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Abstract The brain needs to predict how the body reacts to motor commands, but how a

network of spiking neurons can learn non-linear body dynamics using local, online and stable

learning rules is unclear. Here, we present a supervised learning scheme for the feedforward and

recurrent connections in a network of heterogeneous spiking neurons. The error in the output is

fed back through fixed random connections with a negative gain, causing the network to follow the

desired dynamics. The rule for Feedback-based Online Local Learning Of Weights (FOLLOW) is

local in the sense that weight changes depend on the presynaptic activity and the error signal

projected onto the postsynaptic neuron. We provide examples of learning linear, non-linear and

chaotic dynamics, as well as the dynamics of a two-link arm. Under reasonable approximations, we

show, using the Lyapunov method, that FOLLOW learning is uniformly stable, with the error going

to zero asymptotically.

DOI: https://doi.org/10.7554/eLife.28295.001

Introduction
Over the course of life, we learn many motor tasks such as holding a pen, chopping vegetables, rid-

ing a bike or playing tennis. To control and plan such movements, the brain must implicitly or explic-

itly learn forward models (Conant and Ross Ashby, 1970) that predict how our body responds to

neural activity in brain areas known to be involved in motor control (Figure 1A). More precisely, the

brain must acquire a representation of the dynamical system formed by our muscles, our body, and

the outside world in a format that can be used to plan movements and initiate corrective actions if

the desired motor output is not achieved (Pouget and Snyder, 2000; Wolpert and Ghahramani,

2000; Lalazar and Vaadia, 2008). Visual and/or proprioceptive feedback from spontaneous move-

ments during pre-natal (Khazipov et al., 2004) and post-natal development (Petersson et al.,

2003) or from voluntary movements during adulthood (Wong et al., 2012; Hilber and Caston,

2001) are important to learn how the body moves in response to neural motor commands

(Lalazar and Vaadia, 2008; Wong et al., 2012; Sarlegna and Sainburg, 2009; Dadarlat et al.,

2015), and how the world reacts to these movements (Davidson and Wolpert, 2005; Zago et al.,

2005, 2009; Friston, 2008). We wondered whether a non-linear dynamical system, such as a for-

ward predictive model of a simplified arm, can be learned and represented in a heterogeneous net-

work of spiking neurons by adjusting the weights of recurrent connections.

Supervised learning of recurrent weights to predict or generate non-linear dynamics, given com-

mand input, is known to be difficult in networks of rate units, and even more so in networks of spik-

ing neurons (Abbott et al., 2016). Ideally, in order to be biologically plausible, a learning rule must

be online that is constantly incorporating new data, as opposed to batch learning where weights are

adjusted only after many examples have been seen; and local that is the quantities that modify the
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Figure 1. Schematic for learning a forward model. (A) During learning, random motor commands (motor babbling)

cause movements of the arm, and are also sent to the forward predictive model, which must learn to predict the

joint angles and velocities (state variables) of the arm. The deviation of the predicted state from the reference

state, obtained by visual and proprioceptive feedback, is used to learn the forward predictive model with

architecture shown in B. (B) Motor command~u is projected onto neurons with random weights efflb. The spike trains

of these command representation neurons Sffl are sent via plastic feedforward weights wff
il into the neurons of the

recurrent network having plastic weights wij (plastic weights in red). Readout weights dai decode the filtered

spiking activity of the recurrent network as the predicted state x̂aðtÞ. The deviation of the predicted state from the

reference state of the reference dynamical system in response to the motor command, is fed back into the

recurrent network with error encoding weights keia. (C) A cartoon depiction of feedforward, recurrent and error

currents entering a neuron i in the recurrent network. (D) Spike trains of a few randomly selected neurons of the

recurrent network from the non-linear oscillator example are plotted (alternate red and blue colours are for

guidance of eye only). A component x̂2 of the network output during a period of the oscillator is overlaid on the

spike trains to indicate their relation to the output.

Figure 1 continued on next page
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weight of a synapse must be available locally at the synapse as opposed to backpropagation

through time (BPTT) (Rumelhart et al., 1986) or real-time recurrent learning (RTRL) (Williams and

Zipser, 1989) which are non-local in time or in space, respectively (Pearlmutter, 1995; Jae-

ger, 2005). Even though Long-Short-Term-Memory (LSTM) units (Hochreiter and Schmidhuber,

1997) avoid the vanishing gradient problem (Bengio et al., 1994; Hochreiter et al., 2001) in recur-

rent networks, the corresponding learning rules are difficult to interpret biologically.

Our approach toward learning of recurrent spiking networks is situated at the crossroads of reservoir

computing (Jaeger, 2001; Maass et al., 2002; Legenstein et al., 2003; Maass and Markram, 2004;

Jaeger and Haas, 2004; Joshi and Maass, 2005; Legenstein and Maass, 2007), FORCE learning

(Sussillo and Abbott, 2009, 2012; DePasquale et al., 2016; Thalmeier et al., 2016; Nicola and Clo-

path, 2016), function and dynamics approximation (Funahashi, 1989; Hornik et al., 1989; Girosi and

Poggio, 1990; Sanner and Slotine, 1992; Funahashi and Nakamura, 1993; Pouget and Sejnowski,

1997; Chow and Xiao-Dong Li, 2000; Seung et al., 2000; Eliasmith and Anderson, 2004; Elia-

smith, 2005) and adaptive control theory (Morse, 1980; Narendra et al., 1980; Slotine and Coetsee,

1986; Weiping Li et al., 1987; Narendra and Annaswamy, 1989; Sastry and Bodson, 1989;

Ioannou and Sun, 2012). In contrast to the original reservoir scheme (Jaeger, 2001;Maass et al., 2002)

where learning was restricted to the readout connections, we focus on a learning rule for the recurrent

connections. Whereas neural network implementations of control theory (Sanner and Slotine, 1992;

DeWolf et al., 2016) modified adaptive feedback weights without a synaptically local interpretation, we

modify the recurrent weights in a synaptically local manner. Compared to FORCE learning where recur-

rent synaptic weights have to change rapidly during the initial phase of learning (Sussillo and Abbott,

2009, 2012), we aim for a learning rule that works in the biologically more plausible setting of slow synap-

tic changes. While previous work has shown that linear dynamical systems can be represented and

learned with local online rules in recurrent spiking networks (MacNeil and Eliasmith, 2011;

Bourdoukan and Denève, 2015), for non-linear dynamical systems the recurrent weights in spiking net-

works have typically been computed offline (Eliasmith, 2005).

Here, we propose a scheme for how a recurrently connected network of heterogeneous deter-

ministic spiking neurons may learn to mimic a low-dimensional non-linear dynamical system, with a

local and online learning rule. The proposed learning rule is supervised, and requires access to the

error in observable outputs. The output errors are fed back with random, but fixed feedback

weights. Given a set of fixed error-feedback weights, the learning rule is synaptically local and com-

bines presynaptic activity with the local postsynaptic error variable.

Results
A forward predictive model (Figure 1A) takes, at each time step, a motor command ~uðtÞ as input

and predicts the next observable state ~̂xðt þ DtÞ of the system. In the numerical implementation, we

consider Dt ¼ 1ms, but for the sake of notational simplicity we drop the Dt in the following. The pre-

dicted system state ~̂x (e.g., the vector of joint angles and velocities of the arm) is assumed to be low-

dimensional with dimensionality Nd (4-dimensional for a two-link arm). The motor command ~uðtÞ is

used to generate target movements such as ‘lift your arm to a location’, with a dimensionality Nc of

the command typically smaller than the dimensionality Nd of the system state.

The actual state of the reference system (e.g., actual joint angles and velocities of the arm) is

described by a non-linear dynamical system, which receives the control input ~uðtÞ 2 R
Nc and evolves

according to a set of coupled differential equations

dxaðtÞ
dt

¼ ha ~xðtÞ;~uðtÞð Þ; (1)

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.28295.002

The following figure supplement is available for figure 1:

Figure supplement 1. Gain functions of heterogeneous neurons.

DOI: https://doi.org/10.7554/eLife.28295.003
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where~x with components xa (where a¼ 1; . . . ;Nd) is the vector of observable state variables, and ~h is

a vector whose components are arbitrary non-linear functions ha. For example, the observable sys-

tem state ~xðtÞ could be the joint angles and velocities of the arm deduced from visual and proprio-

ceptive input (Figure 1A). We show that, with training, the forward predictive model learns to make

the error

�a � xaðtÞ� x̂aðtÞ (2)

between the actual state~xðtÞ and the predicted state ~̂xðtÞ negligible.

Network architecture for learning the forward predictive model
In our neural network model (Figure 1B), the motor command ~uðtÞ drives the spiking activity of a

command representation layer of 3000 to 5000 leaky integrate-and-fire neurons via connections with

fixed random weights. These neurons project, via plastic feedforward connections, to a recurrent

network of also 3000 to 5000 integrate-and-fire neurons. We assume that the predicted state ~̂x is lin-

early decoded from the activity of the recurrent network. Denoting the spike train of neuron i by

SiðtÞ, the component a of the predicted system state is

x̂aðtÞ ¼
X

i

dai

Z t

�¥
SiðsÞkðt� sÞds�

X

i

daiðSi �kÞðtÞ; (3)

where dai are the readout weights. The integral represents a convolution with a low-pass filter

kðtÞ � expð�t=tsÞ=ts; (4)

with a time constant ts ¼ 20 ms, and is denoted by ðSi �kÞðtÞ.
The current into a neuron with index l (l ¼ 1; . . . ;N), in the command representation layer com-

prising N neurons, is

Jffl ¼
X

a

efflauaþ bffl ; (5)

where effla are fixed random weights, while bffl is a neuron-specific constant for bias (see Methods)

(Eliasmith and Anderson, 2004). We use Greek letters for the indices of low-dimensional variables

(such as command) and Latin letters for neuronal indices, with summations going over the full range

of the indices. The number of neurons N in the command representation layer is much larger than

the dimensionality of the input, that is N �Nc.

The input current to a neuron with index i (i ¼ 1; . . . ;N) in the recurrent network is

Ji ¼
X

l

wff
il ðSffl �kÞðtÞþ

X

j

wijðSj �kÞðtÞþ
X

a

keiað�a �kÞðtÞþ bi; (6)

where wff
il and wij are the feedforward and recurrent weights, respectively, which are both subject to

our synaptic learning rule, whereas keia are fixed error feedback weights (see below). The spike trains

travelling along the feedforward path Sffl and those within the recurrent network Sj are both low-pass

filtered (convolution denoted by �) at the synapses with the exponential filter k defined above. The

constant parameter bi is a neuron specific bias (see Methods). The constant k>0 is the gain for feed-

ing back the output error. The number of neurons N in the recurrent network is much larger than the

dimensionality Nd of the represented variable x̂, that is N �Nd.

For all numerical simulations, we used deterministic leaky integrate and fire (LIF) neurons. The

voltage Vl of each LIF neuron indexed by l, was a low-pass filter of its driving current Jl:

tm

dVl

dt
¼�Vl þ Jl; (7)

with a membrane time constant, of tm ¼ 20 ms. The neuron fired when the voltage Vl crossed a

threshold �¼ 1 from below, after which the voltage was reset to zero for a refractory period tr of 2

ms. If the voltage went below zero, it was clipped to zero. Mathematically, the spike trains Sffl ðtÞ in
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the command representation layer and SlðtÞ in the recurrent network, are a sequence of events,

modelled as a sum of Dirac delta-functions.

Biases and input weights of the spiking neurons vary between one neuron and the next, both in

the command representation layer and the recurrent network, yielding different frequency versus

input curves for different neurons (Figure 1—figure supplement 1). Since arbitrary low-dimensional

functions can be approximated by linear decoding from a basis of non-linear functions (Funaha-

shi, 1989; Girosi and Poggio, 1990; Hornik et al., 1989), such as neuronal tuning curves

(Sanner and Slotine, 1992; Seung et al., 2000; Eliasmith and Anderson, 2004), we may expect

that suitable feedforward weights onto, and lateral weights within, the recurrent network can be

found that approximate the role of the function ~h in Equation (1). In the next subsection, we pro-

pose an error feedback architecture along with a local and online synaptic plasticity rule that can

train these feedforward and recurrent weights to approximate this role, while the readout weights

are kept fixed, so that the network output mimics the dynamics in Equation (1).

Negative error feedback via auto-encoder enables local learning
To enable weight tuning, we make four assumptions regarding the network architecture. The initial

two assumptions are related to input and output. First, we assume that, during the learning phase, a

random time-dependent motor command input ~uðtÞ is given to both the muscle-body reference sys-

tem described by Equation (1) and to the spiking network. The random input generates irregular

trajectories in the observable state variables, mimicking motor babbling (Meltzoff and Moore,

1997; Petersson et al., 2003). Second, we assume that each component x̂a of the output predicted

by the spiking network is compared to the actual observable output xa produced by the reference

system of Equation (1) and their difference (the output error �a; Equation (2)) is calculated, similar

to supervised learning schemes such as perceptron learning (Rosenblatt, 1961).

The final two assumptions are related to the error feedback. Our third assumption is that the

readout weights dai have been pre-learned, possibly earlier in development, in the absence of feed-

forward and recurrent connections, so as to form an auto-encoder of gain k with the fixed random

feedback weights keia. Specifically, an arbitrary value �a sent via the error feedback weights to the

recurrent network and read out, from its N neurons, via the decoding weights gives back (approxi-

mately) k�a. Thus, we set the decoding weights so as to minimize the squared error between the

decoded output and required output k~� for a set of randomly chosen vectors~� while setting feedfor-

ward and recurrent weights to zero (see Methods). We used an algorithmic learning scheme here,

but we expect that these decoding weights can also be pre-learned by biologically plausible learning

schemes (D’Souza et al., 2010; Urbanczik and Senn, 2014; Burbank, 2015).

