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ABSTRACT

In this paper, we propose an extreme sparse coding quantization framework of
2-bit large vision-language models (LVLMs) for efficient multimodal reasoning.
Conventional codebook-based quantization methods assign the same codeword
number to all weights ignoring the significant variance of weight salience, which
leads to substantial discretization errors. On the contrary, we flexibly assign optimal
codeword combination for each weight based on weight salience to mitigate the
performance degradation with negligible complexity overhead. Specifically, we
first select the number of codewords for all weights based on the salience evaluation
with second-order information. We then propose hierarchical codeword selection
to efficiently search the appropriate codeword combinations from the extremely
large codebook for optimal sparse representation. The high-level candidate search
selects representative codeword subsets with minimal quantization errors, through
which the low-level subset refinement discovers the optimal fine-grained codeword
combination for all weights. Finally, we optimize the visual encoder to concentrate
the weight salience distribution, which reduces computational overhead because
of the decreased codewords for aggregated salient weights. Experimental results
demonstrate that our method achieves a 5.58× reduction in model size while
outperforming state-of-the-art model quantization methods by 2.78 in performance
on the 13B LLaVA model, achieving a notable margin of improvement while
maintaining similar computational costs in LVLM quantization.

1 INTRODUCTION

The large vision-language models (LVLMs) (Liu et al., 2024a; Li et al., 2023a) have achieved
groundbreaking results in a wide variety of multimodal reasoning tasks. Powered by their vast
parameter counts and complex architectures, they have demonstrated impressive performance in
visual question answering (Wu et al., 2023; Lin et al., 2024a), embodied instruction following (Ahn
et al., 2022), and robot navigation (Anderson et al., 2018; Hao et al., 2020). Although these models
deliver high performance and generalization capabilities, their extensive computational and memory
requirements pose challenges for real-world applications. As a result, there is a pressing need to
reduce the complexity of LVLMs, which unlocks their potential for a broader range of applications,
including deployment on mobile devices and edge devices.

To solve this problem, various model compression techniques have been proposed to reduce model
complexity including pruning (Frantar & Alistarh, 2023; Fang et al., 2024), quantization (Tseng
et al., 2024a; Lin et al., 2024b; Shao et al., 2023) and efficient architecture design (Zhou et al., 2024;
Chu et al., 2024). Among these methods, quantization reduces the precision of model parameters
to decrease memory usage and computational overhead, leading to accelerated inference speed and
mitigates energy consumption. Conventional quantization methods have introduced salience-based
quantization (Frantar et al., 2022; Huang et al., 2024; Dong et al., 2019) which quantize different
model parameters with varying precision levels based on their salience. These approaches help to
achieve a better trade-off between model efficiency and accuracy by focusing on the salient parameters,
but they encounter substantial discretization errors with uniformly distributed quantization function
and severely limited range of weight representation under extreme low bitwidth. Recent advances
introduce codebook-based quantization methods (Egiazarian et al., 2024; van Baalen et al., 2024)
which capture inter-dimensional correlations among weight groups, providing a more adaptable
quantization grid across multiple dimensions. Given the non-uniform distribution of model weights,
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these methods are particularly effective in representing complex weight patterns and minimizing
redundancy by full-precision codebooks. However, current codebook-based methods assign the same
codeword number to all weights ignoring the significant variability in weight salience, which leads to
substantial information loss because of the ineffective bitwidth assignment.

Figure 1: Existing methods assign same code-
word number to all weights with significant
discretization errors, while we flexibly assign
multiple codewords based on weight salience
and search the optimal sparse linear combina-
tions of codewords.

In this work, we propose an extreme sparse coding
quantization framework for 2-bit LVLM quantiza-
tion called SparseCodeQ to accelerate large vision-
language models for efficient multimodal reasoning.
Different from existing codebook-based quantiza-
tion methods which assign same codeword number
to all weights, this framework dynamically assigns
multiple number of codewords based on weight
salience, and selects optimal linear combination of
codewords for each weight to mitigate the informa-
tion degradation with negligible complexity over-
head. To be specific, SparseCodeQ first allocates
the number of codewords for each model parame-
ter based on the weight salience, where important
weights are represented by more codewords for fine-
grained model quantization. To search for optimal
sparse linear combinations of codewords from the
extremely large codebook, we propose hierarchical
codeword selection algorithm with high-level can-
didate search and low-level subset refinement. The
high-level candidate search selects representative
codeword subsets with minimal discretization errors, through which the low-level subset refinement
discovers the optimal fine-grained codeword combination to represent each weight. We finally
optimize the visual encoder to obtain a more concentrated salience distribution, which reduces com-
putational overhead because of the decreased codewords for aggregated salient weight. Experimental
results demonstrate that our method achieves a 5.58× reduction in model size while outperforming
state-of-the-art model quantization methods by 2.78, with only 2.19 accuracy drop for the FP 13B
LLaVA model, achieving a notable margin of improvement while maintaining similar computational
costs in LVLM quantization. The main contributions of this work are summarized as follows:

• Our framework is the first method to incorporate sparse coding principles for model compres-
sion. This innovative approach enables the efficient representation of non-uniformly distributed
model weights and prioritizes the quantization of salient parameters simultaneously.

