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ABSTRACT

Videos can span several minutes or even hours in real scenarios, yet current research
on spatio-temporal video grounding (STVG), given a textual query, mainly focuses
on localizing target from a video of tens of seconds, typically less than one minute,
limiting its applications. In this paper, we explore Long-Form STVG (LF-STVG),
that aims to locate the target in long-term videos. In LF-STVG, long-term videos
encompass a much longer temporal span and more irrelevant information, making
it challenging for current short-form STVG models that process all frames at once.
Addressing these, we introduce a novel AutoRegressive Transformer framework
for LF-STVG (ART-STVG). Unlike current STVG methods requiring seeing the
entire sequence to make a full prediction at once, our ART-STVG treats the video
as a streaming input and processes its frames sequentially, making it capable of
easily handling the long videos. To capture spatio-temporal context in ART-STVG,
spatial and temporal memory banks are developed and applied to decoders of ART-
STVG. Considering that memories at different moments are not always relevant
for localizing the target in current frame, we propose simple yet effective memory
selective strategies that enable more relevant information for the decoders, greatly
improving performance. Moreover, rather than parallelizing spatial and temporal
localization as done in existing approaches, we introduce a novel cascaded spatio-
temporal design that connects spatial decoder to temporal decoder during grounding.
This way, our ART-STVG leverages more fine-grained target information to assist
with complicated temporal localization in complex long videos, further boosting the
performance. On the newly extended datasets for LF-STVG, ART-STVG largely
outperforms current state-of-the-art approaches, while showing competitive results
on conventional Short-Form STVG. Our code and models will be released.

1 INTRODUCTION

Spatio-temporal video grounding (STVG) aims at localizing the target of interest in space and time
from an untrimmed video given a free-form textual query (Zhang et al., 2020b). As a multimodal
task, it needs to accurately comprehend spatio-temporal content of a video and make connections to
the provided textual query for target localization. Owing to its important role in multimodal video
understanding, STVG has recently attracted extensive attention (Zhang et al., 2020b; Jin et al., 2022a;
Su et al., 2021b; Tang et al., 2021; Yang et al., 2022; Zhang et al., 2020a; Lin et al., 2023b; Gu et al.,
2024; Wasim et al., 2024; Gu et al., 2025).

Despite advancements, existing research mainly focuses on locating the desired target from a short-
term video of tens of seconds, typically less than one minute. For instance, the average video length
of existing popular datasets HCSTVG-v1/-v2 (Tang et al., 2021) and VidSTG (Zhang et al., 2020b)
is 20 and 35 seconds, respectively. Nonetheless, in real-world applications, such as video retrieval
and visual surveillance, the videos can span several minutes or even hours, which results in a large
gap between current research (focusing on target localization from short-term videos) and practical
applications (the need of target localization in long-term videos). To mitigate this gap, we explore
Long-Form STVG (LF-STVG), which locates the target of interest in long-term videos given a query.

To localize desired target, current STVG methods (Wasim et al., 2024; Jin et al., 2022a; Lin et al.,
2023b; Yang et al., 2022; Gu et al., 2024; 2025) process all the video frames in one time (see Fig. 1
(a)), aiming at capturing and leveraging global context from the entire video for localization. These
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(a) Existing STVG methods: processing all frames in one time (b) Our proposed ART-STVG: processing one frame at a time

Existing STVG Approaches

Figure 1: Comparison between existing STVG approaches (Yang et al., 2022; Gu et al., 2024; Jin
et al., 2022a; Lin et al., 2023b; Wasim et al., 2024; Gu et al., 2025) that see the entire video sequence
to make a full prediction at once in (a) and our ART-STVG that ingests frames one at a time and
hence is suitable for LF-STVG in (b). Best viewed in color for all figures.
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Figure 2: Comparison of current STVG meth-
ods and our ART-STVG on different LF-
STVG benchmarks. We can see that, ART-
STVG significantly surpasses existing models
for target localization in long videos. Further-
more, we observe that, the longer the video
is, the more significant the improvement of
ART-STVG over other methods is.

approaches have achieved impressive results on Short-
Form STVG (SF-STVG). Nonetheless, as the videos
grow longer, new challenges arise, leading us to a crit-
ical question: Is this way of processing all frames
in one time for current SF-STVG applicable to LF-
STVG? Our answer is negative! In LF-STVG, videos
often encompass longer temporal span, which largely
increases the complexities of spatio-temporal local-
ization. In addition, long videos commonly contain
far more irrelevant information, requiring the model
to identify the target event from extensive redundant
content. For these reasons, processing all frames of a
long video at once, as done in current STVG methods,
presents significant challenges in capturing long-term
spatio-temporal relationships and handling excessive
irrelevant information for accurate localization (see
Fig. 2). Additionally, it causes computational bottle-
necks because of high GPU memory requirements for
simultaneous feature learning and target localization
in all video frames.

Addressing the aforementioned challenges, we pro-
pose a novel AutoRegressive Transformer method
for LF-STVG, dubbed ART-STVG. Specifically, it
treats the video as a streaming input and processes its
frames sequentially (see Fig. 1 (b)). To capture the
crucial spatio-temporal contextual information in videos, we maintain two memory banks, that reserve
essential spatio-temporal information from videos, for spatial and temporal decoders in ART-STVG.
Since the memories in the bank are not equally important to a certain frame, we introduce simple
yet effective memory selective strategies to leverage more relevant information in memory banks for
grounding, effectively boosting performance. Compared to existing approaches which require seeing
the entire video for prediction, our proposed ART-STVG ingests frames one at a time for prediction,
hence naturally processing longer videos and resolving the computational bottleneck faced by current
approaches. Furthermore, rather than parallelizing the spatial and temporal localization as is done
in existing approaches, we propose a novel cascaded spatio-temporal design which connects spatial
decoder to temporal decoder during grounding. By doing so, ART-STVG is able to enjoy more
fine-grained target information from the spatial decoder to assist with the more complicated temporal
localization, further boosting performance. Fig. 3 shows the architecture of ART-STVG. To our best
knowledge, this paper is the first to explore the LF-STVG problem, and our ART-STVG is the first
framework attempting to handle LF-STVG.

