shot normal samples (denoted by context nodes) to predict the abnormality of the
remaining nodes (denoted by query nodes), in ARC, we devise an in-context learning module with a
cross-attention mechanism for anomaly scoring. The core idea of our in-context learning module

6

is to reconstruct the node embedding of each query node using a cross-attention block to blend
the embeddings of context nodes. Then, the drift distance between the original and reconstructed
embeddings of a query node can serve as the indicator of its abnormality.

Specifically, we partition the embedding matrix H into two parts by indexing the corresponding
row vectors: the embeddings of context nodes Hk ∈ Rnk×de and the embeddings of query nodes
Hq ∈ Rnq×de . Then, a cross-attention block is utilized to reconstruct each row of Hq through a
linear combination of Hk:

Q = HqWq, K = HkWk, H̃q = Softmax

(
QK⊤
√
de

)
Hk, (5)

where Q ∈ Rnq×de and K ∈ Rnk×de are the query and key matrices respectively, Wq and Wk are
learnable parameters, and H̃q is the reconstructed query embedding matrix. Note that, unlike the con-
ventional cross-attention blocks [64, 65, 66] that further introduce a value matrix V, our block directly
multiplies the attention matrix with Hk. This design ensures that H̃q is in the same embedding space
as Hq and Hk. Thanks to this property, given a query node vi, we can calculate its anomaly score
f(vi) by computing the L2 distance between its query embedding vector Hqi and the corresponding

reconstructed query embedding vector H̃qi, i.e., f(vi) = d(Hqi, H̃qi) =

√∑de

j=1

(
Hqij − H̃qij

)2

.

Context Node Embedding
Query Node Embedding
Rec. Query Node Embedding

1 2

3
4

5 43

2

5

1

(a) Case I (b) Case II

Figure 4: Toy examples of
query embeddings (•), recon-
structed query embeddings (•),
and context embeddings (■).

Discussion. The design of cross-attentive in-context anomaly scor-
ing follows a basic assumption: normal query nodes have similar
patterns to several context nodes, and hence their embeddings can
be easily represented by the linear combination of context node
embeddings. Consequently, given a normal node, its original and re-
constructed embeddings can be close to each other in the embedding
space. In contrast, abnormal nodes may display distinct patterns
compared to normal ones, making it difficult to depict their corre-
sponding abnormal query embeddings using context embeddings.
As a result, their drift distance si can be significantly larger. Fig. 4
provides examples for the scenarios of (a) single-class normal and
(b) multi-class normal3. In both cases, the drift distance (➞) can be
a significant indicator for distinguishing anomaly (5) from normal nodes (1~4). Interestingly, if the
attention matrix assigns uniform weights to all context nodes, then our scoring module becomes a
one-class classification model [22]. This property ensures the anomaly detection capability of ARC
even without extensive training. A detailed discussion is conducted in Appendix D.2.

Model Training. To optimize ARC on training datasets Ttrain, we employ a marginal cosine
similarity loss to minimize the drift distance of normal nodes while maximizing the drift distance of
abnormal nodes. Specifically, given graph data with anomaly labels, we randomly select nk normal
nodes as context nodes and sample an equal number of normal and abnormal nodes as query nodes.
Then, given a query node vi with embedding Hqi, reconstructed embedding H̃qi, and anomaly
label yi, the sample-level loss function can be written by:

L =

1− cos
(
Hqi, H̃qi

)
, if yi = 0

max
(
0, cos

(
Hqi, H̃qi

)
− ϵ

)
, if yi = 1

(6)

where cos(·, ·) and max(·, ·) denote the cosine similarity and maximum operation, respectively, and
ϵ is a margin hyperparameter. Detailed algorithmic description and complexity analysis of ARC can
be found in Appendix E.

5 Experiments

5.1 Experimental Setup

Datasets. To learn generalist GAD models, we train the baseline methods and ARC on a group of
graph datasets and test on another group of datasets. For comprehensive evaluations, we consider

3Specific definitions see Appendix D.1

7

Table 1: Anomaly detection performance in terms of AUROC (in percent, mean±std). Highlighted
are the results ranked first, second, and third. “Rank” indicates the average ranking over 8 datasets.

Method Cora CiteSeer ACM BlogCatalog Facebook Weibo Reddit Amazon Rank

Supervised - Pre-Train Only
GCN 59.64±8.30 60.27±8.11 60.49±9.65 56.19±6.39 29.51±4.86 76.64±17.69 50.43±4.41 46.63±3.47 8.9
GAT 50.06±2.65 51.59±3.49 48.79±2.73 50.40±2.80 51.88±2.16 53.06±7.48 51.78±4.04 50.52±17.22 10.0
BGNN 42.45±11.57 42.32±11.82 44.00±13.69 47.67±8.52 54.74±25.29 32.75±35.35 50.27±3.84 52.26±3.31 11.1
BWGNN 54.06±3.27 52.61±2.88 67.59±0.70 56.34±1.21 45.84±4.97 53.38±1.61 48.97±5.74 55.26±16.95 9.0
GHRN 59.89±6.57 56.04±9.19 55.65±6.37 57.64±3.48 44.81±8.06 51.87±14.18 46.22±2.33 49.48±17.13 9.8

Unsupervised - Pre-Train Only
DOMINANT 66.53±1.15 69.47±2.02 70.08±2.34 74.25±0.65 51.01±0.78 92.88±0.32 50.05±4.92 48.94±2.69 5.8
CoLA 63.29±8.88 62.84±9.52 66.85±4.43 50.04±3.25 12.99±11.68 16.27±5.64 52.81±6.69 47.40±7.97 9.5
HCM-A 54.28±4.73 48.12±6.80 53.70±4.64 55.31±0.57 35.44±13.97 65.52±12.58 48.79±2.75 43.99±0.72 11.4
TAM 62.02±2.39 72.27±0.83 74.43±1.59 49.86±0.73 65.88±6.66 71.54±0.18 55.43±0.33 56.06±2.19 5.6

Unsupervised - Pre-Train & Fine-Tune
DOMINANT 72.23±0.34 74.69±0.32 74.34±0.12 74.61±0.04 49.92±0.55 92.21±0.10 52.14±5.06 59.06±2.80 3.6
CoLA 67.62±4.26 70.75±3.42 69.11±0.67 62.49±3.38 64.70±18.86 31.55±6.02 58.12±0.67 52.51±6.66 5.4
HCM-A 56.45±4.93 55.54±4.07 57.69±3.59 55.10±0.29 36.57±10.72 71.89±2.79 49.15±2.72 42.20±0.55 10.1
TAM 62.56±2.10 76.54±1.33 86.29±1.57 57.69±0.88 76.26±3.70 71.73±0.16 56.62±0.49 57.13±1.59 3.4

Ours
ARC 87.45±0.74 90.95±0.59 79.88±0.28 74.76±0.06 67.56±1.60 88.85±0.14 60.04±0.69 80.67±1.81 1.5

graph datasets spanning a variety of domains, including social networks, citation networks, and
e-commerce co-review networks, each of them with either injected anomalies or real anomalies [7, 15,
17]. Inspired by [52], we train the models on the largest dataset of each type and conduct testing on
the remaining datasets. Specifically, the training datasets Ttrain comprise PubMed, Flickr, Questions,
and YelpChi, while the testing datasets Ttest consist of Cora, CiteSeer, ACM, BlogCatalog, Facebook,
Weibo, Reddit, and Amazon. For detailed information, please refer to Appendix F.1.

Baselines. We compare ARC with both supervised and unsupervised methods. Supervised methods
include two conventional GNNs, i.e., GCN [61] and GAT [62], and three state-of-the-art GNNs
specifically designed for GAD, i.e., BGNN [67], BWGNN [6], and GHRN [37]. Unsupervised
methods include four representative approaches with distinct designs, including the generative method
DOMINANT [4], the contrastive method CoLA [15], the hop predictive method HCM-A [16], and
the affinity-based method TAM [17]. For detailed information, refer to Appendix F.2.

Evaluation and Implementation. Following [7, 17, 68], we employ AUROC and AUPRC as our
evaluation metrics for GAD. We report the average AUROC/AUPRC with standard deviations across
5 trials. We train ARC on all the datasets in Ttrain jointly, and evaluate the model on each dataset in
Ttest in an in-context learning manner (nk = 10 as default). For the supervised baselines, we follow
the same training and testing procedure (denoted as “pre-train only”), since no labeled anomaly
is available for fine-tuning. For the unsupervised baselines, we consider two settings: “pre-train
only” and “pre-train & fine-tune”. In the latter, we additionally conduct dataset-specific fine-tuning
with a few epochs. To standardize the feature space in baseline methods, we utilize either learnable
projection or random projection as an adapter between the raw feature and the model input layer.
We utilize random search to determine the optimal hyperparameters for both the baselines and ARC.
Since our goal is to train generalist GAD models, we do not perform dataset-specific hyperparameter
search, but instead use the same set of hyperparameters for all testing datasets. More implementation
details can be found in Appendix F.3.

5.2 Experimental Results

Performance Comparison. Table 1 shows the comparison results of ARC with base-
line methods in terms of AUROC. Results in AUPRC are provided in Appendix G.1.

2 4 6 8 10 15 20 30 40 50 100

Number of Context Nodes nk

86

87

88

A
U

R
O

C
 (%

)

48

50

52

A
U

PR
C

 (%
)

AUROC
AUPRC

(a) Cora

2 4 6 8 10 15 20 30 40 50 100

Number of Context Nodes nk

66

68

A
U

R
O

C
 (%

)

7

8

9 A
U

PR
C

 (%
)

AUROC
AUPRC

(b) Facebook

Figure 5: Performance with varying nk.