• We design SparseCodeQ to adaptively assign the number of codewords for each weight and
search for the optimal sparse linear combination of fine-grained codewords with minimal
discretization errors for all weights, and vision encoder is further optimized with concentrated
salience distribution to reduce computational overhead.

• Experimental results demonstrate that our method compresses the model size by 5.58x and
outperforms the state-of-the-art quantization methods by 2.78 on 13B LLaVA model while
achieving 3.6x memory reduction and 1.3x inference acceleration under extreme low bitwidth.

2 RELATED WORK

2.1 LARGE VISION-LANGUAGE MODEL

Large vision-language models (LVLMs) have demonstrated outstanding performance mainly due
to their rapid adaptation across diverse downstream tasks and strong generalization capabilities.
This success can be attributed to the extensive leverage of large-scale image-text datasets (Radford
et al., 2021; Jia et al., 2021) and the remarkable generalization abilities of pre-trained large language
models (LLMs) (Brown et al., 2020; Touvron et al., 2023). Early efforts integrated extensive
commonsense knowledge from LLMs into vision-language representation learning, treating visual
information as contextual input for effective utilization of LLMs. For example, Flamingo (Alayrac
et al., 2022) employed adapters within LLMs and leveraged a perceiver-like architecture to extract
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Figure 2: The overall pipeline of our SparseCodeQ. We select the number of codewords based on
weight salience and hierarchically search the optimal sparse linear combination of codewords with
minimal quantization errors for all weights. Vision encoder is further optimized with concentrated
salience distribution to reduces computational overhead.

visual features for multimodal alignment, achieving high accuracy in few-shot learning for vision-
language tasks. Likewise, BLIP (Li et al., 2022; 2023a) used data filtering techniques to boost
performance in tasks such as visual question answering (VQA) and image captioning. Although these
models demonstrated remarkable vision-language reasoning capabilities, their zero-shot performance
remained limited due to the absence of explicit instruction-based training. Despite the significant
performance improvements enabled by larger models, the computational demands and storage costs
hinder the deployment of LVLMs on resource-constrained devices. To address these limitations,
lightweight LVLMs such as TinyGPT-V (Yuan et al., 2023a) and TinyLLaVA (Zhou et al., 2024) have
been proposed, focusing on optimizing the architecture by leveraging smaller models for efficient
LVLM design. MoE-LLaVA (Lin et al., 2024a) constructs a sparse mixture-of-experts (MoE) model,
which selectively activates pathways to simultaneously process image and text features, achieving
competitive performance with fewer active parameters. However, the inference costs of these models
remain beyond the resource limits of mobile devices or robots due to their low compression ratios.

2.2 MODEL QUANTIZATION

Network quantization replaces full-precision tensors with low-precision values and substitutes
multiply-accumulate operations with integer arithmetic, thereby substantially reducing both stor-
age and computational costs of neural networks. Conventional quantization-aware training (QAT)
methods (Choi et al., 2018; Liu et al., 2020) require fine-tuning network weights using the entire
training dataset for rounding, which is often impractical due to the unavailability of data and resources
for most users. Recently, post-training quantization (PTQ) (Yang et al., 2024; Yuan et al., 2023b;
Huang et al., 2024) minimized the l2 distance between quantized and full-precision tensors to reduce
task performance degradation. Zero-shot PTQ further pushes the limits of efficient quantization
without relying on real image data. SmoothQuant (Xiao et al., 2023), and ZeroQuant (Yao et al.,
2022) addressed activation outliers by removing extreme values through equivalent transformations,
facilitating accurate quantization function learning; however, they faced challenges in scaling to
very large models due to excessive computational costs. GPTQ (Frantar et al., 2022), AWQ (Lin
et al., 2023), and QLoRA (Dettmers et al., 2024) employed low-precision quantization for weight
quantization to further reduce computational complexity but failed to achieve effective quantization
under extremely low bitwidth.

Moreover, vector quantization (VQ) (Egiazarian et al., 2024; Tseng et al., 2024a) has been explored
as an efficient method of weight-only quantization under extremely low bitwidth. These methods
represent high-dimensional weight vectors with a set of low-dimensional codebooks which substan-
tially reduce the memory usage while allowing quick reconstruction through simple index references.
GPTVQ (van Baalen et al., 2024) and VPTQ (Liu et al., 2024b) leverage second-order optimization to
achieve accurate and efficient vector quantization. Nevertheless, these codebook-based quantization
methods represent weight groups using a single codeword, where the optimal representation is

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

optimized by fine-tuning, leading to extreme search cost and suboptimal codeword selection due to
overfitting to small calibration sets.

3 APPROACH

In this section, we first introduce the preliminaries of quantization and sparse coding for LVLMs and
then detail the SparseCodeQ framework which selects the number of codewords and searches the
optimal linear combination of codewords with minimal discretization errors, and vision encoder is
further optimized with concentrate salience distribution to reduce computational overhead.