To verify the effectiveness of our ART-STVG, we extend validation set of the short-term benchmark
HCSTVG-v2 (Tang et al., 2021) (the reason for choosing HCSTVG-v2 for extension is described
later). Specifically, we extend its average video length from 20 seconds to 1∼5 minutes, hence referred
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to as LF-STVG-1min/2min/3min/4min/5min. We conduct extensive experiments on both long-form
and short-form STVG. The results show that, ART-STVG outperforms all existing approaches on
LF-STVG by achieving new state-of-the-arts, while showing competitive performance on SF-STVG.

In summary, our contributions are as follows: ♠ We introduce a novel memory-augmented autore-
gressive transformer, dubbed ART-STVG, for LF-STVG; ♥ We design memory selection strategies
that allow the selection of relevant crucial spatio-temporal context for enhancing target localization;
♣ We propose a cascaded spatio-temporal decoder design to fully utilize the fine-grained information
produced by spatial localization to assist temporal localization; ♦ In our extensive experiments on
both long-term and short-term benchmarks, our ART-STVG achieves excellent performance.

2 RELATED WORK

Spatio-temporal video grounding (STVG) aims to localize a spatial-temporal tube in an untrimmed
video that corresponds to the given text query. Early methods (Tan et al., 2021; Yu et al., 2021; Wang
et al., 2022; Zhang et al., 2020b; Su et al., 2021a) are predominantly two-stage approaches. These
approaches first adopt a pre-trained object detector (Ren et al., 2015) to generate object proposals,
and then select the proposals based on the given textual query. Such methods are easily limited by the
pre-trained object detector. Recent approaches (Jin et al., 2022a; Lin et al., 2023b; Talal Wasim et al.,
2024; Gu et al., 2024; 2025), inspired by DETR (Carion et al., 2020), propose one-stage frameworks
that directly generate tubes for target localization, displaying better performance than the two-stage
models. Nevertheless, both the early two-stage and recent one-stage approaches focus on SF-STVG
and process the entire video at one time for simultaneous target localization in all frames. Different
from existing methods, our ART-STVG is specially designed for LF-STVG. Specifically, ART-STVG
treats the video as a streaming input and processes its frames sequentially with an autoregressive
framework, thus making it more suitable for handling long-term video sequences.

Long-term video understanding has been explored in many tasks such as action detection (Cheng
& Bertasius, 2022), video captioning (Islam et al., 2024), and video question answering (Song et al.,
2024; Cheng et al., 2024; He et al., 2024). Its main challenge is that capturing complex spatio-
temporal dependencies over long durations requires high computational cost. To address this, early
methods (Donahue et al., 2015; Wu & Krahenbuhl, 2021) model pre-extracted video features without
jointly training the backbone. Recent works (Bai et al., 2023; Zhang et al., 2024) design efficient
strategies to process more frames simultaneously, while others (Wu et al., 2022; He et al., 2024; Qian
et al., 2025; Wang et al., 2024) construct streamlined transformers with memory banks for video
understanding. Different from these works, we focus on long-term STVG. Besides, unlike memory
banks in video question answering (Song et al., 2024; He et al., 2024) for global context learning, the
memory in ART-STVG aims to capture text-guided spatial instance and temporal event boundary
cues, which, together with our memory selection, are specially designed for LF-STVG.

Autoregressive architecture has been studied and applied in various domains. Early autoregressive
models are mainly based on recurrent neural networks (Medsker et al., 2001; Graves & Graves, 2012;
Hochreiter & Schmidhuber, 1997). Recently, autoregressive transformer models (Vaswani et al.,
2017; Katharopoulos et al., 2020; Touvron et al., 2023; Liu et al., 2024; Ren et al., 2024; Lin et al.,
2023a) with attention mechanism have further advanced the field by enabling serial computation and
capturing long-range dependencies. Different from these methods, we introduce an autoregressive
transformer framework specially designed for LF-STVG.

3 THE PROPOSED APPROACH

Overview. We propose ART-STVG, a memory-augmented autoregressive transformer for LF-STVG.
As shown in Fig. 3, the framework begins with a multimodal encoder (Sec. 3.1) that extracts and
fuses visual and textual features. Following this, the cascaded spatio-temporal decoder performs
autoregressive decoding for grounding (Sec. 3.2). Specifically, the memory-augmented spatial decoder
(Sec. 3.3) captures the spatial location information of the target, while the memory-augmented
temporal decoder (Sec. 3.4) focuses on learning the temporal location information.

Since ART-STVG processes frames sequentially, in the following description of our approach, we
take the processing of the ith frame as an example for illustrating ART-STVG.
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Figure 3: Architecture of our proposed ART-STVG, which comprises a multimodal encoder and an
autoregressive decoder for target localization frame by frame.

3.1 MULTIMODAL ENCODER

Given video frame i and the text, the multimodal encoder generates a multimodal feature, which is
sent to the decoder for localization. It comprises feature extraction and fusion, as described below.

