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Abstract

Conformal prediction has emerged as an effective
strategy for uncertainty quantification by modi-
fying a model to output sets of labels instead of
a single label. These prediction sets come with
the guarantee that they contain the true label with
high probability. However, conformal prediction
typically requires a large calibration dataset of
i.i.d. examples. We consider the online learning
setting, where examples arrive over time, and the
goal is to construct prediction sets dynamically.
Departing from existing work, we assume semi-
bandit feedback, where we only observe the true
label if it is contained in the prediction set. For in-
stance, consider calibrating a document retrieval
model to a new domain; in this setting, a user
would only be able to provide the true label if
the target document is in the prediction set of re-
trieved documents. We propose a novel conformal
prediction algorithm targeted at this setting, and
prove that it obtains sublinear regret compared
to the optimal conformal predictor. We evaluate
our algorithm on a retrieval task, an image clas-
sification task, and an auction price-setting task,
and demonstrate that it empirically achieves good
performance compared to several baselines.

1. Introduction
Uncertainty quantification is an effective strategy for im-
proving trustworthiness of machine learning models by pro-
viding users with a measure of confidence of each prediction
to better inform their decisions. Conformal prediction (Vovk
et al., 2005; Tibshirani et al., 2019; Park et al., 2019; Bates
et al., 2021) has emerged as a promising strategy for uncer-
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tainty quantification due to its ability to provide theoretical
guarantees for arbitrary blackbox models. They modify a
given blackbox model f : X → Y to a conformal predictor
C : X → 2Y that predicts sets of labels. In the batch setting,
it does so by using a held-out calibration dataset to assess
the accuracy of f ; it constructs smaller prediction sets if f is
more accurate and larger ones otherwise. Then, conformal
prediction guarantees that the true label is contained in the
prediction set with high probability—i.e.,

P[y∗ ∈ C(x)] ≥ α,

where α is the desired coverage rate, and the probability is
taken over the random sample (x, y∗) ∼ D and the calibra-
tion dataset Z = {(xi, yi)}ni=1 ∼ Dn.

Traditional conformal prediction require the calibration set
to consist of i.i.d. or exchangeable samples from the target
distribution; furthermore, the calibration set may need to be
large to obtain good performance. In many settings, such
labeled data may not be easy to obtain. As a motivating
setting, we consider a document retrieval problem, where
the input x might be a question and the goal is to retrieve
a passage y from a knowledge base such as Wikipedia that
can be used to answer x; this strategy is known as retrieval-
augmented question answering, and can mitigate issues such
as hallucinations (Lewis et al., 2020; Shuster et al., 2021; Ji
et al., 2023). A common practice is to use a retrieval model
trained on a large dataset in a different domain in a zero-shot
manner; for instance, a user might use the dense passage
retrieval (DPR) model (Karpukhin et al., 2020) directly on
their own dataset without finetuning. Thus, labeled data
from the target domain may not be available.

We propose an online conformal prediction algorithm that
sequentially constructs prediction sets Ct as inputs xt are
given. We consider semi-bandit feedback, where we only
observe the true label y∗t if it is included in our prediction
set (i.e., y∗t ∈ Ct). Otherwise, we observe an indicator that
y∗t ̸∈ Ct, but do not observe y∗t . In the document retrieval
example, users might sequentially provide queries xt to the
DPR model, and our algorithm responds with a prediction
set Ct of potentially relevant documents. Then, the user
selects the ground truth document y∗t if it appears in this set,
and indicates that their query was unsuccessful otherwise.

As in conformal prediction, we aim to ensure that we achieve
the desired coverage rate α with high probability. Letting
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C∗
t denote the optimal prediction sets (i.e., the prediction

sets given infinite calibration data), our algorithm ensures
that with high probability, C∗

t ⊆ Ct on all time steps t.
Since C∗

t achieves the desired coverage rate with high prob-
ability, this property ensures Ct does so as well.

A trivial solution is to always include all documents in
the prediction set. However, this would be unhelpful for
the user, who needs to manually examine all documents to
identify the ground truth one. Thus, an additional goal is
to minimize the prediction set size. Formally, we consider
the optimal prediction set C∗

t in the limit of infinite data,
and consider a loss function encoding how much worse our
prediction set Ct is compared to C∗

t . Then, our algorithm
ensures this loss goes to zero as sufficiently many samples
become available—i.e., the prediction sets Ct converge to
the optimal ones C∗

t over time. Formally, our algorithm
guarantees sublinear regret of Õ(

√
T ).

We empirically evaluate our algorithm on three tasks: image
classification, document retrieval, and setting reservation
prices in auctions. Our experiments demonstrate that our
algorithm generates prediction sets that converge to the opti-
mal ones while maintaining the desired coverage rate. More-
over, our algorithm significantly outperforms three natural
baselines; each baseline either achieves worse cumulative
expected regret or does not satisfy the desired coverage rate.