We have the following observations. ❶ ARC
demonstrates strong anomaly detection capabil-
ity in the generalist GAD scenario, without any
fine-tuning. Specifically, ARC achieves state-of-
the-art performance on 5 out of 8 datasets and
demonstrates competitive performance on the
remainder. On several datasets, ARC demon-
strates significant improvement compared to the
best baseline (e.g., ↑21.1% on Cora, ↑18.8% on
CiteSeer, and ↑36.6% on Amazon). ❷ Simply

8

pre-training the dataset-specific GAD methods typically results in poor generalization capability to
new datasets. Specifically, the AUROC of the majority of “pre-train only” approaches is close to
random guessing (50%) or even lower. ❸ With dataset-specific fine-tuning, the baseline methods
achieve better performance in the majority of cases. However, the improvement can be minor or
even negative in some cases, demonstrating the limitations of fine-tuning. Additionally, we observe
that their performance is sometimes lower than the reported results from training models from
scratch [4, 15, 17], indicating potential risk of negative transfer within the "pre-train & fine-tune"
paradigm. ❹ Unsupervised baselines (except HCM-A) generally outperform the supervised ones,
highlighting the difficulty of training a generalist GAD model using the binary classification paradigm.

Effectiveness of #Context Nodes. To investigate how the number of context nodes nk affects the
performance of ARC during inference, we vary nk within the range of 2 to 100. The results are
shown in Fig. 5 (more results are in Appendix G.2). From the figure, we observe that the performance
of ARC increases as more context nodes are involved, demonstrating its capability to leverage these
labeled normal nodes with in-context learning. Furthermore, we can conclude that ARC is also
label-efficient: when nk ≥ 10, the performance gain from using more context nodes becomes minor;
moreover, even when nk is extremely small, ARC can still perform well on the majority of datasets.

Table 2: AUROC of ARC and its variants.
Variant Cora Cite. ACM Blog. Face. Wei. Red. Ama.

ARC 87.45 90.95 79.88 74.76 67.56 88.85 60.04 80.67

w/o A 80.65 83.35 79.29 73.86 62.80 89.69 54.60 64.76
w/o R 37.44 31.52 61.83 49.30 20.38 97.72 52.94 50.15
w/o C 47.39 53.98 54.24 60.46 48.86 42.84 51.03 69.02

Ablation Study. To verify the effective-
ness of each component of ARC, we make
corresponding modifications to ARC and
designed three variants: 1) w/o A: using
random projection to replace smoothness-
based feature alignment; 2) w/o R: us-
ing GCN to replace ego-neighbor residual
graph encoder; and 3) w/o C: using binary classification-based predictor and loss to replace cross-
attentive in-context anomaly scoring. The results are demonstrated in Table 2 (full results are in
Appendix G.3). From the results, we can conclude that all three components significantly contribute
to the performance. Among them, the in-context anomaly scoring module has a significant impact, as
the performance of w/o C is close to random guessing on most datasets. The residual graph encoder
also has a significant impact on the final performance. Notably, Weibo dataset is an exception where
the GCN encoder performs better. A possible reason is that the Weibo dataset exhibits different
anomaly patterns compared to the others.

GCN
GAT

BGNN

BW
GNN

GHRN
DOMI.

CoL
A

HCM-A
TAM

ARC
DOMI.

CoL
A

HCM-A
TAM

10−1
100
101
102

R
un

 T
im

e
(s

)

Inference
Fine-tune (per epoch)

Figure 6: Time comparison.

Efficiency Analysis. To assess the runtime efficiency of ARC, we
compare the inference and fine-tuning time on the ACM dataset.
As depicted in Fig. 6, ARC demonstrates comparable runtime
performance with the fastest GNNs (e.g., GCN and BWGNN),
and significantly outperforms the unsupervised methods in terms
of efficiency. Additionally, we observe that dataset-specific fine-
tuning consumes more time compared to inference.

Context Nodes

N
or

m
al

A
no

m
al

yQ
ue

ry
 N

od
es

(a) Cora

Context Nodes

N
or

m
al

A
no

m
al

yQ
ue

ry
 N

od
es

(b) Facebook

Figure 7: Visualization results.

Visualization. To investigate the weight allocation mechanism
of the cross-attention module in ARC, we visualize the atten-
tion weights between context nodes and query nodes in Fig.7
(additional results are in Appendix G.4). From Fig. 7(a), it is
evident that ARC tends to assign uniform attention weights to
normal nodes, leading to reconstructed embeddings that closely
resemble the average embedding of the context nodes. Con-
versely, anomalies are reconstructed using a combination of 1
or 2 context nodes, suggesting that their embeddings are far-
ther from the center. This allocation aligns with the case of
“single-class normal” in Fig. 4(a). Differently, in Fig. 7(b),
we observe that each normal query node is assigned to several
context nodes following two fixed patterns, corresponding to
the case of “multi-class normal” in Fig. 4(b). In summary, the cross-attention module enables ARC
to adapt to various normal/anomaly distribution patterns, enhancing its generalizability.

9

6 Conclusion

In this paper, we take the first step towards addressing the generalist GAD problem, aiming to
detect anomalies across diverse graph datasets with a “one-for-all” GAD model, without requiring
dataset-specific fine-tuning. We introduce ARC, a novel and well-crafted in-context learning-based
generalist GAD approach, capable of identifying anomalies on-the-fly using only few-shot normal
nodes. Extensive experiments on real-world datasets from various domains demonstrate the detection
prowess, generalizability, and efficiency of ARC compared to existing approaches. One limitation is
that ARC can only use normal context samples during inference but cannot directly utilize abnormal
context samples, even when they are available. A potential future direction could involve developing
generalist GAD methods that utilize context samples containing both anomalies and normal instances.

Acknowledgments and Disclosure of Funding

This research was partly funded by Australian Research Council (ARC) under grants FT210100097
and DP240101547 and the CSIRO – National Science Foundation (US) AI Research Collaboration
Program.

References
[1] Ranran Li, Zhaowei Liu, Yuanqing Ma, Dong Yang, and Shuaijie Sun. Internet financial fraud detection

based on graph learning. Ieee Transactions on Computational Social Systems, 2022.

[2] Tian Bian, Xi Xiao, Tingyang Xu, Peilin Zhao, Wenbing Huang, Yu Rong, and Junzhou Huang. Rumor
detection on social media with bi-directional graph convolutional networks. In Proceedings of the AAAI
conference on artificial intelligence, volume 34, pages 549–556, 2020.

[3] Xiaoxiao Ma, Jia Wu, Shan Xue, Jian Yang, Chuan Zhou, Quan Z Sheng, Hui Xiong, and Leman
Akoglu. A comprehensive survey on graph anomaly detection with deep learning. IEEE Transactions on
Knowledge and Data Engineering, 35(12):12012–12038, 2021.

[4] Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. Deep anomaly detection on attributed networks.
In Proceedings of the 2019 SIAM International Conference on Data Mining, pages 594–602. SIAM, 2019.

[5] Kay Liu, Yingtong Dou, Yue Zhao, Xueying Ding, Xiyang Hu, Ruitong Zhang, Kaize Ding, Canyu Chen,
Hao Peng, Kai Shu, et al. Bond: Benchmarking unsupervised outlier node detection on static attributed
graphs. Advances in Neural Information Processing Systems, 35:27021–27035, 2022.

[6] Jianheng Tang, Jiajin Li, Ziqi Gao, and Jia Li. Rethinking graph neural networks for anomaly detection.
In International Conference on Machine Learning, pages 21076–21089. PMLR, 2022.

[7] Jianheng Tang, Fengrui Hua, Ziqi Gao, Peilin Zhao, and Jia Li. Gadbench: Revisiting and benchmarking
supervised graph anomaly detection. Advances in Neural Information Processing Systems, 36, 2024.

[8] Jinyu Cai, Yunhe Zhang, Zhoumin Lu, Wenzhong Guo, and See-kiong Ng. Towards effective federated
graph anomaly detection via self-boosted knowledge distillation. ACM Multimedia, 2024.

[9] Bryan Perozzi and Leman Akoglu. Scalable anomaly ranking of attributed neighborhoods. In Proceedings
of the 2016 SIAM International Conference on Data Mining, pages 207–215. SIAM, 2016.

[10] Jundong Li, Harsh Dani, Xia Hu, and Huan Liu. Radar: Residual analysis for anomaly detection in
attributed networks. In IJCAI, volume 17, pages 2152–2158, 2017.

[11] Zhen Peng, Minnan Luo, Jundong Li, Huan Liu, Qinghua Zheng, et al. Anomalous: A joint modeling
approach for anomaly detection on attributed networks. In IJCAI, volume 18, pages 3513–3519, 2018.

[12] Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, and Philip S Yu. Enhancing graph
neural network-based fraud detectors against camouflaged fraudsters. In Proceedings of the 29th ACM
international conference on information & knowledge management, pages 315–324, 2020.

[13] Ao Li, Zhou Qin, Runshi Liu, Yiqun Yang, and Dong Li. Spam review detection with graph convolutional
networks. In Proceedings of the 28th ACM International conference on information and knowledge
management, pages 2703–2711, 2019.

[14] Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He. Pick and choose: a
gnn-based imbalanced learning approach for fraud detection. In Proceedings of the web conference 2021,
pages 3168–3177, 2021.

[15] Yixin Liu, Zhao Li, Shirui Pan, Chen Gong, Chuan Zhou, and George Karypis. Anomaly detection on
attributed networks via contrastive self-supervised learning. IEEE transactions on neural networks and
learning systems, 33(6):2378–2392, 2021.

10

[16] Tianjin Huang, Yulong Pei, Vlado Menkovski, and Mykola Pechenizkiy. Hop-count based self-supervised
anomaly detection on attributed networks. In Joint European conference on machine learning and
knowledge discovery in databases, pages 225–241. Springer, 2022.

[17] Hezhe Qiao and Guansong Pang. Truncated affinity maximization: One-class homophily modeling for
graph anomaly detection. In Advances in Neural Information Processing Systems, volume 36, 2023.

[18] Jiawen Zhu and Guansong Pang. Toward generalist anomaly detection via in-context residual learning
with few-shot sample prompts. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024.

[19] Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan Zhang. One
for all: Towards training one graph model for all classification tasks. In International Conference on
Learning Representations, 2024.

[20] Haihong Zhao, Aochuan Chen, Xiangguo Sun, Hong Cheng, and Jia Li. All in one and one for all: A
simple yet effective method towards cross-domain graph pretraining. arXiv preprint arXiv:2402.09834,
2024.

[21] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep learning for anomaly
detection: A review. ACM computing surveys (CSUR), 54(2):1–38, 2021.

[22] Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander
Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In International conference
on machine learning, pages 4393–4402. PMLR, 2018.

