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Abstract

Warm-starting neural network training by initializing networks with previously
learned weights is appealing, as practical neural networks are often deployed under
a continuous influx of new data. However, it often leads to loss of plasticity, where
the network loses its ability to learn new information, resulting in worse generaliza-
tion than training from scratch. This occurs even under stationary data distributions,
and its underlying mechanism is poorly understood. We develop a framework emu-
lating real-world neural network training and identify noise memorization as the
primary cause of plasticity loss when warm-starting on stationary data. Motivated
by this, we propose Direction-Aware SHrinking (DASH), a method aiming to
mitigate plasticity loss by selectively forgetting memorized noise while preserv-
ing learned features. We validate our approach on vision tasks, demonstrating
improvements in test accuracy and training efficiency.1 2

1 Introduction

When training a neural network on a gradually changing dataset, the model tends to lose its plasticity,
which refers to the model’s ability to adapt to new information (Dohare et al., 2021; Lyle et al., 2023b;
Nikishin et al., 2022). This phenomenon is particularly relevant in scenarios with non-stationary data
distributions, such as reinforcement learning (Igl et al., 2020; Nikishin et al., 2022) and continual
learning (Chen et al., 2023; Kumar et al., 2023; Wu et al., 2021). While requiring to overwrite outdated
knowledge as the environment changes, models overfitted to previously encountered environments
often struggle to cumulate new information, which in turn leads to reduced generalization performance
(Lyle et al., 2023b). Under this viewpoint, various efforts have been made to mitigate the loss of
plasticity, such as resetting layers (Nikishin et al., 2022), regularizing weights (Kumar et al., 2023),
and modifying architectures (Lee et al., 2023; Lyle et al., 2023a; Nikishin et al., 2023).

Perhaps surprisingly, a similar phenomenon occurs in supervised learning settings, even where new
data points sampled from a stationary data distribution are added to the dataset during training.
It is counterintuitive, as one would expect advantages in both generalization performance and
computational efficiency when we warm-start from a model pre-trained on data points of the same
distribution. For a particular example, when a model is pre-trained using a portion of a dataset
and then we resume the training with the whole dataset, the generalization performance is often
worse than a model trained from scratch (i.e., cold-start), despite achieving similar training accuracy
(Ash and Adams, 2020; Berariu et al., 2021; Igl et al., 2020). Liu et al. (2020) report a similar
observation: training neural networks with random labels leads to a spurious local minimum which
is challenging to escape from, even when retraining with a correctly labeled dataset. Interestingly,
Igl et al. (2020) found that pre-training with random labels followed by the corrected dataset yields

∗Authors contributed equally to this paper.
1The NVIDIA GPU implementation can be found on github.com/baekrok/DASH.
2For the Intel Gaudi implementation, visit: github.com/NAVER-INTEL-Co-Lab/gaudi-dash.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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Figure 1: Performance comparison of various methods on Tiny-ImageNet using ResNet-18. The
same hyperparameters are used across all methods. The dataset is divided into 50 chunks, with a
constant number of data points added to the training dataset in each experiment (x-axis), reaching the
full dataset at the 50th experiment. Models are trained until achieving 99.9% train accuracy before
proceeding to the next experiment; the plot on the right reports the number of update steps executed
in each experiment. Results are averaged over three random seeds. “Cold” refers to cold-starting
and “Warm” refers to warm-starting. The Shrink & Perturb (S&P) method involves shrinking the
model weights by a constant factor and adding noise (Ash and Adams, 2020). Notably, DASH, our
proposed method, achieves better generalization performance compared to both training from scratch
and S&P, while requiring fewer steps to converge.

better generalization performance than pre-training with a small portion of the (correctly labeled)
dataset and then training with the full, unaltered dataset. It is striking that warm-starting leads to such
a severe loss of performance, even worse than that of a cold-started model or a model re-trained from
parameters pre-trained with random labels, despite the stationarity of the data distribution.

These counterintuitive results prompt us to investigate the underlying reasons for them. While
some studies have attempted to explain the loss of plasticity in deep neural networks (DNNs) under
non-stationarity (Lewandowski et al., 2023; Lyle et al., 2023b; Sokar et al., 2023), their empirical
explanations rely on various factors, such as model architecture, datasets, and other variables, making
it difficult to generalize the findings (Lewandowski et al., 2023; Lyle et al., 2023a). Moreover, there
is limited research that explores why warm-starting is problematic in stationary settings, highlighting
the lack of a fundamental understanding of the loss of plasticity phenomenon in both stationary and
non-stationary data distributions.

1.1 Our Contributions

In this work, we aim to explain why warm-starting leads to worse generalization compared to cold-
starting, focusing on the stationary case. We propose an abstract framework that combines the popular
feature learning framework initiated by Allen-Zhu and Li (2020) with a recent approach by Jiang et al.
(2024) that studies feature learning in a combinatorial and abstract manner. Our analysis suggests that
warm-starting leads to overfitting by memorizing noise present in the newly introduced data rather
than learning new features.

Inspired by this finding, we propose Direction-Aware SHrinking (DASH), which aims to encourage
the model to forget memorized noise without affecting previously learned features. This enables the
model to learn features that cannot be acquired through warm-starting alone, enhancing the model’s
generalization ability. We validate DASH using an expanding dataset setting, similar to the approach
in Ash and Adams (2020), employing various models, datasets, and optimizers. As an example,
Figure 1 shows promising results in terms of both test accuracy and training time.

1.2 Related Works

Loss of Plasticity. Research has aimed to understand and mitigate loss of plasticity in non-stationary
data distributions. Lewandowski et al. (2023) explain that loss of plasticity co-occurs with a reduction
in the Hessian rank of the training objective, while Sokar et al. (2023) attribute it to an increasing
number of inactive neurons during training. Lyle et al. (2023b) find that changes in the loss landscape
curvature caused by non-stationarity lead to loss of plasticity. Methods addressing this issue in
non-stationary settings include recycling dormant neurons (Sokar et al., 2023), regularizing weights
towards initial values (Kumar et al., 2023), and combining techniques (Lee et al., 2023) like layer
normalization (Ba et al., 2016), Sharpness-Aware Minimization (SAM) (Foret et al., 2020), resetting
layers (Nikishin et al., 2022), and Concatenated ReLU activation (Shang et al., 2016).
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However, these explanations and methods diverge from the behavior observed in stationary data
distributions. Techniques aimed at mitigating loss of plasticity under non-stationarity are ineffective
under stationary distributions, as shown in Appendix C.1, in line with the observations in Lee et al.
(2023). While some works study the warm-starting problem in stationary settings, they rely on
empirical observations without theoretical analysis (Achille et al., 2018; Ash and Adams, 2020;
Berariu et al., 2021). The most relevant work by Ash and Adams (2020) introduces the Shrink &
Perturb (S&P) method, which mitigates the loss of plasticity in stationary settings to some extent by
shrinking all weight vectors by a constant factor and adding noise. However, they do not explain why
this phenomenon occurs or why S&P is effective. We develop a theoretical framework explaining why
warm-starting suffers even under stationary distribution. Based on findings, we propose a method
that shrinks the weight vector in a direction-aware manner to maintain properly learned features.

Feature Learning in Neural Networks. Recent studies have investigated how training methods
and network architectures influence generalization performance, focusing on data distributions with
label-dependent features and label-independent noise (Allen-Zhu and Li, 2020; Cao et al., 2022; Deng
et al., 2023; Jelassi and Li, 2022; Oh and Yun, 2024; Zou et al., 2023). In particular, Shen et al. (2022)
examine a data distribution consisting of varying frequencies of features and large strengths of noise,
emphasizing the significance of feature frequencies in learning dynamics. Jiang et al. (2024) propose
a novel feature learning framework based on their observations in real-world scenarios, which also
involves features with different frequencies but considers the learning process as a discrete sampling
process. Our framework extends these ideas by incorporating features with varying frequencies, noise
components, and the discrete learning process while introducing a more intricate learning process
capturing the key aspects of feature learning dynamics in expanding datasets.

2 A Framework of Feature Learning

2.1 Motivation and Intuition

We present the motivation and intuition behind our framework before delving into the formal
description. Our framework captures key characteristics of image data, where the input includes both
label-relevant information (referred to as features, e.g., cat faces in cat images) and label-irrelevant
information (referred to as noise, e.g., grass in cat images). A key intuition is that minimizing training
loss involves two strategies: learning features and memorizing noise. This framework builds on
insights from Shen et al. (2022) and integrates them into a discrete learning framework. We provide
more detailed intuition on our framework, including the training process, in Appendix A.

Shen et al. (2022) consider a neural network trained on data with features of different frequencies and
noise components stronger than the features. The negative gradient of the loss for each single data
point aligns more with the noise than the features due to the larger scale of noise, making the model
more likely to memorize noise rather than learn features. However, an identical feature appears in
many data points, while noise appears only once and does not overlap across data points. Thus, if a
feature appears at a sufficiently high frequency in the dataset, the model can learn the feature. Thus,
the learning of features or noise depends on the frequency of features and the strength of the noise.

Inspired by Shen et al. (2022), we propose a novel discrete feature learning framework. This section
introduces a framework describing a single experiment, while Section 3 analyzes expanding dataset
scenarios. As our focus is on gradually expanding datasets, carrying out the (S)GD analysis over
many experiments as in Shen et al. (2022) is highly challenging. Instead, we adopt a discrete learning
process similar to Jiang et al. (2024) but propose a more intricate process reflecting key ideas from
Shen et al. (2022). In doing so, we generalize the concept of plasticity loss and analyze it without
assuming any particular hypothesis class for a more comprehensive understanding, whereas existing
works are limited to specific architectures.

2.2 Training Process

We consider a classification problem with C classes, and data are represented as (x, y) ∈ X × [C],
where X denotes the input space. A data point is associated with a combination of class-dependent
features V(x) ⊂ Sy where Sc = {vc,1, vc,2, . . . , vc,K} is the set of all features for each class c ∈ [C].
Also, every data point contains point-specific noise which is class-independent.

The model f : X → [C] sequentially learns features based on their frequency. The training process is
described by the set of learned features L ⊂ S ≜

⋃
c∈[C] Sc and the set of data points with non-zero
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gradients N ⊂ T , where T = {(xi, yi)}i∈[m] denotes a training set. The set N , representing the
data points with non-zero gradients, will be defined below. The frequency of a feature v in data points
belonging to N is denoted by

g(v; T ,N ) =
1

|T |
∑

(x,y)∈N

1(v ∈ V(x)),

where 1(·) is the indicator function, which equals 1 if the condition inside the parentheses is true and
0 otherwise. At each step of training, if L and N are given, the model chooses the most frequent
feature among the features not yet learned, i.e., arbitrarily choose v ∈ argmaxu∈S\L g (u; T ,N ).

The model decides whether to learn a selected feature v by comparing its signal strength, represented
by |T | · g(v; T ,N ), with the signal strength of noise, given by γ, which reflects the key ideas of
Shen et al. (2022). If the frequency of the selected feature v is no less than the threshold γ/|T |,
i.e., g(v; T ,N ) ≥ γ/|T |, the model learns v and adds it to its set of learned features L. The
feature learning process continues until the model reaches a point where the selected feature v has
g(v; T ,N ) < γ/|T |, indicating that the signal strength of every remaining feature is weaker than
that of noise. At this point, the feature learning process ends.

We consider a data point x to be well-classified if the model f has learned at least τ features from
V(x), i.e., |L ∩ V(x)| ≥ τ , where τ < K. In this case, we consider x to have a zero gradient,
meaning it cannot further contribute to the learning process. Throughout the feature learning process,
the set N of data points with non-zero gradients is dynamically updated as new features are learned.
At each step, when the model successfully learns a new feature, we update N by removing the data
points that satisfy |L ∩ V(x)| ≥ τ , as they become well-classified due to the newly learned feature.

If the feature learning process ends and the model has learned as many features as it can, the remaining
data points that have non-zero gradients will be memorized by fitting the random noise present in
them and will be considered to have zero gradients. This step concludes the training process. Pictorial
illustration can be found in Appendix A and a detailed algorithm of the learning process can be found
in Algorithm 2 in Appendix E.

2.3 Discussion on Training Process
In our framework, the model selects features based on their frequency in the set of unclassified data
points N . The intuition behind this approach is that features appearing more frequently in the set of
data points will have larger gradients, leading to larger updates, and we treat g(v; T ,N ) as a proxy
of the gradient for a particular feature v. As a result, the model prioritizes sequentially learning
these high-frequency features. However, if the frequency g(v; T ,N ) of a particular feature v is
not sufficiently large, such that the total occurrence of v is less than the strength of the noise, i.e.,
|T | · g(v; T ,N ) < γ, the model will struggle to learn that feature. Consequently, the model will
prioritize learning the noise over the informative features. When this situation arises, the learning
procedure becomes sub-optimal because the model fails to capture the true underlying features of the
data and instead memorizes the noise to achieve high training accuracy.

