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ABSTRACT

A persistent paradox in Continual Learning is that neural networks often retain
linearly separable representations of past tasks even when their output predic-
tions fail. We formalize this distinction as the gap between deep (feature-space)
and shallow (classifier-level) forgetting. We demonstrate that experience replay
affects these two levels asymmetrically: while even minimal buffers anchor fea-
ture geometry and prevent deep forgetting, mitigating shallow forgetting requires
substantially larger buffers. To explain this, we extend the Neural Collapse frame-
work to sequential training. We theoretically model deep forgetting as a geometric
drift toward out-of-distribution subspaces, proving that replay guarantees asymp-
totic separability. In contrast, we show that shallow forgetting stems from an
under-determined classifier optimization: the strong collapse of buffer data leads
to rank-deficient covariances and inflated means, blinding the classifier to the true
population boundaries. Our work unifies continual learning with OOD detection
and challenges the reliance on large buffers, suggesting that explicitly correcting
the statistical artifacts of Neural Collapse could unlock robust performance with
minimal replay.

TasksTask onset-1 +1 +2-2

Good buffer 
boundary

Good population 
boundary

Area of Buffer-
optimal decision 
boundaries

The data is OOD, there is no class 
information in the features

Classes are separable Classes are still separable but the 
the decision boundary is misaligned

Shallow
Forgetting

Figure 1: Evolution of Decision Boundaries and Feature Separability. PCA evolution of two
CIFAR-100 classes (5% replay). Replay samples are highlighted with a black edge. While features
retain separability across tasks (low deep forgetting), the classifier optimization becomes under-
determined: it converges to ”buffer-optimal” boundaries (dashed brown) that perfectly classify the
stored samples but diverge from the true population boundary (dashed green), resulting in shallow
forgetting.

1 INTRODUCTION

Continual learning (CL) (Hadsell et al., 2020) aims to train neural networks on a sequence of tasks
without catastrophic forgetting. It holds particular promise for adaptive AI systems, such as au-
tonomous agents that must integrate new information without full retraining or centralized data ac-
cess. The theoretical understanding of optimization in non-stationary environments remains limited,
particularly regarding the mechanisms that govern the retention and loss of learned representations.

A persistent observation in the literature is that neural networks retain substantially more information
about past tasks in their internal representations than in their output predictions. This phenomenon,
first demonstrated through linear probe evaluations, shows that a linear classifier trained on frozen
last-layer representations achieves markedly higher accuracy on old tasks than the network’s own
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output layer (Murata et al., 2020; Hess et al., 2023). In other words, past-task data remain linearly
separable in feature space, even when the classifier fails to exploit this structure. This motivates
a distinction between two levels of forgetting: shallow forgetting, corresponding to output-level
degradation recoverable by a linear probe, and deep forgetting, corresponding to irreversible loss
of feature-space separability.

In this work, we show that replay buffers affect these two forms of forgetting in systematically differ-
ent ways. Replay—the practice of storing a small subset of past samples for joint training with new
data—is among the most effective and widely adopted strategies in continual learning. Our anal-
ysis reveals that even small buffers are sufficient to preserve feature separability and prevent deep
forgetting, whereas mitigating shallow forgetting requires substantially larger buffers. Thus, while
replay robustly preserves representational geometry, it often fails to maintain alignment between the
learned head and the true data distribution.

To explain this phenomenon, we turn to the geometry of deep network representations. Recent
work has shown that, at convergence, standard architectures often exhibit highly structured, low-
dimensional feature organization. In particular, the Neural Collapse (NC) phenomenon (Papyan
et al., 2020) describes a regime in which within-class variability vanishes, class means form an
equiangular tight frame (ETF), and classifier weights align with these means. Originally observed
in simplified settings, NC has now been documented across architectures, training regimes, and
even large-scale language models (Súkenı́k et al., 2025; Wu & Papyan, 2025), making it a powerful
framework to analyze feature-head interactions.

In this work, we extend the NC framework to continual learning, providing a principled charac-
terization of the asymptotic geometry of features and heads under extended training. Our analysis
covers task-, class-, and domain-incremental settings and explicitly accounts for replay. To this end,
we formulate two key hypotheses for past-task data not included in training: (1) forgotten samples
behave as out-of-distribution (OOD) from the feature-space perspective, and (2) increasing replay
buffer size induces a smooth transition from OOD-like to collapsed representations for the past
tasks’ data. These insights allow us to construct a simple yet predictive theory of feature-space
forgetting that lower-bounds separability and captures the influence of weight decay, feature-norm
scaling, and buffer size.