Fourth, we assumed that the error �a ¼ xa � x̂a is projected back to neurons in the recurrent net-

work through the above-mentioned fixed random feedback weights. From the third term in Equa-

tion (6) and Figure 1B–C, we define a total error input that neuron i receives:

I�i � k
X

a

eia�a; (8)

with feedback weights keia, where k is fixed at a large constant positive value.

The combination of the auto-encoder and the error feedback implies that the output stays close

to the reference, as explained now. In open loop that is without connecting the output ~̂x and the ref-

erence ~x to the error node, an input ~� to the network generates an output ~̂x ¼ k~� due to the auto-

encoder of gain k. In closed loop, that is with the output and reference connected to the error node

(Figure 1B), the error input is~� ¼~x�~̂x, and the network output ~̂x settles to:

~̂x¼ k~�¼ k ~x�~̂x
� �

¼)~̂x¼ k
kþ1
~x»~x;

(9)

that is approximately the reference ~x for large positive k. The fed-back residual error ~�¼~x=ðkþ 1Þ
drives the neural activities and thence the network output. Thus, feedback of the error causes the

output x̂a to approximately follow xa, for each component a, as long as the error feedback time

scale is fast compared to the reference dynamical system time scale, analogous to negative error

feedback in adaptive control (Narendra and Annaswamy, 1989; Ioannou and Sun, 2012).
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While error feedback is on, the synaptic weights wff
il and wij on the feedforward and recurrent con-

nections, respectively, are updated as:

_wff
il ¼ hðI�i �k�ÞðSffl �kÞðtÞ;
_wij ¼ hðI�i �k�ÞðSj �kÞðtÞ;

(10)

where h is the learning rate (which is either fixed or changes on the slow time scale of minutes), and

k� is an exponentially decaying filter kernel with a time constant of 80 or 200 ms. For a postsynaptic

neuron i, the error term I�i �k� is the same for all its synapses, while the presynaptic contribution is

synapse-specific.

We call the learning scheme ‘Feedback-based Online Local Learning Of Weights’ (FOLLOW),

since the predicted state ~̂x follows the true state ~x from the start of learning. Under precise mathe-

matical conditions, we show in the Methods that the FOLLOW scheme converges to a stable solu-

tion, while simultaneously deriving the learning rule.

Because of the error feedback, with constant k � 1, the output is close to the reference from the

start of learning. However, initially the error is not exactly zero, and this non-zero error drives the

weight updates via Equation (10). After a sufficiently long learning time, a vanishing error (�a ¼ 0 for

all components) indicates that the neuronal network now autonomously generates the desired out-

put, so that feedback is no longer required. In the Methods section, we show that not just the low-

dimensional output ~̂x, but also the spike trains SiðtÞ, for i ¼ 1; . . . ;N, are entrained by the error feed-

back to be close to the ideal ones required to generate~x.

During learning, the error feedback via the auto-encoder in a loop serves two roles: (i) to make

the error current available in each neuron, projected correctly, for a local synaptic plasticity rule, and

(ii) to drive the spike trains to the target ones for producing the reference output. In other learning

schemes for recurrent neural networks, where neural activities are not constrained by error feedback,

it is difficult to assign credit or blame for the momentarily observed error, because neural activities

from the past affect the present output in a recurrent network. In the FOLLOW scheme, the spike

trains are constrained to closely follow the ideal time course throughout learning, so that the present

error can be attributed directly to the weights, enabling us to change the weights with a simple per-

ceptron-like learning rule (Rosenblatt, 1961) as in Equation (10), bypassing the credit assignment

problem. In the perceptron rule, the weight change Dw ~ ðpreÞ � d is proportional to the presynaptic

input ðpreÞ and the error d. In the FOLLOW learning rule of Equation (10), we can identify ðSi � kÞ
with ðpreÞ and ðI�i � k�Þ with d. In Methods, we derive the learning rule of Equation (10) in a princi-

pled way from a stability criterion.

FORCE learning (Sussillo and Abbott, 2009, 2012; DePasquale et al., 2016; Thalmeier et al.,

2016; Nicola and Clopath, 2016) also clamps the output and neural activities to be close to ideal

during learning, by using weight changes that are faster than the time scale of the dynamics. In our

FOLLOW scheme, clamping is achieved via negative error feedback using the auto-encoder, which

allows weight changes to be slow and makes the error current available locally in the post-synaptic

neuron. Other methods used feedback based on adaptive control for learning in recurrent networks

of spiking neurons, but were limited to linear systems (MacNeil and Eliasmith, 2011;

Bourdoukan and Denève, 2015), whereas the FOLLOW scheme was derived for non-linear systems

(see Methods). Our learning rule of Equation (10) uses an error �a � xa � x̂a in the observable state,

rather than an error involving the derivative dxa=dt in Equation (1), as in other schemes (see Appen-

dix 1) (Eliasmith, 2005; MacNeil and Eliasmith, 2011). The reader is referred to Discussion for

detailed further comparisons. The FOLLOW learning rule is local since all quantities needed on the

right-hand-side of Equation (10) could be available at the location of the synapse in the postsynaptic

neuron. For a potential implementation and prediction for error-based synaptic plasticity, and for a

critical evaluation of the notion of ‘local rule’, we refer to the Discussion.

Spiking networks learn target dynamics via FOLLOW learning
In order to check whether the FOLLOW scheme would enable the network to learn various dynam-

ical systems, we studied three systems describing a non-linear oscillator (Figure 2), low-dimensional

chaos (Figure 3) and simulated arm movements (Figure 4) (additional examples in Figure 2—figure

supplement 2, Figure 2—figure supplement 4 and Methods). In all simulations, we started with

vanishingly small feedforward and recurrent weights (tabula rasa), but assumed pre-learned readout
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Figure 2. Learning non-linear dynamics via FOLLOW: the van der Pol oscillator. (A-C) Control input, output, and error are plotted versus time: before

the start of learning; in the first 4 s and last 4 s of learning; and during testing without error feedback (demarcated by the vertical red lines). Weight

updating and error current feedback were both turned on after the vertical red line on the left at the start of learning, and turned off after the vertical

red line in the middle at the end of learning. (A) Second component of the input u2. (B) Second component of the learned dynamical variable x̂2 (red)

decoded from the network, and the reference x2 (blue). After the feedback was turned on, the output tracked the reference. The output continued to

track the reference approximately, even after the end of the learning phase, when feedback and learning were turned off. The output tracked the

reference approximately, even with a very different input (Bii). With higher firing rates, the tracking without feedback improved (Figure 2—figure

supplement 1). (C) Second component of the error �2 ¼ x2 � x̂2 between the reference and the output. (Cii) Trajectory ðx1ðtÞ; x2ðtÞÞ in the phase plane

for reference (red,magenta) and prediction (blue,cyan) during two different intervals as indicated by $ and � in Bii. (D) Mean squared error per

dimension averaged over 4 s blocks, on a log scale, during learning with feedback on. Learning rate was increased by a factor of 20 after 1,000 s to

speed up learning (as seen by the sharp drop in error at 1000 s). (E) Histogram of firing rates of neurons in the recurrent network averaged over 0.25 s

(interval marked in green in H) when output was fairly constant (mean across neurons was 12.4 Hz). (F) As in E, but averaged over 16 s (mean across

neurons was 12.9 Hz). (G) Histogram of weights after learning. A few strong weights jwijj>10 are out of bounds and not shown here. (H) Spike trains of

50 randomly-chosen neurons in the recurrent network (alternating colors for guidance of eye only). (I) Spike trains of H, reverse-sorted by first spike time

after 0.5 s, with output component x̂2 overlaid for timing comparison.

DOI: https://doi.org/10.7554/eLife.28295.004

The following figure supplements are available for figure 2:

Figure supplement 1. Learning van der Pol oscillator dynamics via FOLLOW with higher firing rates.

DOI: https://doi.org/10.7554/eLife.28295.005

Figure supplement 2. Learning linear dynamics via FOLLOW: 2D decaying oscillator.

DOI: https://doi.org/10.7554/eLife.28295.006

Figure supplement 3. Readout weights learn if recurrent weights are as is, but not if shuffled.

DOI: https://doi.org/10.7554/eLife.28295.007

Figure supplement 4. Learning non-linear feedforward transformation with linear recurrent dynamics via FOLLOW.

DOI: https://doi.org/10.7554/eLife.28295.008

Figure supplement 5. Feedforward weights are uncorrelated, while recurrent ones are correlated, when learning same recurrent dynamics but with

different feedforward transforms.

DOI: https://doi.org/10.7554/eLife.28295.009
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weights matched to the error feedback weights. For each of the three dynamical systems, we had a

learning phase and a testing phase. During each phase, we provided time-varying input to both the

network (Figure 1B) and the reference system. During the learning phase, rapidly changing control

signals mimicked spontaneous movements (motor babbling) while synaptic weights were updated

according to the FOLLOW learning rule Equation (10).

During learning, the mean squared error, where the mean was taken over the number of dynam-

ical dimensions Nd and over a duration of a few seconds, decreased (Figure 2D). We stopped the

learning phase that is weight updating, when the mean squared error approximately plateaued as a

function of learning time (Figure 2D). At the end of the learning phase, we switched the error feed-

back off (‘open loop’) and provided different test inputs to both the reference system and the recur-

rent spiking network. A successful forward predictive model should be able to predict the state

variables in the open-loop model over a finite time horizon (corresponding to the planning horizon

of a short action sequence) and in the closed-loop mode (with error feedback) without time limit.

Non-linear oscillator
Our FOLLOW learning scheme enabled a network with 3000 neurons in the recurrent network and

3000 neurons in the motor command representation layer to approximate the non-linear 2-dimen-

sional van der Pol oscillator (Figure 2). We used a superposition of random steps as input, with

Figure 3. Learning chaotic dynamics via FOLLOW: the Lorenz system. Layout and legend of panels (A-C) are analogous to Figure 2A–C. (D) The

trajectories of the reference (left panel) and the learned network (right panel) are shown in state space for 40 s with zero input during the testing phase,

forming the well-known Lorenz attractor. (E) Tent map, that is local maximum of the third component of the reference signal (blue)/network output (red)

is plotted versus the previous local maximum, for 800 s of testing with zero input. The reference is plotted with filtering in panels (A-C), but unfiltered

for the strange attractor (panel D left) and the tent map (panel E blue).

DOI: https://doi.org/10.7554/eLife.28295.010

The following figure supplement is available for figure 3:

Figure supplement 1. Learning the Lorenz system without filtering the reference variables.

DOI: https://doi.org/10.7554/eLife.28295.011
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amplitudes drawn uniformly from an interval, changing on two time scales, 50 ms and 4 s (see

Methods).

During the four seconds before learning started, we blocked error feedback. Because of zero

error feedback and our initialization with zero feedforward and recurrent weights, the output x̂

decoded from the network of spiking neurons remained constant at zero while the reference system

performed the desired oscillations. Once the error feedback with large gain (k ¼ 10) was turned on,

the feedback forced the network to roughly follow the reference. Thus, with feedback, the error

dropped to a very low value, immediately after the start of learning (Figure 2B,C). During learning,

the error dropped even further over time (Figure 2D). After having stopped learning at 5000 s ( ~ 2

hr), we found the weight distribution to be uni-modal with a few very large weights (Figure 2G). In

the open-loop testing phase without error feedback, a sharp square pulse as initial input on different

4 s long pedestal values caused the network to track the reference as shown in Figure 2Aii–Cii pan-

els. For some values of the constant pedestal input, the phase of the output of the recurrent network

differed from that of the reference (Figure 2Bii), but the shape of the non-linear oscillation was well

predicted as indicated by the similarity of the trajectories in state space (Figure 2Cii).

The spiking pattern of neurons of the recurrent network changed as a function of time, with inter-

spike intervals of individual neurons correlated with the output, and varying over time (Figure 2H,I).

Figure 4. Learning arm dynamics via FOLLOW. Layout and legend of panels A-C are analogous to Figure 2A–C except that: in panel (A), the control

input (torque) on the elbow joint is plotted; in panel (B), reference and decoded angle �2; �̂2 (solid) and angular velocity !2; !̂2 (dotted) are plotted, for

the elbow joint; in panel (C), the error �2 � �̂2 in the elbow angle is plotted. (Aii-Cii) The control input was chosen to perform a swinging acrobot-like

task by applying small torque only on the elbow joint. (Cii) The shoulder angle �1ðtÞ is plotted versus the elbow angle �2ðtÞ for the reference (blue) and

the network (red) for the full duration in Aii-Bii. The green arrow shows the starting direction. (D) Reaching task. Snapshots of the configuration of the

arm, reference in blue (top panels) and network in red (bottom panels) subject to torques in the directions shown by the circular arrows. After 0.6 s, the

tip of the forearm reaches the cyan target. Gravity acts downwards in the direction of the arrow. (E) Acrobot-inspired swinging task (visualization of

panels of Aii-Cii). Analogous to D, except that the torque is applied only at the elbow. To reach the target, the arm swings forward, back, and forward

again.

DOI: https://doi.org/10.7554/eLife.28295.012
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The distributions of firing rates averaged over a 0.25 s period with fairly constant output, and over a

16 s period with time-varying output, were long-tailed, with the mean across neurons maintained at

approximately 12–13 Hz (Figure 2E,F). The distribution averaged over 16 s had a smaller number of

neurons firing at very low and very high rates compared to the distribution over 0.25 s, consistent

with the expectation that the identity of low-rate and high-rate neurons changed over time for time-

varying output (Figure 2E,F). We repeated this example experiment (‘van der Pol oscillator’) with a

network of equal size but with neurons that had higher firing rates, so that some neurons could reach

a maximal rate of 400 Hz (Figure 1—figure supplement 1). The reference was approximated better

and learning time was shorter with higher rates (Figure 2—figure supplement 1 – 10,000 s with con-

stant learning rate) compared to the low rates here (Figure 2 – 5,000 s with 20 times the learning

rate after 1,000 s). Hence, for all further simulations, we set neuronal parameters to enable peak fir-

ing rates up to 400 Hz (Figure 1—figure supplement 1B).