Contributions. We formalize and solve the problem of on-
line conformal prediction with semi-bandit feedback. Our
algorithm constructs compact prediction sets, ensuring high
coverage probability. The algorithm also provides an effi-
cient method for collecting large datasets that are expensive
to label. Instead of asking the user to select the ground truth
label from the set of all candidate labels, our approach only
requires the user to select from a subset. This efficiency
gain can be substantial when the label space is large. We
assess our algorithm’s performance on image classification,
document retrieval and reservation price-setting in auctions,
showcasing its effectiveness in a wide variety of real world
applications, which highlights its practical utility.

Related work. Recent work has studied conformal predic-
tion in the online setting (Gibbs & Candes, 2021; Bastani
et al., 2022; Gibbs & Candès, 2024; Angelopoulos et al.,
2024a;b). They are motivated by conformal prediction for
time series data, where the labels can shift in complex and
potentially adversarial ways. Thus, they make very different
assumptions than ours; in particular, they allow for adver-
sarial rather than i.i.d. assumptions; however, almost all of
them assume that the ground truth label is observed at every
step, regardless of whether it is contained in the prediction
set. For example, the ACI algorithm proposed in Gibbs &
Candes (2021) requires observing y∗t at every step since it
is needed to update the quantile function Q̂t(·), which is
needed to compute the prediction set Ĉt(αt) as well as the

loss and gradient update. As the authors point out, they
do not need to update the quantile function at every step.
However, the steps where they update Q̂t cannot be chosen
in a way that depends on y∗t , since doing so would lead to a
biased estimate of the quantile function. In our experiments,
we demonstrate that in the semi-bandit feedback setting,
updating Q̂t when y∗t is in the prediction set can create such
a bias that leads ACI to fail to achieve coverage.

Similarly, the SAOCP algorithm proposed by Bhatnagar
et al. (2023) requires observing y∗t at every step to construct
the prediction set St = inf{s ∈ R : y∗t ∈ Ĉt(Xt, s)},
which is then used to compute the loss and gradient, and
the Conformal PID control algorithm proposed by An-
gelopoulos et al. (2024a) uses y∗t to compute the score
st = st(xt, y

∗
t ), which is needed to compute the gradi-

ent. In contrast, we are motivated by the active learning
setting, where users are interested in constructing confor-
mal predictors on-the-fly rather than providing a calibration
set ahead-of-time. Thus, in our setting, it is reasonable to
assume that the data arrives i.i.d.; however, we need to han-
dle semi-bandit feedback since the user may be unable to
provide the true label y∗t if it is not in the prediction set.

Angelopoulos et al. (2024b) points out that ACI still works if
we take the “quantile function” to be the identity function—
i.e., Q̂t(α) = α. This strategy achieves the desired coverage
rate without requiring observing the ground truth labels y∗t ;
instead, they only need to observe whether y∗t is contained
in the prediction set—i.e., 1(y∗t ∈ Ĉt). However, because
they forego estimating the quantile function, the resulting
algorithm is extremely sensitive to the structure of the scor-
ing function as well as their choice of hyperparameters (in
particular, the learning rate). In our experiments, we show
that a standard variation the scoring function (in particular,
using logits instead of prediction probabilities) causes their
performance to significantly degrade.

Angelopoulos et al. (2024b) also point out an additional
shortcoming of ACI, which is that it does not guarantee
that prediction sets converge to the “optimal” ones in the
i.i.d. setting. As noted by Bastani et al. (2022), this issue
is reflected in the fact that achieving α coverage (the guar-
antee satisfied by the ACI algorithm) can be achieved by
the “cheating” strategy that outputs Ĉt = Y with probabil-
ity 1 − α and Ĉt = ∅ with probability α. To remedy this
issue, Angelopoulos et al. (2024b) proposes a modification
to their algorithm that is guaranteed to converge to the opti-
mal threshold in the setting of i.i.d. observations. However,
their result is asymptotic (in addition to suffering from the
sensitivity of the scoring function discussed above). Under
certain assumptions, we prove that our algorithm satisfies
a much stronger regret guarantee; to the best of our knowl-
edge, this is the first regret guarantee on the performance of
the prediction sets in terms of convergence of τt to τ∗.
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Another advantage of our algorithm is that it guarantees
that τt ≤ τ∗ with high probability. This guarantee mirrors
the distinction between marginal guarantees (Vovk et al.,
2005) and probably approximately correct (PAC) (or train-
ing conditional) guarantees (Vovk, 2012; Park et al., 2019).
Marginal guarantees have the form PZ∼Dn,(x,y∗)∼D[y∗ ∈
CZ(x)] ≥ α, i.e., α coverage over randomness in both the
calibration set Z and the new example (x, y∗). They also
have the advantage that coverage converges to α with the
number of calibration examples. In contrast, PAC guaran-
tees disentangle these two sources of randomness:

PZ∼Dn [P(x,y∗)∼D[y∗ ∈ CZ(x)] ≥ α] ≥ 1− δ,

for a given δ ∈ R>0. In other words, coverage holds with
high probability over Z. Our guarantee τt ≤ τ∗ is equiva-
lent to the coverage guarantee P(x,y∗)∼D[y∗ ∈ Cτt(x)] ≥ α
for every t with probability at least 1 − δ over the whole
time horizon. To the best of our knowledge, existing online
conformal prediction algorithms all provide a marginal cov-
erage guarantee (it is not even clear how a PAC guarantee
would look in the adversarial setting since the calibration
examples are not random). For the active learning setting, a
PAC guarantee makes sense since it ensures our algorithm
satisfies the desired coverage rate for every user-provided
input. Finally, while we do not provide an explicit guarantee
that the coverage converges to α, our regret bound ensures
that τt → τ∗, which ensures coverage converges to α.

2. Problem Formulation
Let X denote the inputs and Y denote the labels. Let
[T ] = {1, 2, · · · , T}, and let t ∈ [T ] be the steps on which
examples (xt, y

∗
t ) arrive, where xt is the input on step t

and y∗t is the corresponding ground truth label. We assume
given a scoring function f : X × Y 7→ R (also called the
non-conformity score). The scoring function captures the
confidence in whether y is the ground truth label for x.

We consider a fixed distribution D over X × Y; let P(x, y)
be the corresponding probability measure. On each step
t, a sample (xt, y

∗
t ) ∼ D is drawn. Then, our algorithm

observes xt, and constructs a prediction set Ct ⊆ Y of form

Ct = {y ∈ Y | f(xt, y) > τt},

where τt ∈ R is a parameter to be chosen. In other words,
our prediction set Ct include all labels with score at least τt
in round t. Note that a smaller (resp., larger) τt corresponds
to a larger (resp., smaller) prediction set Ct. Then, our algo-
rithm receives semi-bandit feedback—i.e., it only observes
y∗t if y∗t ∈ Ct. If y∗t ̸∈ Ct, it receives feedback in the form
of a binary indicator that y∗t ̸∈ Ct.

Next, we describe our desired correctness properties. First,
given a coverage rate α ∈ [0, 1), our goal is to ensure we

cover the true label with probability at least α on all steps:

∀t ∈ [T ] . P[y∗t ∈ Ct] ≥ α. (1)

We want (1) to hold with high probability. A trivial solution
to the problem so far is to always take τt = −∞. Thus, we
additionally want to minimize some measure of prediction
set size. We consider a loss function ϕ : R → R, where
ϕ(τt) encodes the loss incurred on step t. Then, our goal is
to converge to the best possible prediction sets over time,
which we formalize by aiming to achieve sublinear regret.
Consider the optimal prediction set C∗

t ⊆ Y defined by

C∗
t = {y ∈ Y | f(xt, y) > τ∗},

where τ∗ is defined by

τ∗ = argmax
τ∈R

τ subj. to P[f(xt, y∗t ) ≥ τ ] ≥ α.

Note that f(xt, y∗t ) ≥ τ iff y∗t ∈ C∗
t , so this property says

that P[y∗t ∈ C∗
t ] ≥ α. By definition, C∗

t is the smallest
possible prediction set for xt that achieves a coverage rate
of α. Then, the expected cumulative regret is

RT =
∑
t∈[T ]

E[ϕ(τt)− ϕ(τ∗)].

Intuitively, we need to impose an assumption on our loss
because if the loss ϕ is discontinuous at τ∗, then we may
achieve linear regret since ϕ(τt) − ϕ(τ∗) ≥ c > 0 for
some constant c. A natural way to formalize the continuity
assumption is based on the cumulative distribution function
(CDF) of the scoring function. In particular, let G∗ be the
CDF of the random variable s = f(x, y∗), where (x, y∗) ∼
D. Then, we have the following assumption:

Assumption 2.1. ϕ(τ) = ψ(G∗(τ)) for some K Lipschitz
continuous function ψ (with K ∈ R>0).

That is, if G∗(τ) is very flat in some region, then ϕ(τ)
cannot vary much in that region. For example, consider a
CDF such that G∗(τ0) = G∗(τ∗) = 1 − α with τ0 < τ∗.
Since we never observe any scores between τ0 and τ∗, we
cannot identify τ∗ from [τ0, τ

∗] from finitely many samples;
even a small error in estimating the empirical CDF (e.g.,
Gt(τ

∗) = G∗(τ∗) + ϵ) can result in significant regret.