Feature Extraction. For the ith video frame, we extract its 2D appearance and 3D motion features
to leverage rich static and dynamic cues. Specifically, the appearance feature is extracted using
ResNet-101 (He et al., 2016), and the motion feature is extracted via VidSwin (Liu et al., 2022).
Please note, when applying VidSwin to extract motion features, previous frames are also used as input.
The appearance feature of frame i is denoted as fa

i ∈ RH×W×Ca , where H , W , and Ca are height,
width, and channel dimensions. Similarly, the motion feature is represented as fm

i ∈ RH×W×Cm

with Cm the channel dimension. For the text, we first tokenize it to a word sequence, and then apply
RoBERTa (Liu et al., 2019) to extract its feature f t ∈ RNt×Ct , where Nt is the text feature length
and Ct the channel dimension.

Feature Fusion. Different modalities typically contain complementary information. Therefore, we
fuse the appearance feature fa

i and motion feature fm
i of the ith video frame with the textual feature

f t to generate a multimodal feature of the ith frame. Specifically, we first project them to the same
channel dimension C, and then concatenate them to produce the multimodal feature f

′

i , as follows,

f
′
i = [fa

i1 , f
a
i2 , ..., f

a
iH×W︸ ︷︷ ︸

appearance feature fa
i

, fm
i1 , f

m
i2 , ..., f

m
iH×W︸ ︷︷ ︸

motion feature fm
i

, f t
1, f

t
2, ..., f

t
Nt︸ ︷︷ ︸

textual feature ft

] (1)

Then, we adopt a self-attention encoder (Vaswani et al., 2017) to fuse multimodal features as follows,

f̃i = SelfAttEncoder(f
′

i + Epos + Etyp) (2)

where Epos and Etyp denote position and type embeddings, and SelfAttEncoder(·) is the self-
attention encoder with N (N=6) standard self-attention encoder blocks as in (Gu et al., 2024).

After obtaining f̃i, we deconcatenate it to generate enhanced appearance, motion, and textual features
f̃a
i , f̃m

i , and f̃ t
i via [f̃a

i , f̃
m
i , f̃ t

i ] = DeConcat(f̃i) and apply them in decoder for target localization.

3.2 AUTOREGRESSIVE DECODING FOR GROUNDING

Our ART-STVG autoregressively decodes video frames to sequentially predict spatial and temporal
target positions. As shown in Fig. 3, the decoding process of ART-STVG contains two parts, including
spatial grounding and temporal grounding via two decoders. The former is responsible for predicting
the spatial location of the target object, while the latter generates the temporal location of the target
event. To capture spatio-temporal context in ART-STVG, spatial and temporal memory banks storing
historical information, with effective memory selection, are developed and applied in the grounding
process, largely enhancing performance. Besides, rather than paralleling the spatial and temporal
grounding as done in current methods, we propose a novel cascaded design to connect spatial and
temporal grounding in ART-STVG (see decoding part in Fig. 3). Such cascaded spatio-temporal
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design allows ART-STVG to employ more fine-grained target cues from spatial grounding to assist
with temporal localization in complex long videos, further improving ART-STVG for LF-STVG.

Spatial Grounding. In ART-STVG, the spatial grounding is achieved by learning a spatial query via
iterative interaction with the multimodal feature. Let q0i be the initial spatial query in the ith frame
and Bs

i is the spatial memory bank at this moment. Given appearance feature f̃a
i and textual feature

f̃ t
i from f̃i in frame i, the interaction of spatial query with multimodal feature is achieved as follows,

qKi ,Bs
i+1 = MA-SpatialDecoder(q0i ,Bs

i , [f̃
a
i , f̃

t
i ]) (3)

where MA-SpatialDecoder(·) is the memory-augmented spatial decoder with K spatial decoder
blocks (described in Sec. 3.3). It is worth noting that, the spatial memory bank Bs

i contains K (i.e.,
the number of decoder blocks) partitions, with each partition corresponding to a spatial decoder block.
qKi represents the final spatial query feature after K decoder blocks, and Bs

i+1 the new memory bank
updated with spatial information from frame i (see Sec. 3.3). After this, a spatial head, containing an
MLP module, is used to predict the final object box bi, as follows,

bi = SpatialHead(qKi ) (4)

where bi ∈ R4 is the central position, width, and height of the predicted target box in the ith frame.

Temporal Grounding. For temporal grounding, we learn a temporal query by interacting with the
multimodal feature. To exploit the fine-grained spatial target cue to assist with temporal grounding,
we design a cascade architecture. Specifically, with target box bi from spatial grounding, we first
extract fine-grained target motion feature f̄m

i ∈ R1×1×C using RoI pooling (Ren et al., 2015) via

f̄m
i = RoI(f̃m

i , bi) (5)

Compared to f̃m
i , f̄m

i is focused more on the target region and thus beneficial for localization.

After this, we interact the temporal query with multimodal feature. Let p0i be the initial temporal
query in frame i and Bt

i the temporal memory bank at this moment. With fine-grained motion feature
f̄m
i and textual feature f̃ t

i , the interaction of temporal query and multimodal feature is performed via

pKi ,Bt
i+1 = MA-TemporalDecoder(p0i ,Bt

i , [f̄
m
i , f̃ t

i ]) (6)

where MA-TemporalDecoder(·) is the memory-augmented temporal decoder with K temporal de-
coder blocks (described in Sec. 3.4). Similar to Bs

i , the temporal memory bank Bt
i also comprises

K partitions, with each corresponding to a temporal decoder block. pKi is the final temporal query
feature after the decoder, and Bt

i+1 the new memory bank updated with temporal information in
frame i (see Sec. 3.4). After this, a temporal head implemented with an MLP module is adopted for
temporal localization in frame i, as follows,

hi = TemporalHead(pKi ) (7)

where hi ∈ R2 represents the event start probabilities hs
i and end probabilities he

i of the ith frame.