[23] Sachin Goyal, Aditi Raghunathan, Moksh Jain, Harsha Vardhan Simhadri, and Prateek Jain. Drocc:
Deep robust one-class classification. In International conference on machine learning, pages 3711–3721.
PMLR, 2020.

[24] Karsten Roth, Latha Pemula, Joaquin Zepeda, Bernhard Schölkopf, Thomas Brox, and Peter Gehler.
Towards total recall in industrial anomaly detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 14318–14328, 2022.

[25] Chong Zhou and Randy C Paffenroth. Anomaly detection with robust deep autoencoders. In Proceedings
of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, pages
665–674, 2017.

[26] Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Ursula Schmidt-Erfurth, and Georg Langs.
Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In
International conference on information processing in medical imaging, pages 146–157. Springer, 2017.

[27] Vikash Sehwag, Mung Chiang, and Prateek Mittal. SSD: A unified framework for self-supervised outlier
detection. In International Conference on Learning Representations, 2021.

[28] Jinyu Cai and Jicong Fan. Perturbation learning based anomaly detection. In Advances in Neural
Information Processing Systems, pages 14317–14330, 2022.

[29] Yunhe Zhang, Yan Sun, Jinyu Cai, and Jicong Fan. Deep orthogonal hypersphere compression for
anomaly detection. In Proceedings of the Twelfth International Conference on Learning Representations,
2024.

[30] Chaoqin Huang, Haoyan Guan, Aofan Jiang, Ya Zhang, Michael Spratling, and Yan-Feng Wang. Regis-
tration based few-shot anomaly detection. In European Conference on Computer Vision, pages 303–319.
Springer, 2022.

[31] Jongheon Jeong, Yang Zou, Taewan Kim, Dongqing Zhang, Avinash Ravichandran, and Onkar Dabeer.
Winclip: Zero-/few-shot anomaly classification and segmentation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 19606–19616, 2023.

[32] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pages 8748–8763. PMLR,
2021.

[33] Yu Zheng, Ming Jin, Yixin Liu, Lianhua Chi, Khoa T Phan, and Yi-Ping Phoebe Chen. Generative and
contrastive self-supervised learning for graph anomaly detection. IEEE Transactions on Knowledge and
Data Engineering, 35(12):12220–12233, 2021.

[34] Xuexiong Luo, Jia Wu, Amin Beheshti, Jian Yang, Xiankun Zhang, Yuan Wang, and Shan Xue. Comga:
Community-aware attributed graph anomaly detection. In Proceedings of the Fifteenth ACM International
Conference on Web Search and Data Mining, pages 657–665, 2022.

[35] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A compre-
hensive survey on graph neural networks. IEEE transactions on neural networks and learning systems,
32(1):4–24, 2020.

11

[36] Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral filters via
bernstein approximation. Advances in Neural Information Processing Systems, 34:14239–14251, 2021.

[37] Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, and Yongdong Zhang. Addressing
heterophily in graph anomaly detection: A perspective of graph spectrum. In Proceedings of the ACM
Web Conference 2023, pages 1528–1538, 2023.

[38] Haoyi Fan, Fengbin Zhang, and Zuoyong Li. Anomalydae: Dual autoencoder for anomaly detection on
attributed networks. In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5685–5689. IEEE, 2020.

[39] Jingcan Duan, Siwei Wang, Pei Zhang, En Zhu, Jingtao Hu, Hu Jin, Yue Liu, and Zhibin Dong. Graph
anomaly detection via multi-scale contrastive learning networks with augmented view. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 37, pages 7459–7467, 2023.

[40] Bo Chen, Jing Zhang, Xiaokang Zhang, Yuxiao Dong, Jian Song, Peng Zhang, Kaibo Xu, Evgeny
Kharlamov, and Jie Tang. Gccad: Graph contrastive learning for anomaly detection. IEEE Transactions
on Knowledge and Data Engineering, 2022.

[41] Tong Zhao, Chuchen Deng, Kaifeng Yu, Tianwen Jiang, Daheng Wang, and Meng Jiang. Error-bounded
graph anomaly loss for gnns. In Proceedings of the 29th ACM International Conference on Information
& Knowledge Management, pages 1873–1882, 2020.

[42] Junjun Pan, Yixin Liu, Yizhen Zheng, and Shirui Pan. Prem: A simple yet effective approach for
node-level graph anomaly detection. In 2023 IEEE International Conference on Data Mining (ICDM),
pages 1253–1258. IEEE, 2023.

[43] Kaize Ding, Kai Shu, Xuan Shan, Jundong Li, and Huan Liu. Cross-domain graph anomaly detection.
IEEE Transactions on Neural Networks and Learning Systems, 33(6):2406–2415, 2021.

[44] Qizhou Wang, Guansong Pang, Mahsa Salehi, Wray Buntine, and Christopher Leckie. Cross-domain
graph anomaly detection via anomaly-aware contrastive alignment. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 37, pages 4676–4684, 2023.

[45] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

[46] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for
few-shot learning. Advances in neural information processing systems, 35:23716–23736, 2022.

[47] Yaru Hao, Haoyu Song, Li Dong, Shaohan Huang, Zewen Chi, Wenhui Wang, Shuming Ma, and Furu
Wei. Language models are general-purpose interfaces. arXiv preprint arXiv:2206.06336, 2022.

[48] Ting Chen, Saurabh Saxena, Lala Li, Tsung-Yi Lin, David J Fleet, and Geoffrey E Hinton. A unified
sequence interface for vision tasks. Advances in Neural Information Processing Systems, 35:31333–31346,
2022.

[49] Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren
Zhou, and Hongxia Yang. Ofa: Unifying architectures, tasks, and modalities through a simple sequence-
to-sequence learning framework. In International Conference on Machine Learning, pages 23318–23340.
PMLR, 2022.

[50] Alexander Kolesnikov, André Susano Pinto, Lucas Beyer, Xiaohua Zhai, Jeremiah Harmsen, and Neil
Houlsby. Uvim: A unified modeling approach for vision with learned guiding codes. Advances in Neural
Information Processing Systems, 35:26295–26308, 2022.

[51] Qian Huang, Hongyu Ren, Peng Chen, Gregor Kržmanc, Daniel Zeng, Percy S Liang, and Jure Leskovec.
Prodigy: Enabling in-context learning over graphs. Advances in Neural Information Processing Systems,
36, 2024.

[52] Kaiwen Dong, Haitao Mao, Zhichun Guo, and Nitesh V Chawla. Universal link predictor by in-context
learning. arXiv preprint arXiv:2402.07738, 2024.

[53] Gilbert W Stewart. On the early history of the singular value decomposition. SIAM review, 35(4):551–566,
1993.

[54] Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4):433–459, 2010.

[55] Yuan Gao, Xiang Wang, Xiangnan He, Zhenguang Liu, Huamin Feng, and Yongdong Zhang. Alleviating
structural distribution shift in graph anomaly detection. In Proceedings of the Sixteenth ACM International
Conference on Web Search and Data Mining, pages 357–365, 2023.

[56] Yushun Dong, Kaize Ding, Brian Jalaian, Shuiwang Ji, and Jundong Li. Adagnn: Graph neural networks
with adaptive frequency response filter. In Proceedings of the 30th ACM international conference on
information & knowledge management, pages 392–401, 2021.

12

[57] Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen Chang,
and Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural information
processing systems, 35:1362–1375, 2022.

[58] Yizhen Zheng, He Zhang, Vincent Lee, Yu Zheng, Xiao Wang, and Shirui Pan. Finding the missing-half:
Graph complementary learning for homophily-prone and heterophily-prone graphs. In International
Conference on Machine Learning, pages 42492–42505. PMLR, 2023.

[59] Yixin Liu, Yizhen Zheng, Daokun Zhang, Vincent CS Lee, and Shirui Pan. Beyond smoothing: Unsuper-
vised graph representation learning with edge heterophily discriminating. In Proceedings of the AAAI
conference on artificial intelligence, volume 37, pages 4516–4524, 2023.

[60] Xin Zheng, Yi Wang, Yixin Liu, Ming Li, Miao Zhang, Di Jin, Philip S Yu, and Shirui Pan. Graph neural
networks for graphs with heterophily: A survey. arXiv preprint arXiv:2202.07082, 2022.

[61] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

[62] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representations, 2018.

[63] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplifying
graph convolutional networks. In International conference on machine learning, pages 6861–6871.
PMLR, 2019.

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

[65] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10684–10695, 2022.

[66] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. In International conference on machine
learning, pages 19730–19742. PMLR, 2023.

[67] Sergei Ivanov and Liudmila Prokhorenkova. Boost then convolve: Gradient boosting meets graph neural
networks. In International Conference on Learning Representations, 2021.

[68] Guansong Pang, Anton van den Hengel, Chunhua Shen, and Longbing Cao. Toward deep supervised
anomaly detection: Reinforcement learning from partially labeled anomaly data. In Proceedings of the
27th ACM SIGKDD conference on knowledge discovery & data mining, pages 1298–1308, 2021.

[69] Thomas Defard, Aleksandr Setkov, Angelique Loesch, and Romaric Audigier. Padim: a patch distribution
modeling framework for anomaly detection and localization. In International Conference on Pattern
Recognition, pages 475–489. Springer, 2021.

[70] Vitjan Zavrtanik, Matej Kristan, and Danijel Skočaj. Reconstruction by inpainting for visual anomaly
detection. Pattern Recognition, 112:107706, 2021.

[71] Yiru Zhao, Bing Deng, Chen Shen, Yao Liu, Hongtao Lu, and Xian-Sheng Hua. Spatio-temporal
autoencoder for video anomaly detection. In Proceedings of the 25th ACM international conference on
Multimedia, pages 1933–1941, 2017.

[72] Julian Wyatt, Adam Leach, Sebastian M Schmon, and Chris G Willcocks. Anoddpm: Anomaly detection
with denoising diffusion probabilistic models using simplex noise. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 650–656, 2022.

[73] Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein, Georg Langs, and Ursula Schmidt-Erfurth.
f-anogan: Fast unsupervised anomaly detection with generative adversarial networks. Medical image
analysis, 54:30–44, 2019.

[74] Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas Pfister. Cutpaste: Self-supervised learning for
anomaly detection and localization. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9664–9674, 2021.