In summary, this paper makes the following distinct contributions:

1. Empirical insight. Replay consistently mitigates deep forgetting, whereas shallow for-
getting remains unless buffer size is sufficiently large, revealing an intrinsic asymmetry in
replay-based continual learning.

2. Asymptotic framework for continual learning. We extend Neural Collapse theory
to continual learning, characterizing the limiting geometry of both single-head and
multi-head architectures and identifying unique phenomena like rank reduction in TIL.

3. Explaining shallow–deep gap. We demonstrate that shallow forgetting arises because
classifier optimization on buffers is under-determined—a condition structurally exacer-
bated by Neural Collapse. The resulting geometric simplification (covariance deficiency
and norm inflation) blinds the classifier to the true population boundaries.

4. Connection to OOD detection. We interpret representational forgetting as a form of drift
out of distribution, linking continual learning to OOD detection and unifying previously
disconnected literatures.

1.1 NOTATION AND SETUP

We adopt the standard compositional formulation of a neural network, decomposing it into a feature
map and a classification head. The network function is defined as fθ(x) = h(ϕ(x)), where h(z) =
Whz + bh, with parameters θ = {ϕ,Wh}.

We refer to ϕ as the feature map, to ϕ(x) as the features or representation of input x, and to their
image as the feature space.

We consider sequential classification problems subdivided into tasks. For each class c, a dataset of
labeled examples (Xc, Yc) is available. Given any sample (x, y), the network prediction is obtained
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via the maximum-logit rule
ŷ = argmax

k
⟨wk, ϕ(x)⟩,

where wk denotes the k-th column vector of Wh. Network performance is evaluated after each task
on all previously seen tasks.

Following Lopez-Paz & Ranzato (2017), shallow forgetting is quantified as the difference Aij−Ajj ,
where Aij denotes the accuracy on task j measured after completing learning session i. In contrast,
deep forgetting is defined as the difference A⋆

ij −A⋆
jj , where A⋆

ij represents the accuracy of a linear
probe trained on the frozen representations of task j at the end of session i.

We adopt the three continual learning setups introduced by van de Ven et al. (2022), described
in detail in Section 3: task-incremental learning (TIL), class-incremental learning (CIL), and
domain-incremental learning (DIL).

For the experimental analysis, we train both ResNet and ViT architectures, from scratch and from
pre-trained initialization. We train on three widely used benchmarks adapted to the continual learn-
ing setting: CIFAR-100 (Krizhevsky & Hinton, 2009), Tiny-ImageNet (Torralba et al., 2008), and
CUB-200 (Wah et al., 2011). A detailed description of datasets and training protocols, including
linear probing, is provided in Appendix A.1.

2 EMPIRICAL CHARACTERIZATION OF DEEP AND SHALLOW FORGETTING
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Figure 2: Deep–shallow forgetting gap. Forgetting decays at different rates in the feature space and
the classifier head, producing a persistent gap between deep and shallow forgetting. Increasing the
replay buffer closes this gap only gradually, with substantial buffer sizes required for convergence.
See Appendix A.2 for details.

We first present our main empirical finding. We evaluate forgetting in both the network output layer
and a linear probe trained on frozen features across varying buffer sizes, datasets, and architectures
(randomly initialized and pre-trained). Our results, summarized in Figure 2, reveal a robust phe-
nomenon: the gap between deep and shallow forgetting closes only asymptotically as buffer
size increases.

While small replay buffers are sufficient to prevent deep forgetting (preserving feature separability),
mitigating shallow forgetting requires substantially larger buffers. This extends prior observations
of feature-output discrepancies (Murata et al., 2020; Hess et al., 2023) by demonstrating that replay
stabilizes representations far more efficiently than it maintains classifier alignment. The gap persists
across settings, vanishing only near full replay (100%).

We highlight three specific trends:

1. Head architecture. The deep–shallow gap is pronounced in single-head setups (CIL, DIL)
but significantly smaller in multi-head setups (TIL).

2. Replay efficacy in DIL. Contrary to the assumption that class-incremental learning is the
most challenging, Domain-Incremental Learning (DIL) exhibits high levels of deep forget-
ting, converging to levels similar to CIL.

3. Pre-training robustness. Corroborating Ramasesh et al. (2021), pre-trained models exhibit
negligible deep forgetting. Their feature spaces remain robust even with constrained replay,
yielding nearly flat deep-forgetting curves.
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We now propose a theoretical model explaining this asymmetric effect of replay via the asymptotic
dynamics of the feature space.