By sequentially performing spatial and temporal grounding, we achieve target localization in each
frame i, and meanwhile use information in frame i to update memory banks for the next frame (i+1).

3.3 MEMORY-AUGMENTED SPATIAL DECODER

We propose a memory-augmented spatial decoder, guided by spatial memory from the spatial memory
bank, to learn the target spatial position from the multimodal feature. Specifically, the memory-
augmented spatial decoder comprises K decoder blocks in a cascade for spatial grounding. As
shown in Fig. 4 (a), each spatial decoder block corresponds to a partition in the spatial memory and
contains two cross-attention blocks (Vaswani et al., 2017). Concretely, in the kth (1 ≤ k ≤ K) spatial
decoder block, given the appearance feature f̃a

i , the textual feature f̃ t
i , and the spatial query qk−1

i (q0i
initialized by zeros) of the ith frame, we first perform memory selection and then apply the selected
memory to enhance the spatial query feature in spatial decoding.

Spatial Memory Selection. Since the spatial query contains crucial target information, we first insert
the spatial query qk−1

i into the kth partition of spatial memory bank Bs
i,k corresponding to the kth
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Figure 4: The architectures of memory-augmented spatial and temporal decoder blocks in (a) and (b).

Text: The white-haired man turns and looks at the little boy.

(a) Attention maps for the spatial query with selective memory (b) Attention maps for the spatial query without selective memory

Figure 5: Comparison of attention maps for spatial query with (in (a)) and without (in (b)) using
selective spatial memory. The red box indicates the foreground target. We can see the use of selective
spatial memory helps the model focus more on target regions, benefiting final target localization.

decoder block. Please note that, this insertion procedure also completes the update of each partition
Bs
i,k in Bs

i to Bs
i+1,k in Bs

i+1. Or in other words, we update the memory bank by simply adding the
query as a new memory, without removing any existing memories.

After this, we perform memory selection from Bs
i+1,k for decoder block k. The motivation behind

this selection is, the memories at different moments are not always relevant for target localization in
current frame, and selecting more relevant information in spatial decoding enables learning better
query feature for grounding. Specifically, the selective spatial memory Ms

i,k for block k can be
obtained via two steps in memory selection: first, we calculate the similarity between each spatial
memory and the textual feature; second , based on similarity scores, the top Ns spatial memories with
the highest scores are selected to form Ms

i,k. Fig. 4 (a) shows this spatial memory selection process.

Memory-Augmented Spatial Decoding. During decoding, we send qk−1
i to decoder block k for

learning qki . To exploit spatial context, we first interact the query with selective spatial memory
through a cross-attention block, as follows,

q̃k−1
i = CrossAtt(qk−1

i ,Ms
i,k) (8)

where q̃k−1
i is the memory-augmented query feature in decoder block k, and CrossAtt(u, v) the

cross-attention block (Vaswani et al., 2017), with u generating query and v key/value. After this, we
further interact q̃k−1

i with the multimodal appearance and textual features for learning qki , as follows,

qki = CrossAtt(q̃k−1
i , [f̃a

i , f̃
t
i ]) (9)

where qki is the learned query feature, and sent to next decoder block for further query feature learning.

Fig. 5 demonstrates the attention maps of spatial query with (see Fig. 5 (a)) and without (see Fig. 5
(b)) using selective spatial memory. We can clearly see using selective spatial memory helps the
model focus more on target regions for better grounding. After K spatial decoder blocks, the final
spatial query feature qKi is adopted for spatial prediction.

3.4 MEMORY-AUGMENTED TEMPORAL DECODER

The memory-augmented temporal decoder learns target temporal position using temporal memory
from temporal memory bank. It has K blocks for temporal grounding, with each corresponding to a
temporal memory partition and containing two cross-attention blocks, as in Fig. 4 (b). In temporal
decoder block k (1 ≤ k ≤ K), given motion and textual features f̄m

i and f̃ t
i , and temporal query

pk−1
i (p0i initialized by zeros), we first perform temporal memory selection and then apply the selected

memory to enhance temporal decoding.
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Event 1 Event 2 Event 3 Event 4 Event 5

Text: The squatting man stands up and walks to the left of the car. 

Start Probability End Probability

Figure 6: Illustration of selective temporal memory. In the middle figure, the attention sequence
indicates cosine similarities of adjacent memories. Lower similarity (greener color) indicates potential
event boundaries. Besides, in the up figure, we show predicted start and end probabilities, which are
accurate to capture target event. The red box denotes the ground truth corresponding to the text query.

Temporal Memory Selection. The temporal query pk−1
i contains temporal event information. Thus,

we first insert it into the kth partition of temporal memory bank Bt
i,k (also updating Bt

i,k to Bt
i+1,k).

Since long-term videos often contain multiple events, selecting relevant temporal memory related to
the current event helps the temporal decoding better locate the event boundaries. To achieve this and
obtain selective temporal memory Mt

i,k, inspired by TextTiling (Hearst, 1997), we perform two steps
in temporal memory section: in the first step, we calculate the similarities between the memories of
adjacent frames; in the second step, points with lower similarities are considered as event boundaries
between different events, and we only select memories corresponding to the event closest to current
frame, as shown in Fig. 4 (b).