The threshold τ determines when a data point is considered well-classified and acts as a proxy for the
dataset’s complexity. A higher τ requires the model to learn more features for correct predictions,
while a lower τ allows accurate predictions with fewer learned features. Experiments in Appendix B
Figure 11 and 12 support this interpretation.
Remark 2.1. We believe our analysis can be extended to scenarios where feature strength varies
across data by treating the set of features as a multiset, where multiple instances of the same element
are allowed. The analyses in these cases are nearly identical to ours; therefore, we assume all features
have identical strengths for notational simplicity.

3 Warm-Starting versus Cold-Starting, and a New Ideal Method
3.1 Experiments with Expanding Dataset

In this section, we set up the scenario where the dataset grows after each experiment in our learning
framework, allowing us to compare warm-start, cold-start, and a new ideal method, which will be
defined later in Sections 3.3 and 3.4.

To better understand the loss of plasticity under stationary data distribution, we consider an extreme
form of stationarity where the frequency of each feature combination remains constant in each
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chunk of additional data. We investigate if the loss of plasticity can manifest even under this strong
stationarity. The detailed description of the dataset across the entire experiment is as follows:
Assumption 3.1. In each j-th experiment, we are provided with a training dataset Tj :=
{(xi,j , yi,j)}i∈[n] with n samples. For each class c ∈ [C] and each possible feature combina-
tion A ⊂ Sc, we assume that Tj contains exactly nA ≥ 1 data points with associated feature set A,
where the values of nA are independent of j. Note that

∑
c∈[C],A⊂Sc

nA = n. In the j-th experiment,
we use the cumulative dataset T1:j :=

⋃
l∈[j] Tl, the set of all training data up to the j-th experiment.

Remark 3.2. In each experiment, the feature combinations remain the same across the dataset, but
the individual data points differ. This is because each data point is associated with its specific noise,
which varies across samples. Although the underlying features are the same, the noise component of
each data point is unique. This approach ensures that the model is exposed to a diverse set of samples.

We define a technical term h(v;L) ≜ 1
n

∑
c∈[C],A⊂Sc

nA · 1 (v ∈ A ∧ |A ∩ L| < τ) to denote the
portion of data points containing v not-well-classified by feature set L. This leads to assumption:
Assumption 3.3. For any learned feature set L ⊂ S, if v1, v2 ∈ Sc for some class c ∈ [C] and
h(v1;L) = h(v2;L), then v1 = v2. Also, for any class c ∈ [C], there exists some τ distinct features
v1, . . . , vτ ∈ Sc such that g(v1; Tj , Tj), . . . , g(vτ−1; Tj , Tj) ≥ γ/n and g(vτ ; Tj , Tj) < γ/n.

This assumption leads to Lemma D.2, stating that the order in which features are learned within a class
is deterministic. This is just for simplicity of presentation and can be relaxed. The last assumption is
justified by the moderate number of data points in each chunk Tj , ensuring the existence of both τ − 1
learnable features and a non-learnable feature within a class. Throughout the following discussion,
we will proceed under the above assumptions unless otherwise specified.

Notation. We denote a model at step s of the j-th experiment as f (j,s). We denote the set of learned
features and the set of memorized data for the model f (j,s) as L(j,s) andM(j,s), respectively. We
also define the set of data points with non-zero gradients at step s of the j-th experiment as N (j,s).
We define respective versions of these sets and the model, with different initialization methods,
denoted by the subscripts (e.g., f (j,s)

warm, f (j,s)
cold , and f

(j,s)
ideal). We emphasize that each method initializes

f (j,0),L(j,0),M(j,0), and N (j,0) differently at the start of the j-th experiment.

3.2 Prediction Process and Training Time

We provide a comparison of three initialization methods based on test accuracy and training time. To
evaluate these metrics within our framework, we define the prediction process and training time.

Prediction Process. The model predicts unseen data points by comparing the learned features with
features present in a given data point x. If the overlap between the learned feature set L and the
features in x, denoted as V(x), is at least τ , i.e., |V(x) ∩ L| ≥ τ , the model correctly classifies the
data point. Otherwise, the model resorts to random guessing.

Training Time. Accurately measuring training time within our discrete learning framework is
challenging. To address this, we introduce an alternative for training time of j-th experiment: the
number of training data points with non-zero gradients at the start of j-th experiment, |N (j,0)|. This
represents the amount of “learning” required for the model to classify all data points correctly. We
empirically validated this proxy in practical scenarios, as shown in Figures 6 and 7 in Appendix B.1.
Additionally, Nakkiran et al. (2021) observe that in real-world neural network training, when other
components are fixed, the training time increases with the number of data points to learn.

3.3 Comparison Between Warm-Starting and Cold-Starting in Our Framework

Now we analyze the warm-start and cold-start initialization methods within our framework, focusing
on test accuracy and training time. We note that, by definition, L(j,0)

cold andM(j,0)
cold are both empty

sets, while L(j,0)
warm = L(j−1,sj−1)

warm andM(j,0)
warm =M(j−1,sj−1)

warm , where sj denotes the last step of j-th
experiment. Besides, we use a shorthand notation for step sj of the experiment j that we drop s if
s = sj (e.g., L(j) := L(j,sj)). For the detailed algorithms based on our learning framework, see
Algorithms 3 and 4 in Appendix E.
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In the test data, a feature combination A ⊂ Sc of data point with class c ∈ [C] appears with
probability nA/n along with data-specific noise. By Section 3.2, test accuracy for a learned set L
and training time are defined as:

ACC(L) ≜ 1− C−1
C · 1n

∑
c∈[C],A⊂Sc

nA · 1 (|A ∩ L| < τ)

T (J)
warm ≜

∑
j∈[J]

∣∣∣N (j,0)
warm

∣∣∣ , T (J)
cold ≜

∑
j∈[J]

∣∣∣N (j,0)
cold

∣∣∣
Based on these definitions, the following theorem holds:

Theorem 3.4. There exists nonempty G ⊊ S such that we always obtain L(1)
warm = L(1)

cold = G. For
all J ≥ 2, the following inequalities hold:

ACC
(
L(J)
warm

)
≤ ACC

(
L(J)
cold

)
, T (J)

warm < T
(J)
cold

Furthermore, ACC(L(J)
warm) < ACC(L(J)

cold) holds when J > γ
δn where δ ≜ max

v∈S\G
h(v;G) > 0.

Proof Idea. After the first experiment, the data points in T1 cannot further contribute to the learning
process of the warm-started model. Consequently, even when a new data chunk is provided in
subsequent experiments, the feature frequencies are too small, resulting in a weak signal strength of
features that cannot overcome the noise signal strength. As a result, the model memorizes individual
noise components of the new data points. This procedure is repeated with every experiment, causing
the learned feature set to remain the same as at the end of the first experiment. In contrast, when
receiving T1:j at once (cold-starting), the signal strength of features is large enough to overcome the
noise signal strength, allowing the model to learn many more features.

Theorem 3.4 highlights a trade-off between cold-starting and warm-starting. Regarding test accuracy,
the theorem concludes that cold-starting can achieve strictly higher accuracy than warm-starting.
However, warm-starting requires a strictly shorter training time compared to cold-starting.

Detailed proof is provided in Appendix D. Theorem 3.4 suggests that the loss of plasticity in the
incremental setting under the stationary assumption can be attributed to the noise memorization
process. A similar observation is made in real-world neural network training. It is widely believed
that during the early stages of training, neural networks primarily focus on learning features from
the dataset, and after learning these features, the model starts to memorize data points that it fails
to classify correctly using the learned features. To investigate this phenomenon, we conducted an
experiment where CIFAR-10 was divided into two chunks, each containing 50% of the training
dataset. The model was pre-trained on one chunk and then further trained on the full dataset for 300
epochs. We used three-layer MLP and ResNet-18 with SGD optimizer across 10 random seeds.

Figure 2 shows the change in the model’s performance based on the duration of pre-training. When
pre-training is stopped at a certain epoch and the model is then trained on the full dataset, test accuracy
is maintained. However, if pre-training continues beyond a specific threshold (approximately 50%
pre-training accuracy in this case), warm-starting significantly impairs the model’s performance as it
increasingly memorizes training data points. We attribute this phenomenon to the neural network’s
memorization process after learning features. This is consistent with reports of a critical learning
period where neural networks learn useful features in the early phase of learning (Achille et al.,
2018; Frankle et al., 2020; Kleinman et al., 2024), and with findings that neural networks tend to
learn features followed by memorizing noises (Arpit et al., 2017; Jiang et al., 2020). Using the same
experimental settings as in Figure 2, we tested with a large-scale dataset, ImageNet-1k, and observed
similar trends (see Figure 8 in Appendix B).
Remark 3.5. Igl et al. (2020) find that training a model on random labels followed by corrected
labels results in better generalization compared to pre-training on a subset of correctly labeled data
and then further training on the full dataset with the same distribution. Achille et al. (2018) also
observe that pre-training with slightly blurred images followed by original images yields worse test
accuracy than pre-training with random label or random noise images. These findings align with our
observations: re-training with corrected labels after random label learning “revives” gradients for
most memorized data points, enabling new feature learning. Conversely, with static distributions,
gradients for memorized data points remain suppressed, leading to learning from only a few data
points with active gradients, causing memorization.
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Figure 2: The plot shows the test accuracy (left y-axis) when the model is pretrained for varying
epochs (x-axis) and then fine-tuned on the full data, along with the pretrain accuracy (right y-axis)
plotted in brown. We trained three-layer MLP (left) and ResNet-18 (right). Each transparent line
and point corresponds to a specific random seed, and the median values are highlighted with opaque
markers and solid lines. The ‘Random’ corresponds to training from random initialization (cold-start).

3.4 An Ideal Method: Retaining Features and Forgetting Noise

In Section 3.3, we observed a trade-off between warm-starting and cold-starting. Cold-starting often
achieves better test accuracy compared to warm-starting, while warm-starting requires less time to
converge. The results suggest that neither retaining all learned information nor discarding all learned
information is ideal. To address this trade-off and get the best of both worlds, we consider an ideal
algorithm where we retain all learned features while forgetting all memorized data points. For any
experiment J ≥ 2, if we consider the ideal initialization, learned features L(J−1)

ideal are retained, and
memorized data pointsM(J−1)

ideal are reset to an empty set. Pseudo-code for this method is given in

Algorithm 5, which can be found in Appendix E. We define T
(J)
ideal ≜

∑
j∈[J]

∣∣∣N (j,0)
ideal

∣∣∣ as the training

time with the ideal method, where N (j,0)
ideal represents the set of data points having a non-zero gradient

at the initial step of the j-th experiment. Then, we have the following theorem:
Theorem 3.6. For any experiment J ≥ 2, the following holds:

ACC
(
L(J)
cold

)
= ACC

(
L(J)
ideal

)
, T (J)

warm < T
(J)
ideal < T

(J)
cold

The detailed proof is provided in Appendix D. The ideal algorithm addresses the trade-off between
cold-starting and warm-starting. We conducted an experiment to investigate the performance gap
between these initialization methods.

Synthetic Experiment. To verify our theoretical findings in more realistic scenarios, we conducted
an experiment that more closely resembles real-world settings. Instead of fixing the frequency of
each feature set, we sampled each feature’s existence from a Bernoulli distribution to construct V(x).
This ensures that the experiment is more representative of real-world scenarios. Specifically, for each
data point (x, y), we uniformly sampled y ∈ {0, 1}. From the feature set Sy corresponding to the
sampled class y, we sampled features where each feature’s existence follows a Bernoulli distribution,
1 (vy,k ∈ V(x)) ∼ Ber(pk), for all vy,k ∈ Sy. This approach allows us to model the variability in
feature occurrence that is commonly observed in real-world datasets while still maintaining the core
principles of our learning framework. We set the number of features, K = 50, with pk sampled from
a uniform distribution, U(0, 0.2). Each chunk contained 1000 data points with total 50 experiments,
with γ = 50, τ = 3. We sampled 10000 test data from the same distribution.