3 NEURAL COLLAPSE UNDER SEQUENTIAL TRAINING

3.1 PRELIMINARIES ON NEURAL COLLAPSE

Recent work (Papyan et al., 2020; Lu & Steinerberger, 2022) characterizes the geometry of repre-
sentations in the terminal phase of training (TPT) the regime in which the training loss has reached
zero and features stabilize. In this regime, features converge to a highly symmetric configuration
known as Neural Collapse (NC), which is provably optimal for standard supervised objectives and
emerges naturally under a range of optimization dynamics (Tirer & Bruna, 2022; Súkenı́k et al.,
2025).

We denote the feature class means by µc(t) = Ex∈Xc
[ϕt(x)], µ̃c(t) the centered means, and the

matrix of centered means by Ũ(t). We focus on first three properties defining NC:

• NC1 (Variability Collapse). Within-class variability vanishes as features collapse to their
class means: ϕt(x) → µc(t), implying the within-class covariance approaches 0.

• NC2 (Simplex ETF). Centered class means form a simplex Equiangular Tight Frame
(ETF). They attain equal norms and maximal pairwise separation:

lim
t→∞

⟨µ̃c(t), µ̃c′(t)⟩ =

{
βt if c = c′

− βt

K−1 if c ̸= c′

• NC3 (Neural Duality). Classifier weights align with the class means up to scaling, i.e.,
W⊤

h (t) ∝ Ũ(t).

3.2 NEURAL COLLAPSE IN CONTINUAL LEARNING

Standard evaluation in Continual Learning measures performance strictly at the completion of each
task. Thus, while forgetting arises from optimization dynamics, its magnitude is defined effectively
by the network’s asymptotic configuration. The Neural Collapse framework is therefore the ideal
analytical tool for this setting, as it rigorously characterizes the stable geometric structure to which
features converge at the precise moment of evaluation.

While prior work focuses on stationary settings, we extend the NC framework to continual learning.
We empirically verify its emergence in domain- (DIL), class- (CIL), and task-incremental (TIL)
settings (Figure 3, see Appendix C.4).
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Figure 3: NC metrics in sequential training (Cifar100, ResNet with 5% replay). NC emerges
across all tasks. In DIL, the ETF structure (NC2) remains stable; in CIL, it evolves as class count
increases; in TIL, it arises per-head with variable cross-task alignment. See Appendix A.2 for details.
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Observed vs. Population Statistics. NC emerges on the training data (current task + buffer). We
must therefore distinguish between observed statistics µ̂ (computed on available training samples)
and population statistics µ (computed on the full distribution). The following empirical analysis
concerns µ̂; in subsequent sections, we develop a theory for µ to quantify forgetting.

3.2.1 SINGLE-HEAD ARCHITECTURES

In Domain-Incremental Learning (DIL), all tasks share a fixed label set, with each task introducing
a new input distribution. Consequently, while the estimated class means µ̂c and global mean µ̂G

evolve throughout the task sequence, the asymptotic target geometry remains invariant. We find that
the NC properties established in the single-task regime (Definitions 4 to 6) persist under DIL. When
a replay buffer is employed, the class means are effectively computed over the mixture of new data
and buffered samples.

In Class-Incremental Learning (CIL), each task introduces a disjoint subset of classes. The
asymptotic structure of the feature space is therefore redefined after each task, governed by the rela-
tive representation of old versus new classes. When past classes are under-represented in the training
objective, they effectively act as minority classes. Their features collapse toward a degenerate distri-
bution centered near the origin, and their classifier weights converge to constant vectors (Fang et al.,
2021; Dang et al., 2023). This phenomenon, known as Minority Collapse (MC), occurs sharply
below a critical representation threshold. Without replay, MC dominates the asymptotic structure as
past classes are absent from the loss. However, we observe that replay mitigates this effect when
buffers are sampled in a class-balanced manner. This strategy ensures that all classes—both new
and old—are equally represented in each training batch, thereby preserving the global ETF structure
and preventing the marginalization of past tasks (Figure 3).

3.2.2 MULTI-HEAD ARCHITECTURES

Neural Collapse has not previously been characterized in multi-head architectures. In Task-
Incremental Learning (TIL), the network output is partitioned into separate heads, each associated
with a distinct task. This ensures that error propagation is localized to the assigned head (see Fig-
ure 25). While this local normalization prevents minority collapse even without replay, the resulting
global geometry across tasks is non-trivial. Specifically, we investigate the relative angles and norms
between class means belonging to different tasks.