We also asked whether merely the distribution of the learned weights in the recurrent layer was

sufficient to perform the task, or whether the specific learned weight matrix was required. This ques-

tion was inspired from reservoir computing (Jaeger, 2001; Maass et al., 2002; Legenstein et al.,

2003; Maass and Markram, 2004; Jaeger and Haas, 2004; Joshi and Maass, 2005;

Legenstein and Maass, 2007), where the recurrent weights are random, and only the readout

weights are learned. To answer this question, we implemented a perceptron learning rule on the

readout weights initialized at zero, with the learned network’s output as the target, after setting the

feedforward and/or recurrent weights to either the learned weights as is or after shuffling them. The

readout weights could be approximately learned only for the network having the learned weights

and not the shuffled ones (Figure 2—figure supplement 3), supporting the view that the network

does not behave like a reservoir (Methods).

Chaotic Lorenz system
Our FOLLOW scheme also enabled a network with 5000 neurons each in the command representa-

tion layer and recurrent network, to learn the 3-dimensional non-linear chaotic Lorenz system (Fig-

ure 3). We considered a paradigm where the command input remained zero so that the network

had to learn the autonomous dynamics characterized in chaos theory as a ’strange attractor’ (Lor-

enz, 1963). During the testing phase without error feedback minor differences led to different tra-

jectories of the network and the reference which show up as large fluctuations of �3ðtÞ (Figure 3A–

C). Such a behaviour is to be expected for a chaotic system where small changes in initial condition

can lead to large changes in the trajectory. Importantly, however, the activity of the spiking network

exhibits qualitatively the same underlying strange attractor dynamics, as seen from the butterfly

shape (Lorenz, 1963) of the attractor in configuration space, and the tent map (Lorenz, 1963) of

successive maxima versus the previous maxima (Figure 3D,E). The tent map generated from our net-

work dynamics (Figure 3E) has lower values for the larger maxima compared to the reference tent

map. However, very large outliers like those seen in a network trained by FORCE (Thalmeier et al.,

2016) are absent. Since we expected that the observed differences are due to the filtering of the

reference by an exponentially-decaying filter, we repeated learning without filtering the Lorenz refer-

ence signal (Figure 3—figure supplement 1), and found that the mismatch for large maxima

reduced, but a doubling appeared in the tent map (Figure 3—figure supplement 1E) which had

been almost imperceptible with filtering (cf. Figure 3E).

FOLLOW enables learning a two-link planar arm model under gravity
To turn to a task closer to real life, we next wondered if a spiking network can also learn the dynam-

ics of a two-link arm via the FOLLOW scheme. We used a two-link arm model adapted from

(Li, 2006) as our reference. The two links in the model correspond to the upper and fore arm, with

the elbow joint in between and the shoulder joint at the top. The arm moved in the vertical plane

under gravity, while torques were applied directly at the two joints, so as to coarsely mimic the

action of muscles. To avoid full rotations, the two joints were constrained to vary in the range from

�90
� to þ90

� where the resting state is at 0� (see Methods).

The dynamical system representing the arm is four-dimensional with the state variables being the

two joint angles and two angular velocities. The network must integrate the torques to obtain the

angular velocities which in turn must be integrated for the angles. Learning these dynamics is
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difficult due to these sequential integrations involving non-linear functions of the state variables and

the input. Still, our feedforward and recurrent network architecture (Figure 1B) with 5000 neurons in

each layer was able to approximate these dynamics.

Similar to the previous examples, random input torque with amplitudes of short and long pulses

changing each 50 ms and 1 s, respectively, was provided to each joint during the learning phase.

The input was linearly interpolated between consecutive values drawn every 50 ms. In the closed

loop scenario with error feedback, the trajectory converged rapidly to the target trajectory (Fig-

ure 4). We found that the FOLLOW scheme learned to reproduce the arm dynamics even without

error feedback for a few seconds during the test phase (Figure 4 and Video 1 and Video 2), which

corresponds to the time horizon needed for the planning of short arm movements.

To assess the generalization capacity of the network, we fixed the parameters post learning, and

tested the network in the open-loop setting on a reaching task and an acrobot-inspired swinging

task (Sutton, 1996). In the reaching task, torque was provided to both joints to enable the arm-tip

to reach beyond a specific ðx; yÞ position from rest. The arm dynamics of the reference model and

the network are illustrated in Figure 4D and animated in Video 1. We also tested the learned net-

work model of the 2-link arm on an acrobot-like task that is a gymnast swinging on a high-bar (Sut-

ton, 1996), with the shoulder joint analogous to the hands on the bar, and the elbow joint to the

hips. The gymnast can only apply small torques at the hip and none at the hands, and must reach

beyond a specified ðx; yÞ position by swinging. Thus, during the test, we provided input only at the

elbow joint, with a time course that could make the reference reach beyond the target ðx; yÞ position
from rest by swinging. The control input and the dynamics (Figure 4A–C right panels, Figure 4E

and Video 2) show that the network can perform the task in open-loop condition suggesting that it

has learned the inertial properties of the arm model, necessary for this simplified acrobot task.

Feedback in the FOLLOW scheme entrains spike timings
In Methods, we show that the FOLLOW learning scheme is Lyapunov stable and that the error tends

to zero under certain reasonable assumptions and approximations. Two important assumptions of

the proof are that the weights remain bounded and that the desired dynamics are realizable by the

network architecture, that is there exist feedforward and recurrent weights that enable the network

to mimic the reference dynamics perfectly. However, in practice the realizability is limited by at least

two constraints. First, even in networks of N rate neurons with non-linear tuning curves, the non-lin-

ear function ~h of the reference system in Equa-

tion (1) can in general only be approximated

with a finite error (Funahashi, 1989; Girosi and

Poggio, 1990; Hornik et al., 1989; Sanner and

Slotine, 1992; Eliasmith and Anderson, 2004)

which can be interpreted as a form of frozen

noise, that is even with the best possible setting

of the weights, the network predicts, for most

values of the state variables, a next state which

is slightly different than the one generated by

the reference differential equation. Second,

since we work with spiking neurons, we expect

on top of this frozen noise the effect of shot

noise caused by pseudo-random spiking. Both

noise sources may potentially cause drift of the

weights (Narendra and Annaswamy, 1989;

Ioannou and Sun, 2012) which in turn can make

the weights grow beyond any reasonable bound.

Ameliorative techniques from adaptive control

are discussed in Appendix 1. In our simulations,

we did not find any effect of drift of weights on

the error during a learning time up to 100,000 s

(Figure 5A), 10 times longer than that required

Video 1. Reaching by the reference arm is predicted

by the network. After training the network as a forward

model of the two-link arm under gravity as in Figure 4,

we tested the network without feedback on a reaching

task. Command input was provided to both joints of

the two-link reference arm so that the tip reached the

cyan square. The same command input was also

provided to the network without error feedback. The

state (blue, left) of the reference arm and the state

predicted (red, right) by the learned network without

error feedback are animated as a function of time. The

directions of the circular arrows indicate the directions

of the command torques at the joints. The animation is

slowed 5� compared to real life.

DOI: https://doi.org/10.7554/eLife.28295.014
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for learning this example (Figure 2—figure supplement 1).

To highlight the difference between a realizable reference system and non-linear differential

equations as a reference system, we used, in an additional simulation experiment, a spiking network

with fixed weights as the reference. More precisely, instead of using directly the differential equa-

tions of the van der Pol oscillator as a reference, we now used as a reference a spiking approxima-

tion of the van der Pol oscillator, that is the spiking network that was the final result after 10,000 s

( ~3 hr) of FOLLOW learning in Figure 2—figure supplement 1. For both the spiking reference net-

work and the to-be-trained learning network we used the same architecture, the same number of

neurons, and the same neuronal parameters as in Figure 2—figure supplement 1 for the learning of

the van der Pol oscillator. The readout and feedback weights of the learning network also had the

same parameters as those of the spiking reference network, but the feedforward and recurrent

weights of the learning network were initialized to zero and updated, during the learning phase,

with the FOLLOW rule. We ran FOLLOW learning against the reference network for 100,000 s (~ 28

hr) (Figure 5). With the realizable network as reference, learning was more rapid than with the origi-

nal van der Pol oscillator as reference (Figure 5A).

We emphasize that, analogous to the earlier simulations, the feedback error �a was low-dimen-

sional and calculated from the decoded outputs. Nevertheless, the low-dimensional error feedback

was able to entrain the network spike times to the reference spike times (Figure 5C). In particular, a

few neurons learned to fire only two or three spikes at very precise moments in time. For example,

after learning, the spikes of neuron i ¼ 9 in the learning network were tightly aligned with the spike

times of the neuron with the same index i in the spiking reference network. Similarly, neuron i ¼ 8

that was inactive at the beginning of learning was found to be active, and aligned with the spikes of

the reference network, after 100,000 s ( ~ 28 hr) of learning. The spike trains were entrained by the

low-dimensional feedback. With the feedback off, even the low-dimensional output, and hence the

spike trains, diverged from the reference. It will be interesting to explore if this entrainment by low-

dimensional feedback via an auto-encoder loop can be useful in supervised spike train learning

(Gütig and Sompolinsky, 2006; Pfister et al., 2006; Florian, 2012; Mohemmed et al., 2012;

Gütig, 2014; Memmesheimer et al., 2014; Gardner and Grüning, 2016).

Our results with the spiking reference network suggest that the error is reduced to a value close

to zero for a realizable or closely-approximated system (Figure 5A) as shown in Methods, analogous

to proofs in adaptive control (Ioannou and Sun, 2012; Narendra and Annaswamy, 1989). More-

over, network weights became very similar, though not completely identical, to the weights of the

realizable reference network (Figure 5B), which suggests that the theorem for convergence of

parameters from adaptive control should carry over to our learning scheme.

Learning is robust to sparse connectivity, noisy error or reference, and
noisy decoding weights, but not to delays
So far, our spiking networks had all-to-all connectivity. We next tested whether sparse connectivity

(Markram et al., 2015; Brown and Hestrin, 2009) of the feedforward and recurrent connections

was sufficient for learning low-dimensional dynamics. We ran the van der Pol oscillator learning pro-

tocol with the connectivity varying from 0.1 (10 percent connectivity) to 1 (full connectivity). Connec-

tions that were absent after the sparse initialization could not appear during learning, while the

existing sparse connections were allowed to evolve according to FOLLOW learning. As shown in

Figure 6A, we found that learning was slower with sparser connectivity; but with twice the learning

time, a sparse network with about 25% connectivity reached similar performance as the fully con-

nected network with standard learning time.

We added Gaussian white noise to each component of the error, which is equivalent to adding it

to each component of the reference, and ran the van der Pol oscillator learning protocol for 10,000 s

for different standard deviations of the noise (Figure 6B). The learning was robust to noise with stan-

dard deviation up to around 0:001, which must be compared with the error amplitude of the order

of 0:1 at the start of learning, and orders of magnitude lower later.

The readout weights have been pre-learned until now, so that, in the absence of recurrent con-

nections, error feedback weights and decoding weights formed an auto-encoder. We sought to relax

this requirement. Simulations showed that with completely random readout weights, the system did

not learn to reproduce the target dynamical system. However, if the readout weights had some

overlap with the auto-encoder, learning was still possible (Figure 6C). If for a feedback error ~�, the
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error encoding followed by output decoding

yields kð1þ �Þ~�þ~nð~�Þ, where ~n is a vector of arbi-

trary functions not having linear terms and small

in magnitude compared to the first term, and � is

sufficiently greater than �1 so that the effective

gain kð1þ �Þ remains large enough, then the

term that is linear in error can still drive the out-

put close to the desired one (see Methods).

To check this intuition in simulations, we incor-

porated multiplicative noise on the decoders by

multiplying each decoding weight of the auto-

encoder by one plus g, where for each weight g

was drawn independently from a uniform distri-

bution between ��þ � and �þ �. We found that

the system was still able to learn the van der Pol

oscillator up to �~ 5 and � ¼ 0, or � ¼ 2 and �

variable (Figure 6B,C). Negative values of � result

in a lower overlap with the auto-encoder leading

to the asymmetry seen in Figure 6C. Thus, the

FOLLOW learning scheme is robust to multiplica-

tive noise on the decoding weights. Alternative

approaches for other noise models are discussed

in Appendix 1.

We also asked if the network could handle

sensory feedback delays in the reference signal.

Due to the strong limit cycle attractor of the van

der Pol oscillator, the effect of delay is less trans-

parent than for the linear decaying oscillator (Figure 2—figure supplement 2), so we decided to

focus on the latter. For the linear decaying oscillator, we found that learning degraded rapidly with a

few milliseconds of delay in the reference, that is if~xðt � DÞ was provided as reference instead of~xðtÞ
(Figure 6E–F). We compensated for the sensory feedback delay by delaying the motor command

input by identical D (Figure 6G), which is equivalent to time-translating the complete learning proto-

col, to which the learning is invariant, and thus the network would learn for arbitrary delay

(Figure 6H). In the Discussion, we suggest how a forward model learned with a compensatory delay

(Figure 6G) could be used in control mode to compensate for sensory feedback delays.

Discussion
The FOLLOW learning scheme enables a spiking neural network to function as a forward predictive

model that mimics a non-linear dynamical system activated by one or several time-varying inputs.

The learning rule is supervised, local, and comes with a proof of stability.

It is supervised because the FOLLOW learning scheme uses error feedback where the error is

defined as the difference between predicted output and the actual observed output. Error feedback

forces the output of the system to mimic the reference, an effect that is widely used in adaptive con-

trol theory (Narendra and Annaswamy, 1989; Ioannou and Sun, 2012).