As shown in Figure 3, the results align with the above theorems. Random initialization, i.e. cold-
starting, and ideal initialization achieve almost identical generalization performance, outperforming
warm initialization. However, with warm initialization, the model converges faster, as evidenced
by the number of non-zero gradient data points, which serves as a proxy for training time. Ideal
initialization requires less time compared to cold-starting, which is also consistent with Theorem
3.6. Due to the sampling process in our experiment, we observe a gradual increase in the number of
learned features and test accuracy in warm-starting, mirroring real-world observations. These findings
remained robust across diverse hyperparameter settings (see Figures 9–11 in the Appendix B).
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Figure 3: Comparison of random, warm, and ideal methods across 10 random seeds (mean ± std
dev). The test accuracy (left) and the number of learned features across all classes (middle) are nearly
identical for random and ideal initializations, causing their plots to overlap. Warm initialization,
however, exhibits lower test accuracy compared to both methods. Regarding training time (right),
there is a significant gap between random and warm initialization, which the ideal method addresses.

4 DASH: Direction-Aware SHrinking

The ideal method recycles memorized training samples by forgetting noise while retaining learned
features. From now on, we shift our focus to a practical scenario: training neural networks with
real-world data. This brings up the question of whether such an ideal approach can be applied in
real-world settings. To address this, we propose our algorithm, Direction-Aware SHrinking (DASH),
which intuitively captures this idea in practical training scenarios. The outlined behavior is illustrated
in Figure 4. When new data is introduced, DASH shrinks each weight based on its alignment with the
negative gradient of the loss calculated from the training data, placing more emphasis on recent data.

If the degree of alignment is small (i.e., the cosine similarity is close to or below 0), we consider that
the weight has not learned a proper feature and shrinks it significantly to make it “forget” learned
information. This allows weights to forget memorized noises and easily change their direction. On the
other hand, if the weight and negative gradient are well-aligned (i.e., the cosine similarity is close to 1),
we consider it learned features and we shrink
the weight to a lesser degree to maintain the
learned information. This method aligns with
the intuition of the ideal method, as it allows us
to shrink weights that have not learned proper
information while retaining weights that have
learned commonly observed features.

Fe
at
ur
e

Noise

θ1

θ2

θ̃1

θ̃2

−∇θ1L(Θ; 𝒯1:j)

−∇θ2L(Θ; 𝒯1:j)

Figure 4: Illustration of DASH. We compute
the loss L with training data T1:j and obtain the
negative gradient. Then, we shrink the weights
proportionally to the cosine similarity between
the current weight θ and ∇θL, resulting in θ̃.

Algorithm 1 Direction-Aware SHrinking (DASH)

Require:
• Model fΘ with list of parameters Θ after the (j−1)-

th experiment
• Training data points T1:j
• Averaging coefficient 0 < α ≤ 1

• Threshold λ > 0

1: Initialize:
G

(0)
θ ← 0, ∀θ in Θ

2: for i in 1 : j do
3: ℓ← Loss(fΘ, Ti)
4: UΘ ← Gradient of loss ℓ
5: for θ in Θ do
6: G

(i)
θ ← (1− α)×G

(i−1)
θ + α× Uθ

7: end for
8: end for
9: for θ in Θ do

10: sθ ← CosineSimilarity
(
−G(j)

θ , θ
)

11: θ ← θ ⊙max{λ, sθ}
12: end for
13: return model fΘ, initialized for the j-th experiment

The shrinking is done per neuron, where the incoming weights are grouped into a weight vector
denoted as θ. For convolutional filters, the height and width of the kernel are flattened to form a
single weight vector θ for each pair of input and output filters. DASH has two hyperparameters: λ
and α. Hyperparameter λ is the minimum shrinkage threshold, as each weight vector is shrunk by
max{λ, cos_sim}, while α denotes the coefficient of exponential moving average of per-chunk loss
gradients. Lower α value gives more weight to previous gradients, resulting in less shrinkage. This
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is because gradients of the previously seen data usually have high cosine similarity with learned
weights; low α is advantageous for simpler datasets where preserving learned features helps. Note
that DASH is an initialization method applied only once when new data is introduced. The detailed
algorithm is presented in Algorithm 1.

We discuss our intuition regarding the connection between DASH and the spirit of the ideal method.
Generally, features from previous data are likely to reappear frequently in new data, as they are
relevant to the data class. In contrast, noise from previous data rarely reappears as it is not class-
specific and varies with each data point. As a result, the negative gradient of the loss naturally aligns
more closely with learning features rather than memorizing noise from older data. This suggests that
when neurons are aligned with its negative gradient of the loss, we can assume they have learned
important features and should not be shrunk.

To validate our intuition, we plotted the accuracy on previously learned data points a few epochs
after applying DASH in Figure 13, Appendix B. Our experiments show that DASH recovers training
accuracy on previous datasets more quickly than other methods, likely because it preserves learned
features while discarding memorized noise. As experiments progress, the growing number of learned
features allows DASH to retain more information, leading to improved training accuracy across
successive experiments. We further validate our intuition behind DASH in Figure 14 in Appendix B.

5 Experiments

5.1 Experimental Details

Our setup is similar to the one described in Ash and Adams (2020). We divided the training dataset
into 50 chunks, and at the beginning of each experiment, a chunk is added to the existing training
data. Models were considered converged and each experiment was terminated when training accuracy
reached 99.9%, aligning with our learning framework. We conducted experiments with vanilla training
i.e. without data augmentations, weight decay, learning rate schedule, etc. Appendix C.4 presents
additional results on other settings, including the state-of-the-art (SoTA) settings that include the
techniques mentioned above. We evaluated DASH on Tiny-ImageNet, CIFAR-10, CIFAR-100, and
SVHN using ResNet-18, VGG-16, and three-layer MLP architectures with batch normalization layer.
Models were trained using Stochastic Gradient Descent (SGD) and Sharpness-Aware Minimization
(SAM) (Foret et al., 2020), both with momentum.

DASH was compared against baselines (cold-starting, warm-starting, and S&P (Ash and Adams,
2020)) and methods addressing plasticity loss under non-stationarity (L2 INIT (Kumar et al., 2023)
and Reset (Nakkiran et al., 2021)). Layer normalization (Ba et al., 2016) and SAM (Foret et al.,
2020), known to mitigate plasticity loss in reinforcement learning (Lee et al., 2023), were applied to
both warm and cold-starting. Consistent hyperparameters were used across all methods, with details
provided in Appendix C.3. S&P, Reset, and DASH were applied whenever new data was introduced.
We report two metrics for both test accuracy and number of steps required for convergence: the value
from the final experiment and the average across all experiments.

5.2 Experimental Results

We first experimented with CIFAR-10 on ResNet-18 to determine if methods from previous works
for mitigating plasticity based on non-stationarity can be a solution to our incremental setting with
stationarity. Appendix C.1 shows that L2 INIT, Reset, layer normalization, and reviving dead neurons,
are not effective in our setting. Thus, we conducted the remaining experiments without these methods.
Additionally, Table 1 shows that warm-starting with SAM does not outperform cold-starting with
SAM, indicating that SAM alone is not an effective method in our case. Table 1 shows that DASH
surpasses cold-starting (Random Init) and S&P in most cases. Training times were often shorter
compared to training from scratch, and when longer, the performance gap in test accuracy was more
pronounced. Omitted results are in Tables 3-6 located in Appendix C.2. Additionally, we confirm
that DASH is computationally efficient, with details on the computation and memory overhead
comparisons provided in Appendix C.5.

We argue that S&P can cause the model to forget learned information, including important features,
due to shrinking every weight uniformly and perturbing weights. This leads to increased training
time and relatively lower test accuracy, especially in SoTA settings (see Appendix C.4.1). In contrast,
DASH addresses these issues by preserving learned features with direction-aware weight shrinkage.
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Table 1: Results of training with various datasets using ResNet-18. Bold values indicate the best
performance. For the number of steps, bold formatting is used for all methods except warm-starting.
Results are averaged across five random seeds, except for Tiny-ImageNet which uses three random
seeds. Standard deviations are provided in parentheses.

Test Acc at Number of Steps at AVG of Test Acc AVG of Number of Steps
ResNet-18 Last Experiment Last Experiment across All Experiments across All Experiments
T-ImageNet SGD SAM SGD SAM SGD SAM SGD SAM
Random Init 25.69 (0.13) 31.30 (0.09) 30237 (368) 40142 (368) 17.37 (0.06) 21.95 (0.11) 17503 (53) 22513 (74)
Warm Init 9.57 (0.24) 13.94 (0.37) 3388 (368) 5474 (0) 6.70 (0.04) 9.88 (0.21) 1785 (5) 2773 (7)
S&P 34.34 (0.48) 37.39 (0.18) 13815 (368) 26066 (1606) 25.43 (0.02) 28.47 (0.08) 7940 (15) 13172 (182)
DASH 46.11 (0.34) 49.57 (0.36) 8341 (368) 12251 (368) 33.06 (0.15) 35.93 (0.17) 4439 (48) 7900 (136)
CIFAR-10
Random Init 67.32 (0.51) 75.68 (0.39) 5161 (156) 17125 (292) 57.66 (0.11) 66.27 (0.13) 2916 (37) 8121 (26)
Warm Init 63.53 (0.56) 70.99 (0.59) 1173 (0) 3910 (247) 54.87 (0.18) 63.27 (0.55) 665 (11) 2153 (23)
S&P 81.25 (0.14) 85.53 (0.22) 5395 (625) 32649 (978) 71.74 (0.16) 76.19 (0.04) 2766 (53) 15552 (1558)
DASH 84.08 (0.52) 86.75 (0.53) 6490 (399) 11886 (2771) 75.21 (0.33) 77.59 (0.69) 3454 (55) 8689 (527)
CIFAR-100
Random Init 35.52 (0.14) 40.27 (0.31) 10557 (247) 14310 (191) 25.72 (0.11) 29.90 (0.06) 5803 (79) 7588 (54)
Warm Init 25.12 (0.59) 32.02 (0.31) 1173 (0) 2346 (0) 19.18 (0.52) 24.01 (0.33) 854 (23) 1294 (12)
S&P 50.08 (0.23) 52.95 (0.36) 4926 (191) 12277 (1226) 37.32 (0.14) 40.36 (0.18) 2929 (27) 5954 (187)
DASH 57.99 (0.28) 60.88 (0.29) 3519 (0) 11730 (1211) 43.99 (0.14) 46.15 (0.58) 2041 (51) 6675 (797)
SVHN
Random Init 86.27 (0.46) 89.84 (0.24) 5552 (156) 10869 (156) 78.01 (0.10) 83.31 (0.14) 3099 (15) 5546 (44)
Warm Init 84.01 (0.41) 88.85 (0.29) 938 (191) 1329 (191) 75.37 (0.50) 81.16 (0.54) 642 (18) 993 (15)
S&P 92.67 (0.17) 94.27 (0.07) 3597 (156) 1573 (191) 87.35 (0.14) 89.35 (0.05) 1858 (12) 5548 (94)
DASH 93.67 (0.13) 95.19 (0.09) 5161 (672) 14467 (989) 89.59 (0.07) 91.67 (0.03) 2619 (68) 8613 (728)

Theorem 3.6 shows that ideal initialization can achieve the same test accuracy as cold-starting. Yet in
practice, DASH surpasses cold-starting in test accuracy. This could be due to the difference between
the discrete learning process in our framework and the continuous learning process in real-world
neural network training. Even if features have already been learned, DASH can learn them in greater
strength compared to learning from scratch by preserving previously learned features during training.

Further insights into the applicability of DASH can be found in Appendix C.4. We evaluate DASH
in various settings beyond our original setup. In the SoTA setting, different observations are made:
DASH achieves test accuracy close to (but does not outperform) cold-starting, without requiring
additional hyperparameter tuning, which aligns more closely with our theoretical analysis. We
demonstrate DASH’s scalability on large-scale datasets such as ImageNet-1k. We also examine
two additional practical scenarios: a data-discarding setting and a situation where new data are
continuously added. In such cases, applying DASH with an interval (rather than upon every arrival of
new data) proves effective. Finally, we explore DASH’s behavior in non-stationary environments,
specifically in Class Incremental Learning (CIL) with data accumulation settings.

6 Discussion and Conclusion

In this work, we defined an abstract framework for feature learning and discovered that warm-starting
benefits from reduced training time compared to random initialization but can hurt the generalization
performance of neural networks due to the memorization of noise. Motivated by these observations,
we proposed Direction-Aware SHrinking (DASH), which shrinks weights that learned data-specific
noise while retaining weights that learned commonly appearing features. We validated DASH in
real-world model training, achieving promising results for both test accuracy and training time.

Loss of plasticity is problematic in situations where new data is continuously added daily, which
is the case in many real-world application scenarios. Our research aimed to interpret and resolve
this issue, preventing substantial waste of energy, time, and the environment. By elucidating the
loss of plasticity phenomenon in stationary data distributions, we have taken a crucial step towards
addressing challenges that may emerge in real-world AI, where the continuous influx of additional
data is inevitable.