We measure standard NC metrics including within-class variance, inter-task inner products, and
feature norms. Our findings reveal a clear distinction between local and global structure in TIL:

1. Local Collapse. NC emerges consistently within each head. Each task-specific head satis-
fies NC1–NC3 locally.

2. Global Misalignment. A coherent cross-task NC structure is absent. Across tasks, class
means display variable scaling and alignment (Figure 3, Figures 12 to 14 ).

3. Rank Reduction. We find that local normalization induces a dimensionality reduction in the
feature space. The global feature space attains a maximal rank of n(K − 1) for n tasks,
which is strictly lower than the nK − 1 rank observed in single-head settings (Figure 16).

These empirical observations—specifically that balanced replay restores global NC in single-head
setups while TIL lacks global alignment—serve as the foundation for the theoretical model of class
separability developed in the next section.

4 ASYMPTOTIC BEHAVIOUR OF DEEP AND SHALLOW FORGETTING

4.1 PRELIMINARIES

Linear Separability. To analyse deep forgetting, we require a mathematically tractable measure
of linear separability in feature space. Formally, linear separability between two distributions P1

and P2 is the maximum classification accuracy achievable by any linear classifier. Given the first
two moments (µ1,Σ1) and (µ2,Σ2), the Mahalanobis distance is a standard proxy. Here, we use
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the signal-to-noise ratio (SNR) between class distributions, defined as

SNR(c1, c2) =
∥µ1 − µ2∥2

Tr(Σ1 +Σ2)
.

Higher SNR values imply greater separability. In Appendix C.2, we show that this quantity lower-
bounds the Mahalanobis distance, and thus linear separability itself. Accordingly, we focus on the
first- and second-order statistics of class representations (means and covariances), as these directly
govern the SNR.

Asymptotic Notation. We use O(·) and Θ(·) to characterize the scaling of time-dependent quan-
tities f(t), suppressing constants independent of t. When bounds depend on controllable quantities
such as the buffer size b, we retain these dependencies explicitly. This notation highlights scaling
behaviour relevant to training dynamics and experimental design choices.

4.2 ANALYSIS OF DEEP FORGETTING

4.2.1 FORGOTTEN ≈ OOD

0 157 315 473
Iterations (x100)
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5
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N
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m
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Figure 4: Projection of µ̃(t) onto
St (Cifar100, no Replay). The
population means of past and fu-
ture tasks exhibit equivalent (near-
zero) norms when projected onto
the active subspace St.

The Neural Collapse (NC) framework characterizes the
asymptotic geometry of representations for training data. For-
getting, however, concerns the evolution of representations for
samples of past tasks that are no longer part of the optimization
objective. We bridge this conceptual gap through the following
hypothesis:

Hypothesis 1. Forgotten samples behave analogously to sam-
ples that were never learned, i.e., they are effectively out-of-
distribution (OOD) with respect to the current model.

This perspective motivates our analysis of forgetting as a form
of shift to out-of-distribution in feature space. Specifically, in
the absence of replay, data from past tasks exhibits the same
geometric behaviour as future-task (OOD) inputs. To formal-
ize this correspondence, we adopt a feature-space definition of
OOD based on the recently proposed ID/OOD orthogonality property (NC5, Ammar et al., 2024).

Definition 1 (Out-of-distribution (OOD)). Let Xc denote the samples of class c, and let
ϕt(x) be the feature map of a network trained on dataset D with K classes. Denote by
St = span{µ̃1(t), . . . , µ̃K(t)} the active subspace spanned by the centered class means of the
training data at time t. We say that Xc is out-of-distribution for ϕt if the average representation of
Xc is orthogonal to St.

In Appendix C.6 (Proposition 2), we show that, under the NC regime, the empirical observation
that OOD inputs yield higher predictive entropy than in-distribution (ID) inputs is mathematically
equivalent to this orthogonality condition—thus establishing a formal connection between predictive
uncertainty and the geometric structure of NC5.

We validate our hypothesis by monitoring the projection of class means µc onto the active subspace
St. As shown in Figure 4 (and Figures 17 to 19), shortly after a task switch, the projection of
past-task means collapses sharply, indistinguishably matching the behavior of unseen (OOD) tasks.