One caveat is this assumption precludes prediction set size
as a loss, since prediction set size is discontinuous. Next,
we assume our loss is bounded:

Assumption 2.2. ϕmax := ∥ϕ∥∞ <∞.

Intuitively, Assumption 2.2 says that the overall reward
is bounded, so we cannot accrue huge regret early on in
our algorithm when we have very little data. These two
assumptions are standard in the bandit literature (Kleinberg
et al., 2008). Finally, we make the following assumption:
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Assumption 2.3. G∗(τ∗) = 1− α.

Note thatG∗(τ) is the miscoverage rate of our algorithm for
parameter τ . Thus, this assumption says the optimal param-
eter value τ∗ achieves a coverage rate of exactly α, which
simplifies our analysis. Then, our goal is to find the optimal
prediction sets C∗

t with coverage rate α. Intuitively, C∗
t is

the smallest set that contains the ground truth label with a
high probability. At each step, the algorithm observes xt
and returns a set Ct of candidate labels, and the user either
(1) selects the ground truth label y∗t from Ct, or (2) indi-
cates that the ground truth label is not in Ct. In a document
retrieval setting, xt is a query sent by the user, and y∗t is
the ground truth document, while in an image classification
setting, xt is an image and y∗t is the ground truth class.

3. Algorithm
Next, we describe our online conformal prediction algorithm
(summarized in Algorithm 1). As before, let s = f(x, y∗)
be the random variable that is the score of a random sample
(x, y∗) ∼ D, and let G∗ be its CDF. By definition, G∗(τ) =
P[f(x, y∗) ≤ τ ] is the miscoverage rate, so

τ∗ = sup{τ : G∗(τ) ≤ 1− α}.

Thus, if we know G∗, then our problem can be solved by
choosing τt = τ∗ for all t. However, since we do not
know G∗, we can solve the problem by estimating it from
samples. Denote the estimated CDF after step t as Gt. A
naı̈ve solution is to choose

τ̃t = sup{τ ∈ R | Gt−1(τ) ≤ 1− α}.

However, this strategy may fail to satisfy our desired cov-
erage rate due to randomness in our estimate Gt−1 of G∗.
Failing to account for miscovered examples can exacerbate
this problem—if we ignore samples where we failed to cover
y∗t , then our estimate Gt becomes worse, thereby increasing
the chance that we will continue to fail to cover y∗t . This
feedback loop can lead to linear regret.

To address this challenge, we instead use a high-probability
upper bound onG∗. In particular, for a error bound δ ∈ R>0

to be specified, we construct a 1−δ confidence bound for the
empirical CDF Gt using the Dvoretzky–Kiefer–Wolfowitz
(DKW) inequality (Massart, 1990). Letting Gt be the upper
confidence bound, we instead aim to choose

τt = sup{τ ∈ R | Gt−1(τ) ≤ 1− α}.

On the event that Gt−1 is a valid upper bound, then we
have τt ≤ τ∗. This property ensures that we always cover
the ground truth label, which ensures that our subsequent
CDF estimate Gt is valid. As a consequence, our algorithm
converges to the true τ∗.

Algorithm 1 Semi-bandit Prediction Set (SPS)
Input: horizon T , desired quantile α
τ1 ← −∞
for t = 1 to T do

if st ≥ τt then observe st else st ← τt
Compute Gt according to (4)
τ1−α,t ← sup{τ ∈ R | Gt(τ) ≤ 1− α}
τt ← max{τ1−α,t, τt}

end for

One remaining issue is how to handle steps where y∗t ̸∈
Ct. On these steps, our algorithm substitutes τt for the
observation f(xt, y∗t ). Intuitively, the reason this strategy
works is that the learner does not need to accurately estimate
G∗ in the interval [0, τ∗) to recover τ∗; it is sufficient to
include the right fraction of samples in this interval. As long
as our algorithm maintains the property that τt ≤ τ∗, then
τt lies in this interval, so substituting τt is sufficient.

Also, our algorithm includes a constraint τt+1 ≥ τt for all t.
We include this constraint because our estimate Gt of the
CDF in the interval [0, τt) may be flawed due to semi-bandit
feedback. By avoiding going backwards, we ensure that
these flaws do not affect our choice of τt+1. Again, as long
as τt ≤ τ∗, this constraint does not prevent convergence.