3.1 SPARSE CODING-BASED QUANTIZATION

Model quantization methods are generally designed to reduce discretization errors between the
outputs generated by the original weights W ∈ Rdo×di and the quantized weights Ŵ. To maintain
efficient memory usage and inference speed, we introduce sparse coding to represent weight groups
with a sparse linear combination of codewords. Sparse coding was initially introduced in signal
processing to create efficient and interpretable representations of data. In model quantization, our
aim is to approximate each weight group by forming a sparse linear combination of codewords from
an extremely large codebook C = {ci}Ki=1 ∈ Rdo×K , with K denoting the number of codewords in
the codebook. The sparse coding coefficients that represent the contributions of each codeword are
denoted by S = {si}Ki=1 ∈ RK×di . The process of deriving sparse coding coefficients is formulated
as an optimization problem aimed at achieving a balance between accurately reconstructing the
original signal and enforcing the sparsity of the coefficients. This objective L can be formulated as:

L = argmin
{si}K

i=1

∥W −
K∑
i=1

cisi∥22 + λ

K∑
i=1

∥si∥0, (1)

where λ is a regularization parameter that controls the trade-off between reconstruction accuracy and
sparsity. Direct optimization of this objective would be NP-hard due to the large number of parameters
involved in LVLMs. On the contrary, we propose adaptive codewords selection algoritm to achieve
optimal sparse linear combination of codewords for all weights while minimizing discretization
errors. Specifically, the optimization problem can be split into two subproblems: (1) determining
the optimal allocation of codeword number across different weight groups, and (2) identifying the
most representative codewords that facilitate optimal sparse linear combination for all weights. With
the optimal trade-off between memory usage and discretization errors, our SparseCodeQ search the
optimal linear combination of codewords for each weight.

3.2 ADAPTIVE SALIENCE-DRIVEN CODEWORD ALLOCATION

As each weight group varies in importance, determining the optimal allocation of codeword number
across different weight groups can effectively balance the trade-off between search complexity
and discretization errors. Directly optimizing the sparsity term in equation 1 incurs substantial
computational costs due to the exhaustive search space. To mitigate this, we derive an alternative
formulation by leveraging the second-order information of the weight parameters to estimate sparsity.
For the weight in the loss function, we apply a Taylor expansion as L(W +△W) ≈ L(W) + 1

2 △
WT ▽2 L(W)△W, where △W =

∑K
i=1 ci △ si represents the weight changes after removing

some codewords. Due to the fact that the model has already converged on the training dataset, we
neglect the first-order term where ▽L(W) ≈ 0. Consequently, we can quantify the importance △Li

of i-th codeword by measuring the error increment in loss function upon its removal, formulated as:

△Li ≈
1

2
(ci △ si)

THii(ci △ si), (2)

where △si represent the change in the sparse coefficient associated with the i-th codeword and Hii

denotes the i-th diagonal element of the Hessian matrix. Codewords with larger Hessians exert greater
impact on overall perturbation of weight representation, while those with smaller Hessians permit
safe coefficient pruning with minimal error increments. Therefore, the Hessian matrix can reflect the
sensitivity of quantization for each weight, and the sum of this matrix is defined as weight salience.
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Specifically, the Hessian matrix H ∈ Rdi×di is computed as H = 2
n

∑n
i=1 XiX

T
i for the layer-wise

reconstruction problem, where X ∈ Rdi×n represents a n samples calibration set to simulate realistic
data distributions. By calculating the weight salience, we can flexibly assign the optimal codeword
number for all weights with negligible complexity overhead to reduce information loss.

3.3 HIERARCHICAL CODEWORD SELECTION FOR OPTIMAL SPARSE REPRESENTATION

After assigning a flexible codeword number for each weight group, we further identify the most
representative codewords that facilitate an optimal sparse linear combination to mitigate the perfor-
mance degradation. Our goal is to select sparse codewords set C

′
from an extremely large codebook

C. Directly optimize sparse coding coefficients in equation 1 would be NP-hard due to the large
number of parameters involved in LVLMs. On the contrary, we propose hierarchical codeword search
algorithm, which consists of a high-level candidate search to select representative subset followed by
a low-level subset refinement for optimal codeword selection. This hierarchical approach effectively
overcomes the limitations posed by a large parameter count while generating fine-grained sparse
coding coefficients to accurately approximate model weights.

High-level candidate search. To deal with the extreme search cost in optimizing total codebook
with coefficients for each weight group, we first select the potential codeword subsets with the most
similarity to each weight group with fixed coefficients si to reduce the search space. The weight
metric Ŵ is appropriately represented with the selected subsets C

′

s ∈ C which contains most weight
feature while removing most of the redundancy. This subset is composed of a selection of candidate
codewords from an extreme large codebook that are particularly effective at reducing discretization
error and the similarity Sk

ci
between reconstruction errors △Ŵk−1 of the group weight in k-th

iteration and the i-th codeword ci ∈ C can be represent with cosine similarity as follows:

Sk
ci

= argmax
ci /∈C

′
k−1

ci · △Ŵk−1

∥ci∥
∥∥∥△Ŵk−1

∥∥∥ , (3)

where ∥·∥ represent calculating L2 norm and C
′

k−1 is the selected codeword subset in k-th iteration.
After selecting the most representative codeword, the codeword coefficient is further initialized with
the optimization of weight reconstruction errors in equation 1:

△Ŵk−1 = argmin
{sk−1}k−1

i=1

∥W −
k−1∑
i=1

c
′

isi,k−1∥22, (4)

where si,k−1 represent the coefficients corresponding to i-th codewords c
′

i ∈ C
′

k−1 in selected k-th
subset. By iteratively computing the similarity between codewords and the weights, we identify
the codeword combination that exhibits the optimal alignment with the weights. With the highest
degree of correlation, the selected subsets effectively reduce the search space while maintaining the
information gain of the codebook. By focusing on a group of high-quality candidates, this method
reduces the quantization error and the candidate search space for subsequent stages to ensure that the
algorithm can achieve a more accurate and efficient quantization outcome.