Memory-Augmented Temporal Decoding. In decoding, we send the temporal query pk−1
i to

temporal decoder block k for learning pki . To exploit temporal context for enhancing query learning,
we first interact the query with the selective temporal memory Mt

i,k by a cross attention block via

p̃k−1
i = CrossAtt(pk−1

i ,Mt
i,k) (10)

where p̃k−1
i denotes the memory-augmented query feature in decoder block k. After this, we further

interact p̃k−1
i with multimodal motion and textual features, as follows,

pki = CrossAtt(p̃k−1
i , [f̄m

i , f̃ t
i ]) (11)

where pki is the learned query feature, and will be fed to next decoder block for further query feature
learning. Fig. 6 shows our temporal memory selection can segment the video into different events
and select the memory of the event closest to current moment, benefiting localization of target event.
After K blocks in the decoder, the temporal query feature pKi is adopted for temporal prediction.

3.5 OPTIMIZATION

In ART-STVG, we predict both spatial bounding boxes and temporal start and end timestamps for
loss computation. Due to limited space, please see our loss function in supplementary material.

4 EXPERIMENTS

Implementation. ART-STVG is implemented with PyTorch (Paszke et al., 2019). We use ResNet-
101 (He et al., 2016), VidSwin-tiny (Liu et al., 2022), and RoBERTa-base (Liu et al., 2019) for
appearance, motion, and textual feature extraction. Following previous work (Gu et al., 2024; Jin
et al., 2022a), we use pre-trained MDETR (Kamath et al., 2021) to initialize appearance and text
backbones and multimodal fusion module. The hidden dimension of the encoder and decoder is
C = 256, with channel dimensions of Ca = 2048, Cm = 768, and Ct = 768 for appearance, motion,
and textual features. We sample video frames at FPS of 3.2 and resize each frame to have a short side
of 420. The video frame length during training is Nf = 64, and the text sequence length is Nt = 30.
During training, we adopt Adam (Kingma & Ba, 2015) with an initial learning rate of 1e− 5 for the
pre-trained backbone and 1e− 4 for other modules, while keeping the motion backbone frozen.

Datasets. Since there are no benchmarks dedicated to LF-STVG, we opt to extend HCSTVG-v2 (Tang
et al., 2021) for creating new datasets for LF-STVG. The reason for choosing HCSTVG-v2 only

7
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for extension is that it is the only dataset which provides available source videos, thus allowing for
extension with longer videos. Specifically, HCSTVG-v2 originally contains 16,000 video-sentence
pairs in complex multi-person scenes, including 10,131 training, 2,000 validation, and 4,413 testing
samples. Each video lasts 20 seconds and is paired with a textual query averaging 17.25 words. As
annotations of the test set are not publicly available, the results are reported on the validation set, as in
other methods (Yang et al., 2022; Lin et al., 2023b; Gu et al., 2024). For this reason, we extend only the
validation set to lengths of 1 to 5 minutes, referred to as LF-STVG-1min/2min/3min/4min/5min, for
the evaluation of LF-STVG. The extensions are based on original YouTube videos, not concatenated
clips, and we manually review the extended videos to ensure their quality.

Metrics. Follow (Lin et al., 2023b; Jin et al., 2022a), we use m tIoU, m vIoU, and vIoU@R for
evaluation. m tIoU evaluates effectiveness of temporal grounding by averaging tIoU scores over all
test videos. m vIoU assesses spatial grounding performance by averaging vIoU scores. Additionally,
vIoU@R measures performance by determining the proportion of test samples with vIoU scores
exceeding a threshold R. For details, please see previous works (Lin et al., 2023b; Jin et al., 2022a).

4.1 COMPARISON ON LONG-FORM STVG

Table 1: Comparison to other approaches on long-
term videos. Our method shows the best results.

Methods m tIoU m vIoU vIoU@0.3 vIoU@0.5
(a) LF-STVG-1min

TubeDETR (Yang et al., 2022) 32.5 20.8 25.7 8.7
STCAT (Jin et al., 2022a) 36.1 23.2 34.4 10.4

CG-STVG (Gu et al., 2024) 37.2 24.3 32.6 10.9
TA-STVG (Gu et al., 2025) 38.4 25.2 35.5 12.1

Baseline (ours) 30.1 19.7 25.5 8.3
ART-STVG (ours) 39.1 (+9.0) 26.1 (+6.4) 36.8 (+11.3) 17.6 (+9.3)

(b) LF-STVG-2min
TubeDETR (Yang et al., 2022) 23.0 13.4 10.9 2.5

STCAT (Jin et al., 2022a) 24.3 15.0 12.5 2.6
CG-STVG (Gu et al., 2024) 24.9 15.8 14.7 2.9
TA-STVG (Gu et al., 2025) 25.3 16.2 15.8 4.0

Baseline (ours) 23.0 15.1 16.5 6.6
ART-STVG (ours) 31.8 (+8.8) 21.3 (+6.2) 29.3 (+12.8) 13.2 (+6.6)

(c) LF-STVG-3min
TubeDETR (Yang et al., 2022) 13.6 6.4 7.2 2.9

STCAT (Jin et al., 2022a) 14.2 8.4 3.0 0.1
CG-STVG (Gu et al., 2024) 14.2 8.7 3.2 0.3
TA-STVG (Gu et al., 2025) 13.9 8.5 3.3 0.2

Baseline (ours) 16.2 10.7 10.5 4.5
ART-STVG (ours) 23.0 (+6.8) 15.3 (+4.6) 20.1 (+9.6) 9.5 (+5.0)