[75] Yixin Liu, Thalaiyasingam Ajanthan, Hisham Husain, and Vu Nguyen. Self-supervision improves
diffusion models for tabular data imputation. In Proceedings of the 33rd ACM International Conference
on Information and Knowledge Management, 2024.

[76] Choubo Ding, Guansong Pang, and Chunhua Shen. Catching both gray and black swans: Open-set
supervised anomaly detection. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 7388–7398, 2022.

[77] Yiwei Lu, Frank Yu, Mahesh Kumar Krishna Reddy, and Yang Wang. Few-shot scene-adaptive anomaly
detection. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part V 16, pages 125–141. Springer, 2020.

13

[78] Tri Cao, Jiawen Zhu, and Guansong Pang. Anomaly detection under distribution shift. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pages 6511–6523, 2023.

[79] Abhishek Aich, Kuan-Chuan Peng, and Amit K Roy-Chowdhury. Cross-domain video anomaly detection
without target domain adaptation. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pages 2579–2591, 2023.

[80] Wenchao Yu, Wei Cheng, Charu C Aggarwal, Kai Zhang, Haifeng Chen, and Wei Wang. Netwalk: A
flexible deep embedding approach for anomaly detection in dynamic networks. In Proceedings of the
24th ACM SIGKDD international conference on knowledge discovery & data mining, pages 2672–2681,
2018.

[81] Li Zheng, Zhenpeng Li, Jian Li, Zhao Li, and Jun Gao. Addgraph: Anomaly detection in dynamic graph
using attention-based temporal gcn. In IJCAI, volume 3, page 7, 2019.

[82] Yixin Liu, Shirui Pan, Yu Guang Wang, Fei Xiong, Liang Wang, Qingfeng Chen, and Vincent CS Lee.
Anomaly detection in dynamic graphs via transformer. IEEE Transactions on Knowledge and Data
Engineering, 35(12):12081–12094, 2021.

[83] Rongrong Ma, Guansong Pang, Ling Chen, and Anton van den Hengel. Deep graph-level anomaly
detection by glocal knowledge distillation. In Proceedings of the fifteenth ACM international conference
on web search and data mining, pages 704–714, 2022.

[84] Yixin Liu, Kaize Ding, Qinghua Lu, Fuyi Li, Leo Yu Zhang, and Shirui Pan. Towards self-interpretable
graph-level anomaly detection. Advances in Neural Information Processing Systems, 36, 2024.

[85] Yili Wang, Yixin Liu, Xu Shen, Chenyu Li, Kaize Ding, Rui Miao, Ying Wang, Shirui Pan, and Xin Wang.
Unifying unsupervised graph-level anomaly detection and out-of-distribution detection: A benchmark.
arXiv preprint arXiv:2406.15523, 2024.

[86] Yixin Liu, Kaize Ding, Huan Liu, and Shirui Pan. Good-d: On unsupervised graph out-of-distribution
detection. In Proceedings of the Sixteenth ACM International Conference on Web Search and Data
Mining, pages 339–347, 2023.

[87] Luzhi Wang, Dongxiao He, He Zhang, Yixin Liu, Wenjie Wang, Shirui Pan, Di Jin, and Tat-Seng Chua.
Goodat: Towards test-time graph out-of-distribution detection. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 15537–15545, 2024.

[88] Jinyu Cai, Yunhe Zhang, Jicong Fan, and See-Kiong Ng. Lg-fgad: An effective federated graph anomaly
detection framework. In Proceedings of the International Joint Conference on Artificial Intelligence,
2024.

[89] Xin Zheng, Yixin Liu, Zhifeng Bao, Meng Fang, Xia Hu, Alan Wee-Chung Liew, and Shirui Pan. Towards
data-centric graph machine learning: Review and outlook. arXiv preprint arXiv:2309.10979, 2023.

[90] Yixin Liu, Kaize Ding, Jianling Wang, Vincent Lee, Huan Liu, and Shirui Pan. Learning strong graph
neural networks with weak information. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 1559–1571, 2023.

[91] Shiyuan Li, Yixin Liu, Qingfeng Chen, Geoffrey I Webb, and Shirui Pan. Noise-resilient unsupervised
graph representation learning via multi-hop feature quality estimation. In Proceedings of the 33rd ACM
International Conference on Information and Knowledge Management, 2024.

[92] Zhao Li, Yixin Liu, Zhen Zhang, Shirui Pan, Jianliang Gao, and Jiajun Bu. Cyclic label propagation for
graph semi-supervised learning. World Wide Web, 25(2):703–721, 2022.

[93] Yizhen Zheng, Shirui Pan, Vincent Lee, Yu Zheng, and Philip S Yu. Rethinking and scaling up graph
contrastive learning: An extremely efficient approach with group discrimination. Advances in Neural
Information Processing Systems, 35:10809–10820, 2022.

[94] Mingda Chen, Jingfei Du, Ramakanth Pasunuru, Todor Mihaylov, Srini Iyer, Veselin Stoyanov, and
Zornitsa Kozareva. Improving in-context few-shot learning via self-supervised training. arXiv preprint
arXiv:2205.01703, 2022.

[95] Sewon Min, Mike Lewis, Luke Zettlemoyer, and Hannaneh Hajishirzi. Metaicl: Learning to learn in
context. arXiv preprint arXiv:2110.15943, 2021.

[96] Amir Bar, Yossi Gandelsman, Trevor Darrell, Amir Globerson, and Alexei Efros. Visual prompting via
image inpainting. Advances in Neural Information Processing Systems, 35:25005–25017, 2022.

[97] Yulong Pei, Tianjin Huang, Werner van Ipenburg, and Mykola Pechenizkiy. Resgcn: Attention-based deep
residual modeling for anomaly detection on attributed networks. Machine Learning, 111(2):519–541,
2022.

[98] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

14

[99] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: extraction and mining
of academic social networks. In Proceedings of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 990–998, 2008.

[100] Lei Tang and Huan Liu. Relational learning via latent social dimensions. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 817–826, 2009.

[101] Shebuti Rayana and Leman Akoglu. Collective opinion spam detection: Bridging review networks and
metadata. In Proceedings of the 21th acm sigkdd international conference on knowledge discovery and
data mining, pages 985–994, 2015.

[102] Julian John McAuley and Jure Leskovec. From amateurs to connoisseurs: modeling the evolution of user
expertise through online reviews. In Proceedings of the 22nd international conference on World Wide
Web, pages 897–908, 2013.

[103] Shijie Zhang, Hongzhi Yin, Tong Chen, Quoc Viet Nguyen Hung, Zi Huang, and Lizhen Cui. Gcn-based
user representation learning for unifying robust recommendation and fraudster detection. In Proceedings
of the 43rd international ACM SIGIR conference on research and development in information retrieval,
pages 689–698, 2020.

[104] Arjun Mukherjee, Vivek Venkataraman, Bing Liu, and Natalie Glance. What yelp fake review filter might
be doing? In Proceedings of the international AAAI conference on web and social media, volume 7,
pages 409–418, 2013.

[105] Zhiming Xu, Xiao Huang, Yue Zhao, Yushun Dong, and Jundong Li. Contrastive attributed network
anomaly detection with data augmentation. In Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pages 444–457. Springer, 2022.

[106] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embedding trajectory in temporal
interaction networks. In Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pages 1269–1278, 2019.

[107] Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
critical look at the evaluation of gnns under heterophily: Are we really making progress? arXiv preprint
arXiv:2302.11640, 2023.

[108] Kaize Ding, Jundong Li, and Huan Liu. Interactive anomaly detection on attributed networks. In
Proceedings of the twelfth ACM international conference on web search and data mining, pages 357–365,
2019.

[109] David B Skillicorn. Detecting anomalies in graphs. In 2007 IEEE Intelligence and Security Informatics,
pages 209–216. IEEE, 2007.

[110] Xiuyao Song, Mingxi Wu, Christopher Jermaine, and Sanjay Ranka. Conditional anomaly detection.
IEEE Transactions on knowledge and Data Engineering, 19(5):631–645, 2007.

15

A Detailing Related Work

Anomaly Detection. The objective of anomaly detection (AD) is to identify anomalous samples that
deviate from the majority of samples [21]. Due to the difficulty of collecting labeled anomaly data,
mainstream AD methods mainly focus on unsupervised settings. To capture anomaly patterns without
guidance by annotated labels, existing studies employ several advanced techniques to learn powerful
AD models, such as one-class classification [22, 23], distance measurement [24, 69], data reconstruc-
tion [25, 70, 71], generative models [26, 72, 73], and self-supervised learning [27, 74]. For example,
DeepSVDD [22] introduces a fully deep one-class classification objective for unsupervised anomaly
detection, optimizing a data-enclosing hypersphere in output space to extract common factors of
variation and demonstrating theoretical properties such as the v-property. AnoDDPM [72], a simplex
noise-based approach for anomaly detection, enhances anomaly capture with a partial diffusion
strategy [75] and multiscale simplex noise processing, facilitating faster inference and training on
high-resolution images. While effective, these approaches are tailored to identify abnormal samples
within a predetermined target dataset (i.e., the dataset for training), restricting their generalizability to
new domains.

Cross-Dataset Anomaly Detection. Recently, some advanced AD methods aim to transcend dataset
limitations, enhancing their generalizability across diverse datasets. A research line aims to address
the AD problem under domain or distribution shifts [76, 77, 78, 79]; however, these approaches
require domain relevance between the source and target datasets, thus limiting their generalizability.
To enable the model to better understand the patterns in target datasets, a viable approach is to
incorporate a few-shot setting, allowing access to a limited number of normal samples from the
target datasets. Under the few-shot setting, RegAD [30] is a pioneering approach that trains a single
generalizable model capable of being applied to new in-domain data without re-training or fine-
tuning. WinCLIP [31] utilizes visual-language models (VLMs, e.g., CLIP [32]) with well-crafted
text prompts to perform zero/few-shot AD for image data. InCTRL [18], as the first generalist AD
approach, integrates in-context learning and VLMs to achieve domain-agnostic image AD with a
single model. However, due to their heavy reliance on pre-trained vision encoders/VLMs and image-
specific designs, these approaches excel in anomaly detection for image data but face challenges
when applied to graph data.