Now, we formally define Gt as follows. First, define the
truncated CDF G∗

t (τ) by

G∗
t (τ) =

{
0 if τ < τt

G∗(τ) if τ ≥ τt.
(2)

This CDF captures the CDF where we replace samples
s ≤ τt with τt. In particular, G∗

t (τ) shifts all the probability
mass of G∗ in the region [0, τt] to a point mass at τt. Next,
the corresponding empirical CDF Gt is

Gt(τ) =
1

t

t∑
j=1

1(max{τt, sj} ≤ τ). (3)

Finally, letting δ = 2/T 2 and ϵt =
√

log(2/δ)/2t, the
upper bound Gt on Gt from DKW is

Gt(τ) = Gt(τ) + ϵt. (4)

We use this Gt to compute τt in Algorithm 1.

Finally, Algorithm 1 satisfies the following theoretical guar-
antee: (i) it incurs sublinear regret Õ(

√
T ), and (ii) it sat-

isfies C∗
t ⊆ Ct for all t with probability at least 1 − 2/T :

Theorem 3.1. Algorithm 1 satisfies

RT ≤ K
(
2 log T + 4

√
T log T + 1

)
+ 4ϕmax,

Also, with probability at least 1− 2/T , τt ≤ τ∗ for all t.
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4. Proof of Theorem 3.1
Our first lemma shows that Gt defined in (3) converges uni-
formly toG∗

t defined in (2). Note that the randomness comes
from the sequence of random variables sj = f(xj , y

∗
j ).

Lemma 4.1. For any ϵ ∈ R>0, P[Et] ≤ 2e−2tϵ, where

Et =

{
sup
τ∈R
|Gt(τ)−G∗

t (τ)| > ϵ

}

Proof. Let the empirical CDF of s be G′
t(τ) =

1
t

∑t
j=1 1(sj ≤ τ), and define the events

A< =

{
sup
τ<τt

|Gt(τ)−G∗
t (τ)| > ϵ

}
A≥ =

{
sup
τ≥τt

|Gt(τ)−G∗
t (τ)| > ϵ

}
.

First, consider A≥. For τ ≥ τt, by definition of G∗
t and Gt,

we have G∗
t (τ) = G∗(τ) and Gt(τ) = G′

t(τ). Thus, by the
DKW inequality, P[A≥] ≤ 2e−2tϵ2 . Next, consider A<. By
definition of G∗

t and Gt, we have Gt(τ) = G∗
t (τ) = 0, so

P[A<] = 0. Thus, by a union bound, we have

P[Et] ≤ P[A≥] + P[A<] ≤ 2e−2tϵ2 ,

as claimed.

Our next lemma shows that with high probability, the desired
invariant τt ≤ τ∗ holds for all t ∈ [T ].

Lemma 4.2. Suppose supτ∈R |Gt(τ) − G∗
t (τ)| ≤ ϵt for

all t ∈ [T ] with ϵt =
√
log(2/δ)/2t .Then, τt ≤ τ∗ for all

t ∈ [T ].

Proof. We prove by induction. For the base case, when
t = 1, we set τ1 = −∞. Thus, τ1 ≤ τ∗. For the in-
ductive case, note that τk ≤ τ∗ by the inductive hypoth-
esis, so we have G∗

k(τ) = G∗(τ) for all τ ≥ τ∗. Then,
we have |Gk(τ

∗) − G∗(τ∗)| = |Gk(τ
∗) − G∗

k(τ
∗)| ≤

supτ∈R |Gk(τ) − G∗
k(τ)| ≤ ϵk, where the last inequality

follows from our assumption. Thus, we have Gk(τ
∗) =

Gk(τ
∗) + ϵk ≥ G∗(τ∗) = 1 − α. Recall that we de-

fine τ1−α,k = sup{τ ∈ R | Gk(τ) ≤ 1 − α}; thus, we
have τ1−α,k ≤ τ∗. Since τk+1 = max{τ1−α,k, τk} with
τ1−α,k ≤ τ∗ and τk ≤ τ∗, we have τk+1 ≤ τ∗.

Our next lemma bounds the range of Gt(τt).

Lemma 4.3. Suppose supτ∈R |Gt(τ)−G∗
t (τ)| ≤ ϵt for all

t ∈ [T ] with ϵt =
√
log(2/δ)/2t. Then, for all t ∈ [T ], we

have

1− α− 2

t
≤ Gt(τt) ≤ 1− α+ 2ϵt.

Proof. By Lemma 4.2, τt ≤ τ∗, implying that G∗(τt) ≤
G∗(τ∗). For the upper bound, we have

Gt(τt) ≤ G∗
t (τt) + 2ϵt = G∗(τt) + 2ϵt ≤ G∗(τ∗) + 2ϵt

= 1− α+ 2ϵt.