We hope our fundamental analysis of the loss of plasticity phenomenon sheds light on understanding
this issue as well as providing a remedy. To generalize our findings to any neural network architecture,
we treated the learning process as a discrete abstract procedure and did not assume any hypothesis
class. Future research could focus on understanding the loss of plasticity phenomenon via optimization
or theoretically analyzing it in non-stationary data distributions, such as in reinforcement learning.
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A Detailed Intuition and Example of Our Framework

In this section, we provide a detailed explanation of how our theoretical framework reflects the
intuitive process of learning from image data. Our framework is designed to capture the characteristics
of image data, where the input includes both relevant information for the image labels (which we refer
to as “features” such as a cow’s ears, eyes, tail, and mouth in Figure 5a) and irrelevant information
(which we refer to as “noise” such as the sky or grass circled in red in Figure 5a). Our framework
builds on the insights from Shen et al. (2022) and incorporates them into a discrete learning model.

Each data point is associated with 
a combination of features

 x1  x2  x3  x4  x5  x6

 x6 x1

(a) Examples of data points in the feature learning framework. Data points x1 through x6 denotes each
data point composed of a combination of features (left side of the dashed line). For instance, the first data
point on the left (x1) can correspond to the features of the first cow image on the right, while the last data
point on the left (x6) can correspond to the features of the second cow image on the right. All data points
also contain data-specific noise, such as the sky or grass in the cow images, circled in red in the cow image
on the right.

If all features are not frequent enough, 
the model memorizes remaining data

Data points with sufficiently many 
learned features are well-classified

At each step, the model learns 
the most frequent feature

: Learned feature
Frequency of features evaluated 

solely on not-well-classified data points: Well-classified data

: Memorized data

(b) An illustration of our feature learning process framework. The model sequentially learns the most frequent
features from the not-well-classified data points, and if the features are insufficient to be learned properly, the
process ends by memorizing the noise. With τ = 2 and γ = 2, the model learns three features in sequence
(violet, blue, green). The remaining data point which corresponds to x6 in Figure 5a is memorized with noise.

Figure 5: An illustration of our proposed feature learning framework with single class. Each data
point is composed of features, as shown in Figure 5a, and is learned through the framework depicted
in Figure 5b.
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Before explaining the intuition of our learning framework, let us connect notation from Section 2 with
Figure 5. Figure 5 shows six data points from a single cow class, where training set T = {(xi, y)}i∈[6].
Features are denoted by their color’s first letter: violet as v, blue as b, green as g, mint as m, yellow
as y, and pink as p. The complete feature set S is therefore {v,b, g,m, y,p}. The learned feature set
L is empty at initialization, and the set of data points with non-zero gradients N ⊂ T is equal to T
at initialization. We set the data learning threshold τ = 2 and noise strength γ = 2.

Our training process is based on the idea that features which occur more frequently in the training
data are easier to learn, as the gradients tend to align more strongly with these frequent features.
Consequently, our framework is designed to learn the most frequent features in a sequential manner.
For example, a cow’s ears, shown in violet in Figure 5 would be selected first since it is the most
frequent feature:

v = argmaxc∈S\L(0) g(c; T ,N (0)) = argmaxc∈{v,b,g,m,y,p} g(c; T , T )

where L(s) and N (s) represent the learned feature set and the set of data points with non-zero
gradients, respectively, at step s. This holds because:

g(v; T ,N (0)) =
1

|T |
∑

(x,y)∈N (0)

1(v ∈ V(x)) = 5

6

> g(c; T ,N (0))

for all c ∈ {b, g,m, y,p}. Since we have set γ to 2, the feature v is learned because its frequency
is sufficiently high compared to the noise, i.e., g(v; T ,N (0)) ≥ γ/|T | = 2

6 . Also, since τ set to 2,
no data point is considered well-classified at this stage, i.e., |{v} ∩ V(xi)| < τ for all i ∈ [6]. As a
result, L(1) = {v}, N (1) = T .

In the next step, the model learns feature b in the same way. Therefore, x1, x3, and x4 are now
considered well-classified since they share two overlapping features with the learned feature set
L(2) = {v,b}. This indicates that the model accumulates enough information to accurately classify
these cow images as cows. Once the model correctly classifies data based on these features, the
influence of those data points on the learning process diminishes, as the loss gradients become smaller
as the predictions become more confident. To account for this, our framework evaluates the frequency
of features only on data points that are not yet well-classified. Therefore, the set of data points
with non-zero gradients is now updated to N (2) = {(xi, y)}i∈{2,5,6}. Subsequently, we compute
the gradient proxy g(c; T ,N (2)) using only the data points in N (2). In the third step, considering
the features included in {x2,x5,x6}, we get that the feature g is the most frequent among those in
S \ L(2), and the feature meets the threshold for learning. Hence, the feature g is newly learned,
leading us to L(3) = {v,b, g} and N (3) = {(x6, y)}.
As training progresses, the algorithm may reach a point where the remaining features in the not-well-
classified data points are too infrequent to be learned effectively. At this point, the noise in each data
point has a faster learning speed, which leads the model to memorize noise instead of learning the
features to achieve 100% training accuracy. In the example described in Figure 5, at the fourth step,
the remaining feature m in x6 does not meet the threshold: g(m; T ,N (3)) = 1/6 < γ/|T |, so the
model is unable to learn feature m. Consequently, the model shifts to memorizing the noise in the
remaining data point x6 and completes training by memorizing the noise.
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B Connection Between Our Framework and Practical Scenarios

This section demonstrates how our theoretical framework relates to real-world scenarios. Section B.1
presents real-world experimental evidence supporting our theoretical framework. Section B.2 explores
the robustness of our synthetic experiments across various hyperparameters. Finally, Section B.3
provides empirical validation of the key intuitions behind DASH.

B.1 Justification of Our Framework

Figure 6 shows that the initial gradient norm of training data, |N (j,0)|, can be a proxy for the training
time until convergence. As the initial gradient norm increases, the number of steps required for
convergence also increases. While this figure uses the gradient norm instead of the number of non-zero
gradient data points due to the continuous nature of real-world neural network training, we believe it
resembles the behavior of non-zero gradient data points. Additionally, Figure 7 demonstrates that the
number of steps required for convergence increases as the number of data points increases in various
datasets.
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Figure 6: Trained on ResNet-18 with five random seeds, where CIFAR-10 is divided into 50 chunks
and incrementally increased by adding new chunks at each experiment. Each point represents an
individual experiment. The gradient norm is used as a proxy for the number of non-zero gradient
data points, which in turn serves as a proxy for the training time. A larger gradient norm indicates the
model needs to learn more features or memorize more data points to correctly classify all training
data points.
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Figure 7: Figure trained on ResNet-18 with three random seeds. The dataset is divided into 50 chunks,
and new chunks are incrementally added for each experiment. The number of steps required for
convergence increases with the amount of data when training a cold-started neural network, which is
a standard training.

We also investigate the effect of the pretrain epoch on warm-starting in ImageNet-1k classification
with ResNet18, similar to the setup in Figure 2 in Section 3.3. We conducted experiments using
different pretrain epochs: 30, 50, 70, and 150. Figure shows a declining trend in accuracy for
warm-started models as pretrain epoch increases. Interestingly, we noted a similar phenomenon in
Figure 2 in Section 3.3, where warm-starting does not negatively impact test accuracy when training
resumes from earlier pretrained epochs, such as 30 in this case. This observation aligns with our
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theoretical framework, which suggests that neural networks tend to learn meaningful features first
and then begin to memorize noise later. We believe this phenomenon is persistent across different
datasets, model architectures, and optimizers.
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Figure 8: Effect of pretraining epochs on warm-starting with the large-scale ImageNet-1k dataset
using ResNet-18. The plots to the left of the dashed line represent the pretraining results, and the
dotted lines indicate the starting points for each pretraining run. Test accuracy declines as the number
of pretraining epochs increases, particularly beyond 50 epochs, which aligns with the observations in
Figure 2 in Section 3.3.

B.2 Further Results on Warm-starting vs. Cold-starting

We conducted synthetic experiments across a wide range of hyperparameters. Figure ‘9 uses the same
setup as Section 3.4 but varies numbers of classes, C. Figure 10 investigates varying noise signal
strengths, γ, while Figure 11 explores different values of τ . These results align with our findings
from Theorems 3.4 and 3.6.
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of classes (C). Experiments were conducted with 10 random seeds. The trend observed in Figure 3
persists across different values of C.

As stated in Section 2, we posited that τ could serve as a proxy for dataset complexity. Figure 11
shows that as τ increases, the threshold for considering a data point well-classified also increases,
making it more difficult to correctly predict unseen data points. This difficulty is particularly
pronounced for warm-starting, leading to a widening gap between the random initialization and
warm initialization methods. Additionally, this phenomenon is observed in real-world neural network
training, as depicted in Figure 12. For datasets with higher complexity (from left to right), the gap
between the two initialization methods widens, exhibiting the same trend as an increasing τ .
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of the noise, γ. Experiments were conducted with 10 random seeds. The trend observed in Figure 3
persists across different values of γ.
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for a data point is considered well-classified (τ ). Experiments were conducted with 10 random seeds.
The trend observed in Figure 3 persists across different values of τ .
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Figure 12: The same hyperparameters are used described in Section 5.1 with three random seeds. The
gap in test accuracy between the two initialization methods increases as dataset complexity increases.
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B.3 Experiments Supporting the Intuition behind DASH

To validate whether previously learned/memorized data points do not have large gradients when
further trained with a combined dataset (existing + newly introduced data) using warm-starting,
we plotted the train accuracy on the previous dataset for the first few epochs. Using ResNet-18 on
CIFAR-10 (Figure 13), we found that warm-starting preserves performance on previously learned
data even when training continues with combined datasets, supporting the main idea of Theorem 3.4.

To verify whether DASH truly captures our intuitions from the ideal algorithms, we conducted an
experiment using CIFAR-10 trained on ResNet-18, with the same experimental settings. Figure 13
demonstrates that when applying DASH, the train accuracy on previous datasets increases more
rapidly after a few epochs compared to other methods. We argue that this behavior stems from our
algorithm’s ability to forget memorized noise while preserving learned features. As the number of
experiments increases, the number of learned features also grows. For a fair comparison, we used
λ = 0.05 for DASH, and when performing S&P and shrink, we shrank each weight by multiplying
0.05. In the case of S&P, after shrinking, we added noise sampled from N (0, 0.012).
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Figure 13: The results are averaged over 10 random seeds. The x-axis represents the number of
experiments, while the y-axis represents the training accuracy on previous datasets. Warm-starting can
retain previously learned data points when further trained with an incremented dataset. Additionally,
DASH, plotted in green, can retain more information compared to other methods.

We further validate our intuition that cosine similarity between the negative loss gradient and model
weights can indicate whether the model has indeed learned features. We trained a 3-layer CNN on
CIFAR-10, varying the size of the training dataset. We observed that the cosine similarity between
the negative gradient from the test data and the learned filters increases as the training dataset size
grows. The model trained with more data appears to learn more features, as evidenced by the rising
trend in test accuracy, shown by the dashed line in Figure 14. This suggests that cosine similarity can
capture whether the weights have learned features, which aligns with our expectations.
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Figure 14: We trained a 3-layer CNN on CIFAR-10 and plotted cosine similarity values greater than
0.1. The left y-axis (black) represents the cosine similarity between the negative loss gradient from
the training data and the model filters, while the right y-axis (green) shows the test accuracy.
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C Omitted Experimental Results

This section presents additional experimental results and their corresponding hyperparameters. Ap-
pendix C.1 examines non-stationary solutions, demonstrating their limitations in stationary settings.
The following section compares DASH against other baselines in various settings, excluding those
methods from Appendix C.1 due to their poor performance in stationary conditions. Appendix C.3
provides a comprehensive list of hyperparameters used across all experiments from Section 5, as well
as Appendix C.1 and C.2. Additionally, we validate DASH’s applicability including state-of-the-art
(SoTA) settings in Appendix C.4, and analyze computational and memory overhead in Appendix C.5.

We ran our experiments on two distinct hardware setups. The first server had an Intel Gaudi-v2 HPU
with 96GB of VRAM with four Intel Xeon Platinum 8380 40-core CPUs. The second server had an
NVIDIA A6000 GPU with 48GB of VRAM, paired with two AMD EPYC 7763 64-core CPUs. We
compared the computing performance of these two hardware setups in Appendix C.6.