Anomaly Detection on Graph Data. Based on the granularity of anomaly samples within graph
data, existing AD approaches can be primarily categorized into three classes: node-level [4, 6],
edge-level [80, 81, 82], and graph-level [83, 84, 85, 86, 87, 88] AD. Due to its broad real-world
applications, node-level AD receives the most research attention [3]. In this paper, we focus on the
node-level AD and refer to it as “graph anomaly detection (GAD)”, following the convention of most
previous papers [6, 33, 34].

Early GAD methods aimed to detect anomalies through shallow mechanisms. For example, AMEN [9]
detects anomalies by utilizing the attribute correlations of nodes in each ego-network on the attribute
network. In addition, residual analysis is another common method to measure the anomalies of nodes
on an attribute network. In particular, Radar [10] characterizes the residuals of attribute information
and their coherence with network information for anomaly detection. Further, ANOMALOUS [11]
proposes joint learning of attribute selection and anomaly detection based on CUR decomposition
and residual analysis. Despite the success of these methods on low-dimensional attribute graph data,
they do not work well when graphs have complex structures and high-dimensional attributes [89, 90,
91, 92] due to the limitations of their shallow mechanisms.

To overcome the limitations of shallow approaches, recently, GNN-based methods have become
the de facto solution for GAD tasks. Existing GNN-based GAD approaches can be divided into
two research lines: supervised GAD and unsupervised GAD [3, 5, 7]. Supervised GAD approaches
assume that the labels of both normal and anomalous nodes are available for model training [7].
Hence, related studies mainly focus on improving graph convolutional operators, model architectures,
and supervised objective functions, to leverage labels to learn node-level anomaly patterns [6, 12,
13, 14, 36, 37]. For example, the spatial GNN has been redesigned mainly in terms of message
passing and aggregation mechanisms. In particular, considering that GNN-based fraud detectors fail
to effectively identify fraudsters in disguise, CARE-GNN [12] uses a label-aware similarity metric
and introduces reinforcement learning to aggregate selected neighbors with different relationships
to counteract disguises. Concurrently, spectral GNNs, relate graphical anomalies to high-frequency
spectral distributions. Tang et al. [6] analyzed anomalies for the first time from the perspective

16

of the spectral spectrum of the graph and proposed the Beta wavelet GNN (BWGNN), which has
spectrally and spatially localized band-pass filters to better capture anomalies. In addition, anomalies
are usually associated with high-frequency components in the spectral representation of a graph.
Therefore, GHRN [37] prunes inter-class edges by emphasizing the high-frequency components of
the graph, which can effectively isolate the anomalous nodes and thus obtain better anomaly detection
performance.

In contrast, unsupervised GAD approaches do not require any labels for model training. Similar
to unsupervised AD for image data, unsupervised GAD approaches employ several unsupervised
learning techniques to learn anomaly patterns on graph data, including data reconstruction [4, 34, 38],
contrastive learning [15, 39, 40], and other auxiliary objectives [16, 17, 41, 42, 93]. For example,
DOMINANT [4] is a reconstruction-based approach that employs a graph convolution autoencoder
to reconstruct both the adjacency and attribute matrices simultaneously, assessing node abnormality
through a weighted sum of the reconstruction error terms. Similarly, ComGA [34] is a community-
aware attribute GAD framework based on tailored GCNs to capture local, global, and structural
anomalies. CoLA [15], the first contrastive self-supervised learning framework for GAD, samples
novel contrast instance pairs in an unsupervised manner, utilizing contrastive learning to capture
local information. HCM-A [16] integrates both local and global contextual information, employs
hop count prediction as a self-supervised task, and utilizes Bayesian learning to enhance anomaly
identification. TAM [17] optimizes the proposed anomaly metric (affinity) on the truncated graph
end-to-end, considering one-class homophily and local affinity. Nevertheless, all the above methods
adhere to the conventional paradigm of “one model for one dataset”.

Although some GAD approaches [43, 44] can handle cross-domain scenarios, their requirement
for high correlation (e.g., aligned node features) between source and target datasets limits their
generalizability. Differing from existing methods, our proposed ARC is a “one-for-all” GAD model
capable of identifying anomalies across target datasets from diverse domains, without the need for
re-training or fine-tuning.

In-Context Learning. In-context learning (ICL) can be effectively adapted to new tasks based
on minimal in-context examples, providing a powerful generalization capability of large language
models (LLMs) [45, 46, 47]. For example, Brown et al. [45] demonstrate the remarkable ability of
language models to perform diverse tasks with minimal training examples. Through few-shot learning,
these models exhibit robustness and adaptability across various domains, exhibiting their potential
as general-purpose learners in natural language processing (NLP). Further, given that pre-training
objectives are not specifically optimized for ICL [94], Min et al. introduced MetaICL [95] as a solution
to bridge the divide between pre-training and downstream ICL utilization. This method involves
continuously training the pre-trained LLMs across diverse tasks using demonstration examples,
thereby enhancing its few-shot capabilities. In contrast, supervised in-context fine-tuning [94]
suggests constructing self-supervised training data aligned with the ICL format to utilize the original
corpora for warm-up in downstream tasks. They converted raw text into input-output pairs and
investigated four self-supervised objectives, such as masked token prediction and classification tasks.

ICL has also generated research attention in the field of computer vision (CV), where it has been
widely used in vision tasks by designing specialized discretization tokens as prompts [18, 48, 49, 50].
For instance, Chen et al. [48] proposed to use a unified interface to represent the output of each task
as a sequence of discrete tokens, the neural network can be trained for a variety of tasks using a single
model architecture and loss function, thus eliminating the need for customization for specific tasks.
Furthermore, given a shot prompt as a task description, the sequence output adapts to the prompt
to generate task-specific results. Differently, Amir et al. [96] proposes an innovative method for
in-context visual prompting by framing a wide range of vision tasks as grid in-painting problems.
This approach leverages image in-painting to generate visual prompts, guiding models to complete
various vision tasks by filling in missing parts of an image based on contextual information, thereby
enhancing adaptability and performance across different visual challenges.

Very recently, few studies applied ICL to graph learning and GNNs. As an initial attempt to use
ICL for GNNs, PRODIGY [51] leverages a prompt graph-based framework to conduct few-shot ICL
for node-level classification and edge-level prediction tasks. Further, UniLP [52] introduces ICL to
resolve conflicting connectivity patterns caused by distributional differences between different graphs.
Nevertheless, these methods require context samples in multiple classes for ICL during inference.

17

80-100% 60-80% 40-60% 20-40% 0-20%

high sk → low sk
 Percentile w.r.t. Smoothness

0

50
A

U
R

O
C

 (%
)

DOMINANT
CoLA
TAM

(a) CiteSeer

80-100% 60-80% 40-60% 20-40% 0-20%

high sk → low sk
 Percentile w.r.t. Smoothness

0

50

A
U

R
O

C
 (%

)

DOMINANT
CoLA
TAM

(b) PubMed

80-100% 60-80% 40-60% 20-40% 0-20%

high sk → low sk
 Percentile w.r.t. Smoothness

0

50

A
U

R
O

C
 (%

)

DOMINANT
CoLA
TAM

(c) BlogCatalog

80-100% 60-80% 40-60% 20-40% 0-20%

high sk → low sk
 Percentile w.r.t. Smoothness

0

50

A
U

R
O

C
 (%

)

DOMINANT
CoLA
TAM

(d) Flickr

80-100% 60-80% 40-60% 20-40% 0-20%

high sk → low sk
 Percentile w.r.t. Smoothness

0

50

A
U

R
O

C
 (%

)

DOMINANT
CoLA
TAM

(e) ACM

Figure 8: AUROC on data with 5 groups of features split by sk.

Then, how to leverage one-class context samples with ICL in the scenario of generalist GAD remains
an open question.

B Motivated Experiments for Smoothness-Based Feature Sorting

Experimental Setup. To verify whether smoothness can indicate the contribution of features
to GAD, we conducted motivated experiments. We consider three mainstream GAD methods:
DOMINANT [4], CoLA [15], and TAM [17]. For each method, we conduct the experiments with
hyper-parameters reported in the original article across all datasets. At the data pre-processing phase,
we first calculate sk based on the raw features and sort them in descending order. According to
the new order, we divide the features into 5 groups of feature subsets, denoted by the percentile of
80%-100%, 60%-80%, · · · , 0%-20%. Subsequently, the five feature subsets are sequentially used as
inputs for different methods, and the methods are trained to obtain their AUROC values. We statistic
the results of 5 random experiments for each method and reported the average AUROC.

Results. Additional experimental results are shown in Fig. 8. As we can witness in the figure, in
most cases, features with lower sk are observed to be more helpful in distinguishing anomalies on
most of the datasets. This consistent model-independent trend indicates the effectiveness of sk as an
indicator of the contribution of each feature in GAD.

C Discussion of Ego-Neighbor Residual Graph Encoder

In this section, we discuss the connections and differences between the ego-neighbor residual graph
encoder in ARC (R-ENC for short) and the existing GNNs and GAD methods.

R-ENC v.s. Radar [10]. Radar, one of the representative shallow GAD methods, also leverages a
residual-based mechanism for anomaly detection. Our proposed R-ENC differs from Radar in the
following key aspects:

• Radar calculates the residual on the original feature space, which inevitably suffers from
high complexity and less representative capability on high-dimensional graph data. In
contrast, R-ENC computes residuals based on the output embeddings of a GNN, which
enables more efficient processing and enhances the representative power of the model. This

18

approach allows R-ENC to better capture the underlying structure and anomalies within the
graph data.

• In Radar, the summation of residual R directly serves as the anomaly score for each node,
where the irrelevant information within several residual entries may hinder the model’s
accuracy and effectiveness. Differently, in ARC, we specifically use R-ENC to generate
the embedding of each node, and employ another learnable scoring module to calculate the
anomaly score based on these embeddings. In this case, our method can effectively filter out
noise and irrelevant features, allowing the scoring module to focus on the most informative
aspects of the node embeddings.

• Radar employs the Laplacian matrix to calculate the residual, meaning that only first-order
residual information is considered. In contrast, our R-ENC incorporates multi-hop residual
aggregation, enhancing its ability to detect subtle anomalies by considering both local and
global graph structures through high-order residuals.