Next, we consider the lower bound. When t = 1, the
inequality trivially holds. Otherwise, at step t− 1, τt is at
least the ⌊(1 − α)(t − 1)⌋-th order statistic. On the event
that st ≥ τt, then τt is at least the (⌊(1−α)(t− 1)⌋− 1)-th
order statistic. Thus, we have

Gt(τt) ≥
⌊(1− α)t⌋ − 1

t
≥ (1− α)t

t
− 2

t
.

If st < τt, then τt is at least the (⌊(1 − α)t⌋)-th order
statistic. Then, we have

Gt(τt) ≥
⌊(1− α)t⌋

t
≥ (1− α)t

t
− 2

t
,

as claimed.

Theorem 3.1. Algorithm 1 satisfies

RT ≤ K
(
2 log T + 4

√
T log T + 1

)
+ 4ϕmax,

Also, with probability at least 1− 2/T , τt ≤ τ∗ for all t.

Proof. Define the good event

E = ∀t ∈ [T ] . sup
τ∈R
|G∗

t (τ)−Gt(τ)| ≤ ϵt.

By a union bound and by Lemma 4.1, we have

P[¬E] ≤
T∑

t=1

2e−2tϵ2t ≤ Tδ = 2

T
.

Now, we have

RT = E

[
T∑

t=1

|ϕ(τ∗)− ϕ(τt)|
∣∣∣∣ E

]
P[E]

+ E

[
T∑

t=1

|ϕ(τ∗)− ϕ(τt)|
∣∣∣∣ ¬E

]
P[¬E]

=

T∑
t=1

E [|ϕ(τ∗)− ϕ(τt)| | E]P[E]

+

T∑
t=1

E [|ϕ(τ∗)− ϕ(τt)| | ¬E]P[¬E]

≤
T∑

t=1

E [|ϕ(τ∗)− ϕ(τt)| | E]P[E]

+

T∑
t=1

E [2ϕmax | ¬E]P[¬E]

≤

 T∑
t=1

E [|ϕ(τ∗)− ϕ(τt)| | E]︸ ︷︷ ︸
=:Xt

+ 4ϕmax.
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The first inequality follows from Assumption 2.2. Using
Lemma 4.3, we can bound Xt as follows:

Xt = E [|ϕ(τ∗)− ϕ(τt)| | E]

= E[ψ(G∗(τ∗))− ψ(G∗(τt)) | E]

≤ KE[|G∗(τ∗)−G∗(τt)| | E]

= KE
[
|1− α−Gt(τt) +Gt(τt)−G∗(τt)| | E

]
≤ KE

[
|1− α−Gt(τt)|+ |Gt(τt)−G∗(τt)| | E

]
≤ KE

[
max

{
2

t
, 2ϵt

}
+ |Gt(τt)−G∗

t (τt)|
∣∣∣∣ E]

≤ Kmax

{
2

t
, 2ϵt

}
+ 2KE

[
sup
τ∈R
|Gt(τ)−G∗

t (τ)|
∣∣∣∣ E]

≤ Kmax

{
2

t
, 2

√
log(2/δ)

2t

}
+ 2K

√
log(2/δ)

2t

≤ 2K

t
+ 4K

√
log(2/δ)

2t
,

where the first inequality follows from Assumption 2.1 and
the third inequality follows from Lemma 4.3. Thus, we have

T∑
t=1

Xt ≤
T∑

t=1

{
2K

t
+ 4K

√
log T

t

}
≤ K

[
2 log T + 1 + 4

√
T log T}

]
.

The claim follows.

5. Experiments
5.1. Experimental Setup

Image classification task. We use the Vision Trans-
former (Dosovitskiy et al., 2020) model on the ImageNet
dataset (Deng et al., 2009).1 Each image from the dataset be-
longs to exactly one class out of the 1,000 candidate classes.
Consequently, the cardinality of the label domain is 1,000
(i.e., |Y| = 1000). In the experiments, images arrive se-
quentially, and our algorithm aims to construct the smallest
candidate label set that achieves the desired coverage. We
use the logits score returned by a ViT model (pretrained on
the ImageNet training set) as our scoring function f ; we
use the logits instead of the softmax function to evaluate
sensitivity to the choice of scoring function.

Document retrieval task. Next, we consider the Dense
Passage Retriever (DPR) model (Karpukhin et al., 2020) on
the SQuAD question-answering dataset. DPR leverages a
dual-encoder architecture that maps questions and candidate
documents to embedding vectors. Denoting the space of

1Obtained from https://www.image-net.org/ with a
custom and non-commercial license; we use the 16 × 16 down
sampled version.

questions and documents by Q and D, respectively, then
DPR consists of a question encoder EQ : Q 7→ R768 and a
document encoder ED : D 7→ R768. Given a question q and
a set of candidate documents D ⊆ D, the similarity score
between document d ∈ D and question q is

sq,d =
EQ(q)ED(d)

|EQ(q)| · |ED(d)|
.