Unless specified otherwise, we follow the experimental settings outlined in Section 5.1. We conducted
an experiment with an incremental training dataset comprised of 50 chunks. At the start of each
experiment, a new chunk is provided and added to the existing training dataset. Before proceeding to
the next experiment, the model is trained until achieving 99.9% train accuracy.

C.1 Methods for Non-Stationary Data Distribution Struggle in Stationary Settings

In this subsection, we describe solutions that aim to mitigate plasticity loss under non-stationarity,
which cannot remedy the loss of plasticity in an incremental setting with a stationary data distribution.
Table 2 shows L2 INIT (Kumar et al., 2023) and Reset (Nikishin et al., 2022) cannot be a solution in
our setting.

Table 2: Results of training CIFAR-10 dataset trained on various models with solutions proposed
to mitigating loss of plasticity in non-stationary data distributions. Bold values indicate the best
performance. For the number of steps, we did not provide bold formatting. Results are averaged over
three random seeds, with standard deviations provided in parentheses.

Test Acc at Number of Steps at AVG of Test Acc AVG of Number of Steps
CIFAR-10 last experiment last experiment across all experiments across all experiments
ResNet-18 SGD SAM SGD SAM SGD SAM SGD SAM
Random Init 66.75 (0.55) 75.55 (0.18) 5213 (184) 17734 (184) 57.82 (0.04) 66.19 (0.01) 2889 (24) 8100 (7)
Warm Init 64.10 (0.12) 70.56 (0.30) 1173 (0) 4040 (184) 55.11 (0.10) 62.94 (0.47) 726 (29) 2160 (11)
L2 INIT 64.24 (0.80) 70.32 (0.09) 1173 (0) 4040 (184) 55.47 (0.43) 62.55 (0.19) 648 (14) 2139 (15)
Reset 63.97 (0.45) 72.03 (0.33) 1173 (0) 17986 (1596) 55.55 (0.30) 63.40 (0.26) 976 (51) 7225 (10)

VGG-16
Random Init 84.19 (0.35) 86.64 (0.12) 21375 (1475) 37032 (1243) 75.62 (0.08) 77.01 (0.22) 12743 (280) 12509 (343)
Warm Init 78.93 (0.44) 82.04 (0.04) 1825 (184) 4692 (319) 70.62 (0.24) 74.00 (0.33) 1954 (42) 4277 (315)
L2 INIT 82.79 (0.04) 82.11 (0.19) 193936 (58167) 6126 (665) 72.11 (0.14) 73.77 (0.37) 12489 (443) 4390 (94)
Reset 78.71 (0.26) 81.88 (0.35) 1564 (0) 3910 (552) 70.45 (0.36) 73.31 (0.25) 1814 (30) 3230 (51)

MLP
Random Init 57.54 (0.31) 58.62 (0.13) 13555 (184) 19289 (184) 51.23 (0.42) 52.02 (0.24) 7516 (166) 9794 (127)
Warm Init 56.44 (0.33) 57.67 (0.45) 2346 (0) 2216 (184) 50.60 (0.41) 51.98 (0.14) 2309 (408) 1701 (34)
L2 INIT 56.38 (0.39) 58.24 (0.06) 1955 (0) 2085 (184) 50.56 (0.51) 52.15 (0.33) 2221 (423) 1604 (73)
Reset 53.82 (0.32) 56.42 (0.09) 6125 (487) 3389 (184) 48.89 (0.24) 50.70 (0.25) 5955 (740) 2465 (64)

Furthermore, applying layer normalization cannot close the gap between cold-starting and warm-
starting; rather, the gap increases, as shown in Figure 15. Also, Nikishin et al. (2022) and Sokar et al.
(2023) state that loss of plasticity in non-stationary data distributions arises from inactive neurons in
the model. However, this is not the case in our setting, as demonstrated in Figure 16.
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Figure 15: The figure shows the results of training ResNet-18 on CIFAR-10 with three random seeds.
Layer normalization (dashed lines) is applied in place of batch normalization in ResNet-18, while
solid lines represent the use of standard batch normalization. The red lines denote warm-starting, and
the blue lines denote cold-starting. The figure demonstrates that the layer normalization technique
cannot serve as a solution for plasticity loss. Moreover, the gap between warm-starting and cold-
starting performance increases when layer normalization is employed.
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Figure 16: The figure presents the results of training ResNet-18 on CIFAR-10 with three random
seeds. The presence of dead neurons is assessed after each block of ResNet-18 with training dataset,
and the analysis reveals that there are no dead neurons. This finding suggests that techniques designed
to revive dead neurons in non-stationary data distributions cannot effectively address the plasticity
loss observed in the incremental learning setting with stationary data, which is the primary focus of
our study.

C.2 Results of Experiments Across Different Datasets, Models, and Optimizers

This subsection presents our complete experimental results (Tables 3-6), following the settings
detailed in Section 5.1. We evaluated multiple approaches, including “Warm ReM” (warm-starting
with momentum reset), which also proved ineffective. We conducted comprehensive comparisons
across multiple datasets (Tiny-ImageNet, CIFAR-10, CIFAR-100, and SVHN), architectures (ResNet-
18, VGG-16, three-layer MLP), and optimizers (SGD and SGD-based SAM). The results demonstrate
that DASH consistently outperforms baseline methods - warm-starting, cold-starting, and S&P -
while often requiring less training time. Results are averaged across five random seeds, except for
Tiny-ImageNet which uses three random seeds due to its high computational cost.

21



Table 3: Average results from three training runs using various models on the Tiny-ImageNet dataset.
Test Acc at Number of Steps at AVG of Test Acc AVG of Number of Steps

T-ImageNet last experiment last experiment across all experiments across all experiments
ResNet-18 SGD SAM SGD SAM SGD SAM SGD SAM
Random Init 25.69 (0.13) 31.30 (0.09) 30237 (368) 40142 (368) 17.37 (0.06) 21.95 (0.11) 17503 (53) 22513 (74)
Warm Init 9.57 (0.24) 13.94 (0.37) 3388 (368) 5474 (0) 6.70 (0.04) 9.88 (0.21) 1785 (5) 2773 (7)
Warm ReM 9.20 (0.16) 13.71 (0.29) 3388 (368) 5474 (0) 6.67 (0.08) 9.93 (0.30) 1787 (17) 2795 (14)
S&P 34.34 (0.48) 37.39 (0.18) 13815 (368) 26066 (1606) 25.43 (0.02) 28.47 (0.08) 7940 (15) 13172 (182)
DASH 46.11 (0.34) 49.57 (0.36) 8341 (368) 12251 (368) 33.06 (0.15) 35.93 (0.17) 4439 (48) 7900 (136)

VGG-16
Random Init 40.26 (0.30) 42.41 (0.13) 92927 (8940) 29976 (664) 28.19 (0.03) 30.40 (0.04) 48878 (799) 17094 (192)
Warm Init 17.11 (0.44) 20.77 (0.32) 1955 (0) 2997 (184) 12.91 (0.18) 15.14 (0.35) 4359 (162) 2513 (13)
Warm ReM 17.51 (0.38) 20.23 (0.06) 2085 (184) 2867 (184) 12.97 (0.24) 14.87 (0.14) 4130 (99) 2472 (8)
S&P 36.56 (0.96) 38.63 (0.73) 59432 (5538) 18898 (368) 23.91 (0.09) 25.98 (0.22) 28747 (366) 10494 (45)
DASH 44.29 (0.55) 44.40 (0.19) 69989 (6215) 22938 (1329) 28.47 (0.49) 29.11 (0.73) 31864 (362) 14258 (149)

MLP
Random Init 9.12 (0.06) 9.19 (0.25) 28934 (0) 42749 (975) 6.94 (0.01) 7.22 (0.03) 13596 (35) 17871 (71)
Warm Init 7.44 (0.18) 7.74 (0.25) 4692 (0) 4952 (368) 6.18 (0.03) 6.41 (0.11) 2437 (17) 2797 (38)
Warm ReM 7.54 (0.19) 7.86 (0.08) 4431 (368) 5474 (0) 6.34 (0.04) 6.23 (0.05) 2411 (35) 2821 (36)
S&P 9.61 (0.22) 10.28 (0.25) 33365 (2879) 55782 (975) 7.27 (0.01) 7.57 (0.04) 16227 (1458) 21126 (94)
DASH 10.17 (0.19) 10.77 (0.12) 30237 (975) 47702 (638) 7.67 (0.02) 8.12 (0.03) 17743 (899) 19455 (212)

Table 4: Average results from five training runs using various models on the CIFAR-10 dataset.
Test Acc at Number of Steps at AVG of Test Acc AVG of Number of Steps

CIFAR-10 last experiment last experiment across all experiments across all experiments
ResNet-18 SGD SAM SGD SAM SGD SAM SGD SAM
Random Init 67.32 (0.51) 75.68 (0.39) 5161 (156) 17125 (292) 57.66 (0.11) 66.27 (0.13) 2916 (37) 8121 (26)
Warm Init 63.53 (0.56) 70.99 (0.59) 1173 (0) 3910 (247) 54.87 (0.18) 63.27 (0.55) 665 (11) 2153 (23)
Warm ReM 63.96 (0.64) 70.82 (0.36) 1173 (0) 3988 (292) 55.03 (0.47) 63.17 (0.60) 703 (49) 2158 (4)
S&P 81.25 (0.14) 85.53 (0.22) 5395 (625) 32649 (978) 71.74 (0.16) 76.19 (0.04) 2766 (53) 15552 (1558)
DASH 84.08 (0.52) 86.75 (0.53) 6490 (399) 11886 (2771) 75.21 (0.33) 77.59 (0.69) 3454 (55) 8689 (527)

VGG-16
Random Init 84.11 (0.32) 84.67 (0.12) 23225 (2565) 21270 (14166) 75.64 (0.16) 75.77 (1.81) 12723 (233) 9358 (4306)
Warm Init 79.01 (0.45) 82.09 (0.16) 2111 (530) 4770 (455) 70.90 (0.41) 74.03 (0.26) 1950 (34) 4180 (271)
Warm ReM 78.82 (0.32) 81.66 (0.44) 2737 (2358) 4532 (312) 71.23 (0.31) 73.43 (0.59) 2056 (111) 4051 (63)
S&P 84.96 (0.46) 88.02 (0.21) 21426 (672) 34251 (10994) 76.62 (0.16) 79.13 (0.19) 11812 (180) 14452 (751)
DASH 87.57 (0.26) 90.68 (0.26) 17008 (2150) 45668 (15184) 79.63 (0.32) 83.07 (0.20) 10171 (266) 20814 (6416)

MLP
Random Init 57.42 (0.31) 58.53 (0.55) 13528 (191) 19315 (191) 51.09 (0.37) 51.94 (0.23) 7598 (167) 9770 (113)
Warm Init 56.28 (0.42) 57.60 (0.37) 2346 (0) 2189 (191) 50.39 (0.41) 51.82 (0.23) 2195 (352) 1706 (27)
Warm ReM 56.07 (0.37) 57.71 (0.42) 2189 (191) 2111 (191) 50.25 (0.44) 51.81 (0.26) 2519 (351) 1650 (54)
S&P 57.02 (0.40) 58.19 (0.52) 6647 (428) 7038 (349) 50.87 (0.26) 51.93 (0.18) 7939 (969) 4188 (112)
DASH 57.41 (0.48) 58.60 (0.36) 6021 (681) 6021 (398) 51.20 (0.25) 52.26 (0.43) 7821 (1308) 3772 (66)

Table 5: Average results from five training runs using various models on the CIFAR-100 dataset.
Test Acc at Number of Steps at AVG of Test Acc AVG of Number of Steps

CIFAR-100 last experiment last experiment across all experiments across all experiments
ResNet-18 SGD SAM SGD SAM SGD SAM SGD SAM
Random Init 35.52 (0.14) 40.27 (0.31) 10557 (247) 14310 (191) 25.72 (0.11) 29.90 (0.06) 5803 (79) 7588 (54)
Warm Init 25.12 (0.59) 32.02 (0.31) 1173 (0) 2346 (0) 19.18 (0.52) 24.01 (0.33) 854 (23) 1294 (12)
Warm ReM 24.83 (0.61) 31.63 (0.58) 1173 (0) 2346 (0) 18.98 (0.57) 23.75 (0.41) 822 (27) 1291 (14)
S&P 50.08 (0.23) 52.95 (0.36) 4926 (191) 12277 (1226) 37.32 (0.14) 40.36 (0.18) 2929 (27) 5954 (187)
DASH 57.99 (0.28) 60.88 (0.29) 3519 (0) 11730 (1211) 43.99 (0.14) 46.15 (0.58) 2041 (51) 6675 (797)