Low-level subset refinement. As the previous stage narrows down potential codeword subsets with
minimal quantization errors, the low-level subset refinement stage refines these subsets by pinpointing
the optimal codeword combinations and further optimizing codewords and sparse coding coefficients.
Since the subset remains large, we aim to retain only the small essential codewords while removing
the rest. The number of codewords in C

′
is determined by salience as described in Section 3.2.

To determine which codewords to keep, we iteratively rank them according to their impact on the
squared error between the outputs with and without each codeword. We denote the quantized weight
matrix that excludes a particular codeword cm from the subset C

′

s as △Ŵ′. The impact of removing
the codeword cm can be calculated as:

△Ŵ′X = ||cmsmX||22
= ⟨cmsmXXT , cmsm⟩F ,

(5)

where ⟨·, ·⟩F denotes the Frobenius inner product and sm denotes the m-th element of sparse code
coefficients s for this single quantization group. Therefore, we can progressively reduce the least
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Algorithm 1 SparseCodeQ Quantization
Input: LVLM model, calibration inputs X .
Output: Quantized LVLM model.

1: Optimize the vision encoder to concentrate the Hessian distributions.
2: for block in language model do
3: for layer in block do
4: Compute weight salience and initialize codebook C with K-means.
5: Perform high-level candidature search to obtain potential codeword subset C

′

s for weights.
6: Perform low-level subset refinement to refine codeword subsets.
7: end for
8: Perform block-wise fine-tuning.
9: end for

influential codewords while optimizing the codeword and corresponding coefficient processes, and
re-evaluate the importance of the remaining codewords. As a result, based on the optimization formula
in equation 4, we can obtain the optimal codeword combination that minimizes the discretization
error. The hierarchical search method we propose significantly reduces the search space for the
optimal codeword combination by retaining the majority of weight features and gradually optimizing,
resulting in a substantial reduction in discretization error.

3.4 OPTIMIZATION VISION ENCODER FOR LVLMS QUANTIZATION

Large Vision-Language Models (LVLMs) employ a vision encoder to convert visual information from
image inputs into visual embeddings that are aligned with corresponding text embeddings. Directly
deploying optimal codeword combination can reduce discretization errors but increase the memory
usage and inference speed due to the increasing codewords. Due to the substantial impact the vision
encoder has on the distribution of activations within LVLMs, optimizing the data distribution within
the vision encoder can help influence subsequent multimodal layers to achieve optimal trade-off
between discretization errors and the search cost.

In sparse coding quantization frameworks, the salience distribution modulates the scale of codeword
assignment: weight groups with larger salience adopt more complex assignment strategy, while
smaller salience groups are often allocated fewer codewords. Therefore, we aim to concentrate the
salience distribution in multimodal layers, allowing salient weight groups with complex codewords to
better capture diverse distributions while reducing computational overhead because of the decreased
codewords for aggregated weight. However, directly optimizing the salience distribution risk diverging
from the pre-trained model with optimization difficulties because numerous layers in LLaMA often
introduce conflicting supervision for the visual encoder. On the contrary, we minimize activation
entropy of the Hessian matrix in LVLMs to concentrate the salience distribution. Considering that
layers contribute differently to the overall loss function, we assign different importance weights to
the entropy minimization objectives across layers which are acquired from the matrix traces:

Lent =

n∑
k=1

∑
i

∂2L

∂X
(k)2
i

·
∑
j

p(H
(k)
ij ) log p(H

(k)
ij ), (6)

where X
(k)
r represents the quantized activation distribution in k-th layer. We apply normalization to

transform the Hessian into a probability distribution suitable for calculating the information entropy

as p(H
(k)
ij ) =

|H(k)
ij |∑

|H(k)| . The leverage of entropy polarizes the salience distribution. The Hessian
traces indicate the influence of the current layer on the quantization errors of the final output (Lopes
et al., 2021). Larger trace magnitudes represent a higher influence on the overall discretization errors,
and assigning larger weights to those layers can reduce the cross-layer dependency with fast model
convergence. Meanwhile, our objective also includes the minimization of discretization errors for the
output of the LVLM layers, which can enhance the quantization accuracy for visual representation
learning and multi-model reasoning. Finally, the overall objective for visual encoder optimization
can be written as follows:

L = Lreg + Lent + ∥W −
K∑
i=1

cisi∥22, (7)
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Method Bit SQA VizWiz VQAv2

AQLM

2.6

58.08 51.24 76.13
SDCA 59.44 51.38 76.53
+HCS 60.13 52.17 77.06
Ours 60.69 52.75 77.54

AQLM

2.2

56.19 50.76 75.67
SDCA 57.91 50.84 76.79
+HCS 59.21 51.87 76.98
Ours 59.77 52.53 77.36

Table 1: Effect of different LVLM quantization
method we proposed. We report the accuracy re-
sult for 2.6 bits and 2.2 bits of LLaVA-7B model
on ScienceQA, VizWiz, and VQA-v2 dataset.