We use this score as our scoring function. Then, our goal is
to construct the smallest set of candidate documents while
guaranteeing that they contain the ground truth document
with high probability.

Our dataset is SQuAD question-answering dataset (Ra-
jpurkar et al., 2016), a popular reading comprehension
benchmark. Each question in SQuAD can be answered
by finding the relevant information in a corresponding
Wikipedia paragraph known as the context. The authors
of DPR make a few changes to adapt SQuAD to document
retrieval. First, paragraphs are further split into multiple, dis-
joint text blocks of 100 words, serving as the basic retrieval
unit (i.e., candidate documents). Second, each question is
paired with ground truth documents and a set of irrelevant
documents.2 In our experiments, for each question, we
include one ground truth document and all the irrelevant
documents to create the set of candidate documents.

Second-price auctions task. Lastly, we consider the sce-
nario of setting reservation prices in second-price auctions,
a well-studied problem that has semi-bandit feedback (Cesa-
Bianchi et al., 2014; Zhao & Chen, 2020). In this problem,
a seller (the auctioneer) repeatedly sells the same type of
items to a group of bidders. In each round t, she publicly
announces a reservation price pt, while bidders draw their
private values vt from a fixed distribution that is unknown to
the seller. For each bidder i, she will submit the bidBt

i = vti
if and only if vti ≥ pt. The seller obtains reward Rt:

Rt =


0 if pt > B

(1)
t

pt if B(2)
t < pt ≤ B(1)

t

B
(2)
t if pt ≤ B(2)

t ,

where B(1)
t , B

(2)
t denote the highest and second-highest bid

received by the seller in round t, implying that the seller
only observes bids that are higher than pt. We consider a
seller that aims to learn

p∗ = argmax
p∈R

p subj. to P[B(1) ≥ p] ≥ α.

2In the data, all questions are paired with 50 irrelevant docu-
ments. We construct the candidate documents set by including all
50 irrelevant documents and 1 ground truth document. We exclude
questions that have 0 ground truth documents. The data were
obtained from DPR’s public Github Repo: https://github.
com/facebookresearch/DPR with licenses CC BY-SA 4.0
and CC BY-NC 4.0
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(a) ImageNet (b) SQuAD (c) Auction

Figure 1. Cumulative Regret

(a) ImageNet (b) SQuAD (c) Auction

Figure 2. Coverage Rate

That is, the seller aims to find the highest reservation price
p such that she can sell the item with probability at least α.
This problem can be solved using online conformal predic-
tion. Following standard practice (Mohri & Medina, 2014),
we use a synthetic dataset that adapts from eBay auction
data (Jank & Shmueli, 2010). Specifically, we simulate the
distribution of vi by using the empirical distribution of the
observed bids in the dataset.

Baselines. We compare to greedy, Adaptive Conformal
Inference (ACI) (Gibbs & Candes, 2021), and Decaying
Learning Rate (DLR) (Angelopoulos et al., 2024b). The
greedy strategy chooses

τt = sup{τ ∈ R | Gt(τ) ≤ 1− α}

at every step, which cannot guarantee the α coverage rate,
leading it to undercover significantly more than desired.
Next, Adaptive Conformal Inference (ACI) adjusts αt (and
then τt) based on whether the ground truth label is in the
previous round’s prediction set. We choose the learning
rate γ from a grid search in a candidate set proposed in
(Gibbs & Candès, 2024). To run ACI in our semi-bandit
feedback setting, we only update the quantile function Q̂t

when ground-truth label y∗t is observed; as we show, this
biased strategy for updating Q̂t leads it to fail to achieve the
desired coverage rate.

Lastly, we consider the Decaying Learning Rate (DLR)
algorithm proposed in (Angelopoulos et al., 2024b). In
contrast to ACI, DLR directly performs gradient descent on
the cutoffs τt instead of the quantiles αt; it can be viewed
as running ACI with Q̂t(α) = α. We set the learning
rate to the one used in the experiments from the original
paper—i.e., ηt = t−1/2−ϵ with ϵ = 0.1. We show results
for two additional baselines, explore-then-commit (ETC)
and conservative ETC, in Appendix A.

Experiment parameters. We use α = 0.9 and T = 10000,
and report averages across 10 runs. The shaded areas are
the 95% confidence intervals computed from 10 runs.