(d) LF-STVG-4min
TubeDETR (Yang et al., 2022) 9.6 5.2 1.2 0.1

STCAT (Jin et al., 2022a) 10.4 6.0 0.8 0.0
CG-STVG (Gu et al., 2024) 10.6 6.3 1.1 0.0
TA-STVG (Gu et al., 2025) 10.1 6.1 0.9 0.0

Baseline (ours) 9.9 6.2 4.7 1.4
ART-STVG (ours) 16.3 (+6.4) 11.0 (+4.8) 12.9 (+8.2) 5.2 (+3.8)

(e) LF-STVG-5min
TubeDETR (Yang et al., 2022) 7.8 3.9 0.7 0.1

STCAT (Jin et al., 2022a) 7.8 4.4 0.3 0.0
CG-STVG (Gu et al., 2024) 8.1 4.7 0.3 0.0
TA-STVG (Gu et al., 2025) 7.7 4.5 0.3 0.0

Baseline (ours) 9.2 5.3 4.5 1.1
ART-STVG (ours) 15.0 (+5.8) 10.0 (+4.7) 11.4 (+6.9) 4.7 (+3.6)

To validate the effectiveness of ART-STVG on
LF-STVG, we compare it to other methods on
extended LF-STVG datasets. Please note, all
methods including ART-STVG are trained exclu-
sively on the HCSTVG-v2 training set (average
video length 20 seconds) for fair comparison.

Tab. 1 reports the results. As displayed in Tab. 1,
our method significantly outperforms existing
STVG methods in all metrics on all five datasets,
showing the superiority of our ART-STVG in
grounding target in long videos compared to ex-
isting models. Specifically, our method outper-
forms TA-STVG by achieving improvements in
m tIoU and m vIoU of 0.7%/0.9%, 6.5%/5.1%,
9.1%/6.8%, 6.2%/4.9%, and 7.3%/5.5% scores
across five different video lengths, respectively.
In addition, compared with the baseline, which
has a similar architecture to our ART-STVG but
without memory and memory selection mod-
ules (please kindly check its architecture in
supplementary material due to limited space),
ART-STVG shows remarkable improvements
on all the metrics under different video lengths
as shown in Tab. 1, which demonstrates the im-
portance of selective memories for LF-STVG.

4.2 ABLATION STUDY

To better understand our ART-STVG, we conduct extensive ablations on LF-STVG-3min.

Impact of selective temporal memory. We set up a temporal memory bank in temporal decoder to
store target event information and use this temporal memory for locating start and end of event related
to target. To verify its effectiveness, we conduct an ablation in Tab. 2. As in Tab. 2, without temporal
memory, our method achieves an m tIoU score of 16.7% (❶). When using all temporal memories,
the m tIoU score is decreased to 9.6% (❶ v.s. ❷). This is because the long-term video often contains
multiple events, and using all temporal memories may introduce irrelevant information. When using
our memory selection, the m tIoU score is improved to 23.0% with 13.4% gains (❷ v.s. ❸). These
results show our selective temporal memory can effectively improve ART-STVG for LF-STVG.

Impact of selective spatial memory. Similar to temporal decoder, we adopt a spatial memory bank in
spatial decoder to learn contextual target information for spatial localization. We conduct an ablation
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Table 2: Ablations of selective temporal memory.
Temporal Decoder
Memory Selection m tIoU m vIoT vIoU@0.3 vIoU@0.5

❶ - - 16.7 11.1 11.9 4.7
❷ ✓ - 9.6 6.2 4.7 1.5
❸ ✓ ✓ 23.0 15.3 20.1 9.5

Table 3: Ablations of selective spatial memory.
Spatial Decoder

Memory Selection m tIoU m vIoT vIoU@0.3 vIoU@0.5

❶ - - 21.3 13.9 16.4 8.0
❷ ✓ - 22.1 14.2 17.0 9.0
❸ ✓ ✓ 23.0 15.3 20.1 9.5

Table 4: Ablations of different decoder designs.
Design Choice m tIoU m vIoU vIoU@0.3 vIoU@0.5

❶ Parallel 21.5 13.9 17.3 8.2
❷ Cascaded (ours) 23.0 15.3 20.1 9.5

Table 5: Ablations of different choices for Ns.
m tIoU m vIoU vIoU@0.3 vIoU@0.5

❶ Ns = 16 22.7 15.0 18.4 9.2
❷ Ns = 32 (ours) 23.0 15.3 20.1 9.5
❸ Ns = 48 22.5 14.7 18.2 9.1

Table 6: Ablations of training with longer videos.
Please notice that, all the compared approaches
are trained on the 40-second videos using their
provided source codes for fair comparison.

Methods m tIoU m vIoU vIoU@0.3 vIoU@0.5
TubeDETR (Yang et al., 2022) 20.8 11.5 9.8 3.9

STCAT (Jin et al., 2022a) 21.0 12.2 7.4 0.6
CG-STVG (Gu et al., 2024) 20.5 12.0 8.0 1.0
TA-STVG (Gu et al., 2025) 20.7 11.8 7.7 0.5

ART-STVG (ours) 28.3 18.8 27.0 11.9

in Tab. 3. We observe that integrating all spatial memories can improve the m tIoU score to 22.1%
with 0.8% gains (❶ v.s. ❷), and applying the memory selection strategy can further enhance the
m tIoU score to 23.0% with 0.9% gains (❷ v.s. ❸), validating the importance of selective memory.

Impact of design for spatial and temporal decoders. We introduce a cascaded spatio-temporal
design in ART-STVG, which allows the use of fine-grained target information from spatial grounding
to assist temporal localization in complex long videos. To validate its efficacy, we conduct an ablation
in Tab. 4. From Tab. 4, it is evident that cascading spatial and temporal decoders outperforms the
parallel design with improvements of 1.5% and 1.4% scores on m tIou and m vIoU (❶ v.s. ❷).