2 3 4 5
56

58

60

62

64

66

68

70

72

Av
er

ag
e 

Ac
cu

ra
cy

 o
n 

Sc
ie

nc
eQ

A 
(%

)

7B

13B

15 20 25

7B

13B

Model Size (GiB)

SparseCodeQ
AQLM
GPTQ
Full Precision

Figure 3: The average answering accuracy on
ScienceQA dataset w.r.t. different model size
across various quantization methods for LLaVA
7B and 13B models.

where Lreg means the auto-regressive loss adopted in training original LVLM to minimize the
discrepancy of predicted and target tokens. By optimizing the visual encoder, we can obtain a
more concentrated salience distribution to reduces computational overhead because of the decreased
codewords for aggregated salient weight.

4 EXPERIMENTS

In this section, we conduct extensive experiments for LLaVA benchmarks on various multimodal
question-answering datasets including ScienceQA (Lu et al., 2022), VQA-v2 (Goyal et al., 2017),
and 6 other datasets to evaluate the effectiveness of our methods. We first conduct ablation studies
to evaluate the effectiveness of our SparseCodeQ framework. We then compare our SparseCodeQ
with the state-of-the-art quantization methods to show its superiority. Implementation details are
introduced in supplementary.

4.1 ABLATION STUDY

Since previous codebook-based methods assign the same codeword number to all weights ignoring
the significant variance of weight salience, we flexibly assign multiple numbers of codewords and
select optimal linear combination of codewords for each weight. We conduct our calibration datasets
to fine-tune quantized models and demonstrate the effectiveness of the proposed methods.

Performance w.r.t. different methods we proposed in question answering process: In order
to investigate the effectiveness of different methods we proposed in SparseCodeQ framework, we
conduct an ablation study on various question answering datasets. Table 1 illustrates the answering
accuracy for our method under different bitwidth for LLaVA-7B model. As observed in the second
rows, the adaptive Salience-Driven Codeword Allocation (SDCA) module plays a critical role in
the final performance, as it enables the optimal trade-off between quantization errors and the search
cost by allocating an appropriate number of codewords to each weight. However, a fundamental
limitation of the SDCA method arises from its static sparse representation of codewords during the
fine-tuning while the optimal sparse linear combination for each weight evolves. As a result, SDCA
inevitably selects a suboptimal codeword combination that compromises overall performance. On the
contrary, our Hierarchical Codeword Selection (HCS) method dynamically selects the optimal sparse
linear combination of codewords in a hierarchical manner. The high-level candidate search selects
codeword subsets with minimal quantization errors, while the low-level subset refinement discovers
the optimal codeword combination during fine-tuning. The fine-grained quantization function search
further enhances the performance in the third rows. Moreover, Visual encoder optimization (VEO)
also significantly modifies the distribution of the Hessian metrics in LVLMs for fine-grained search
space allocation so that precise discretization function can be acquired with further reduction of
search cost. We also evaluate the fine-tuned vision encoder with FP language model in LLaVA-7B,
demonstrating no obvious improvement without concentrated Hessian distribution (67.41 vs. 67.36).

Performance w.r.t. different codeword selection methods: Table 2 shows the bitwidth setting,
quantization errors, and accuracy on ScienceQA dataset. We analyze the impact of various codeword
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Method Bit Errors Accuracy
SDCA+Random 2.6 0.040 58.50

SDCA+OMP 2.6 0.038 59.44
SDCA+HCS 2.6 0.031 60.13

Table 2: Effect of different codeword selec-
tion method. We report the accuracy result of
LLaVA-7B model on ScienceQA dataset.

Method Bit Memory Speed Accuracy
FP 16 14.4GB 19.8 tok/s 67.41

AQLM 2.6 3.4GB 28.9 tok/s 58.08
Ours 2.6 4.0GB 26.0 tok/s 60.69

Table 3: BitWidth, Memory usage, Inference speed,
and Accuracy for LLaVA-v1.5-7B on ScienceQA
dataset, used to evaluate the efficiency.

Method BitWidth
Subject Context Modality

Average
NAT SOC LAN TXT IMG NO

L
L

aV
A

-7
B

FP 16 bit 65.63 70.64 68.45 66.18 65.49 67.46 67.41
GPTQ 3 bit 56.97 58.83 54.82 57.14 58.70 54.22 56.80
AQLM 2.6 bit 56.84 60.85 58.36 57.58 57.86 57.14 58.08

SparseCodeQ 2.6 bit 59.72 60.85 62.55 59.92 58.21 61.46 60.69
GPTQ 2 bit 3.42 2.47 4.00 3.37 3.47 3.69 3.37
AQLM 2.2 bit 54.71 56.47 59.00 55.38 55.28 56.17 56.19

SparseCodeQ 2.2 bit 59.24 61.98 59.09 59.38 59.49 58.89 59.77

L
L

aV
A

-1
3B

FP 16 bit 70.29 76.94 71.90 69.99 70.15 72.82 72.10
GPTQ 3 bit 64.83 64.79 63.45 65.05 61.68 64.39 64.47
AQLM 2.6 bit 67.72 68.62 64.73 66.23 67.63 65.99 67.13