The learning rule is local in the sense that it combines information about presynaptic spike arrival

with an abstract quantity that we imagine to be available in the postsynaptic neuron. In contrast to

standard Hebbian learning, the variable representing this postsynaptic quantity is not the postsynap-

tic firing rate, spike time, or postsynaptic membrane potential, but the error current projected by

feedback connections onto the postsynaptic neuron, similar in spirit to modern biological implemen-

tations of approximated backpropagation (Roelfsema and van Ooyen, 2005; Lillicrap et al., 2016)

or local versions of FORCE (Sussillo and Abbott, 2009) learning rules. We emphasize that the post-

synaptic quantity is different from the postsynaptic membrane potential or the total postsynaptic

current which would also include input from feedforward and recurrent connections.

A possible implementation in a spatially extended neuron would be to imagine that the postsyn-

aptic error current I�i arrives in the apical dendrite where it stimulates messenger molecules that

Video 2. Acrobot-like swinging by the reference arm is

predicted by the network. After training the network as

a forward model of the two-link arm under gravity as in

Figure 4, we tested the network without feedback on a

swinging task analogous to an acrobot. Command

input was provided to the elbow joint of the two-link

reference arm so that the tip reached the cyan square

by swinging. The same command input was also

provided to the network without error feedback. The

state (blue, left) of the reference arm and the state

predicted (red, right) by the learned network without

error feedback are animated as a function of time. The

directions of the circular arrows indicate the directions

of the command torques at the joints. The animation is

slowed 5� compared to real life.

DOI: https://doi.org/10.7554/eLife.28295.015
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quickly diffuse or are actively transported into the soma and basal dendrites where synapses from

feedfoward and feedback input could be located, as depicted in Figure 7A. Consistent with the pic-

ture of a messenger molecule, we low-pass filtered the error current with an exponential filter k� of

time constant 80 ms or 200 ms, much longer than the synaptic time constant of 20 ms of the filter k.

Simultaneously, filtered information about presynaptic spike arrival Sj � k is available at each synapse,

possibly in the form of glutamate bound to the postsynaptic receptor or by calcium triggered signal-

ling chains localized in the postsynaptic spines. Thus the combination of effects caused by presynap-

tic spike arrival and error information available in the postsynaptic cell drives weight changes, in

loose analogy to standard Hebbian learning.

The separation of the error current from the currents at feedforward or recurrent synapses could

be spatial (such as suggested in Figure 7A) or chemical if the error current projects onto synapses

that trigger a signalling cascade that is different from that at other synapses. Importantly, whether it

is a spatial or chemical separation, the signals triggered by the error currents need to be available

throughout the postsynaptic neuron. This leads us to a prediction regarding synaptic plasticity that,

say in cortical pyramidal neurons, the plasticity of synapses that are driven by pre-synaptic input in

the basal dendrites, should be modulated by currents injected in the apical dendrite or on stimula-

tion of feedback connections.

The learning scheme is provenly stable with errors converging asymptotically to zero under a few

reasonable assumptions (Methods). The first assumption is that error encoding feedback weights

and output decoding readout weights form an auto-encoder. This requirement can be met if, at an

early developmental stage, either both sets of weights are learned using say mirrored STDP (Bur-

bank, 2015), or the output readout weights are learned, starting with random encoding weights, via

a biological perceptron-like learning rule (D’Souza et al., 2010; Urbanczik and Senn, 2014). A pre-

learned auto-encoder in a high-gain negative feedback loop is in fact a specific prediction of our

Figure 5. Convergence of error, weights and spike times for a realizable reference network. (A) We ran our FOLLOW scheme on a network for learning

one of two different implementations of the reference van der Pol oscillator: (1) differential equations, versus (2) a network realized using FOLLOW

learning for 10,000 s ( ~ 3 hr). We plot the evolution of the mean squared error, mean over number of dimensions Nd and over 4 s time blocks, from the

start to 100,000 s of learning, with the weights starting from zero. Mean squared error for the differential equations reference (1) is shown in black, while

that for the realizable network reference (2) is in red. (B) The feedforward weights (top panel) and the recurrent weights (bottom panel) at the end of

100,000 s ( ~ 28 hr) of learning, are plotted versus the corresponding weights of the realizable target network. The coefficient of determination, that is

the R2 value of the fit to the identity line (y ¼ x), is also displayed for each panel. A value of R2 ¼ 1 denotes perfect equality of weights to those of the

realizable network. Some weights fall outside the plot limits. (C) After 0 s, 10,000 s (~ 3 hr), and 100,000 s ( ~ 28 hr) of the learning protocol against the

realizable network as reference, we show spike trains of a few neurons in the recurrent network (red) and the reference network (blue) in the top, middle

and bottom panels respectively, from test simulations while providing the same control input and keeping error feedback on. With error feedback off,

the low-dimensional output diverged slightly from the reference, hence the spike trains did too (not shown).
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learning scheme, to be tested in systems-level experiments. The second assumption is that the refer-

ence dynamics f ð~xÞ is realizable. This requirement can be approximately met by having a recurrent

network with a large number N of neurons with different parameters (Eliasmith and Anderson,

2004). The third assumption is that the state variables~xðtÞ are observable. While currently we calcu-

late the feedback error directly from the state variables as a difference between reference and pre-

dicted state, we could soften this condition and calculate the difference in a higher-dimensional

space with variables~yðtÞ as long as~y ¼ Kð~xÞ is an invertible function of~xðtÞ (Appendix 1). The fourth

assumption is that the system dynamics be slower than synaptic dynamics. Indeed, typical reaching

movements extend over hundreds of milliseconds or a few seconds whereas neuronal spike transmis-

sion delays and synaptic time constants can be as short as a few milliseconds. In our simulations,

neuronal and synaptic time constants were set to 20 ms, yet the network dynamics evolved on the

time scale of hundreds of milliseconds or a few seconds, even in the open-loop condition when error

feedback was switched off (Figures 2 and 4). The fifth assumption is that weights stay bounded.

Figure 6. Robustness of FOLLOW learning. We ran the van der Pol oscillator (A–D) or the linear decaying oscillator (F,H) learning protocol for 10,000 s

for different parameter values and measured the mean squared error, over the last 400 s before the end of learning, mean over number of dimensions

Nd and time. (A) We evolved only a fraction of the feedforward and recurrent connections, randomly chosen as per a specific connectivity, according to

FOLLOW learning, while keeping the rest zero. The round dots show mean squared errors for different connectivities after a 10,000 s learning protocol

(default connectivity = 1 is starred); while the square dots show the same after a 20,000 s protocol. (B) Mean squared error after 10,000 s of learning

versus the standard deviation of noise added to each component of the error, or equivalently to each component of the reference, is plotted. (C) We

multiplied the original decoding weights (that form an auto-encoder with the error encoders) by a random factor (1 + uniformð��; �Þ) drawn for each

weight. The mean squared error at the end of a 10,000 s learning protocol for increasing values of � is plotted (default � ¼ 0 is starred). (D) We

multiplied the original decoding weights by a random factor (1 + uniformð��þ �; �þ �Þ), fixing � ¼ 2, drawn independently for each weight. The mean

squared error at the end of a 10,000 s learning protocol, for a few values of � on either side of zero, is plotted. (E,G) Architectures for learning the

forward model when the reference xðtÞ is available after a sensory feedback delay D for computing the error feedback. The forward model may be

trained without a compensatory delay in the motor command path (E) or with it (G). (F,H) Mean squared error after 10,000 s of learning the linear

decaying oscillator is plotted (default values are starred) versus the sensory feedback delay D in the reference, for the architectures without and with

compensatory delay, in F and H respectively.
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Indeed, in biology, synaptic weights should not grow indefinitely. Algorithmically, a weight decay

term in the learning rule can suppress the growth of large weights (see also Appendix 1), though we

did not need to implement a weight decay term in our simulations.

One of the postulated uses of the forward predictive model is to compensate for delay in the sen-

sory feedback during motor control (Wolpert and Miall, 1996; Wolpert et al., 1995) using the

Smith predictor configuration (Smith, 1957). We speculate that the switch from the closed-loop

A

B

C

Figure 7. Possible implementation of learning rule, and delay compensation using forward model. (A) A cartoon depiction of feedforward, recurrent

and error currents entering a neuron i in the recurrent network. The error current enters the apical dendrite and triggers an intra-cellular chemical

cascade generating a signal that is available at the feedforward and recurrent synapses in the soma and basal dendrites, for weight updates. The error

current must trigger a cascade isolated from the other currents, here achieved by spatial separation. (B-C) An architecture based on the Smith

predictor, that can switch between learning the forward model (B), versus using the forward model for motor control (C, adapted from (Wolpert and

Miall, 1996)), to compensate for the delay in sensory feedback. Active pathways are in blue and inactive ones are in red. (B) The learning architecture

(blue) is identical to Figure 6G, but embedded within a larger control loop (red). During learning, when error feedback gain k � 1, the motor

command is fed in with a compensatory delay identical to the sensory feedback delay. Thus motor command and reference state are equally delayed,

hence temporally matched, and the forward model learns to produce the motor system output for given input. (C) Once the forward model is learned,

the system switches to motor control mode (feedback gain k ¼ 0). In this mode, the forward model receives the present motor command and predicts

the current state of the motor system, for rapid feedback to the controller (via loop indicated by thick lines), even before the delayed sensory feedback

arrives. Of course the delayed sensory feedback can be further taken into account by the controller, by comparing it with the delayed output of the

forward model, to better estimate the true state. Thus the forward model learned as in B provides a prediction of the state, even before feedback is

received, acting to compensate for sensory feedback delays in motor control.
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learning of forward model with feedback gain k � 1 to open-loop motor prediction k ¼ 0 could also

be used to switch delay lines: the system can have either a delay before the forward model as

required for learning (Figure 7B), or after the forward model as required for the Smith predictor

(Figure 7C). We envisage that FOLLOW learning of the forward model occurs in closed loop mode

(k � 1) with a delay in the motor command path, as outlined earlier in Figure 6G and now embed-

ded in the Smith predictor architecture in Figure 7B. After learning, the network is switched to

motor control mode, with the forward predictive model in open loop (k ¼ 0), implementing the

Smith predictor (Figure 7C). In this motor control mode, the motor command is fed with zero delay

to the forward model. This enables to rapidly feed the estimated state back to the motor controller

so as to take corrective actions, even before sensory feedback arrives. In parallel, available sensory

feedback is compared with a copy of the forward model that has passed through a compensatory

delay after the forward model (Figure 7C).

Simulations with the FOLLOW learning scheme have demonstrated that strongly non-linear

dynamics can be learned in a recurrent spiking neural network using a local online learning rule that

does not require rapid weight changes. Previous work has mainly focused on a limited subset of

these aspects. For example, Eliasmith and colleagues used a local learning rule derived from sto-

chastic gradient descent, in a network structure comprising heterogeneous spiking neurons with

error feedback (MacNeil and Eliasmith, 2011), but did not demonstrate learning non-linear dynam-

ics (Appendix 1). Denève and colleagues used error feedback in a homogeneous spiking network

with a rule similar to ours, for linear dynamics only (Bourdoukan and Denève, 2015), and while this

article was in review, also for non-linear dynamics (Alemi et al., 2017), but their network requires

instantaneous lateral interactions and in the latter case, also non-linear dendrites.

Reservoir computing models exploit recurrent networks of non-linear units in an activity regime

close to chaos where temporal dynamics is rich (Jaeger, 2001; Maass et al., 2002;

Legenstein et al., 2003; Maass and Markram, 2004; Jaeger and Haas, 2004; Joshi and Maass,

2005; Legenstein and Maass, 2007). While typical applications of reservoir computing are con-

cerned with tasks involving a small set of desired output trajectories (such as switches or oscillators),

our FOLLOW learning enables a recurrent network with a single set of parameters to mimic a

dynamical system over a broad range of time-dependent inputs with a large family of different tra-

jectories in the output.

Whereas initial versions of reservoir computing focused on learning the readout weights, applica-

tions of FORCE learning to recurrent networks of rate units made it possible to also learn the recur-

rent weights (Sussillo and Abbott, 2009, 2012). However, in the case of a multi-dimensional target,

multi-dimensional errors were typically fed to distinct parts of the network, as opposed to the dis-

tributed encoding used in our network. Moreover, the time scale of synaptic plasticity in FORCE

learning is faster than the time scale of the dynamical system which is unlikely to be consistent with

biology. Modern applications of FORCE learning to spiking networks (DePasquale et al., 2016;

Thalmeier et al., 2016; Nicola and Clopath, 2016) inherit these issues.

Adaptive control of non-linear systems using continuous rate neurons (Sanner and Slotine, 1992;

Weiping Li et al., 1987; Slotine and Coetsee, 1986) or spiking neurons (DeWolf et al., 2016) has

primarily focused on learning parameters in adaptive feedback paths, rather than learning weights in

a recurrent network, using learning rules involving quantities that do not appear in the pre- or post-

synaptic neurons, making them difficult to interpret as local to synapses. Recurrent networks of rate

units have occasionally been used for control (Zerkaoui et al., 2009), but trained either via real-time

recurrent learning or the extended Kalman filter which are non-local in space, or via backpropaga-

tion through time which is offline (Pearlmutter, 1995). Recent studies have used neural network

techniques to train inverse models by motor babbling, to describe behavioral data in humans

(Berniker and Kording, 2015) and song birds (Hanuschkin et al., 2013), albeit with abstract net-

works. Optimal control methods (Hennequin et al., 2014) or stochastic gradient descent

(Song et al., 2016) have also been applied in recurrent networks of neurons, but with limited biolog-

ical plausibility of the published learning rules. As an alternative to supervised schemes, biologically

plausible forms of reward-modulated Hebbian rules on the output weights of a reservoir have been

used to learn periodic pattern generation and abstract computations (Hoerzer et al., 2014;

Legenstein et al., 2010), but how such modulated Hebbian rules could be used in predicting non-

linear dynamics given time-dependent control input remains open.
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Additional features of the FOLLOW learning scheme are that it does not require full connectivity

but also works with biologically more plausible sparse connectivity; and it is robust to multiplicative

noise in the output decoders, analogous to recent results on approximate error backpropagation in

artificial neural networks (Lillicrap et al., 2016). Since the low-dimensional output and all neural cur-

rents are spatially averaged over a large number of synaptically-filtered spike trains, neurons in the

FOLLOW network do not necessarily need to fire at rates higher than the inverse of the synaptic

time scale. In conclusion, we used a network of heterogeneous neurons as in the Neural Engineering

Framework (Eliasmith and Anderson, 2004), employed a pre-learned auto-encoder to enable nega-

tive feedback of error as in adaptive control theory (Morse, 1980; Narendra et al., 1980;

Slotine and Coetsee, 1986; Weiping Li et al., 1987; Narendra and Annaswamy, 1989; Sastry and

Bodson, 1989; Ioannou and Sun, 2012), and derived and demonstrated a local and online learning

rule for recurrent connections that learn to reproduce non-linear dynamics.