Impact of the number of selective spatial memories. In the spatial decoder, we utilize Ns to control
the number of selective spatial memories. To explore the impact of Ns, we conducted the ablation
experiment in Tab. 5. We can see that when Ns is 32, the performance of the model is the best (❷).

Impact of the length of training videos. To investigate the impact of training videos of different
lengths, we extend HCSTVG-v2 training set to 40 seconds and use it to train both existing methods
and ART-STVG. As in Tab. 6, we can see all methods show clear gains when trained on 40-second
videos compared to 20-second videos (Tab. 6 v.s. Tab. 1 (c)). This shows that training with longer
videos enhances target localization in long-term videos, yet results in increasing training costs. More
importantly, our method still achieves the best performance on all metrics.

4.3 COMPARISON ON SHORT-FORM STVG

Table 7: Comparison on SF-STVG.
Methods m tIoU m vIoU

2D-Tan (Tan et al., 2021) - 30.4
MMN (Wang et al., 2022) - 30.3

TubeDETR (Yang et al., 2022) 53.9 36.4
STCAT (Jin et al., 2022a) 56.6 36.9

STVGFormer (Lin et al., 2023b) 58.1 38.7
CG-STVG (Gu et al., 2024) 60.0 39.5
TA-STVG (Gu et al., 2025) 60.4 40.2

Baseline (ours) 46.2 29.9
ART-STVG (ours) 59.2 39.2

We further evaluate ART-STVG on SF-STVG in Tab. 7 on
HCSTVG-v2 validation set. As in Tab. 7, our method shows
competitive results to current STVG methods on short-term
videos. Current methods use non-autoregressive structures
that process video frames in parallel to capture inter-frame
relationships, and are specially designed for target localization
in short-term videos. Despite this, ART-STVG, adopting an
autoregressive structure, outperforms most existing methods,
falling only behind TA-STVG (Gu et al., 2025) by 1.2%/1.0%
in m tIoU/m vIoU. Moreover, our method shows clear gains compared to baseline without memory.

Due to limited space, we show additional results, analysis, and discussions in supplementary material.

5 CONCLUSION

In this work, we study Long-Form STVG, and propose a new framework, ART-STVG, that can handle
long-term videos effectively. The core of ART-STVG lies in the use of selective memories, which are
applied to decoders for leveraging spatio-temporal contextual cues for grounding, greatly improving
performance. Additionally, our cascaded spatio-temporal decoder design effectively exploits spatial
localization to assist temporal localization in long-term videos. On multiple extended LF-STVG
datasets, ART-STVG significantly outperforms other methods, showing its superiority.
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SUPPLEMENTARY MATERIAL

For a better understanding of this work, we offer additional details, analysis, and results as follows:

• A Details of Optimization
In this section, we provide more details of our loss function for optimization.

• B Design of Baseline
In this section, we introduce the architecture of the baseline method.

• C Analysis of Efficiency
In this section, we analyze the efficiency and complexity of ART-STVG and compare it to
other state-of-the-art methods.

• D Analysis of Failure Cases
In this section, we discuss failure cases of our proposed method.

• E Analysis of Qualitative Results
In this section, we show qualitative results of our method on LF-STVG and comparison to
the baseline method.

• F Comparison with Existing Memory-based Video Understanding Works
In this section, we discuss differences with existing memory-based video understanding
methods.

• G Limitation and Broader Impact
In this section, we discuss the limitation of our method and its broader impact.

A DETAILS OF OPTIMIZATION

Given the video containing Nf frames and its textual query, our ART-STVG predicts: (1) object boxes
B = {bi}

Nf

i=1 in the memory-augmented spatial decoder; (2) event start timestamps Hs = {hs
i}

Nf

i=1

and end timestamps He = {he
i}

Nf

i=1 in the memory-augmented temporal decoder. During the training,
with the groundtruth of the bounding box B∗, start timestamps H∗

s and end timestamps H∗
e , we can

calculate the total loss L as

L = λk(LKL(H∗
s ,Hs) + LKL(H∗

e ,He)︸ ︷︷ ︸
loss of memory-augmented temporal decoder

) + λlL1(B∗,B) + λuLIoU(B∗,B)︸ ︷︷ ︸
loss of memory-augmented spatial decoder

(12)

where LKL, L1 and LIoU are KL divergence, smooth L1 and IoU losses. λk, λl and λu are parameters
to balance the loss. Similar to previous methods (Jin et al., 2022b; Lin et al., 2023b; Gu et al., 2024),
λk, λl and λu are empirically set to 10, 5, and 3, respectively.
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Figure 7: Architecture of baseline, containing an encoder and an autoregressive decoder but without
memories and memory-related modules.
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B DESIGN OF BASELINE

The baseline method mentioned in the main text shares a similar architecture with ART-STVG but
does not contain the (spatial and temporal) memories and memory-related modules. Its detailed
architecture is shown in Fig. 7. Specifically, the baseline framework comprises two core components:
a multimodal encoder for extracting and fusing cross-modal features, followed by cascaded spatial
and temporal decoders that perform autoregressive decoding to progressively localize the target. Such
architecture makes it suitable for long video processing. However, without memory, its performance
is inferior to our ART-STVG (please see the comparison of our ART-STVG and the baseline in
the main text), which evidences the necessity and importance of our memory design for improving
LF-STVG performance.