VGG-16
Random Init 54.03 (0.45) 57.29 (2.29) 62560 (5251) 26900 (1512) 39.78 (0.11) 42.39 (1.70) 29436 (477) 18107 (1295)
Warm Init 37.14 (1.22) 39.91 (0.58) 3362 (191) 4379 (292) 28.98 (0.99) 30.07 (0.51) 4196 (216) 3482 (227)
Warm ReM 38.21 (0.81) 39.58 (0.72) 3362 (191) 3988 (156) 28.98 (0.99) 30.58 (0.49) 4196 (216) 3251 (58)
S&P 59.61 (0.43) 63.67 (0.44) 29637 (834) 11573 (635) 45.36 (0.17) 47.92 (0.18) 14329 (149) 7644 (197)
DASH 59.79 (0.28) 61.91 (1.10) 53109 (11451) 26275 (5716) 44.01 (0.34) 45.38 (0.68) 26577 (4650) 16163 (4461)

MLP
Random Init 28.25 (0.40) 29.46 (0.34) 17516 (292) 25571 (725) 22.39 (0.11) 23.53 (0.10) 13245 (2270) 12467 (301)
Warm Init 26.20 (0.34) 27.45 (0.14) 3449 (156) 3128 (247) 21.56 (0.12) 22.47 (0.07) 5461 (1089) 2793 (158)
Warm ReM 26.14 (0.26) 27.54 (0.46) 4144 (635) 3362 (191) 21.41 (0.05) 22.57 (0.11) 8422 (3059) 2866 (144)
S&P 30.12 (0.27) 30.04 (0.20) 10948 (428) 23851 (1504) 23.44 (0.13) 23.79 (0.09) 37317 (6536) 14873 (810)
DASH 30.13 (0.35) 31.22 (0.44) 16578 (635) 22052 (805) 23.42 (0.08) 24.43 (0.08) 52328 (3918) 13408 (579)
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Table 6: Average results from five training runs using various models on the SVHN dataset.
Test Acc at Number of Steps at AVG of Test Acc AVG of Number of Steps

SVHN last experiment last experiment across all experiments across all experiments
ResNet-18 SGD SAM SGD SAM SGD SAM SGD SAM
Random Init 86.27 (0.46) 89.84 (0.24) 5552 (156) 10869 (156) 78.01 (0.10) 83.31 (0.14) 3099 (15) 5546 (44)
Warm Init 84.01 (0.41) 88.85 (0.29) 938 (191) 1329 (191) 75.37 (0.50) 81.16 (0.54) 642 (18) 993 (15)
Warm ReM 83.85 (0.38) 88.75 (0.27) 782 (0) 1485 (156) 75.41 (0.85) 81.03 (0.62) 640 (6) 1006 (13)
S&P 92.67 (0.17) 94.27 (0.07) 3597 (156) 11573 (191) 87.35 (0.14) 89.35 (0.05) 1858 (12) 5548 (94)
DASH 93.67 (0.13) 95.19 (0.09) 5161 (672) 14467 (989) 89.59 (0.07) 91.67 (0.03) 2619 (68) 8613 (728)

VGG-16
Random Init 93.65 (0.20) 93.88 (0.17) 16187 (1201) 12355 (312) 90.43 (0.09) 90.53 (0.07) 8617 (222) 7379 (275)
Warm Init 92.67 (0.18) 93.08 (0.19) 1485 (625) 938 (191) 89.61 (0.05) 89.80 (0.10) 1122 (34) 959 (37)
Warm ReM 92.85 (0.26) 93.24 (0.17) 1329 (191) 1016 (191) 89.64 (0.27) 89.83 (0.14) 1128 (29) 935 (43)
S&P 94.58 (0.20) 94.83 (0.16) 9853 (758) 8289 (455) 91.82 (0.10) 91.94 (0.09) 5979 (104) 4979 (122)
DASH 94.72 (0.19) 94.84 (0.20) 12668 (1925) 8836 (530) 91.84 (0.10) 92.05 (0.14) 6844 (225) 5769 (331)

MLP
Random Init 82.92 (0.24) 83.68 (0.26) 31768 (1942) 36206 (585) 77.19 (0.13) 78.18 (0.06) 19861 (436) 18278 (277)
Warm Init 81.17 (0.17) 82.29 (0.21) 4789 (324) 2893 (191) 76.51 (0.21) 77.55 (0.07) 7317 (806) 2510 (48)
Warm ReM 81.21 (0.32) 82.25 (0.04) 4398 (507) 3128 (319) 76.53 (0.15) 77.46 (0.05) 6147 (553) 2626 (108)
S&P 82.07 (0.27) 82.81 (0.33) 28621 (3376) 16734 (518) 77.00 (0.15) 77.94 (0.13) 16530 (1019) 9802 (222))
DASH 82.30 (0.38) 83.02 (0.26) 25571 (1411) 15405 (944) 76.77 (0.13) 77.89 (0.07) 21092 (1535) 8956 (255)

C.3 Hyperparameters

In this section, we provide the details of the hyperparameters used in our experiments from Section 5,
as well as Appendix C.1 and C.2. Additionally, we present heatmaps illustrating the results for a wide
range of two hyperparameters, α and λ, in DASH. The heatmaps in Figure 17 suggest that DASH
exhibits robustness to hyperparameter variations, indicating that its performance is less affected by
the choice of hyperparameter values.

We fixed the momentum to 0.9 and the batch size to 128. The learning rate is set to 0.001 for training
ResNet-18, and for other models, a learning rate of 0.01 is used. The value of ρ for SAM is chosen
based on the performance of cold-starting. The default value of α = 0.3 is used, and we did not
change this value frequently. The perturbation parameter σ used in the Shrink & Perturb (S&P)
procedure is set to 0.01, as this value is considered optimal for perturbation, as described in Ash
and Adams (2020). Initially, we tested σ = 0.1 as the perturbation parameter, since Ash and Adams
(2020) reported slightly better test accuracy compared to σ = 0.01 in some cases. However, we
experienced significantly poorer generalization performance with σ = 0.1 compared to σ = 0.01, as
shown in Figure 18. The hyperparameters used in our experiments are described in Table 7.
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Figure 17: The performance of DASH with various hyperparameter values on the CIFAR-10 dataset
using a ResNet-18 architecture. Three runs averaged with standard deviation. Darker colors indicate
higher values. The first two heatmaps show that higher values are preferable, while the last heatmap
demonstrates that lower values (brighter colors) are preferable.
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Figure 18: The performance of S&P on CIFAR-10 using ResNet-18 with varying σ values. While
Ash and Adams (2020) reported better test accuracy when σ = 0.1 compared to σ = 0.01, we
exhibited significantly lower performance compared to σ = 0.01.

Table 7: The hyperparameters used in our experiments. Values before the ‘/’ are for SGD, and values
after are for SAM. In the case of S&P, the λ value corresponds to the shrinkage parameter, while
the σ parameter controls the magnitude of the noise added to the weights. For L2 INIT, we did not
perform experiments except for CIFAR-10.

DASH S&P L2 INIT
ResNet-18 Momentum LR Batch Size ρ λ α λ σ λ

Tiny-Imagenet 0.9 0.001 128 0.05 0.05 0.3 0.05 0.01 -
CIFAR-10 0.9 0.001 128 0.1 0.05/0.3 0.3 0.3 0.01 1e-4
CIFAR-100 0.9 0.001 128 0.05 0.1 0.3 0.3 0.01 -

SVHN 0.9 0.001 128 0.05 0.3 0.3 0.3 0.01 -
VGG16

Tiny-Imagenet 0.9 0.01 128 0.05 0.05 0.3 0.05 0.01 -
CIFAR-10 0.9 0.01 128 0.1 0.05/0.1 0.3 0.1 0.01 1e-4
CIFAR-100 0.9 0.01 128 0.03 0.05 0.9/0.3 0.3 0.01 -

SVHN 0.9 0.01 128 0.01 0.1 0.9/0.3 0.3 0.01 -
MLP

Tiny-Imagenet 0.9 0.01 128 0.1 0.1 1.0 0.3/0.1 0.01 -
CIFAR-10 0.9 0.01 128 0.1 0.7/0.5 1.0 0.7/0.5 0.01 1e-4
CIFAR-100 0.9 0.01 128 0.1 0.1 1.0 0.3/0.1 0.01 -

SVHN 0.9 0.01 128 0.1 0.3 1.0 0.3 0.01 -

C.4 Discussions on the Broader Applicability of DASH

In this subsection, we explore how DASH performs in a variety of settings, including state-of-the-art
(SoTA) configurations, larger datasets, and scenarios where previous data cannot be stored. We also
examine how DASH compares to other methods when data is continuously introduced throughout
training, as well as its effectiveness in non-stationary data distribution environments, such as Class
Incremental Learning (CIL) setups.

C.4.1 Performance in State-of-the-Art Settings

In the state-of-the-art (SoTA) setting, we employed weight decay and standard data augmentation
techniques, such as horizontal flipping and random cropping. We also used a learning rate scheduler
that reduces the learning rate step-wise by a factor of 0.2 at 60, 120, and 200 epochs. By applying
the learning rate scheduler, there is no need to compare training time since training is completed at
roughly the same epoch across all experiments. The weight decay was set to 0.0005, and the initial
learning rate was set to 0.1. All other settings remain the same as mentioned above. We tested this
setup on CIFAR-10 and CIFAR-100 using the ResNet-18 architecture.

The results in Table 8 show that DASH performs similarly to or slightly worse than starting from
random initialization. It appears that this is partly because all hyperparameters are tuned to maximize
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the performance of cold-starting, to achieve the (close-to-)SoTA test accuracy numbers. Due to the
lack of computational resources, we were unable to tune hyperparameters specifically for DASH.

Furthermore, we believe this aligns more closely with our theoretical anylsis in Theorem 3.6, as
the hyperparameters are tuned to allow the model to learn as many features as possible, making it
difficult for DASH to outperform cold-starting.

Moreover, we observe that S&P cannot be used in these SoTA settings. We believe this is due to the
nature of S&P, which shrinks all weights, while the SoTA setting is likely designed to avoid learning
unuseful features, unlike the previous setting. Consequently, it is plausible that retaining learned
features is more important than forgetting them, making S&P unsuitable for SoTA settings. Although
DASH performs slightly worse than cold-starting, it is conceivable that it is better at retaining features
compared to S&P and other warm-starting methods, resulting in better overall performance.

The gap between warm-starting and cold-starting has been significantly reduced, likely due to
data augmentation techniques and the increase in learning rate when new data is introduced. Data
augmentation techniques increase the amount of feature information, allowing warm-starting to learn
features that vanilla training (without augmentation) cannot (Shen et al., 2022). Furthermore, as the
learning rate is set to a higher value at the beginning of each new experiment, the model can forget
previously memorized data points and escape spurious minima that were difficult to escape from,
which is consistent with the findings of Berariu et al. (2021). Despite these improvements, a gap still
exists between warm-starting and cold-starting.

Table 8: Results of training CIFAR-10, CIFAR-100 dataset trained on ResNet-18 with SoTA set-
tings. Bold values indicate the best performance, while underlined values denote the second-best
performance. For the number of steps, we did not provide bold formatting since we used learning
rate scheduling. Results are averaged over three random seeds, with standard deviations provided in
parentheses.