Our present implementation of the FOLLOW learning scheme in spiking neurons violates Dale’s

law because synapses originating from the same presynaptic neuron can have positive or negative

weights, but in a different context extensions incorporating Dale’s law have been suggested

(Parisien et al., 2008). Neurons in cortical networks are also seen to maintain a balance of excitatory

and inhibitory incoming currents (Denève and Machens, 2016). It would be interesting to investi-

gate a more biologically plausible extension of FOLLOW learning that maintains Dale’s law; works in

the regime of excitatory-inhibitory balance, possibly using inhibitory plasticity (Vogels et al., 2011);

pre-learns the auto-encoder, potentially via mirrored STDP (Burbank, 2015); and possibly imple-

ments spatial separation between different compartments (Urbanczik and Senn, 2014). It would

also be interesting for future work to see whether our model of an arm trained on motor babbling

with FOLLOW, can explain aspects of human behavior in reaching tasks involving force fields

(Shadmehr and Mussa-Ivaldi, 1994), uncertainty (Körding and Wolpert, 2004; Wei and Körding,

2010) or noise (Burge et al., 2008). Further directions worth pursuing include learning multiple dif-

ferent dynamical transforms within one recurrent network, without interference; hierarchical learning

with stacked recurrent layers; and learning the inverse model of motor control so as to generate the

control input given a desired state trajectory.

Methods

Simulation software
All simulation scripts were written in python (https://www.python.org/) for the Nengo simulator

(Stewart et al., 2009) (http://www.nengo.ca/, version 2.4.0) with minor custom modifications to sup-

port sparse weights. We ran the model using the Nengo GPU back-end (https://github.com/nengo/

nengo_ocl) for speed. The script for plotting the figures was written in python using the matplotlib

module (http://matplotlib.org/). These simulation and plotting scripts are available online at https://

github.com/adityagilra/FOLLOW (Gilra, 2017). A copy is archived at https://github.com/elifescien-

ces-publications/FOLLOW.

Network parameters
Initialization of plastic weights
The feedforward weights wff

il from the command representation layer to the recurrent network and

the recurrent weights wij inside the network were initialized to zero.

Update of plastic weights
With the error feedback loop closed, that is with reference output ~x and predicted output ~̂x con-

nected to the error node, and feedback gain k ¼ 10, the FOLLOW learning rule, Equation (10), was

applied on the feedforward and recurrent weights, wff
il and wij. The error for our learning rule was

the error �a ¼ xa � x̂a in the observable output~x, not the error in the desired function~hð~x;~uÞ (cf. Elia-
smith, 2005; MacNeil and Eliasmith, 2011, Appendix 1). The observable reference state ~x was

obtained by integrating the differential equations of the dynamical system. The synaptic time con-

stant ts was 20 ms in all synapses, including those for calculating the error and for feeding the error
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back to the neurons (decaying exponential k with time constant ts in Equation (6)). The error used

for the weight update was filtered by a 200 ms decaying exponential (k� in Equation (10)).

Random setting of neuronal parameters and encoding weights
We used leaky integrate-and-fire neurons with a threshold � ¼ 1 and time constant tm ¼ 20 ms. After

each spike, the voltage was reset to zero, and the neuron entered an absolute refractory period of

tr ¼ 2 ms. When driven by a constant input current J, a leaky integrate-and-fire neuron with absolute

refractoriness fires at a rate a ¼ gðJÞ where g is the gain function with value gðJÞ ¼ 0 for J � 1 and

gðJÞ ¼ 1

.

tr þ tm ln
J

J� 1

� �

; for J>1: (11)

Our network was inhomogeneous in the sense that different neurons had different parameters as

described below. The basic idea is that the ensemble of N neurons, with different parameters, forms

a rich set of basis functions in the Nc or Nd dimensional space of inputs or outputs, respectively. This

is similar to tiling the space with radial basis functions, except that here we replace the radial func-

tions by the gain functions of the LIF neurons (Equation (11)) each having different parameters

(Eliasmith and Anderson, 2004). These parameters were chosen randomly once at the beginning of

a simulation and kept fixed during the simulation.

For the command representation layer, we write the current J into neuron l, in the case of a con-

stant input~u, as

Jffl ¼ nffl

X

b

~efflbubþ bffl ; with efflb � nffl ~e
ff
lb; (12)

where nffl and bffl are neuron-specific gains and biases, and ~efflb are ‘normalized’ encoding weights (cf.

Equation (5)).

These random gains, biases and ‘normalized’ encoding weights must be chosen so that the com-

mand representation layer adequately represents the command input ~u, whose norm is bounded in

the interval ½0;R1� (Table 1). First, we choose the ‘normalized’ encoding weight vectors on a hyper-

sphere of radius 1=R1, so that the scalar product between the command vector and the vector of

Table 1. Network and simulation parameters for example systems.

Linear van der Pol Lorenz Arm Non-linear feedforward

Number of neurons/layer 2000 3000 5000 5000 2000

Tperiod (s) 2 4 20 2 2

Representation radius R1 0.2 0.2 6 0.2 0.2

Representation radius R2 1 5† 30 1 1

Gains ni and biases bi for
command representation and
recurrent layers

Nengo v2.4.0
default z

Figures 1 and 2: ni ¼ 2 and bi chosen uniformly
from ½�2; 2

�

. All other Figures: Nengo v2.4.0

default z

Nengo v2.4.0
default z

Nengo
v2.4.0
default z

Nengo v2.4.0 defaultz

Learning pulse z1 R1=6 R1=6;R1=2 R2=10 R2=0:3 R1=0:6

Learning pedestal z2 R2=16 R1=6, R1=2 0 R2=0:3 R2=1:6

Learning rate h 2e-4 2e-4* 2e-4 2e-4 2e-4

Figures Figure 2—
figure
supplement
2

Figure 1, Figure 2, Figure 2—figure
supplement 1, Figure 2—figure supplement 3,
Figure 5, Figure 6, Figure 7

Figure 3,
Figure 3—figure
supplement 1

Figure 4 Figure 2—figure
supplement 4, Figure 2—
figure supplement 5

* 4e-3 after 1,000 s for Figures 1 and 2. 1e-4 for readout weights in Figure 2—figure supplement 3.
† 4.5 for Figures 1 and 2.

z Nengo v2.4.0 sets the gains and biases indirectly, by default. The projected input at which the neuron just starts firing (i.e.
P

a ~eiaxa ¼ ~J0i ) is chosen uni-

formly from ½�1; 1
�

, while the firing rate for
P

a ~eiaxa ¼ 1 is chosen uniformly between 200 and 400 Hz. From these, ni and bi are computed using Equa-

tions (11) and (13).
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‘normalized’ encoding weights,
P

b ~e
ff
lbub, lies in the normalized range ½�1; 1�. Second, the distribu-

tion of the gains sets the distribution of the firing rates in a target range. Third, we see from Equa-

tion (11) that the neuron starts to fire at the rheobase threshold J ¼ 1. The biases bffl randomly shift

this rheobase threshold over an interval (see Figure 1—figure supplement 1). For the distributions

used to set the fixed random gains and biases, see Table 1.

Analogously, for the recurrent network, we write the current into neuron i, for a constant

‘pseudo-input’ vector~~x being represented in the network, as

Ji ¼ ni
X

a

~eia~xaþ bi; with eia � ni~eia; (13)

where ni, bi are neuron-specific gains and biases, and ~eia are ‘normalized’ encoding weights. We call

~~x a ‘pseudo-input’ for two reasons. First, the error encoding weights keia are used to feed the error

�a ¼ ðxa� x̂aÞ back to neuron i in the network (cf. Equation (6)). However, �a ¼ xa=ðkþ 1Þ, due to the

feedback loop according to Equation (9). Thus, the ‘pseudo-input’ ~xa ¼ kxa=ðkþ 1Þ has a similar

range as~x, whose norm lies in the interval ½0;R2� (see Table 1). Second, the neuron also gets feedfor-

ward and recurrent input. However, the feedforward and recurrent inputs get automatically adjusted

during learning (starting from zero), so their absolute values do not matter for the initialization of

parameters that we discuss here. Thus, we choose the ‘normalized’ encoding weight vectors on a

hypersphere of radius 1=R2. For the distributions used to set the fixed random gains and biases, see

Table 1.

Setting output decoding weights to form an auto-encoder with respect to
error encoding weights
The linear readout weights dai from the recurrently connected network were pre-computed algorith-

mically so as to form an auto-encoder with the error encoding weights eia (for k ¼ 1), while setting

the feedforward and recurrent weights to zero (wff
lb ¼ 0 and wij ¼ 0). To do this, we randomly

selected P error vectors ~�ðpÞ, that we used as training samples for optimization, with sample index

p ¼ 1; . . . ;P, and having vector components �ðpÞa , a ¼ 1; . . . ;Nd. Since the observable system is Nd-

dimensional, we chose the training samples randomly from within an Nd-dimensional hypersphere of

radius R2. We applied each of the error vectors statically as input for the error feedback connections

and calculated the activity

a
ðpÞ
i � ai ~�

ðpÞ
� �

¼ g
X

a

eia�
ðpÞ
a þ bi

 !

; (14)

of neuron i for error vector ~�ðpÞ using the static rate Equation (11). The decoders dai acting on these

activities should yield back the encoded points thus forming an auto-encoder. A squared-error loss

function L, with L2 regularization of the decoders,

L¼ 1

2

X

P

p

X

Nd

a

X

N

i

daia
ðpÞ
i � �ðpÞa

 !2

þ1

2
l
X

Nd

a

X

N

i

d2ai; (15)

setting l¼ P 0:1max a
ðpÞ
i

n o� �� �2

with number of samples P¼N, was used for this linear regression

(default in Nengo v2.4.0) (Eliasmith and Anderson, 2004; Stewart et al., 2009). Biologically plausi-

ble learning rules exist for auto-encoders, either by training both encoding and decoding weights

(Burbank, 2015), or by training decoding weights given random encoding weights (D’Souza et al.,

2010; Urbanczik and Senn, 2014), but we simply calculated and set the decoding weights as if they

had already been learned.

Compressive and expansive auto-encoder
Classical three-layer (input-hidden-output-layer) auto-encoders come in two different flavours, viz.

compressive or expansive, which have the dimensionality of the hidden layer smaller or larger

respectively, than that of the input and output layers. Instead of a three-layer feedfoward network,

our auto-encoder forms a loop from the neurons in the recurrent network via readout weights to the
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output and from there via error-encoding weights to the input. Since the auto-encoder is in the

loop, we expect that it works both as a compressive one (from neurons in the recurrent network

over the low-dimensional output back to the neurons) and as an expansive one (from the output

through the neurons in the recurrent network back to the output).

Rather than constraining, as in Equation (15), the low-dimensional input �a and round-trip output
P

i daiai ~�ð Þ to be equal for each component a (expansive auto-encoder), we can alternatively enforce

the high dimensional input Ij (projection into neuron j of low-dimensional input~�)

Ij �
X

a

eja�a; (16)

and round-trip output I 0j �
P

i;a ejadai~gi Iið Þ, where ~gi Iið Þ � ai ~�ð Þ, to be equal for each neuron j in the

recurrent network (compressive auto-encoder) in order to optimize the decoding weights of the

auto-encoder. Thus, the squared-error loss for this compressive auto-encoder becomes:

L0 ¼
X

P

p

X

N

j

X

Nd

a

ejað
X

N

i

daia
ðpÞ
i � �ðpÞa Þ

 !2

¼
X

P

p

X

N

j

X

Nd

a

ejað
X

N

i

daia
ðpÞ
i � �ðpÞa Þ

 !

X

Nd

g

ejgð
X

N

l

dgla
ðpÞ
l � �ðpÞg Þ

 !

¼
X

P

p

X

N

j

X

Nd

a

e2ja

X

N

i

daia
ðpÞ
i � �ðpÞa

 !2

þ
X

P

p

X

N

j

X

a;g;a 6¼g

ejaejgð
X

N

i

daia
ðpÞ
i � �ðpÞa Þð

X

N

l

dgla
ðpÞ
l � �ðpÞg Þ

 !

» c
X

P

p

X

Nd

a

X

N

i

daia
ðpÞ
i � �ðpÞa

 !2

;

(17)

where in the approximation, we exploit that (i) the relative importance of the term involving
PP

p

P

j

P

a;g;a 6¼g ejaejg tends to zero as 1=
ffiffiffiffiffiffiffi

NP
p

, since eja and ejg are independent random variables;

and (ii)
P

j e
2

ja »c is independent of a. Thus, the loss function of Equation (17) is approximately pro-

portional to the squared-error loss function of Equation (15) (not considering the L2 regularization)

used for the expansive auto-encoder, showing that for an auto-encoder embedded in a loop with

fixed random encoding weights, the expansive and compressive descriptions are equivalent for

those N-dimensional inputs Ii that lie in the Nd-dimensional sub-space spanned by feiagthat is Ii is of
the form

P

a eia�a where �a lies in a finite domain (hypersphere). We employed a large number P¼N

of random low-Nd-dimensional inputs when constraining the expansive auto-encoder.