SparseCodeQ 2.6bit 69.40 72.55 68.81 68.23 67.77 69.47 69.91
GPTQ 2 bit 7.28 3.26 14.27 7.38 2.63 13.31 8.25
AQLM 2.2 bit 65.59 67.94 64.73 65.15 64.45 64.88 65.85

SparseCodeQ 2.2 bit 68.07 69.29 65.91 67.06 65.64 66.69 67.77

Table 4: Comparisons with the state-of-the-arts quantization methods for LLaVA-v1.5-7B and
LLaVA-v1.5-13B models. Accuracy of visual question-answering task on ScienceQA dataset have
been presented. Question classes: NAT = natural science, SOC = social science, LAN = language
science, TXT = text context, IMG = image context, NO = no context.

selection strategies on model performance by constructing several variants of our approach. These
include selecting codewords through random selection, Orthogonal Matching Pursuit (OMP) (Tropp
& Gilbert, 2007), and our proposed HCS method. Random selection performs the worst as the chosen
codeword combinations fail to represent the weight matrix effectively. OMP improves upon this by
selecting codewords that approximate the original weights, though it does not explicitly minimize
output error. In contrast, our HCS method adaptively selects the optimal sparse linear combination of
codewords to reduce the output error, leading to improved accuracy.

4.2 COMPARISON WITH THE STATE-OF-THE-ART METHODS

In this section, we compare our results with state-of-the-art quantization methods: GPTQ (Frantar
et al., 2022) and AQLM (Egiazarian et al., 2024). To conduct the baseline method for LVLMs, we
introduce AQLM with randomly assigned codeword number for sparse coding quantization and
leverage OMP for codeword selection, maintaining consistent bitwidth setting between AQLM and
SparseCodeQ for fair comparison and demonstrating the superiority of salience-driven sparse coding
quantization. The answering accuracy of the baseline methods is obtained by implementing the
officially released code.

Table 4 presents the comparison of top-1 accuracy of different quantization methods across various
LVLMs architectures including LLaVA-v1.5-7B and 13B, where bitwidths of weights for quantized
layers are set from 2.2 to 2.6. GPTQ updates the quantization function using the second-order
information to mitigate the quantization errors, while accumulating quantization errors due to the
severely limited range of weight representation in scalar quantization methods, leading to significant
degradation under extreme low bitwidth such as 2 bits. AQLM represents weight groups using full-
precision codebooks with linear combinations to effectively reduce quantization errors and maintain
model performance under low bitwidth constraints. However, ignoring the optimal sparse linear

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Method BitWidth GQA VizWiz VQAv2 MMB MME VQAT POPE

L
L

aV
A

-7
B

FP - 61.96 49.87 78.50 64.30 1508.24 58.22 85.90
GPTQ 3bit 57.13 50.27 75.77 58.24 1406.54 52.97 83.64
AQLM 2.6bit 57.49 51.24 76.13 58.54 1349.24 52.67 83.83

SparseCodeQ 2.6bit 58.52 52.75 77.54 59.70 1410.36 54.46 85.41
GPTQ 2bit 8.40 2.64 14.40 3.18 289.98 2.18 51.62
AQLM 2.2bit 57.10 50.76 75.67 58.02 1302.67 52.04 83.64

SparseCodeQ 2.2bit 58.36 52.53 77.36 59.35 1400.33 53.05 84.76

L
L

aV
A

-1
3B

FP - 63.27 53.63 79.94 67.47 1527.68 61.22 85.90
GPTQ 3bit 61.94 55.55 78.66 61.17 1429.91 57.19 84.46
AQLM 2.6bit 61.89 55.87 78.43 65.89 1458.07 58.59 84.70

SparseCodeQ 2.6bit 62.41 56.54 79.36 66.40 1504.67 59.81 85.76
GPTQ 2bit 10.13 0.28 11.96 5.15 264.04 4.80 55.46
AQLM 2.2bit 61.54 54.53 78.01 65.46 1430.83 58.45 84.36

SparseCodeQ 2.2bit 62.17 56.32 79.24 65.97 1478.36 59.36 85.36

Table 5: Comparisons with the SOTA quantization methods for LLaVA-v1.5 models on VQA datasets
across bitwidth setting. "FP" stands for full-precision model and the performance of full-precision
models in downstream datasets is provided as baseline. MMB: MMBench; VQAT: TextVQA.