R-ENC v.s. ResGCN [97]. ResGCN is a GNN-based GAD approach with a residual-based mech-
anism. Similar to Radar, ResGCN also uses the summation of residual R as the anomaly score.
However, the inclusion of irrelevant information within several residual entries can impair the model’s
accuracy and effectiveness. Moreover, ResGCN employs a two-branch design, with the node repre-
sentation by GCN and residual information by MLP calculated by two different network modules.
Compared to R-ENC with simpler designs, ResGCN has lower operational efficiency.

R-ENC v.s. CoLA [15]. CoLA learns the anomaly patterns by maximizing the agreement between
the embedding of each node and its neighboring nodes. Specifically, CoLA employs a bilinear
module to compute the agreement score. Such an agreement can also be modeled by the first-order
residual in R-ENC, which is computed by the difference between the ego embedding and the 1-hop
aggregated embeddings. Compared to CoLA, a significant advantage of R-ENC is its ability to
capture not only first-order residuals but also high-order residuals. This makes R-ENC a more robust
and comprehensive encoder for graph anomaly detection, addressing a wider range of anomaly
patterns across different datasets.

R-ENC v.s. TAM [17]. TAM utilizes local affinity, i.e., the feature-level or embedding-level similarity
between a node and its neighbors, as the indicator of each node’s abnormality. R-ENC, with its
residual operation, can also capture local affinity. Specifically, by computing the first-order residual
between an ego node and its 1-hop neighbors, the local affinity can be indicated by the negative
summation of the first-order residuals since they are highly correlated. Again, R-ENC can not only
capture the first-order affinity but also the high-order affinity with the multi-hop residual operator.

R-ENC v.s. Heterophily-aware GNNs [37]. Existing studies indicate that a key solution to handle
the GAD problem is to enable heterophily-aware graph convolutional operation with high-pass
filtering [37]. A feasible filter is graph Laplacian, whose normalized and self-loop added version
can be written by L = I− Ã. For R-ENC, its first-order residual can also be viewed as a Laplacian-
based graph convolution. Specifically, if we simplify the MLP-based feature transformation as a
weight matrix W, the ego information can be written by Z[0] = XW, while the representation
Z[1] = ÃXW. Then, the first-order residual can be written by:

R[1] = Z[1] − Z[0] = ÃXW −XW = −LXW. (7)

That is to say, the first-order residual in R-ENC can be regarded as Laplacian-based high-pass filtering
(note that the negative sign can be fused into the learnable weight W). Such a nice property enables
ARC to capture high-frequency graph signals and heterophily information through residual-based
embeddings, thereby enhancing its capability to detect anomalies in diverse and complex graph
structures.

D Discussion of Cross-Attentive In-Context Anomaly Scoring

D.1 Definitions of Single-Class and Multi-Class Normal

Dataset with single-class normal. In this type of dataset, the normal samples share the same pattern
or characteristics. For example, in a network traffic monitoring system dataset, normal behavior

19

might be defined by regular patterns of data packets exchanged between a specific set of IP addresses.
Any deviation from this single, well-defined pattern, such as an unexpected spike in data volume or
communication with unknown IP addresses, can be flagged as anomalous.

Dataset with multi-class normal. In this type of dataset, the normal samples are divided into
multiple classes, each with distinct patterns or characteristics. For example, in a corporate email
communication network dataset, normal data might be defined by regular patterns of email exchanges
within specific departments, such as HR, IT, and Finance. Any deviation from these well-defined
patterns, such as a sudden spike in emails between normally unconnected departments or an unusual
volume of emails from an individual employee to external addresses, can be detected as anomalous.

D.2 ARC as One-Class Classification model

In this subsection, we first introduce the basic definition of one-class classification (OC) model, and
then discuss the connection between one-class classification and cross-attentive in-context anomaly
scoring module (C-AS for short).

One-class classification. The core idea of OC model is to measure the abnormality of each sample
according to the distance between its representation h and a center representation c [22]. Here c
can be a fixed random representation vector or dynamically adjusted as the mean of all samples’
representation vectors. Formally, the anomaly score by OC model can be written by:

f(xi) = ∥ϕ (xi)− c∥2 = ∥hi − c∥2 , (8)

where ϕ(·) is a neural network model, as defined in Deep SVDD [22]. Intuitively, a normal sample
tends to have a similar representation to the majority of samples, and hence the distance between its
representation and c should be closer.

C-AS as an OC model. In C-AS, we use a cross-attention block to calculate the weighted sum
of context embeddings Hk into H̃qi for a query node qi. For an initialized model, we assume that
the parameters Wq and Wk are random enough, making Q and K become uniform noise matrices.

In this case, each entry in the attention matrix T = Softmax
(

QK⊤
√
de

)
can be 1

nk
, indicating that

the attention matrix assigns uniform weights to all context nodes for all query nodes. Then, all the
reconstructed query embeddings are equal to the average embedding of context nodes:

H̃q1 = · · · = H̃qnq
=

1

nk
1THk. (9)

Since the average context embedding is the center embedding of a group of few-shot normal samples,
we can naturally define the center embedding c = 1

nk
1THk. Recalling that we define the anomaly

score as the L2 distance between H̃qi and Hqi , then for all query nodes, the anomaly scoring can be
rewritten by:

f(vi) = d(Hqi, H̃qi) = d(Hqi, c) = ∥Hqi − c∥2 . (10)

That is to say, the C-AS module serves as an OC model under random initialization. Note that in
practice, the attention matrix cannot be so ideal, but it can still assign relevantly average weights for
the context embeddings. Such merit ensures that ARC can perform like an OC model, effectively
detecting anomalies in the case of single-class normal (Fig. 4 (a)) even without costly training.

C-AS goes beyond OC model. Thanks to its inherent mechanism, the OC model can effectively
handle single-class normal scenarios. However, in the case of multi-class normals (Fig. 4 (b)), a
single center is not sufficient to model multiple normal class centers. Unlike the OC model, C-AS can
address this issue through cross-attention. Specifically, the cross-attention block learns to reconstruct
a query embedding by assigning higher weights to several (but not all) context embeddings that are
close to the query node. This way, for a query node, the cross-attention block can automatically
learn the center of its corresponding normal class, rather than simply using the average context
embedding. The awareness of multiple normal classes ensures that ARC can handle both single-class
and multi-class normal cases.

20

Algorithm 1: Smoothness-based Feature Alignment
Input: Graph G.
Parameters :Projected dimension du.

1 Extract X, E , and V from G
2 X̃ ∈ Rn×du ← Calculate projected features by linear projection via Eq. (1)
3 for k = 1 : du do
4 sk ← Calculate feature-level smoothness of the k-th column of X̃ via Eq. (2)
5 end
6 X′ ← Rearrange the permutation of features of X̃ based on the descending order of s
7 Return G = (V, E ,X′)

Algorithm 2: The Training algorithm of ARC
Input: Training datasets Ttrain.
Parameters :Number of epoch E; Propagation iteration: L.

1 Initialize model parameters
2 for D(i) ∈ Ttrain do
3 Align features in G(i) via Algo. 1
4 end
5 for e = 1 : E do
6 for D(i) ∈ Ttrain do
7 Obtain X(i)′ , E(i),V(i),y(i) from D(i)

8 for l = 1 : L do
9 Z(i),[l] ← Propagate and transform X(i)′ = X(i),[0] via Eq. (3)

10 R(i),[l] ← Calculate residual of Z(i),[l] via Eq. (4)
11 end
12 H(i) ← Concatenate [R(i),[1]|| · · · ||R(i),[L]] via Eq. (4)
13 H

(i)
q , H(i)

k ← Randomly split query and context node sets and indexing from H(i)

14 H̃(i) ← Calculate cross attention from H
(i)
q , H(i)

k via Eq. (5)
15 Calculate loss L from H̃

(i)
q , y(i)q via Eq. (6)

16 Update model parameters via gradient descent.
17 end
18 end

E Algorithm and Complexity

E.1 Algorithmic description

The algorithmic description of the feature alignment in ARC, the training process of ARC, and
inference process of ARC are summarized in Algo. 1, Algo. 2, and Algo. 3, respectively.

E.2 Complexity Analysis

In the testing phase, the time complexity consists of two main components: feature alignment and
model inference. For feature alignment, the overall complexity is O(nddu + dum + dulog(du)),
where m = |E| is the number of edges. Here, the first term is used for feature projection, while the
second and third terms are used for smoothness computation and feature reordering, respectively.
The model inference is divided into two main parts: embedding generation and anomaly scoring. The
complexity of node embedding generation isO(L(mdu +nduh+nh2)), where the first term is used
for feature propagation and the rest of the terms are used for residual encoding by MLP. The anomaly
scoring, on the other hand, mainly involves cross-attention computation with time complexity of
O(nqnkh+ nqh), where nq is the number of query nodes and nk is the number of context nodes.

21

Algorithm 3: The Inference algorithm of ARC
Input: Test dataset D with few-shot normal nodes {vk1

, · · · , vknk
}.