Test Acc at Number of Steps at AVG of Test Acc AVG of Number of Steps
ResNet-18 last experiment last experiment across all experiments across all experiments
CIFAR-10 SGD SAM SGD SAM SGD SAM SGD SAM
Random Init 94.73 (0.14) 95.47 (0.17) 50439 (319) 47832 (184) 88.77 (0.04) 89.24 (0.15) 24826 (62) 23751 (34)
Warm Init 94.35 (0.31) 94.80 (0.20) 51221 (552) 47832 (184) 87.94 (0.26) 88.62 (0.57) 23759 (57) 21821 (174)
Warm ReM 94.56 (0.25) 95.00 (0.29) 51612 (319) 47962 (184) 88.20 (0.33) 88.56 (0.60) 23775 (16) 21786 (79)
S&P 94.15 (0.10) 94.73 (0.07) 51351 (184) 48353 (184) 88.38 (0.03) 89.27 (0.26) 25369 (49) 22805 (16)
DASH 94.25 (0.25) 95.06 (0.36) 51872 (487) 48223 (184) 88.65 (0.24) 89.34 (0.40) 24264 (75) 22233 (85)

CIFAR-100
Random Init 75.98 (0.01) 76.09 (0.12) 63081 (184) 56825 (184) 61.49 (0.09) 61.81 (0.08) 27536 (194) 25521 (91)
Warm Init 74.10 (0.09) 74.21 (0.26) 69598 (1462) 58128 (921) 58.40 (0.24) 58.44 (0.12) 28012 (114) 24562 (243)
Warm ReM 74.05 (0.13) 74.36 (0.13) 68425 (1689) 57216 (664) 58.32 (0.24) 58.33 (0.15) 27965 (190) 24534 (139)
S&P 72.96 (0.34) 73.71 (0.37) 64775 (664) 61387 (552) 57.33 (0.10) 57.68 (0.06) 28809 (148) 26476 (212)
DASH 74.84 (0.07) 74.98 (0.09) 67121 (1815) 59953 (1208) 60.89 (0.20) 61.29 (0.13) 28746 (306) 25630 (100)

C.4.2 Scalability on Large Datasets

We validate the scalability of DASH for larger datasets such as ImageNet-1k. However, conducting
experiments for such datasets is challenging, as it would require repeating the training process
50 times until convergence—an extremely time-consuming process. As an alternative, we trained
ImageNet-1K on ResNet18 using a setup similar to Figure 2 in Section 3.3. Our setup involved
pretraining on 50% of the data before fine-tuning on the complete dataset. We used shrinkage
parameter λ = 0.3 for both DASH and S&P. Results shown in Figure 19 demonstrate that DASH
achieves superior performance compared to all baseline methods—including cold initialization,
warm initialization, and S&P—both in terms of test accuracy and convergence speed. Notably,
DASH achieves faster convergence and marginally better test accuracy than S&P, demonstrating its
effectiveness even on challenging large-scale datasets.

C.4.3 Effectiveness in Data-discarding Setting

To explore how our algorithm can be applied to a broader range of scenarios further, we consider
situations where storing all data is not feasible (e.g., due to memory constraints), rather than ac-
cumulating and retaining data. Specifically, we divided the CIFAR-10 dataset into 50 chunks and
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Figure 19: Evaluation of DASH on the ImageNet-1k dataset using ResNet18. We pretrained for 150
epochs using 50% of the dataset (shown to the left of the dashed line) and then continued training
for another 150 epochs with the full dataset for ‘Warm’, ‘S&P’ and ‘DASH’ methods. For cold
initialization, we trained for 150 epochs on the full dataset starting from random initialization. DASH
outperforms all baseline methods in terms of test accuracy and convergence speed.

experimented with ResNet-18, running each experiment on a single chunk before moving on to the
next. All other settings remained consistent with the details provided in Section 5.1.

We configured our experiments to apply DASH at specific intervals (e.g., every 10, 15, or 20
experiments) instead of after each one. Since there is no previous data available in this scenario, we
set α = 0. After the 40th experiment, when the model had sufficiently learned, we stopped applying
the shrinking process. We also conducted similar experiments with the S&P method for comparison.
It’s important to note that this variant is feasible because both DASH and S&P focus on adjusting the
model’s initialization.

We tested DASH and S&P with intervals of 10, 15, and 20 epochs. For both methods, we explored
shrinkage parameter (λ) of 0.05, 0.1, and 0.3. We plotted the results using the best hyperparameters
for each method in Figure 20. Notably, DASH’s test accuracy consistently exceeded that of S&P
across all hyperparameter configurations, as shown in Figure 21. These findings demonstrate that
DASH outperforms both the warm-starting baseline and the S&P method in terms of test accuracy.
Based on this evidence, we can conclude that DASH is well-suited for data-discarding scenarios.
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Figure 20: Performance comparison between warm-starting, S&P, and DASH in a scenario without
access to previous data, using optimal hyperparameters for each method. For S&P, the shrinkage
parameter λ = 0.3 with shrinkage interval 20. For DASH, the shrinkage parameter λ = 0.3 with
shrinkage interval 15. DASH significantly outperforms warm-starting, while S&P performs even
worse than the warm-starting baseline in terms of test accuracy. Since there are no previous data
available, we observe sharp drops in test accuracy during shrinkage events, but DASH quickly
recovers while S&P struggles to regain performance.
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Figure 21: Heatmaps comparing S&P (top row) and DASH (bottom row) performance without access
to previous data. The x-axis shows results for different shrinkage parameters λ (0.1, 0.3, 0.5), while
the y-axis shows different shrinkage periods (10, 15, 20). Left heatmaps display final test accuracy,
where DASH outperforms S&P across all hyperparameter configurations. Middle heatmaps show
average test accuracy throughout all experiments, with DASH consistently maintaining superior
performance across all configurations. Lastly, right heatmaps show average number of steps to
converge across all experiments.

C.4.4 Performance with Continuously Added Data Setting

We designed an experiment mimicking real-world scenarios where new data arrives continuously
during training. Following Igl et al. (2020)’s approach, we sampled new data randomly each epoch
for the first 500 epochs, combining it with the existing dataset, then continued training for another
500 epochs. This setting assumes a scenario where data continuously arrives before the model has
fully converged, as it often does in real-world situations. Cold-started models were trained for 1000
epochs using the entire dataset from the beginning. We used the CIFAR-10 dataset with ResNet18
across five random seeds. We applied both DASH and S&P every 50 epochs through the first 500
epochs with shrinkage parameter λ = 0.3 for both methods, following a similar setup to Figure 20.
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Figure 22: Comparison of training accuracy (left) and test accuracy (right) for ResNet18 on CIFAR-
10 over 1000 epochs. During the first 500 epochs, new samples of equal size are added in an i.i.d.
manner, followed by 500 epochs of training on the complete dataset. Training accuracy is calculated
using only the data available at each epoch during training.
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As shown in Figure 22, while there is a clear performance gap between warm-starting and cold-starting
approaches, both DASH and S&P aim to address this difference. Despite using the same shrinkage
value of 0.3, DASH successfully preserved learned features while S&P did not. This difference is
reflected in the training accuracy: DASH showed steady improvement as training progressed, while
S&P struggled during the shrinking phases. As a result, DASH not only converged faster but also
achieved higher test accuracy, while S&P lost the convergence advantage that warm-starting provides.

C.4.5 Experiments on Class Incremental Learning Setting

Experiments so far focused exclusively on stationary data distributions. To broaden our understanding,
we explored DASH’s performance in non-stationary settings, particularly in Class Incremental
Learning (CIL) - an important area in continual learning where data distributions shift over time.

We began with experiments on CIFAR-10, dividing the dataset into 10 chunks, each representing
a distinct class. The model, based on ResNet-18, was introduced to one chunk at the start of each
experiment and trained without access to previously encountered data. However, this setup proved
challenging; even with warm-starting as a baseline, the model simply overfitted to each new class,
resulting in only 10% test accuracy across all experiments, equivalent to random guessing.

Given these limitations, we adjusted our experimental setup while preserving the non-stationary
nature of the task. Using the same configurations with above, instead of completely discarding
previous data, we accumulated data over time. Thus, each new chunk was combined with previously
seen data. During evaluation, we tested the model only on classes it had encountered during training.

This revised approach yielded more promising results, as shown in Figure 23. DASH surpasses
other baselines in terms of test accuracy despite requiring longer convergence times. While these
results demonstrate DASH’s potential in certain non-stationary environments, we recognize that our
modified setup simplifies true non-stationarity, such as in continual learning scenarios.
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Figure 23: Performance on CIFAR-10 using ResNet-18, averaged over five random seeds. Left: Test
accuracy evaluated on classes encountered so far. Right: Number of steps required for convergence.

C.5 Computation and Memory Overhead Comparison

In this subsection, we will compare the computational and memory overhead of each method. It
is important to note that DASH is applied only once when new data is introduced. Since DASH
calculates the gradient of the whole dataset just once, its memory complexity is proportional to the
batch size and model size. When comparing experiments with the same number of epochs, we can
think of DASH as adding approximately one extra epoch to the total training time. Similarly, the
computational overhead of DASH is roughly equivalent to running one additional epoch.

We provide the experimental results of the computation and memory overhead for each method in
Table 9. The experiments were conducted under the same conditions described in Section 5.1 on
CIFAR-10, using ResNet-18 with the SGD optimizer. We provide aggregated results for FLOPS,
CPU/CUDA memory usage, and training time on an NVIDIA A6000. These measurements were
obtained using the torch.profile library, with values summed across all operations. We only profiled
two out of the 50 experiments until convergence (99.9% training accuracy) because profiling adds
significant overhead to the training process, and running it continuously slows down the entire training
pipeline. A comparison of the total training times of each method for all 50 experiments without
profiling is provided in Section C.6. Table 9 indicates that S&P requires two more training epochs
than DASH. Since DASH only adds approximately one extra epoch of overhead, the results show
that DASH’s total computational and memory overhead is about one epoch less than S&P’s.
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Table 9: Computational and memory requirements for each method, comparing two experiments
on CIFAR-10 using ResNet-18. We report the total number of epochs, total training time, and total
computational cost (in TeraFLOPS). Memory usage is measured in gigabytes, showing aggregated
CPU and CUDA memory consumption.

Epochs Training Time (s) TFLOPS CPU Memory (GB) CUDA Memory (GB)
Cold Init 39 29.90 21.87 7.86 813
Warm Init 30 21.96 16.82 6.03 592

S&P 34 25.72 19.06 6.95 690
DASH 32 24.79 18.51 6.65 666

C.6 Comparison between NVIDIA A6000 and Intel Gaudi-v2

We conducted experiments on two different hardware platforms: Intel Gaudi-v2 HPUs and NVIDIA
A6000 GPUs. In this section, we compare their implementation code and training times. Using
CIFAR-100 and ResNet-18, we measured the training times on both platforms while maintaining the
same experimental settings as described in Section 5.1 with SGD optimizer. It is important to note
that no hardware-specific optimizations were performed on either platform, and all hyperparameters
were kept constant.

To ensure a fair comparison, we ported our NVIDIA implementation to Intel Gaudi-v2, keeping the
other settings consistent. The porting process was straightforward, requiring only about three extra
lines of code, as shown in the example below. The full Gaudi-v2 implementation can be found in our
GitHub repository at https://github.com/NAVER-INTEL-Co-Lab/gaudi-dash.

1 # Import modules
2 import habana_frameworks.torch.core as htcore
3 ... # additional processing code
4 for inputs, targets in data_loader:
5 outputs = model(inputs)
6 loss = criterion(outputs, targets)
7

8 loss.backward()
9 # Mark the step for the optimization process

10 htcore.mark_step()
11

12 optimizer.step()
13 # Mark the step again to complete the optimization cycle
14 htcore.mark_step()
15

16 optimizer.zero_grad()
17 ... # additional processing code

Listing 1: Example of Gaudi-v2 code, with additional lines highlighted in red.

In Table 10, we present the results of the training time comparison until convergence. The table shows
that the Intel Gaudi-v2 is slightly faster than the NVIDIA A6000 across all initialization methods.
For instance, the Intel Gaudi-v2 achieves a speedup of 1.16× over the NVIDIA A6000 with cold
initialization.

Table 10: Training time comparison between two different hardware platforms under the same
settings. Intel Gaudi-v2 is slightly faster than NVIDIA A6000.

NVIDIA A6000 Intel Gaudi-v2
Cold Init 94m 28s 81m 26s
Warm Init 22m 5s 21m 16s

S&P 52m 23s 51m 11s
DASH 40m 8s 37m 13s
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D Proof of Theorems

This section provides the proof for Theorems 3.4 and 3.6, stated in Section 3, respectively. Before
presenting the main proof, we state some technical lemmas.

Lemma D.1. For any learned feature set A,B ⊂ S that satisfies A ⊊ B and |A ∩ Sc| ≥ τ − 1 for
any c ∈ [C], then we have ACC(A) < ACC(B).

Proof of Lemma D.1. Since A ⊊ B, it is trivial that for any c ∈ [C] and Λ ⊂ Sc, we have

1 (|Λ ∩ A| < τ) ≥ 1 (|Λ ∩ B| < τ) . (1)

From the given condition, we can choose c∗ ∈ [C] such that there exists τ − 1 distinct features
v1, . . . , vτ−1 ∈ A ∩ Sc∗ and vτ ∈ (B ∩ Sc∗) \ (A ∩ Sc∗). Our choice of Λ∗ ≜ {v1, . . . , vτ} ⊂ Sc∗
satisfies

1 (|Λ∗ ∩ A| < τ) > 1 (|Λ∗ ∩ B| < τ) . (2)

From (1), (2), and the definition of ACC(·), we have

ACC(A) = 1− C − 1

C
· 1
n

∑
c∈[C],Λ⊂Sc

nΛ · 1 (|Λ ∩ A| < τ)

< 1− C − 1

C
· 1
n

∑
c∈[C],Λ⊂Sc

nΛ · 1 (|Λ ∩ B| < τ)

= ACC(B).