Command input
The command input vector ~uðtÞ to the network was Nc-dimensional (Nc ¼ Nd for all systems except

the arm) and time-varying. During the learning phase, input changed over two different time scales.

The fast value of each command component was switched every 50 ms to a level u0a chosen uniformly

between ð�z1; z1Þ and this number was added to a more slowly changing input variable �ua (called

’pedestal’ in the main part of the paper) which changed with a period Tperiod. Here �ua is the compo-

nent of a vector of length z2 with a randomly chosen direction. The value of component a of the

command is then ua ¼ �ua þ u0a. Parameter values for the network and input for each dynamical sys-

tem are provided in Table 1. Further details are noted in the next subsection.

During the testing phase without error feedback, the network reproduced the reference trajec-

tory of the dynamical system for a few seconds, in response to the same kind of input as during

learning. We also tested the network on a different input not used during learning as shown in Fig-

ures 2 and 4.

Equations and parameters for the example dynamical systems
The equations and input modifications for each dynamical system are detailed below. Time deriva-

tives are in units of s�1.
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Linear system
The equations for a linear decaying oscillator system (Figure 2—figure supplement 2) are

_x1 ¼ u1=0:02þð�0:2x1� x2Þ=0:05
_x2 ¼ u2=0:02þðx1 � 0:2x2Þ=0:05:

For this linear dynamical system, we tested the learned network on a ramp of 2 s followed by a

step to a constant non-zero value. A ramp can be viewed as a preparatory input before initiating an

oscillatory movement, in a similar spirit to that observed in (pre-)motor cortex (Churchland et al.,

2012). For such input too, the network tracked the reference for a few seconds (Figure 2—figure

supplement 2A–C).

van der Pol oscillator
The equations for the van der Pol oscillator system are

_x1 ¼ u1=0:02þ x2=0:125

_x2 ¼ u2=0:02þ 2ð1� x2
1
Þx2� x1

� �

=0:125:

Each component of the pedestal input �ua was scaled differently for the van der Pol oscillator as

reported in Table 1.

Lorenz system
The equations for the chaotic Lorenz system (Lorenz, 1963) are

_x1 ¼ u1=0:02þ 10ðx2� x1Þ
_x2 ¼ u2=0:02� x1x3 � x2

_x3 ¼ u3=0:02þ x1x2 � 8ðx3 þ 28Þ=3:

In our equations above, Z of the original Lorenz equations (Lorenz, 1963) is represented by an

output variable x3 ¼ Z� 28 so as to have observable variables that vary around zero. This does not

change the system dynamics, just its representation in the network. For the Lorenz system, only a

pulse at the start for 250 ms, chosen from a random direction of norm z1, was provided to set off

the system, after which the system followed autonomous dynamics.

Non-linearly transformed input to linear system
For the above dynamical systems, the input adds linearly on the right hand sides of the differential

equations. Our FOLLOW scheme also learned non-linear feedforward inputs to a linear dynamical

system, as demonstrated in Figure 2—figure supplement 4 and Figure 2—figure supplement 5.

As the reference, we used the linear dynamical system above, but with its input transformed non-lin-

early by gað~uÞ ¼ 10ððua=0:1Þ3 � ua=0:4Þ. Thus, the equations of the reference were:

_x1 ¼ 10ððu1=0:1Þ3 � u1=0:4Þþ ð�0:2x1 � x2Þ=0:05
_x2 ¼ 10ððu2=0:1Þ3 � u2=0:4Þþ ðx1� 0:2x2Þ=0:05:

The input to the network remained ~u. Thus, effectively the feedforward weights had to learn the

non-linear transform~gð~uÞ while the recurrent weights learned the linear system.

Arm dynamics
In the example of learning arm dynamics, we used a two-link model for an arm moving in the vertical

plane with damping, under gravity (see for example http://www.gribblelab.org/compneuro/5_

Computational_Motor_Control_Dynamics.html and https://github.com/studywolf/control/tree/mas-

ter/studywolf_control/arms/two_link), with parameters from (Li, 2006). The differential equations for

the four state variables, namely the shoulder and elbow angles ~� ¼ ð�1; �2ÞT and the angular veloci-

ties ~! ¼ ð!1; !2ÞT , given input torques~t ¼ ðt1; t2ÞT are:

_~�¼~! (18)
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_~!¼Mð~�Þ�1 ~t�Cð~�;~!Þ�B~!� gDð~�Þ
� �

; (19)

with

Mð~�Þ ¼ d1þ 2d2 cos�2 þm1s
2

1
þm2s

2

2
d3 þ d2 cos�2 þm2s

2

2

d3 þ d2 cos�2 þm2s
2

2
d3þm2s

2

2

� �

Cð~�;~!Þ ¼ � _�2ð2 _�1þ _�2Þ
_�1
2

 !

d2 sin�2;B¼ b11 b12
b21 b22

� �

;

Dð~�Þ ¼ ðm1s1 þm2l1Þ sin�1 þm2s2 sinð�1 þ �2Þ
m2s2 sinð�1 þ �2Þ

� �

;

d1 ¼ I1 þ I2þm2l
2

1
;d2 ¼m2l1s2;d3 ¼ I2;

where mi is the mass, li the length, si the distance from the joint centre to the centre of the mass,

and Ii the moment of inertia, of link i; M is the moment of inertia matrix; C contains centripetal and

Coriolis terms; B is for joint damping; and D contains the gravitational terms. Here, the state variable

vector~x¼ ½�1; �2;!1;!2�T , but the effective torque~t is obtained from the input torque~u as follows.

To avoid any link from rotating full 360 degrees, we provide an effective torque ta to the arm, by

subtracting a term proportional to the input torque ua, if the angle crosses �90 degrees and ua is in

the same direction:

ta ¼ ua�
ua~sð�aÞ ua>0
0 ua ¼ 0

ua~sð��aÞ ua<0

8

<

:

;

where ~sð�Þ increases linearly from 0 to 1 as � goes from p=2 to 3p=4:

~sð�Þ ¼
0 ��p=2
ð��p=2Þ=ðp=4Þ 3p=4>�>p=2
1 �� 3p=4

8

<

:

:

The parameter values were taken from the human arm (Model 1) in section 3.1.1 of the PhD thesis

of Li (Li, 2006) from the Todorov lab; namely m1 ¼ 1:4kg, m2 ¼ 1:1kg, l1 ¼ 0:3m, l2 ¼ 0:33m,

s1 ¼ 0:11m, s2 ¼ 0:16m, I1 ¼ 0:025kgm2, I2 ¼ 0:045kgm2, and b11 ¼ b22 ¼ 0:05kgm2=s,

b12 ¼ b21 ¼ 0:025kgm2=s. Acceleration due to gravity was set at g¼ 9:81m=s2. For the arm, we did not

filter the reference variables for calculating the error.

The input torque~uðtÞ for learning the two-link arm was generated, not by switching the pulse and

pedestal values sharply, every 50 ms and Tperiod as for the others, but by linearly interpolating in-

between to avoid oscillations from sharp transitions.

The input torque ~u and the variables ~!, ~� obtained on integrating the arm model above were

scaled by 0:02 (Nm)-1, 0:05 (rad/s)-1 and 1=2:5 rad-1 respectively, and then these dimensionless varia-

bles were used as the input and reference for the spiking network. Effectively, we scaled the input

torques to cover one-fifth of the representation radius R2, the angular velocities one-half, and the

angles full, as each successive variable was the integral of the previous one.

Learning readout weights with recurrent weights fixed
For learning the readout weights after setting either the true or shuffled set of learned recurrent

weights (Figure 2—figure supplement 3), we used a perceptron learning rule.

d

dt
dai ¼�hr

X

j

dajðSj �kÞðtÞ� xaðtÞ
 !

ðSi �kÞðtÞ ¼�hr x̂aðtÞ� xaðtÞð ÞðSi �kÞðtÞ; (20)

with learning rate hr ¼ 1e� 4.

Derivation and proof of stability of the FOLLOW learning scheme
We derive the FOLLOW learning rule Equation (10), while simultaneously proving the stability of the

scheme. We assume that: (1) the feedback fkeiag and readout weights fdajg form an auto-encoder
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with gain k; (2) given the gains and biases of the spiking LIF neurons, there exist feedforward and

recurrent weights that make the network follow the reference dynamics perfectly (in practice, the

dynamics is only approximately realizable by our network, see Appendix 1 for a discussion); (3) the

state~x of the dynamical system is observable; (4) the intrinsic time scales of the reference dynamics

are much larger than the synaptic time scale and the time scale of the error feedback loop, and

much smaller than the time scale of learning; (5) the feedforward and recurrent weights remain

bounded; and (6) the input~u and reference output~x remain bounded.

The proof proceeds in three major steps: (1) using the auto-encoder assumption to write the evo-

lution equation of the low-dimensional output state variable in terms of the recurrent and feedfor-

ward weights; (2) showing that output follows the reference due to the error feedback loop; and (3)

obtaining the evolution equation for the error and using it in the time-derivative of a Lyapunov func-

tion V , to show that _V � 0 for uniform stability, similar to proofs in adaptive control theory

(Narendra and Annaswamy, 1989; Ioannou and Sun, 2012).

Role of network weights for low-dimensional output
The filtered low-dimensional output of the recurrent network is given by Equation (3) of Results and

repeated here:

x̂a ¼
X

j

dajðSj �kÞðtÞ; (21)

where daj are the readout weights. Since k is an exponential filter with time constant ts, Equa-

tion (21) can also be written as

ts
_̂xaðtÞ ¼�x̂aðtÞþ

X

j

dajSjðtÞ; (22)

We convolve this equation with kernel k, multiply by the error feedback weights, and sum over the

output components a

ts

X

a

eiað _̂xa �kÞðtÞ ¼�
X

a

eiaðx̂a �kÞðtÞþ
X

a

eia
X

j

dajðSj �kÞðtÞ: (23)

We would like to write Equation (23) in terms of the recurrent and feedforward weights in the

network.

To do this, we exploit assumptions (1) and (4). Having shown the equivalence of the compressive and

expansive descriptions of our auto-encoder in the error-feedback loop (Equations (15) and (17)), we for-

mulate our non-linear auto-encoder as compressive: we start with a high-dimensional set of inputs Ij �
Jj � bj (where Jj is the current into neuron j with bias bj, cf. Equations (5) and (6)); transform these inputs

non-linearly into filtered spike trains Sj � k; decode these filtered spike trains into a low-dimensional repre-

sentation~z with components za ¼
P

j dajðSj � kÞ; and increase the dimensionality back to the original one,

via weights keia, to get inputs:

I 0i ¼
X

a

keiaza ¼ k
X

a

X

j

eiadajðSj �kÞ: (24)

Using assumption (1) we expect that the final inputs I 0i are approximately k times the initial inputs

Ii:

k
X

a

X

j

eiadajðSj �kÞ»kIi : (25)

This is valid only if the high-N-dimensional input Ii lies in the low-Nd-dimensional subspace

spanned by feiag (Equation (17)). We show that this requirement is fulfilled in the next major step of

the proof (see text accompanying Equations (31)–(35)).

Our assumption (4) says that the state variables of the reference dynamics change slowly com-

pared to neuronal dynamics. Due to the spatial averaging (sum over j in Equation (25)) over a large

number of neurons, individual neurons do not necessarily have to fire at a rate higher than the

inverse of the synaptic time scale, while we can still assume that the total round trip input I 0i on the
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left hand side of Equation (25) is varying only on the slow time scale. Therefore, we used firing rate

equations to compute mean outputs given static input when pre-calculating the readout weights

(earlier in Methods).

Inserting the approximate Equation (25) into Equation (23) we find

ts

X

a

eiað _̂xa �kÞðtÞ» �
X

a

eiaðx̂a �kÞðtÞþ IiðtÞ: (26)

We replace Ii � Ji� bi, using the current Ji from Equation (6) for neuron i of the recurrent net-

work, to obtain

ts

X

a

eiað _̂xa �kÞðtÞ» �
X

a

eiaðx̂a �kÞðtÞþ
X

j

wijðSj �kÞðtÞ

þ
X

l

wff
il ðSffl �kÞðtÞþ

X

a

keiað�a �kÞðtÞ:
(27)

Thus, the change of the low-dimensional output x̂a �k depends on the network weights, which

need to be learned. This finishes the first step of the proof.

Error-feedback loop ensures that output follows reference
Because of assumption (2), we may assume that there exists a recurrent network of spiking neurons

that represents the desired dynamics of Equation (1) without any error feedback. This second net-

work serves as a target during learning and has variables and parameters indicated with an asterisk.

In particular, the second network has feedforward weights wff�
il and recurrent weights w�

ij. We write

an equation similar to Equation (27) for the output x�a of the target network:

ts

X

a

eiað _x�a �kÞðtÞ ¼ �
X

a

eiaðx�a �kÞðtÞþ
X

j

w�
ijðS�j �kÞðtÞ

þ
X

l

wff�
il ðSff�l �kÞðtÞ;

(28)

where ðSff�l �kÞðtÞ and ðS�j �kÞðtÞ are defined as the filtered spike trains of neurons in the realizable

target network. We emphasize that this target network does not need error feedback because its

output is, by definition, always correct. In fact, the readout from the spike trains S�j gives the target

output which we denote by~x�. The weights of the target network are constant and their actual val-

ues are unimportant. They are mere mathematical devices to demonstrate stable learning of the first

network which has adaptable weights. For the first network, we choose the same number of neurons

and the same neuronal parameters as for the second network; moreover, the input encoding weights

from the command input to the representation layer and the readout weights from the recurrent net-

work to the output are identical for both networks. Thus, the only difference is that the feedforward

and recurrent weights of the target network are realized, while for the first network they need to be

learned.