combination of codewords leads to suboptimal codeword selection and potential overfitting to the
calibration set. On the other hand, our SparseCodeQ adaptively assigns codewords to each weight
while hierarchically searching the optimal sparse linear combination of codewords, which significantly
minimizes quantization errors and ensures optimal weight representation, and further optimizes the
visual encoder to concentrate salience distribution for fine-grained compression while reducing
search costs and further improve the model performance. As a result, our method outperforms
AQLM by 3.85 (59.77 vs. 56.19) for answering accuracy in ScienceQA dataset under 2.2 bits
in LLaVA-7B model. The superiority of our method becomes even more pronounced for 2.2-bit
LVLMs, where quantization errors and accurate weight group representation play a more crucial
role in low-capacity networks. Figure 3 illustrates the average answering accuracy in ScienceQA
dataset for different quantization methods with the model size. Our SparseCodeQ reserve the optimal
generation performance, while compressing the model size by 5.58x (4.33GB vs. 24.19GB) than
13B full-percision models. Furthermore, to evaluate the practical memory efficiency and inference
acceleration achieved by our quantization method, we deployed the quantized 2.6-bit LLaVA-v1.5-7B
model on a single NVIDIA RTX 3090 GPU shown in Table 3, where our SparseCodeQ demonstrates
remarkable reduction in memory consumption for 3.60x (4.0GB vs. 14.4GB) and accelerate the
inference speed for 1.31x (26.0 token/s vs. 19.8 token/s). Additionally, we evaluate our method
on 7 visual question-answering (VQA) datasets using different models to verify the generalization
capability. Table 5 presents the accuracy or answering scores of various quantization methods for
LVLMs across multiple VQA benchmarks. Our method consistently achieves the highest accuracy
across different datasets, demonstrating its robust performance across diverse downstream tasks.

5 CONCLUSION

In this paper, we have presented an extreme sparse coding quantization framework of 2-bit large
vision-language models for efficient multimodal reasoning. Different from conventional codebook-
based quantization methods which ignore the significant variance of weight salience and assign the
same codeword number to all weights, we adaptively select the optimal sparse linear combinations
of codewords for each weight to mitigate the performance degradation with negligible complexity
overhead. Salience-driven codeword allocation and hierarchically codeword searching efficiently
optimize the sparse representation. The high-level candidate search selects codeword subsets with
minimal quantization errors while the low-level subset refinement discovers the fine-grained codeword
combination. Optimization of the visual encoder concentrates the weight salience distribution to
reduce computational overhead due to the decreased codewords for aggregated salient weights.
Extensive experiments demonstrate that our methods outperform the state-of-the-art quantization
methods across various multi-modal architectures.
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Reproducibility statement: We provide detailed methodological descriptions and implementation
details in the main text and supplementary material to support reproducibility. We further commit
that our code will be publicly released upon acceptance of this paper.
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A IMPLEMENTATION DETAILS

In this work, we leverage a large vision-language framework to perform model quantization on
LLaVA (Liu et al., 2024a), utilizing its pre-trained weights to support multimodal question-answering
tasks. We deploy our SparseCodeQ for 8 multimodal answer reasoning datasets including Sci-
enceQA (Lu et al., 2022), GQA (Hudson & Manning, 2019), VizWiz (Gurari et al., 2018), VQA-
v2 (Goyal et al., 2017), MM-Bench (Liu et al., 2024c), MME (Fu et al., 2024), TextVQA (Singh
et al., 2019) and POPE (Li et al., 2023b). Our quantization approach targets various quality-efficiency
trade-offs by setting the bitwidth of quantized weights to 2.6 bits and 2.2 bits in separate experimental
configurations.

In practice, instead of splitting the weight matrix into rows, we divide the weight matrix W into a
collection of smaller weight groups by partitioning each row of weights into groups of g consecutive
elements in AQLM (Egiazarian et al., 2024), denoted as {wi}Gi=1. This allows each group of weights
to be mapped to a compact codeword from a codebook rather than quantizing the entire weight
matrix at once, where wi ∈ Rg×1 is the i-th weight group and G represents the total number of these
groups. By partitioning high-dimensional weight tensors into smaller groups, we effectively reduce
both codebook size and search complexity while maintaining high quantization accuracy through
delicately designed quantization function. For the 2.6-bit configuration, we use a codebook of size
K = 216 with a group size g = 8, allowing for a higher precision in weight representation. For the
2.2-bit configuration, we employ a slightly smaller codebook of size K = 215 while keeping the
group size constant at g = 8, aiming for improved computational efficiency. We set the maximum
codeword number to 3 for all weights to achieve satisfying trade-offs between the discretization errors
and the search cost. We followed the initialization of the quantization function parameters in AQLM
for the baseline methods and our SparseCodeQ. The quantization function parameters were updated
for 10 epochs in searching process, and the acquired discretization function was directly employed
for multimodal question answering.

To further optimize the model’s vision encoder, we use the CC-3M Concept-balanced dataset (Liu
et al., 2024a), which consists of 595K images with rich and balanced visual concepts to ensure
diverse visual inputs. Additionally, we conduct a calibration dataset specifically for quantizing and
fine-tuning the quantized model. This dataset includes 1024 text-only sequences sampled from the
RedPajama dataset (Computer, 2023), each containing 4096 tokens, and 64 image-text sequences
from the CC-3M Concept-balanced dataset. To match the token length, we extend the text portion of
each image-text sequence to 4096 tokens using GPT-4 (Achiam et al., 2023). This calibration setup
ensures the quantized model is well-adapted to both text-only and multimodal inputs across sequence
lengths and varied visual contexts. During fine-tuning, we adopt the Adam optimizer with a learning
rate of 0.0001 to optimize the model parameters effectively.