Parameters :Well-trained model weight parameters.
1 Align features in G via Algo. 1
2 Obtain X′, E ,V from G
3 for l = 1 : L do
4 Z[l] ← Propagate and transform X(i)′ = X[0] via Eq. (3)
5 R[l] ← Calculate residual of Z[l] via Eq. (4)
6 end
7 H← Concatenate [R[1]|| · · · ||R[L]] via Eq. (4)
8 Hq , Hk ← Separate query and context node sets and indexing from H

9 H̃q ← Calculate cross attention from Hq , Hk via Eq. (5)
10 d← Computing the L2 distance between H̃q and Hq

11 Return d as the anomaly scores f(·) for query nodes

Table 3: The statistics of datasets.
Dataset Train Test #Nodes #Edges #Features Avg. Degree #Anomaly %Anomaly

Citation network with injected anomalies
Cora - ✓ 2,708 5,429 1,433 3.90 150 5.53
CiteSeer - ✓ 3,327 4,732 3,703 2.77 150 4.50
ACM - ✓ 16,484 71,980 8,337 8.73 597 3.62
PubMed ✓ - 19,717 44,338 500 4.50 600 3.04

Social network with injected anomalies
BlogCatalog - ✓ 5,196 171,743 8,189 66.11 300 5.77
Flickr ✓ - 7,575 239,738 12,047 63.30 450 5.94

Social network with real anomalies
Facebook - ✓ 1,081 55,104 576 50.97 25 2.31
Weibo - ✓ 8,405 407,963 400 48.53 868 10.30
Reddit - ✓ 10,984 168,016 64 15.30 366 3.33
Questions ✓ - 48,921 153,540 301 3.13 1,460 2.98

Co-review network with real anomalies
Amazon - ✓ 10,244 175,608 25 17.18 693 6.76
YelpChi ✓ - 23,831 49,315 32 2.07 1,217 5.10

F Details of Experimental Setup

F.1 Description of Datasets

In total, we considered 12 benchmark datasets. We divide the datasets into 4 groups: ❶ citation
network with injected anomalies, ❷ social network with injected anomalies, ❸ social network with
real anomalies, and ❹ co-review network with real anomalies. Within each type, we consider the
largest dataset as one of the training datasets, and the rest datasets as the testing datasets. The detailed
statistics of the datasets are shown in Table 3. These datasets are selected from different domains and
with injected or real anomalies to ensure that our proposed ARC model learns extensive anomaly
patterns. The diversity of the above data can maximally ensure that ARC can effectively adapt to new
and unseen graphs. Specifically, the detailed descriptions for the datasets are given as follows:

• Cora, CiteSeer, PubMed [98], and ACM [99] are four citation networks. In these datasets,
nodes represent scientific publications, while edges denote the citation links between them.
Each publication is characterized by a bag-of-words representation for its node attribute
vector, with the dimensionality determined by the size of the respective dictionary.

• BlogCatalog and Flickr [4, 100] stand as typical social blog directories, facilitating user
connections through following relationships. Each user is depicted as a node, with inter-node
links symbolizing mutual following. Node attributes encompass the personalized textual
content generated by users within social network, such as blog posts or shared photos with
tag descriptions.

22

• Amazon and YelpChi [101, 102] are datasets about the relationship between users and
reviews. Amazon is designed to identify users paid to write fake reviews for products, and
three different graph datasets are derived from Amazon using different types of relations
to construct adjacency matrix [17, 103]. YelpChi aims to identify anomalous reviews on
Yelp.com that unfairly promote or demote products or businesses. Based on [101, 104],
three different graph datasets derived from Yelp using different connections in user, product
review text, and time. In this work, we focus on Amazon-UPU (users who have reviewed at
least one of the same product) and YelpChi-RUR (reviews posted by the same user).

• Facebook [105] is a social network in which users can build relationships with others and
share their friends.

• Reddit [106] serves as a forum posts network sourced from the social media platform
Reddit, where users labeled as banned are identified as anomalies. Textual content from
posts is transformed into vectors to serve as node attributes.

• Weibo [106] dataset encompasses a graph of users and their associated hashtags from the
Tencent Weibo platform. Within a defined temporal window (e.g., 60 seconds), consecutive
posts by a user are labeled as potentially suspicious behavior. Users engaging in a minimum
of five such instances are classified as “suspicious”. The raw feature vector includes the
location of a micro-blog post and bag-of-words features.

• Questions [107] dataset originates from Yandex Q, a platform dedicated to question-
answering. Users represent the nodes, while the connections between them signify the
presence or absence of a question-and-answer interaction within a one-year timeframe. The
node features are derived from the average of the FastText embeddings of the words in the
user description, with an additional binary feature indicating users without description.

Anomaly Injection. For the datasets with injected anomalies, we use the strategy introduced in
[4, 15] to inject anomalous nodes. Specifically, we inject a set of anomaly combinations for each
dataset by perturbing the topology and node attributes, respectively [108]. In terms of structural
perturbation, this is done by generating small cliques of otherwise unrelated nodes as anomalies. The
intuition for this strategy is that small cliques in the real world are a typical substructure of anomalies,
with much more closely linked within the cliques than the mean [109]. Thus for a dataset, we can
specify the size of the cliques (i.e., the number of nodes) p and its amount q for anomaly generation.
Specifically, randomly sample p nodes from the graph making them fully connected and labeled as
anomaly nodes. We iteratively repeat the above process q times to inject a total of p× q anomalies.
Finally, we control the number of injected anomalies according to the size of the dataset. In particular,
we fix p = 15 and q = 10, 15, 20, 5, 5, 20 on BlogCatalog, Flickr, ACM, Cora, Citeseer, and Pubmed,
respectively. On the other hand, for attribute perturbations, we base the schema introduced by [110].
Specifically, for each perturbation target node vi, k nodes are randomly sampled in the graph and
their distance from the target node is computed. Then, the node vj with the largest deviation from the
target node vi is selected, and the attribute Xi of the node vi to Xj . We set the number of anomalies
of the attribute perturbation to p× q to maintain the balance of different anomalies. In addition, we
set k = 50 to ensure that the perturbation magnitude is large enough.

F.2 Description of Baselines

In our evaluation, we provide a comprehensive comparsion of ARC with various supervised and
unsupervised GAD methods. On the supervised side, two classic GNNs are included as well as 3
state-of-the-art (SOTA) models specifically tailored for the GAD task. For supervised models, it is
assumed that the labels of both normal and abnormal nodes can be used for model training. Therefore,
the main binary classification task is used to identify the anomalies:

• GCN [61], as a seminal model in the field of GNN, is known for its ability to process
graph-structured data using neighborhood aggregation, facilitating efficient node feature
extraction and representation learning.

• GAT [62] incorporates the attention mechanism into the GNN framework to achieve dynamic
weighting of node contributions. It optimizes its attention according to different downstream
tasks to achieve high-quality node representations.

• BGNN [67] is a GNN that combines gradient boost decision trees (GBDT) with GNN for
graphs with tabular node features. It utilizes the GBDT to handle heterogeneous features

23

Table 4: Anomaly detection performance in terms of AUPRC (in percent, mean±std). Highlighted
are the results ranked first, second, and third. “Rank” indicates the average ranking over 8 datasets.

Method Cora CiteSeer ACM BlogCatalog Facebook Weibo Reddit Amazon Rank

Supervised - Pre-Train Only
GCN 7.41±1.55 6.40±1.40 5.27±1.12 7.44±1.07 1.59±0.11 67.21±15.20 3.39±0.39 6.96±2.04 9.6
GAT 6.49±0.84 5.58±0.62 4.70±0.75 12.81±2.08 3.14±0.37 33.34±9.80 3.73±0.54 15.74±17.85 7.3
BGNN 4.90±1.27 3.91±1.01 3.48±1.33 5.73±1.47 3.81±2.12 30.26±29.98 3.52±0.50 7.51±0.58 10.5
BWGNN 7.25±0.80 6.35±0.73 7.14±0.20 8.99±1.12 2.54±0.63 12.13±0.71 3.69±0.81 13.12±11.82 8.6
GHRN 9.56±2.40 7.79±2.01 5.61±0.71 10.94±2.56 2.41±0.62 28.53±7.38 3.24±0.33 7.54±2.01 8.4

Unsupervised - Pre-Train Only
DOMINANT 12.75±0.71 13.85±2.34 15.59±2.69 35.22±0.87 2.95±0.06 81.47±0.22 3.49±0.44 6.11±0.29 6.1
CoLA 11.41±3.51 8.33±3.73 7.31±1.45 6.04±0.56 1.90±0.68 7.59±3.26 3.71±0.67 11.06±4.45 9.0
HCM-A 5.78±0.76 4.18±0.75 4.01±0.61 6.89±0.34 2.08±0.60 21.91±11.78 3.18±0.23 5.87±0.07 12.1
TAM 11.18±0.75 11.55±0.44 23.20±2.36 10.57±1.17 8.40±0.97 16.46±0.09 3.94±0.13 10.75±3.10 5.8

Unsupervised - Pre-Train & Fine-Tune
DOMINANT 21.35±0.74 23.02±1.55 22.74±0.95 35.79±0.63 3.56±0.15 77.69±1.43 3.84±0.74 7.48±0.46 4.0
CoLA 13.91±5.56 19.51±3.73 8.48±0.51 10.43±1.22 15.19±11.04 8.03±1.19 4.07±0.13 7.27±1.13 5.8
HCM-A 6.41±1.33 4.76±0.51 4.41±0.63 6.62±0.14 2.23±0.76 27.20±5.53 3.10±0.19 5.64±0.09 11.9
TAM 13.62±0.53 18.66±1.41 58.04±8.17 13.90±0.53 11.11±3.20 16.47±0.08 3.93±0.09 11.56±1.80 4.1

Ours
ARC 49.33±1.64 45.77±1.25 40.62±0.10 36.06±0.18 8.38±2.39 64.18±0.55 4.48±0.28 44.25±7.41 1.9

while the GNN considers the graph structure and significantly improves performance on a
variety of graphs with tabular features.

• BWGNN [6] has spectral and spatial localized band-pass filters to better handle the “right-
shift” phenomenon in anomalies, i.e., the distribution of spectral energy is concentrated at
high frequencies rather than at low frequencies.

• GHRN [37] is a heterophily-aware supervised GAD method based on graph spectra. By
emphasizing the high-frequency components of the graph, the method can effectively cut
down inter-class edges, thus improving the overall performance of anomaly detection.

For the unsupervised alternative, we consider 4 representative SOTA GAD methods, each of them
belonging to a sub-type: data reconstruction, contrastive learning, hop-based auxiliary goal, or
affinity-based auxiliary goal:

• DOMINANT [4] combines GCN and deep auto-encoder, and its learning objective is to
reconstruct the adjacency matrix and node features jointly. It aims to identify structural and
attribute anomalies based on reconstruction errors.

• CoLA [15] is a contrastive self-supervised learning for anomaly detection on graphs with
node attributes. The framework captures the relationship between each node and its neigh-
borhood substructure in an unsupervised manner by sampling novel pairs of contrasting
instances and leveraging the local information of the graph.

• HCM-A [16] uses hop-count prediction as a self-supervised task to better identify anomalies
by modeling both local and global context information. In addition, HCM-A designs two new
anomaly scores and introduces Bayesian learning to train the model to capture anomalies.