In view of potential generalization, we note that any non-linear dynamical system is approximately

realizable due to the expansion in a high-dimensional non-linear basis that is effectively performed

by the recurrent network (see Appendix 1). Approximative weights (close to the ideal ones) could in

principle also be calculated algorithmically (see Appendix 1). In the following we exploit assumption

(2) and assume that the dynamics is actually (and not only approximately) realized by the target

network.

Our assumption (3) states that the output is observable. Therefore the error component �a can be

computed directly via a comparison of the true output ~x of the reference with the output ~̂x of the

network: �a ¼ xa � x̂a: (In view of potential generalizations, we remark that the observable output

need not be the state variables themselves, but could be a higher-dimensional non-linear function of

the state variables, as shown for a general dynamical system in Appendix 1.)

As the second step of the proof, we now show that the error feedback loop enables the first net-

work to follow the target network under assumptions (4 - 6). More precisely, we want to show that

the readout and neural activities of the first network remain close to those of the target network at

all times, that is x̂aðtÞ» x�aðtÞ for each component a and ðSi � kÞðtÞ» ðS�i � kÞðtÞ for each neuron index i.
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To do so, we use assumption (4) and exploit that (i) learning is slow compared to the network

dynamics so the weights of the first network can be considered momentarily constant, and (ii) the

reference dynamics is slower than the synaptic and feedback loop time scales, so the reference out-

put xa can be assumed momentarily constant. Thus, we have a separation of time scales in Equa-

tion (27): for a given input (transmitted via the feedforward weights) and a given target value x�a, the

network dynamics settles on the fast time scale ts to a momentary fixed point x̂† which we find by

setting the derivative on the left-hand side of Equation (27) to zero:

0¼�
X

a

eiaðx̂†a �kÞðtÞþ
X

j

wijðSj �kÞðtÞþ
X

l

wff
il ðSffl �kÞðtÞþ

X

a

keiaððx�a� x̂†aÞ �kÞðtÞ: (29)

We rewrite this equation in the form

X

a

eiaðx̂†a �kÞðtÞ ¼
k

kþ 1

X

a

eiaðx�a �kÞðtÞþ
1

kþ 1

X

j

wijðSj �kÞðtÞþ
X

l

wff
il ðSffl �kÞðtÞ

 !

: (30)

We choose the feedback gain for the error much larger than 1 (k� 1), such that k=ðkþ 1Þ»1. We

show below (in the text accompanying Equations (31)–(35)), that the factor in parentheses multiply-

ing 1=ðkþ 1Þ in the second term starts from zero and tends, with learning, towards
P

a eiaðx�a �kÞ,
which is the factor multiplying k=ðkþ 1Þ in the first term. Thus, the first term remains approximately

k times larger than the second during learning. To obtain x̂†a »x
�
a, we set k� 1.

To show that the momentary fixed point is stable at the fast synaptic time scale, we calculate the

Jacobian J ¼ ½J il�, for the dynamical system given by Equation (27). We introduce auxiliary varia-

bles yi �
P

a eiaðx̂a � kÞ to rewrite Equation (27) with the new variables in the form _yi ¼ Fið~yÞ; and
then we take derivative of its right hand side to obtain the elements of the Jacobian matrix at the

fixed point
P

a eiax̂
†
a (using

R

¥

0
kðtÞdt ¼ 1):

J il �
qFið~yÞ
qyl

¼�ðkþ 1Þ
ts

dilþ
1

ts

q
P

jwijðSj �kÞðtÞ
qyl

�

�

�

�

yi¼
P

a
eia x̂

†
a

where dil is the Kronecker delta function. We note that
P

jwijðSj �kÞ is a spatially and temporally aver-

aged measure of the population activity in the network with appropriate weighting factors wij. We

assume that the population activity varies smoothly with input, which is equivalent to requiring that

on the time scale ts, the network fires asynchronously, i.e. there are no precisely timed population

spikes. Then we can take the second term to be bounded, in absolute value, by say B1=ts. The Jaco-

bian matrix J is of the form �ðkþ 1ÞI=tsþL, where I is the N�N identity matrix and L is a matrix

with each element bounded in absolute value by B1=ts. If we set k�NB1, then all eigenvalues of the

Jacobian have negative real parts, applying the Gerschgorin circle theorem (the second term can

perturb any eigenvalue from �ðkþ 1Þ=ts to within a circle of radius NB1=ts at most), rendering the

momentary fixed point asymptotically stable.

Thus, we have shown that if the initial state of the first network is close to the initial state of the

target network, e.g., both start from rest, then on the slow time scale of the system dynamics of the

reference~x�, the first network output follows the target network output at all times, x̂a » x
�
a.

We now show that neurons are primarily driven by inputs close to those in the target network

due to error feedback, and that these lie in the low-dimensional manifold spanned by feiag, as

required for Equation (25). We compute the projected error using Equation (30):
X

a

eiað�a �kÞðtÞ ¼
X

a

eiaððx�a � x̂†aÞ �kÞðtÞ

¼ 1

kþ 1

X

a

eiaðx�a �kÞðtÞ�
1

kþ 1

X

j

wijðSj �kÞðtÞþ
X

l

wff
il ðSffl �kÞðtÞ

 !

;
(31)

and insert it into Equation (6) to obtain the current into a neuron in the recurrent network:

Ji ¼
k

kþ 1

X

a

eiaðx�a �kÞðtÞþ
1

kþ 1

X

j

wijðSj �kÞðtÞþ
X

l

wff
il ðSffl �kÞðtÞ

 !

þ bi (32)
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At the start of learning, if the feedforward and recurrent weights are small, then the neural input

is dominated by the fed-back error input that is the first term, making Ji close to the ideal current

J�i ¼
X

a

eiaðx�a �kÞðtÞþ bi: (33)

Thus, the neural input at the start of learning is of the form
P

a eiax
�
a which lies in the low-dimen-

sional subspace spanned by feiag as required for Equation (25). Furthermore, over time, the feed-

forward and recurrent weights get modified so that their contribution tends towards
P

a eiaðx�a �kÞ,
such that the two terms of Equation (32) add to make Ji even closer to the ideal current J�i given by

Equation (33). This is made clearer by considering the weight update rule Equation 10 as stochastic

gradient descent on a loss function,

LJ ¼ 1

2

X

i

X

a

eiaðx�a �kÞðtÞ�
X

l

wff
il ðSffl �kÞðtÞ�

X

j

wijðSj �kÞðtÞ
 !2

; (34)

leading us to (for each recurrent weight wij, and similarly for wff
il ):

_wij ¼�h0 qLJ

qwij

¼ h0
X

a

eiaðx�a �kÞ�
X

l

wff
il ðSffl �kÞ�

X

j

wijðSj �kÞ
 !

ðSj �kÞ

¼ h0 kþ 1

k
ðI�i �kÞðSj �kÞ;

(35)

which is identical to the FOLLOW learning rule for wij in Equation (10) except for the time-scale of

filtering of the error current (see Discussion), and a factor involving k that can be absorbed into the

learning rate h0. In the last step above, we used the projected error current from Equation (31) and

the definition of I�i in Equation (8). Thus, the feedforward and recurrent connections evolve to inject,

after learning, the same ideal input within the low-dimensional manifold, as was provided by the

error feedback during learning. Hence, the neural input remains in the low-dimensional manifold

spanned by feiag throughout learning, as required for Equation (25), making this major step and the

previous one self-consistent.

Since the driving neural currents are close to ideal throughout learning, the filtered spike trains of

the recurrent neurons in the first network will also be approximately the same as those of the target

network, so that ðSi � kÞðtÞ can be used instead of ðS�i � kÞðtÞ in (Equation (28)). Moreover, the filtered

spike trains ðSffl � kÞðtÞ of the command representation layer in the first network are the same as

those in the target network, since they are driven by the same command input ~u and the command

encoding weights are, by construction, the same for both networks. The similarity of the spike trains

in the first and target networks will be used in the next major part of the proof.

Stability of learning via Lyapunov’s method
We now turn to the third step of the proof and consider the temporal evolution of the error

�a ¼ xa � x̂a. We exploit that the network dynamics is realized by the target network and insert

Equations (27) and (28) so as to find

�ts

X

a

eiað _�a �kÞðtÞ ¼ ts

X

a

eiaðð _̂xa� _xaÞ �kÞðtÞ

»ts

X

a

eiaðð _̂xa � _x�aÞ �kÞðtÞ

»

X

j

wij �w�
ij

� �

ðSj �kÞðtÞþ
X

l

wff
il �wff�

il

� �

ðSffl �kÞðtÞ

þðkþ 1Þ
X

a

eiað�a �kÞðtÞ

�
X

j

 ijðSj �kÞðtÞþ
X

l

filðSffl �kÞðtÞþ ðkþ 1Þ
X

a

eiað�a �kÞðtÞ:

(36)
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In the second line, we have replaced the reference output by the target network output; and in

the third line we have used Equations (27) and (28), and replaced the filtered spike trains of the tar-

get network by those of the first network, exploiting the insights from the previous paragraph. In the

last line, we have introduced abbreviations  ij �wij�w�
ij and fil �wff

il �wff�
il .

In order to show that the absolute value of the error decreases over time with an appropriate

learning rule, we consider the candidate Lyapunov function:

Vð~�; ;fÞ ¼ 1

2

X

i

~�2i þ
1

2

1

~h
1

X

i;j

ð ijÞ2 þ
1

2

1

~h
2

X

i;l

ðfilÞ2; (37)

where ~�i � ts

P

a eiað�a �kÞ and ~h1; ~h2>0 are positive constants. We use Lyapunov’s direct method to

show the stability of learning. For this, we require the following properties for the Lyapunov function.

(a) The Lyapunov function is positive semi-definite Vð~�; ;fÞ � 0, with the equality to zero only at

ð~�; ;fÞ ¼ ð0;0;0Þ. (b) It has continuous first-order partial derivatives. Furthermore, V is (c) radially

unbounded since

Vð~�; ;fÞ>jð~�; ;fÞj2=ð4maxð1; ~h1; ~h2ÞÞ;

and (d) decrescent since

Vð~�; ;fÞ<jð~�; ;fÞj2=minð1; ~h
1
; ~h

2
Þ;

where jð~�; ;fÞj2 �Pið~�iÞ
2 þPi;jð ijÞ2 þ

P

i;kðfilÞ2 and min=max take the minimum/maximum of their

respective arguments.

Apart from the above conditions (a)-(d), we need to show the key property _V � 0 for uniform

global stability (which implies that bounded orbits remain bounded, so the error remains bounded);

or the stronger property _V<0 for asymptotic global stability (see for example [Narendra and

Annaswamy, 1989; Ioannou and Sun, 2012]). Taking the time derivative of V , and replacing

_~�ithat is ts
P

a eiað _�a � kÞ from (Equation (36)), we have:

_V ¼
X

i

~�i _~�i þ
1

~h1

X

i;j

 ij
_ ij þ

1

~h2

X

i;l

fil
_fil

» �
X

i

~�i
X

j

 ijðSj �kÞðtÞþ
X

l

filðSffl �kÞðtÞþ ðkþ 1Þ
X

a

eiað�a �kÞðtÞ
 !

þ 1

~h1

X

i;j

 ij
_ ijþ

1

~h2

X

i;l

fil
_fil

¼
X

i;j

 ij �~�iðSj �kÞðtÞþ
1

~h
1

_ ij

� �

þ
X

i;k

fil �~�iðSffl �kÞðtÞþ
1

~h2

_fil

� �

�ðkþ 1Þ
X

i

~�2i =ts:

(38)

If we enforce the first two terms above to be zero, we derive a learning rule

_ ij ¼ ~h1
~�iðSj �kÞðtÞ

_fil ¼ ~h
2
~�iðSffl �kÞðtÞ;

(39)

and then

_V ¼�ðkþ 1Þ
X

i

~�2i =ts � 0

requiring k>� 1, which is subsumed under k� 1 for the error feedback. Equation (39) with h1 �
~h1ts=k and h2 � ~h2ts=k, and k replaced by a longer filtering kernel k�, is the learning rule used in the

main text, Equation (10).

Thus, in the ð~�;  ;fÞ-system given by Equations (36) and (39), we have proven the global uniform

stability of the fixed point ð~�;  ;fÞ ¼ ð0; 0; 0Þ, which is effectively ð�;  ;fÞ ¼ ð0; 0; 0Þ, choosing h1;h2>0
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and k � maxð1;NB1Þ, under assumptions (1 - 6), while simultaneously deriving the learning rule

(Equation (39)).

This ends our proof. So far, we have shown that the system is Lyapunov stable, that is bounded

orbits remain bounded, and not asymptotically stable. Indeed, with bounded firing rates and fixed

readout weights, the output will remain bounded, as will the error (for a bounded reference). How-

ever, here, we also derived the FOLLOW learning rule, and armed with the inequality for the time

derivative of the Lyapunov function in terms of the error, we further show in the following subsection

that the error ~� goes to zero asymptotically, so that after learning, even without error feedback, ~̂x

reproduces the dynamics of~x.

A major caveat of this proof is that under assumption (2) the dynamics be realizable by our net-

work. In a real application this might not be the case. Approximation errors arising from a mismatch

between the best possible network and the actual target dynamics are currently ignored. The adap-

tive control literature has shown that errors in approximating the reference dynamics appear as fro-

zen noise and can cause runaway drift of the parameters (Narendra and Annaswamy, 1989;

Ioannou and Sun, 2012). In our simulations with a large number of neurons, the approximations of a

non-realizable reference dynamics (e.g., the van der Pol oscillator) were sufficiently good, and thus

the expected drift was possibly slow, and did not cause the error to rise during typical time-scales of

learning. A second caveat is our assumption (5). While the input is under our control and can there-

fore be kept bounded, some additional bounding is needed to stop weights from drifting. Various

techniques to address such model-approximation noise and bounding weights have been studied in

the robust adaptive control literature (e.g., (Ioannou and Tsakalis, 1986; Slotine and Coetsee,

1986; Narendra and Annaswamy, 1989; Ioannou and Fidan, 2006; Ioannou and Sun, 2012)). We

discuss this issue and briefly mention some of these ameliorative techniques in Appendix 1.