For ease of presentation, let us say “a model learns NA” if a model cannot learn any features. For
example, if a model learns u1, · · · , us ∈ S during s steps of training process and feature learning
process ends in (s+ 1)-th step, let us say that we learn u1, · · · , us, NA, NA, · · · .
Using the notion above, we prove that our learning process uniquely determines the behavior within
the same class regardless of the randomness of the training process, where the randomness may come
from tie-breaking that can happen in the choice of the most frequent non-learned feature.

Lemma D.2. Suppose we train two models with different randomness on T1:j for some j ∈ N starting
from a learned set L and without any memorized data. We use us and u′

s to denote features learned
in s-th step of training process by two models, respectively. The i-th learned feature within class
c ∈ [C] is denoted as uc,i for the first model and u′

c,i for the second model. Then, uc,i = u′
c,i for all

c ∈ [C] and i ∈ N.

Proof of Lemma D.2. Suppose there exists some class c ∈ [C] and i ∈ N such that uc,i ̸= u′
c,i and

choose one with the smallest i. Without loss of generality, we may assume u′
c,i ̸= NA. Then, we have

max
v∈Sc\{uc,1,...,uc,i−1}

h(v; {uc,1, . . . , uc,i−1}) = max
v∈Sc\{u′

c,1,...,u
′
c,i−1}

h(v; {u′
c,1, . . . , u

′
c,i−1})

= h(u′
c,i; {u′

c,1, . . . , u
′
c,i−1})

≥ γ

jn

The first equality holds since {uc,1, . . . , uc,i−1} = {u′
c,1, . . . , u

′
c,i−1} from our choice of c, i and the

second equality holds since the second model learns u′
c,i. The last inequality holds since u′

c,i ̸= NA.
Hence, uc,i ̸= NA and

h(uc,i; {uc,1, . . . , uc,i−1}) = max
v∈Sc\{uc,1,...,uc,i−1}

h(v; {uc,1, . . . , uc,i−1}).

From our Assumption 3.3 and since {uc,1, . . . , uc,i−1} = {u′
c,1, . . . , u

′
c,i−1}, we have uc,i = u′

c,i.
This is contradictory and we have our desired conclusion.
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Lemma D.3. Suppose we train two models on T1:j1 and T1:j2 for some j1 > j2 starting from a
learned set L and without any memorized data. We use us and u′

s to denote features learned in s-th
step of the training process by two models trained on T1:j1 and T1:j2 , respectively. The i-th learned
feature within class c ∈ [C] is denoted as uc,i for the first model and u′

c,i for the second model. Then,
uc,i = u′

c,i or u′
c,i = NA for all c ∈ [C] and i ∈ N.

Proof of Lemma D.3. Suppose there exists some class c ∈ [C] and i ∈ N such that uc,i ̸= u′
c,i and

u′
c,i ̸= NA. Choose one with the smallest i. Since u′

c,i ̸= NA and from our choice of c and i, we have

max
v∈Sc\{uc,1,...,uc,i−1}

h(v; {uc,1, . . . , uc,i−1}) = max
v∈Sc\{u′

c,1,...,u
′
c,i−1}

h(v; {u′
c,1, . . . , u

′
c,i−1})

= h(u′
c,i; {u′

c,1, . . . , u
′
c,i−1})

≥ γ

j2n
>

γ

j1n
.

Hence, uc,i ̸= NA and

h(uc,i; {uc,1, . . . , uc,i−1}) = max
v∈Sc\{uc,1,...,uc,i−1}

h(v; {uc,1, . . . , uc,i−1}).

From our Assumption 3.3 and since {uc,1, . . . , uc,i−1} = {u′
c,1, . . . , u

′
c,i−1}, we have uc,i = u′

c,i.
This is contradictory and we have our desired conclusion.

With above Lemma D.1, D.2 and D.3, we have the following theorems.

Theorem 3.4. There exists nonempty G ⊊ S such that we always obtain L(1)
warm = L(1)

cold = G. For
all J ≥ 2, the following inequalities hold:

ACC
(
L(J)
warm

)
≤ ACC

(
L(J)
cold

)
, T (J)

warm < T
(J)
cold

Furthermore, ACC(L(J)
warm) < ACC(L(J)

cold) holds when J > γ
δn where δ ≜ max

v∈S\G
h(v;G) > 0.

Proof of Theorem 3.4. By Lemma D.2 for the case j = 1, we immediately have our first conclusion
by defining G as a learned feature set from the first experiment. Furthermore, we have G ⊊ Sc and
|G ∩ Sc| ≥ τ − 1 for any class c ∈ [C] from our feature learning framework and Assumption 3.3.

We want to show that for any J ≥ 2, L(J)
warm = G. Since we never forget the learned feature in warm

training, it is clear that G = L(1)
warm ⊂ L(J)

warm. We may assume that the existence of J∗ ≥ 2 such
that L(1)

warm ⊊ L(J∗)
warm and choose the smallest J∗ ≥ 2. Then, in the first step of J∗-th experiment, a

model learns some feature u. From our training process, u satisfies

n · h(u;G) = |T1:J∗ | · g(u; T1:J∗ ,N (J∗,0)
warm ) ≥ γ,

and since J∗ denotes the first experiment that can learn beyond G, L(J∗−1)
warm = G and

|T1:J∗−1| · g(u; T1:J∗−1,N (J∗−1,0)
warm ) = n · h(u;G) ≥ γ.

It means that u must have been already learned in the (J∗ − 1)-th experiment and it is contradictory.

Thus, we have L(J)
warm = L(1)

warm = L(1)
cold ⊂ L

(J)
cold for all J ≥ 2 and combining with Lemma D.1, we

have
ACC(L(J)

warm) = ACC(L(1)
warm) = ACC(L(1)

cold) ≤ ACC(L(J)
cold).

To show that strict inequality for J > γ
δn , it suffices to show that L(1)

cold ⊊ L(J)
cold for J > γ

δn since
we already showed that G ⊊ S and |G ∩ Sc| ≥ τ − 1 for any class c ∈ [C]. In J-th experiment
using cold-starting, by Lemma D.3, a model first learns features in G, say, in the first s steps. In the
(s+ 1)-th step, cold-starting model learns a new feature since

max
v∈S\G

|T1:J | · g(v; T1:J ,N (J,s)
cold ) = max

v∈S\G
Jn · h(v;G) > γ,

from the condition in the theorem statement. Hence, we have our conclusion for the test accuracy.
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For the train time, since the following holds, we conclude T
(J)
warm < T

(J)
cold when J ≥ 2:∑

j∈[J]

∣∣∣N (j,0)
warm

∣∣∣ = T (J)
warm ≤ Jn <

nJ(J + 1)

2
=

∑
j∈[J]

∣∣∣N (j,0)
cold

∣∣∣ = T
(J)
cold.

Theorem 3.6. For any experiment J ≥ 2, the following holds:

ACC
(
L(J)
cold

)
= ACC

(
L(J)
ideal

)
, T (J)

warm < T
(J)
ideal < T

(J)
cold

Proof of Theorem 3.6. Recall that the ideal algorithm works by forgetting memorized data points
while retaining previously learned features. In other words, at the initial step of the (j + 1)-th
experiment, we have L(j+1,0)

ideal = L(j)
ideal. Additionally, g(v; T1:j+1,N (j+1,0)

ideal ) = h(v;L(j+1,0)
ideal ) holds

for all v ∈ S sinceM(j+1,0) = ∅.

We will show that L(J)
cold = L(J)

ideal holds for all J ≥ 1 by using induction.

When J = 1, by applying Lemma D.2, it holds since L(1)
cold = L(1)

ideal. Suppose L(J−1)
cold = L(J−1)

ideal for
some J ≥ 2 and we will prove that L(J)

cold = L(J)
ideal. We have the following at the first step of the J-th

experiment for all v ∈ S:
g(v; T1:J ,N (J,0)

ideal ) = h(v;L(J−1)
ideal )

For the cold-starting method in the J-th experiment, by Lemma D.2, let s be the step at which the
model first finishes learning features in L(J−1)

cold . Then, at the (s+ 1)-th step for all v ∈ S:

g(v; T1:J ,N (J,s)
cold ) = h(v;L(J−1)

cold )

Since we assumed h(v;L(J−1)
cold ) = h(v;L(J−1)

ideal ), the cold-starting method starts to behave identically
to the ideal method from the (s+1)-th time step onwards, by Lemma D.2, resulting in L(J)

cold = L(J)
ideal.∣∣∣N (J,0)

ideal

∣∣∣ < |T1:J | for J ≥ 1 since
∣∣∣L(J)

ideal ∩ Sc
∣∣∣ ≥ τ for some class c ∈ [C] due to Assumption 3.3.

Thus, the training time of the ideal method, T (J)
ideal, is as follows:∑

j∈[J]

∣∣∣N (j,0)
ideal

∣∣∣ = T
(J)
ideal < T

(J)
cold =

∑
j∈[J]

∣∣∣N (j,0)
cold

∣∣∣ = nJ(J + 1)

2
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E Omitted Algorithms

In this section, we provide detailed training algorithms for our proposed learning framework. Al-
gorithm 2 outlines the standard training method within our learning framework. Subsequently, we
compare the Cold-starting, Warm-starting, and Ideal methods using the given abstract algorithm in
the following algorithms.

Algorithm 2 Training Process

Require:
• L: Set of learned features
• M: Set of memorized data points
• T : Training dataset
• γ: Threshold for learning features
• τ : Threshold for the number of learned features a data point needs to be considered well-classified

1: function TRAININGPROCESS(L,M, T , γ, τ )
2: Initialize:

N ← {(x, y) ∈ T : |V(x) ∩ L| < τ ∧ (x, y) /∈M}
s← 0

3: while N ̸= ∅ do
4: s← s+ 1
5: g(v;N )← 1

|T |
∑

(x,y)∈N 1(v ∈ V(x)) for v ∈ S
6: vs ← argmax

u∈S\L
g (u;N ) break ties arbitrarily

7: if g(vs;N ) ≥ γ/ |T | then
8: L ← L ∪ {vs}
9: N ← {(x, y) ∈ N : |V(x) ∩ L| < τ}

10: else
11: M←M∪ {(x, y) ∈ N : |V(x) ∩ L| < τ}
12: N ← ∅
13: end if
14: end while
15: return L,M
16: end function

Algorithm 3 Cold-Starting until J-th Experiment

Require:
• T1:J : Training dataset
• γ: Threshold for learning features
• τ : Threshold for the number of learned features a data point needs to be considered well-classified

1: Initialize:
L(0) ← ∅
M(0) ← ∅

2: for j in 1 : J do
3: L(j),M(j) ← TrainingProcess(L(j−1),M(j−1), T1:j , γ, τ )
4: L(j) ← ∅
5: M(j) ← ∅
6: end for
7: return L(j)
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Algorithm 4 Warm-Starting until J-th Experiment

Require:
• T1:J : Training dataset
• γ: Threshold for learning features
• τ : Threshold for the number of learned features a data point needs to be considered well-classified

1: Initialize:
L(0) ← ∅
M(0) ← ∅

2: for j in 1 : J do
3: L(j),M(j) ← TrainingProcess(L(j−1),M(j−1), T1:j , γ, τ )
4: end for
5: return L(j)

Algorithm 5 Ideal-Starting until J-th Experiment

Require:
• T1:J : Training dataset
• γ: Threshold for learning features
• τ : Threshold for the number of learned features a data point needs to be considered well-classified

1: Initialize:
L(0) ← ∅
M(0) ← ∅

2: for j in 1 : J do
3: L(j),M(j) ← TrainingProcess(L(j−1),M(j−1), T1:j , γ, τ )
4: M(j) ← ∅
5: end for
6: return L(j)
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the main claims and contributions
of the paper, including the development of a learning framework to study loss of plasticity
in stationary data distributions, identifying noise memorization as the primary cause, and
proposing the DASH method to mitigate the issue. The claims match the theoretical and
empirical results presented.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This paper includes a "Discussion and Conclusion" section that reflects on the
scope and limitations of the work. For example, it notes that the theoretical analysis treats
the learning process as discrete and does not assume any specific hypothesis class in order
to generalize the findings.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The main theoretical results (Theorems3.4 and 3.6) clearly state our assump-
tions and provide proof sketches in the main text with references to complete proofs in the
Appendix D. The proofs rely on reasonable assumptions and appear to be correct stated in
Section 3.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental setup and training details are described in sufficient detail
in Section 5.1 to reproduce the main results, including dataset splits, model architectures,
optimizers, and hyperparameters. Appendix C.3 provides additional specifics on the hyper-
parameter settings used.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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