• TAM [17] is designed based on one-class homophily and local affinity. The learning target
of TAM is to optimize the proposed anomaly metric (i.e. affinity) end-to-end on the truncated
adjacency matrix.

F.3 Details of Implementation

Hyper-parameters. We select some key hyper-parameters of ARC through random search within
specified grids. Specifically, the random search was performed within the following search space:

• Hidden layer dimension: {64, 128, 256, 512, 1024}

• Number of MLP layers: {1, 2, 3, 4}

• Propagation iteration: {1, 2, 3, 4, 5}

• Dropout rate: {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}

• Learning rate: floats between 10−5 and 10−2

24

Table 5: Performance of ARC and its variants in terms of AUROC.
Variant Cora CiteSeer ACM BlogCatalog Facebook Weibo Reddit Amazon

ARC w/o A 80.65±0.71 83.35±0.64 79.29±0.16 73.86±0.18 62.80±2.06 89.69±0.17 54.60±1.92 64.76±2.13

ARC w/o R 37.44±1.40 31.52±0.71 61.83±1.16 49.30±2.06 20.38±9.63 97.72±0.59 52.94±0.96 50.15±0.24

ARC w/o C 47.39±0.42 53.98±0.72 54.24±1.32 60.46±1.23 48.86±0.97 42.84±3.01 51.03±0.86 69.02±0.97

ARC 87.45±0.74 90.95±0.59 79.88±0.28 74.76±0.06 67.56±1.60 88.85±0.14 60.04±0.69 80.67±1.81

• Weight decay: floats between 10−6 and 10−3

Implementation Pipeline. We employ a fixed set of hyper-parameters to build a generalist GAD
model for all datasets. First, we train all the methods (including baselines and ARC) on the training
set Ttrain with full labels. Then, the methods are evaluated on each dataset from Ttest respectively.
For feature projection, we employ the PCA algorithm to map the raw features into a fixed space with
du = 64. When the original feature dimension is smaller than the predefined projection dimension
du, we use a random projection (e.g., Gaussian random projection) to upscale the feature into a higher
dimensionality and then unify the dimensions into du with the projection strategy. For the baselines
that require fine-tuning, we further conduct dataset-specific tuning at this stage.

Metrics. Following [7, 17, 68], we employ two popular and complementary evaluation metrics for
evaluation, including area under the receiver operating characteristic Curve (AUROC) and area under
the precision-recall curve (AUPRC). A higher AUROC/AUPRC value indicates better performance.
We report the average AUROC/AUPRC with standard deviations across 5 trials.

Computing Infrastructures. We implemented the proposed ARC using PyTorch 2.1.2, PyTorch
Geometric (PyG) 2.3.1, and DGL 0.9.0. All experiments were performed on a Linux server with an
Inter Xeon microprocessor E-2288G CPU and a Quadro RTX 6000 GPU.

G Supplemental Experiments

G.1 Performance Comparison in Terms of AUPRC

In terms of AUPRC, Table 4 gives comprehensive comparative results with consistent observations
with the AUROC results. Specifically, we have the following observations. ❶ ARC still demonstrates
strong anomaly detection in generalist GAD scenarios without any fine-tuning. Specifically, ARC
achieves state-of-the-art performance on five of the eight datasets and demonstrates competitive
performance on the remaining datasets. On several datasets, ARC showed significant improvement
over the best baseline (e.g., ↑ 131.1% on Cora, ↑ 98.8% on Citeseer). ❷ GAD methods that only
pre-train specific to a dataset usually result in poor generalization to new datasets. Specifically,
existing methods perform very erratically on different datasets, which can be attributed to capturing
only specific anomaly patterns. ❸ Using dataset-specific fine-tuning, baseline methods can achieve
better performance in most case. However, in some cases the improvement can be small or even
negative, demonstrating the limitations of fine-tuning.

G.2 Effectiveness of Context Sample Number

For all test sets, we varied nk in the range of 2 to 100 and the results are shown in Fig. 5 and
Fig. 9. From the figure, we observe that in most cases the performance of ARC increases with the
involvement of more context nodes, which indicates its ability to utilize these labeled normal nodes
for context learning. Moreover, even if nk is very small, ARC can still perform well on most datasets.

G.3 Detailed Results of Ablation Study

To assess the effectiveness of the key design in the ARC, we conducted an ablation study with
three variants of the ARC, 1) w/o A: using random projection to replace smoothness-based feature
alignment; 2) w/o R: using GCN to replace ego-neighbor residual graph encoder; and 3) w/o C: using
binary classification-based predictor and loss to replace cross-attentive in-context anomaly scoring.
As can be seen from Table 5 and Table 6, the two metrics AUROC and AUPRC of ARC achieved the
best in all datasets except Weibo dataset. A possible explanation is that the Weibo dataset exhibits a

25

2 4 6 8 10 15 20 30 40 50 100

Number of Context Nodes nk

89

90

91

A
U

R
O

C
 (%

)

42.5

45.0

47.5

A
U

PR
C

 (%
)

AUROC
AUPRC

(a) CiteSeer

2 4 6 8 10 15 20 30 40 50 100

Number of Context Nodes nk

79.0

79.5

80.0

A
U

R
O

C
 (%

)

40.6

40.7

40.8

A
U

PR
C

 (%
)

AUROC
AUPRC

(b) ACM

2 4 6 8 10 15 20 30 40 50 100

Number of Context Nodes nk

74.6

74.8

75.0

A
U

R
O

C
 (%

)

36.00

36.25

36.50 A
U

PR
C

 (%
)

AUROC
AUPRC

(c) BlogCatalog

2 4 6 8 10 15 20 30 40 50 100

Number of Context Nodes nk

88.5

89.0

A
U

R
O

C
 (%

)

62

64

66

A
U

PR
C

 (%
)

AUROC
AUPRC

(d) Weibo

2 4 6 8 10 15 20 30 40 50 100

Number of Context Nodes nk

58

60

A
U

R
O

C
 (%

)
4.2

4.4

4.6 A
U

PR
C

 (%
)

AUROC
AUPRC

(e) Reddit

2 4 6 8 10 15 20 30 40 50 100

Number of Context Nodes nk

75

80

A
U

R
O

C
 (%

)

30

40

50

A
U

PR
C

 (%
)

AUROC
AUPRC

(f) Amazon

Figure 9: Performance with varying nk on the rest of six datasets.

Table 6: Performance of ARC and its variants in terms of AUPRC.
Variant Cora CiteSeer ACM BlogCatalog Facebook Weibo Reddit Amazon

ARC w/o A 28.51±1.72 29.69±0.68 29.13±0.41 34.23±0.47 4.15±0.33 67.36±0.46 3.62±0.16 10.33±1.61

ARC w/o R 6.98±0.13 8.09±0.30 4.95±0.12 6.32±0.44 1.50±0.21 92.07±1.01 3.59±0.07 6.92±0.19

ARC w/o C 8.21±0.42 8.93±0.67 16.86±0.91 26.87±0.73 4.95±1.50 12.21±1.18 3.74±0.10 13.09±1.31

ARC 49.33±1.64 45.77±1.25 40.62±0.10 36.06±0.18 8.38±2.39 64.18±0.55 4.48±0.28 44.25±7.41

particular pattern of anomalies. In addition, all three key designs provide significant improvements in
performance.

G.4 Visualization

The attention weights between context nodes and query nodes in other datasets are shown in Fig. 10.
As can be seen in Fig. 10, for most of the datasets, the “single-class normal” case in Fig. 4 (a) is
met: ARC tends to assign a uniform attention weight to normal nodes. This results in reconstructed
embedding that are very similar to the average embedding of context nodes; in contrast, reconstructing
anomalies using a combination of a few context nodes results in their embedding being farther from
the center. Moreover, corresponding to the “multi-class normal” case in Fig. 4 (b): in Fig. 10 (f),
it is observed that each normal query nodes that follow two fixed patterns. In summary, the cross-
attention module enables ARC to adapt to various normal/abnormal distribution patterns, conferring
it generality.

26

Context Nodes

N
or

m
al

A
no

m
al

y
Q

ue
ry

 N
od

es

(a) CiteSeer

Context Nodes

N
or

m
al

A
no

m
al

y
Q

ue
ry

 N
od

es

(b) ACM

Context Nodes

N
or

m
al

A
no

m
al

y
Q

ue
ry

 N
od

es

(c) BlogCatalog

Context Nodes

N
or

m
al

A
no

m
al

y
Q

ue
ry

 N
od

es

(d) Facebook

Context Nodes

N
or

m
al

A
no

m
al

y
Q

ue
ry

 N
od

es

(e) Weibo

Context Nodes

N
or

m
al

A
no

m
al

y
Q

ue
ry

 N
od

es

(f) Reddit

Figure 10: Attention visualization results for more datasets.

27

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately match the
experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this paper have been discussed in Section 6 “Conclusion”.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

28

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We display the experimental instruction in the paper, provide the hyper-
parameter search space, and upload the source code for reproduction of the proposed
method.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

29

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, all the datasets are included along with the uploaded source code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the experimental details are given in Section 5 and Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All the experimental results are acquired by multiple trails of experiments, and
we report the average and standard deviation results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, we provide the computing infrastructures in Appendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This research conforms with the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

31

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

32

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

33

	Introduction
	Related Work
	Problem Statement
	ARC: A generalist GAD approach
	Smoothness-Based Feature Alignment
	Ego-Neighbor Residual Graph Encoder
	Cross-Attentive In-Context Anomaly Scoring

	Experiments
	Experimental Setup
	Experimental Results

	Conclusion
	Detailing Related Work
	Motivated Experiments for Smoothness-Based Feature Sorting
	Discussion of Ego-Neighbor Residual Graph Encoder
	Discussion of Cross-Attentive In-Context Anomaly Scoring
	Definitions of Single-Class and Multi-Class Normal
	ARC as One-Class Classification model

	Algorithm and Complexity
	Algorithmic description
	Complexity Analysis

	Details of Experimental Setup
	Description of Datasets
	Description of Baselines
	Details of Implementation

	Supplemental Experiments
	Performance Comparison in Terms of AUPRC
	Effectiveness of Context Sample Number
	Detailed Results of Ablation Study
	Visualization