To summarize, the FOLLOW learning rule (Equation (39)) on the feedforward or recurrent

weights has two terms: (i) a filtered presynaptic firing trace ðSffl � kÞðtÞ or ðSj � kÞðtÞ that is available

locally at each synapse; and (ii) a projected filtered error
P

a keiað�a � kÞðtÞ used for all synapses in

neuron i that is available as a current in the postsynaptic neuron i due to error feedback, see Equa-

tion (6). Thus the learning rule can be classified as local. Moreover, it uses an error in the observable

~x, not in its time-derivative. While we have focused on spiking networks, the learning scheme can be

easily used for non-linear rate units by replacing the filtered spikes ðSi � kÞðtÞ by the output of the

rate units rðtÞ. Our proof is valid for arbitrary dynamical transforms ~hð~x;~uÞ as long as they are realiz-

able in a network. The proof shows uniform global stability using Lyapunov’s method.

Proof of error tending to zero asymptotically
In the above subsection, we showed uniform global stability using _V ¼ �ðk þ 1Þ

P

ið~�iÞ
2 � 0, with k �

maxð1;NB1Þ and ~�i � ts

P

a ejað�a � kÞ. This only means that bounded errors remain bounded. Here,

we show more importantly that the error tends to zero asymptotically with time. We adapt the proof

in section 4.2 of (Ioannou and Sun, 2012), to our spiking network.

Here, we want to invoke a special case of Barbălat’s lemma: if f ; _f 2 L¥ and f 2 Lp for some

p 2 ½1;¥Þ, then f ðtÞ ! 0 as t ! ¥. Recall the definitions: function f 2 Lp when jjxjjp �
R

¥

0
jf ðtÞjpdt

� �1=p

exists (is finite); and similarly function f 2 L¥ when jjxjj
¥
�

t�0

supjf ðtÞj exists (is finite).

Since V is positive semi-definite (V � 0) and is a non-increasing function of time ( _V � 0), its

limt!¥ V ¼ V¥ exists and is finite. Using this, the following limit exists and is finite:

X

i

Z

¥

0

ð~�iðtÞÞ2dt¼
�1

kþ 1

Z

¥

0

_VðtÞdt¼ 1

kþ 1
ðVð0Þ�V¥Þ:

Since each term in the above sum
P

i is positive semi-definite,
R

¥

0
ð~�iðtÞÞ2dt also exists and is finite

8i, and thus ~�i 2L2 8i.
To show that ~�i; _~�i 2 L¥ 8i, consider Equation (36). We use assumption (6) that the input ~uðtÞ and

the reference output~xðtÞ are bounded. Since network output ~̂x is also bounded due to saturation of

firing rates (as are the filtered spike trains), the error (each component) is bounded that is ~�i 2 L¥ 8i.
If we also bound the weights from diverging during learning (assumption (5)), then  ij;fil 2 L¥8i; j; l.
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With these reasonable assumptions, all terms on the right hand side of the Equation (36) for _~�i are

bounded, hence _~�i 2 L¥ 8i.
Since ~�i 2 L2 8i and ~�i; _~�i 2 L¥ 8i, invoking Barbălat’s lemma as above, we have ~�i ! 08i as t ! ¥.

We have shown that the error tends to zero asymptotically under assumptions (1 - 6). In practice, the

error shows fluctuations on a short time scale while the mean error over a longer time scale reduces

and then plateaus, possibly due to approximate realizability, imperfections in the error-feedback,

and spiking shot noise (cf. Figure 5).

We do not further require the convergence of parameters to ideal ones for our purpose, since

the error tending to zero, that is network output matching reference, is functionally sufficient for the

forward predictive model. In the adaptive control literature (Ioannou and Sun, 2012; Narendra and

Annaswamy, 1989), the parameters (weights) are shown to converge to ideal ones if input excita-

tion is ‘persistent’, loosely that it excites all modes of the system. It should be possible to adapt the

proof to our spiking network, as suggested by simulations (Figure 5), but is not pursued here.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.28295.020

Decoding
Consider only the command representation layer without the subsequent recurrent network.

Assume, following (Eliasmith and Anderson, 2004), we wish to decode an arbitrary output

~vð~uÞ corresponding to the~u encoded in the command representation layer, from the spike

trains Sffl ðtÞ of the neurons, by synaptically filtering and linearly weighting the trains with

decoding weights d
ð~vÞ
al :

v̂að~uÞ ¼
X

l

d
ð~vÞ
al ðSffl �kÞðtÞ; (40)

where � denotes convolution ðSffl � kÞðtÞ �
R t

�¥ S
ff
l ðt0Þkðt � t0Þdt0 ¼

R

¥

0
Sffl ðt � t0Þkðt0Þdt0, and kðtÞ �

expð�t=tsÞ=ts is a normalized filtering kernel.

We can obtain the decoders d
ð~vÞ
ai by minimizing the loss function

L¼
X

a

vað~uÞ�
X

l

d
ð~vÞ
al hSffl �kit

 !2* +

~u

(41)

with respect to the decoders. The average h�i~u over~u guarantees that the same constant

decoders are used over the whole range of constant inputs~u. The time average h�it denotes an
analytic rate computed for each constant input for a LIF neuron. Linear regression with a finite

set of constant inputs~u was used to obtain the decoders (see Methods). With these decoders,

if the input~u varies slowly compared to the synaptic time constant ts, we have

v̂a ¼
P

l d
ð~vÞ
al ðSffl � kÞðtÞ » vað~uÞ.

Any function of the input~vð~uÞ can be approximated with appropriate linear decoding

weights d
ð~vÞ
al from the high-dimensional basis of non-linear tuning curves of heterogeneous

neurons with different biases, encoding weights and gains, schematized in Figure 1—figure

supplement 1. With a large enough number of such neurons, the function is expected to be

approximated to arbitrary accuracy. While this has not been proven rigorously for spiking

neurons, this has theoretical underpinnings from theorems on universal function approximation

using non-linear basis functions (Funahashi, 1989; Hornik et al., 1989; Girosi and Poggio,

1990) successful usage in spiking neural network models by various groups (Seung et al.,

2000; Eliasmith and Anderson, 2004; Eliasmith, 2005), and biological plausibility

(Poggio, 1990; Burnod et al., 1992; Pouget and Sejnowski, 1997).

Here, the neurons that are active at any given time operate in the mean driven

regime, that is the instantaneous firing rate increases with the input current (Gerstner et al.,

2014). The dynamics is dominated by synaptic filtering, and the membrane time constant does

not play a significant role (Eliasmith and Anderson, 2004; Eliasmith, 2005; Seung et al.,

2000; Abbott et al., 2016). Thus, the decoding weights derived from Equation (41) with

stationary input are good approximations even in the time-dependent case, as long as the

input varies on a time scale slower than the synaptic time constant.

Online learning based on a loss function and its
shortcomings
Suppose that a dynamical system given by

_xa ¼ fað~xÞþ gað~uÞ (42)

is to be mimicked by our spiking network implementing a different dynamical system with an

extra error feedback term as in Equation (27). This can be interpreted as:
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ts
_̂xa ¼�x̂a þ�fað~̂x;~uÞþ �gað~uÞþ k�a: (43)

Comparing with the reference Equation (42), after learning we want that �fað~̂x;~uÞ þ �gað~uÞ
should approximate tsfað~̂xÞ þ x̂a þ tsgað~uÞ. One way to achieve this (Eliasmith and Anderson,

2004) is to ensure that �fað~̂x;~uÞ and �gað~uÞ approximate ~fað~̂xÞ � tsfað~̂xÞ þ x̂a and ~gað~uÞ � tsgað~uÞ
respectively, as used in the loss functions below. In our simulations, we usually start with zero

feedforward and recurrent weights, so that initially �f ð~̂x;~uÞ ¼ 0 ¼ �gað~uÞ.
Assuming that the time scales of dynamics are slower than synaptic time scale ts, we can

approximate the requisite feedforward and recurrent weights, by minimizing the following loss

functions respectively, with respect to the weights (Eliasmith and Anderson, 2004):

Lff ¼
X

j

X

a

effka~gað~uÞ�
X

l

wjlhSffl �kit

 !2* +

x

; (44)

Lrec ¼
X

j

X

a

eja~fað~xÞ�
X

i

wjihSi �kit

 !2* +

x

: (45)

Using these loss functions, we can pre-calculate the weights required for any dynamical

system numerically, similarly to the calculation of decoders in the subsection above.

We now derive rules for learning the weights online based on stochastic gradient descent

of these loss functions, similar to (MacNeil and Eliasmith, 2011), and point out some

shortcomings.

The learning rule for the recurrent weights by gradient descent on the loss function given

by Equation (45) is

dwji

dt
¼�1

2
h
qLrec

qwji

»h
X

a

eja~fað~xÞ�
X

i

wjiðSi �kÞðtÞ
 !

ðSi �kÞðtÞ
* +

x

� h �
ð~f Þ
j ðSi �kÞðtÞ

D E

x
:

(46)

In the second line, the effect of the weight change on the filtered spike trains is assumed

small and neglected, using a small learning rate h. With requisite dynamics slower than

synaptic ts, and with large enough number of neurons, we have approximated
P

i wjihSi � kitðtÞ»
P

i wjiðSi � kÞðtÞ. The third line defines an error in the projected~~f ð~xÞ, which is

the supervisory signal.

If we assume that the learning rate is slow, and the input samples the range of x uniformly,

then we can remove the averaging over x, similar to stochastic gradient descent

dwji

dt
»h�

ð~f Þ
j ðSi �kÞðtÞ; (47)

where �
ð~f Þ
j � P

a eja
~fað~xÞ �

P

i wjiðSi � kÞðtÞ
� �

. This learning rule is the product of a multi-

dimensional error �
ð~f Þ
j and the filtered presynaptic spike train ðSi � kÞðtÞ. However, this error in

the unobservable~~f is not available to the postsynaptic neuron, making the learning rule non-

local. A similar issue arises in the feedforward case.

In mimicking a dynamical system, we want only the observable output of the dynamical

system, that is~x to be used in a supervisory signal, not a term involving the unknown

~f ð~xÞthat appears in the derivative _~x. Even if this derivative is computed from the observable~x,

it will be noisy. Furthermore, this derivative cannot be obtained by differentiating the

observable versus time, if the observable is not directly the state variable, but an unknown

non-linear function of it, which however our FOLLOW learning can handle
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(see next subsection). Thus, this online rule, if using just the observable error, can learn only an

integrator for which f ðxÞ~ x (MacNeil and Eliasmith, 2011).

Indeed, learning both the feedforward and recurrent weights simultaneously using gradient

descent on these loss functions, requires two different and unavailable error currents to be

projected into the postsynaptic neuron to make the rule local.

General dynamical system and transformed observable
General dynamical systems of the form

d~xðtÞ
dt

¼~hð~xðtÞ;~uðtÞÞ;

~yðtÞ ¼~Kð~xðtÞÞ

can be learned with the same network configuration (Figure 1B) used for systems of the

form Equation 1. Here, the state variable is~x, but the observable which serves as the

reference to the network is~y. The transformation equation of the observable (second

equation) can be absorbed into the first equation as below.

Consider the transformation equation for the observable. The dimensionality of the relevant

variables: (1) the state variables (say joint angles and velocities)~x; (2) the observables

represented in the brain (say sensory representations of the joint angles and velocities)~y; and

(3) the control input (motor command)~u, can be different from each other, but must be small

compared to the number of neurons. Furthermore, we require the observable~y to not lose

information compared to~x, that is ~K must be invertible, so~y will have at least the same

dimension as~x.

The time evolution of the observable is

_yb ¼
X

a

qKbð~xÞ
qxa

_xa ¼
X

a

qKbð~xÞ
qxa

hað~x;~uÞ � pbð~y;~uÞ:

The last step follows since function ~K is invertible, so that~x ¼ ~K�1ð~yÞ. So we essentially

need to learn _yb ¼ pbð~y;~uÞ.
Having solved the observable transformation issue, we use~x now for our observable instead of~y,

consistent with themain text. The dynamical system to be learned is now _xb ¼ pbð~x;~uÞ. Since our

learning network effectively evolves as Equation (43), it can approximate pbð~x;~uÞ. Thus our network
can learn general dynamical systems with observable transformations.

Approximation error causes drift in weights
A frozen noise term �ð~xðtÞÞ due to the approximate decoding from non-linear tuning curves of

neurons, by the feedforward weights, recurrent weights and output decoders, will appear

additionally in Equation (36). If this frozen noise has a non-zero mean over time as~xðtÞ varies,
leading to a non-zero mean error, then it causes a drift in the weights due to the error-based

learning rules in Equation (10), and possibly a consequent increase in error. Note that the

stability and error tending to zero proofs assume that this frozen noise is negligible.

Multiple strategies with contrasting pros and cons have been proposed to counteract this

parameter drift in the robust adaptive control literature (Ioannou and Sun, 2012;

Narendra and Annaswamy, 1989; Ioannou and Fidan, 2006). These include a weight

leakage/regularizer term switched slowly on, when a weight crosses a threshold (Ioannou and

Tsakalis, 1986; Narendra and Annaswamy, 1989), or a dead zone strategy with no updating

of weights once the error is lower than a set value (Slotine and Coetsee, 1986; Ioannou and

Sun, 2012). In our simulations, the error continued to drop even over longer than typical

learning time scales (Figure 5), and so, we did not implement these strategies.

In practice, the learning can be stopped once error is low enough, while the error feedback

can be continued, so that the learned system does not deviate too much from the observed

one.
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