C ANALYSIS OF EFFICIENCY

To analyze the efficacy and complexity of our model, we report the efficiency of the model and the
comparison with other methods in Tab. 8. As shown in Tab. 8, our model size is similar to other
methods. Although our inference time (for 64 images, aligned to SF-STVG methods) is longer due to
autoregressive processing, at 1.09 seconds, compared to the inference times of STCAT, CG-STVG,
and TA-STVG, which are 0.47, 0.71, and 0.69 seconds respectively, our GPU memory usage is much
lower than other methods. Specifically, our GPU memory usage is 7.9G, while other methods such as
TA-STVG and CG-STVG have GPU memory usages of 25.1G and 25.9G, respectively. Therefore,
our method is more suitable for handling long videos.

Table 8: Comparison of model efficacy and complexity on a single A100 GPU.

Model Size InferenceMethods Trainable Params Total Params Time GPU Memory
STCAT (Jin et al., 2022b) [NeurIPS’2022] 207 M 207 M 0.47 s 23.6 G
CG-STVG (Gu et al., 2024) [CVPR’2024] 203 M 231 M 0.71 s 25.9 G
TA-STVG (Gu et al., 2025) [ICLR’2025] 206 M 234 M 0.69 s 25.1 G

ART-STVG (ours) 207 M 235 M 1.09 s 7.9 G

D ANALYSIS OF FAILURE CASES

GT

ART-STVG

Video

Text: A man in plaid dress gestures to the opposite person with both hands.

Video

Text: A long-haired woman walks down.

GT

ART-STVG

Video

Text: The woman walks to the bed and then jumps onto the bed.

GT

ART-STVG

Figure 8: Failure cases. The red box in the figures indicates
the results of ART-STVG, while the green box indicates
the ground truth (GT).

Despite promising performance on LF-
STVG, our method may fail in some
complex scenes: (i) indistinct event
boundaries. Detection of event bound-
aries in long videos is crucial for tem-
poral memory selection in ART-STVG.
When event boundaries are ambigu-
ous in videos, their detection may be
compromised, which results in inac-
curate temporal memory selection and
hence degrades temporal localization in
STVG; for example, in Fig. 8-top, the
start time of the target event is ambigu-
ous. (ii) highly distracting background
objects. When there exist highly dis-
tracting background targets (that have
similar appearance and action with the
foreground target) in videos, our method
may drift to background targets, leading
to spatial localization failure. In Fig. 8-
middle, there are two people with simi-
lar actions. (iii) Extremely short target events. When the target event lasts for a very short duration
within a long video, the presence of a large amount of redundant information makes grounding more
difficult. For example, in Fig. 8-bottom, the target event lasts only 3 seconds, while the entire video is
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Baseline
GT

ART-STVG

Video

Text: The man leaving with another person on a motorcycle.

Baseline
GT

ART-STVG

Video

Text: The woman in the hat walks to the door from the man in blue and stops.

Baseline
GT

ART-STVG

Video

Text: The bald man waves his hat, then turns and walks away.

Baseline
GT

ART-STVG

Video

Text: The man behind pushes the board away and climbs out.

Baseline
GT

ART-STVG

Video

Text: The man in the trench coat goes up the stairs to the door.

Figure 9: Qualitative results of ART-STVG, the Baseline without memory, and the Ground Truth.

300 seconds long, making localization hard. To handle the above cases, we will explore fine-grained
target and event cues in videos for improvements in future work.

E ANALYSIS OF QUALITATIVE RESULTS

To qualitatively validate our method on LF-STVG, we present grounding results and comparisons
with the baseline method without memory on the LF-STVG-3min benchmark. From Fig. 9, we
observe that the baseline without memory often locates inconsistent targets across different video
frames, such as in the third and fifth examples. In contrast, our method locates the target more
consistently and accurately, demonstrating the effectiveness of our approach.

F COMPARISON WITH MEMORY-BASED VIDEO UNDERSTANDING WORKS

The memory bank has been explored in long video understanding (He et al., 2024; Song et al., 2024;
Qian et al., 2025). However, our proposed memory bank in ART-STVG is different than these
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approaches in two aspects: (1) Different memory information. The memory in (He et al., 2024; Song
et al., 2024; Qian et al., 2025) is global context information for the entire video, while memory in
our method is text-guided spatial instance and temporal event boundary cues, specially designed
for LF-STVG; (2) Different memory compression for selection. For memory selection, our method
merges spatial memories using text as guidance and temporal memories using event boundary cues
from videos, with both specially designed for LF-STVG, while the mentioned works do not have
these mechanisms as they aim at different tasks.

G LIMITATION AND BROADER IMPACT

Discussion of Limitation. As the first work to explore the LF-STVG problem, our ART-STVG
shows promising performance on long-term videos and significantly outperforms existing STVG
methods. Despite this, our method has two limitations. First, although ART-STVG is capable of
handling long videos, yet its performance may degrade as the video becomes longer and more
complex. To mitigate this issue, a possible direction is to learn more discriminative memory systems
for capturing fine-grained target information. Since this is beyond our current goal of attempting
the LF-STVG problem, we leave it to our future work for improving LF-STVG. Second, similar to
other approaches, our method cannot operate in real-time, which may limit its applications in certain
scenarios. In the future, we will study lightweight architectures for LF-STVG using techniques from
model compression and quantization.

Discussion of Broader Impact. The proposed ART-STVG focuses on localizing the target of
interest within an untrimmed video given a textual description. This technique has a wide range of
crucial applications, including content-based video retrieval, video content moderation, and sports
analytics. By developing ART-STVG, we expect it to contribute positively to societal advancements
and technological progress.
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