Metrics. First, we consider the cumulative regret for the
following reward function ϕ:

ϕ(τ) =

{
−λ1|G∗(τ)− (1− α)| if G∗(τ) ≤ (1− α)
−λ2|G∗(τ)− (1− α)| if G∗(τ) > (1− α),

for some 0 < λ1 < λ2; we take λ1 = 0.1 and λ2 = 10.
Note this loss imposes a larger penalty for undercovering
compared to overcovering. Next, we consider coverage rate:

Coverage Rate =
1

T

T∑
t=1

1(y∗t ∈ Ct).
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Figure 3. Undercoverage Count

Third, we consider the number of times τt > τ∗, which
measures the violation of our safety condition:

Undercoverage Count =
T∑

t=1

1(τt > τ∗).

Our goals are to (i) achieve Õ(
√
T ) regret, while (ii) main-

taining the desired α coverage rate, and (iii) achieving zero
undercoverage count with probability at least 1− δ over the
entire time horizon.

5.2. Results

Regret. First, Figure 1 shows the cumulative regret of each
approach on each task. We applied the log-scale for better
readability. As can be seen, our algorithm consistently ob-
tains the lowest regret. The ACI algorithm attains a regret
level comparable to the greedy algorithm because its quan-
tile function is updated with a bias. Furthermore, note that
the curves for both ACI and the greedy algorithm appear to
be superlinear. This can happen since these algorithms do
not properly account for semi-bandit feedback—in particu-
lar, the empirical estimate Gt of the distribution becomes
increasingly truncated. Moreover, the poor performance of
DLR can be attributed to the fact that it does not make use
of a quantile function. As a consequence, without score-
specific hyperparameter tuning (i.e., tuning the learning
rate), it can converge very slowly to the optimal prediction
sets. For many scoring functions, we do not have prior
knowledge of the score’s range, which exacerbates these is-
sues. These issues are particularly salient when we consider
tasks such as the second-price auction, where the score’s
range (i.e., the range of bids) can be difficult to predict in
advance. In contrast, our algorithm consistently performs
and does not have any hyperparamters to tune.

Coverage rate. Next, Figure 2 shows the coverage rate
achieved by each algorithm for each task. Both ACI and
greedy fail to maintain the desired coverage rate in all three
tasks. DLR and SPS both achieve the desired coverage rate;
however, SPS converges more quickly.

Undercoverage count. Finally, Figure 3 shows the un-
dercoverage count. Note that greedy and ACI frequently
undercover. ACI has high undercoverage count because
the prediction set oscillates between being too small (i.e.,
τt > τ∗) and too large (i.e., τt < τ∗). This behavior can be
undesirable since it means that different inputs have differ-
ent coverage probabilities. In contrast, our algorithm never
undercovers since τt is guaranteed to converge to τ∗ from
below. Interestingly, DLR also does not undercover. While
their algorithm is not guaranteed to satisfy this property, it
incrementally estimates τt by starting from a conservative
τ . Thus, if the learning rate is small enough, it would not
undercover until τt gets significantly closer to the true τ∗.

Summary. These results show that our algorithm achieves
(and converges to) the desired coverage rate while achieving
sublinear regret and maintaining τt < τ∗. In contrast, ACI
and greedy fail to achieve the desired coverage rate, and
DLR converges much more slowly than our algorithm.

6. Conclusion
We have proposed a novel conformal prediction algorithm
for constructing online prediction sets under stochastic semi-
bandit feedback. We have shown our algorithm can be ap-
plied to learn optimal prediction sets in image classification,
document retrieval, and second-price auction reservation
price prediction. Our experiments show we achieve the de-
sired α coverage level while achieving prediction set sizes
that achieve sublinear regret and zero undercoverage count.

Impact Statement
Our approach aims to improve the trustworthiness of ma-
chine learning models via reliably uncertainty quantification;
we do not foresee any ethical concerns.
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A. Additional Experiments
We consider two additional baselines. First, explore-then-
commit (ETC) chooses τt = −∞ in the first m steps, and
then commits to

τt = sup{τ ∈ R | Gm(τ) ≤ 1− α}.

Next, conservative ETC (Con-ETC) uses the same strategy,
except it commits to

τt = sup{τ ∈ R | Gm(τ) ≤ 1− α}

after the exploration period. In other words, it commits
to a conservative choice of τ that satisfies our coverage
guarantee, and also guarantees τt ≤ τ∗ with probability at
least 1−2/T . The number of exploration rounds are chosen
via a grid search. Results are shown in Figures 4, 5, & 6. As
can be seen, ETC fails to achieve the desired coverage rate
since it does not account for uncertainty; conversely, Con-
ETC achieves very high regret since it does not adaptively
choose τt over time.
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(a) ImageNet (b) SQuAD (c) Auction

Figure 4. Cumulative Regret

(a) ImageNet (b) SQuAD (c) Auction

Figure 5. Coverage Rate

(a) ImageNet (b) SQuAD (c) Auction

Figure 6. Undercoverage Count
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