B PERFORMANCE ON MORE BASELINE METHODS AND DIFFERENT LVLMS
ARCHITECTURES

We first conduct experiments on more baseline methods includes AWQ (Lin et al., 2023) and
QTIP (Tseng et al., 2024b) in LLaVA-v1.5-7B model on ScienceQA dataset under different bitwidth
setting. AWQ is a post-training quantization (PTQ) method that identifies the optimal scale to
protect the salient weight channels and decrease the quantization errors for weight quantization.
However, it suffers from unbearable quantization errors and accuracy drop under extreme low-
bitwidth due to constrained numerical precision with severe information loss. QTIP improves
codebook search efficiency through trellis-coded quantization and a hardware-efficient design based
on Gaussian codes, while incurring compromise quantization accuracy due to the absence of additional
information injection for feature representation. Moreover, neither method addresses the distributional
discrepancies between vision and language modalities in multi-modal models, resulting in coarse
quantization function design with severe quantization errors. On the contrary, our framework achieves
optimal codeword combination for weight feature representation through adaptive salience-driven
codeword allocation and hierarchical codeword selection methods. Furthermore, we optimize vision
encoder to concentrate the data distribution within vision modality for better consistency of vision-
language feature spaces. As a result, our method outperforms QTIP by 2.76 (60.69 vs. 57.93), with
the advantage becoming even more pronounced under 2.2-bit quantization where accurate weight
representation plays a more critical role in low-capacity networks.
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Method BitWidth
Subject Context Modality

Average
NAT SOC LAN TXT IMG NO

L
L

aV
A

-7
B

FP 16 bit 65.63 70.64 68.45 66.18 65.49 67.46 67.41
AWQ 3bit 58.68 60.49 62.82 58.91 57.26 60.75 60.13
QTIP 2.6 bit 56.41 60.17 57.96 56.48 55.36 59.32 57.93

SparseCodeQ 2.6 bit 59.72 60.85 62.55 59.92 58.21 61.46 60.69
AWQ 2bit 2.67 5.32 4.76 3.76 4.17 4.96 3.74
QTIP 2.2 bit 55.23 57.53 58.63 57.34 56.03 58.01 56.73

SparseCodeQ 2.2 bit 59.24 61.98 59.09 59.38 59.49 58.89 59.77

Ti
ny

L
L

aV
A

-3
B FP 16 bit 78.86 76.94 70.91 78.25 73.97 72.47 76.40

AQLM 3.0 bit 55.15 52.90 53.10 56.35 54.60 51.76 54.12
SparseCodeQ 3.0 bit 61.50 57.98 57.34 61.51 59.66 56.71 59.66

AQLM 2.2 bit 42.27 28.88 48.33 42.72 38.26 45.00 41.81
SparseCodeQ 2.2 bit 44.77 30.55 50.08 45.38 40.04 47.04 42.77

Q
w

en
2.

5-
V

L
-3

B FP 16 bit 82.37 81.78 76.55 80.55 80.42 77.91 80.74
AQLM 3.0 bit 55.73 62.54 53.62 53.27 59.17 58.96 58.37

SparseCodeQ 3.0 bit 59.68 67.49 62.82 58.74 63.58 60.51 62.13
AQLM 2.2 bit 47.38 38.13 38.82 48.18 44.58 40.67 43.81

SparseCodeQ 2.2 bit 52.22 49.41 49.27 53.17 51.23 45.41 50.91

Table 6: Comparisons with the state-of-the-arts quantization methods for TinyLLaVA-3B and
Qwen2.5-VL-3B model. Accuracy of visual question-answering task on ScienceQA dataset have
been presented. Question classes: NAT = natural science, SOC = social science, LAN = language
science, TXT = text context, IMG = image context, NO = no context.

We further explore our quantization results with AQLM on different large vision-language models
(LVLMs) architectures, using TinyLLaVA-Qwen2.5-3B (Zhou et al., 2024) and Qwen2.5-VL-3B
(Bai et al., 2025) as a representative case study. Table 6 presents the top-1 accuracy results on Sci-
enceQA dataset across various bitwidth settings. SparseCodeQ designed in LLaVA-like architectures
can be effectively adapted to window-attention based VLMs with stronger connection between the
image and text due to the consistent core mechanism of window-attention and the robust multi-
modal alignment capabilities pre-trained on large-scale vision-language pairs. Since Qwen2.5-VL
is a window-attention based VLM, exploiting salience-driven codeword allocation and hierarchical
codeword selection for optimal codeword combination remain suitable. Notably, the 3B-scale models
becomes more sensitive for quantization than 7B-scale models, and AQLM encounters significant
accuracy drop due to suboptimal codeword selection. On the contrary, our SparseCodeQ construct
optimal sparse linear combination of codewords for weight group representation with reduced quanti-
zation errors. As a result, our method outperforms AQLM by 5.54 (59.66 vs. 54.12) for answering
accuracy in ScienceQA dataset under 3 bits in TinyLLaVA-3B model. These results underscore
the robustness and generalizability of our approach across different tasks, model architectures and
datasets, demonstrating its effectiveness in diverse scenarios.

C LIMITATION

Although codebook-based quantization methods significantly reduce model size and memory usage
for large models, achieving outstanding performance compared to post-training quantization (PTQ)
under extreme bitwidth, they encounter modest increase for latency due to increased computational
complexity in matrix multiplication operations required for weight reconstruction during inference.

D LLM USAGE STATEMENT

Large Language Models (LLMs) were used for language polishing in this work. The authors take full
responsibility for the content and results presented.
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