4.2.2 ASYMPTOTIC DISTRIBUTION OF OOD CLASSES

Leveraging the connection between forgetting and OOD dynamics, we now characterize the asymp-
totic behavior of past-task data. We find that the residual signal of past classes is confined to the
inactive subspace S⊥, making it susceptible to erasure by weight decay.

6
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Theorem 1 (Asymptotic distribution of OOD data). Let Xc be OOD inputs (Definition 1) for a
feature map ϕt trained with a sufficiently small learning rate η and weight decay λ. Let βt denote
the in-distribution class-mean norm. In the terminal phase (t ≥ t0), the feature distribution of Xc

has mean µc and variance σ2
c given by:

µc(t) = (1− ηλ)t−t0 µc,S⊥(t0), (1)

σ2
c (t) ∈ Θ

(
βt + (1− ηλ)2(t−t0)

)
. (2)

Corollary 1 (Collapse to null distribution). If λ > 0, the OOD distribution converges to a degener-
ate null distribution: the mean decays to zero, and the variance limits depend on βt.

The proof (see Theorem 4) relies on the observation that, once NC3 (alignment between class fea-
ture means and classifier weights) emerges, optimization updates become restricted to the active
subspace St. Consequently, components of the representation in the orthogonal complement S⊥

t are
frozen—or decay exponentially under weight decay—, yielding the dynamics above.

☞ Notation. For brevity, let υ = 1− ηλ, and note that St = St0 = S for all t ≥ t0.

Theorem 2 (Lower bound on OOD Linear Separability). For two OOD classes c, c′ in the TPT, let
υ = 1− ηλ. The Signal-to-Noise Ratio (SNR), which lower-bounds linear separability, satisfies:

SNR(c, c′) ∈ Θ

((
βt

υ2(t−t0)
+ 1

)−1
)
.

Discussion. Crucially, Theorem 2 does not imply that separability necessarily vanishes; consistent
with our empirical findings (Figure 2), a residual signal persists in S⊥. However, this signal is
fragile. The result reveals the dual role of weight decay: it accelerates the exponential decay of the
signal in S⊥ (reducing the numerator), yet simultaneously prevents the explosion of the class-mean
norm βt (constraining the denominator). Thus, weight decay both erases and indirectly preserves
past-task representations.

Finally, we empirically observe that βt tends to increase upon introducing new classes (Ap-
pendix A.3.3), which Theorem 2 suggests amplifies forgetting. We hypothesize this is an artifact
of classifier head initialization in sequential settings. Preliminary experiments, discussed in Ap-
pendix A.3.3, lend support to this hypothesis; however, we leave a comprehensive investigation of
this finding to future research.

4.2.3 ASYMPTOTIC DISTRIBUTION OF PAST DATA WITH REPLAY

Having seen that, without replay, past-task data behaves like OOD inputs drifting into S⊥, we now
consider how replay alters this picture. Replay provides a foothold in the active subspace S, prevent-
ing the collapse of old-task representations and preserving linear separability. Intuitively, the effect
of replay should interpolate between the two extremes: no replay (DOOD) and full replay (DNC).

Hypothesis 2. The class structure in feature space emerges smoothly as a function of the buffer
size, with past-task features retaining a progressively larger component in S.

To formalize this intuition, we introduce a mixture model for the asymptotic feature distribution
under replay. Let πc ∈ [0, 1] denote a monotonic function of the buffer size |Bc|, representing the
fraction of the NC-like component retained in S. Then, in the terminal phase of training, the feature
distribution of class c can be expressed as a mixture

ϕ(x) ∼ πc DNC + (1− πc)DOOD.

This model is exact in the extremes (πc = 0 or 1) and interpolates for intermediate buffer sizes.

Validation (Figure 5) confirms that increasing replay transfers variance from S⊥ to S, improving
separability. We observe that stronger weight decay reduces global norms and accelerates NC con-
vergence. Notably, we find an inverse relationship between buffer size and feature norms: while
OOD data gravitates toward the origin, representations in small-buffer regimes are subject to a

7
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distinct repulsive force, pushing partially collapsed features outward. Finally, feature norms are
consistently lower in DIL than in TIL or CIL.

This mixture model yields a lower bound on the Signal-to-Noise Ratio (SNR), proving that replay
guarantees asymptotic separability.

Theorem 3 (Lower bound on separability with replay). Let c, c′ be past-task classes and π ∈ (0, 1]
the buffer mixing coefficient. In the TPT,

SNR(c, c′) ∈ Θ

(
r2 βt + υ2(t−t0)

r2 δt + βt + υ2(t−t0)

)
, where r2 =

π2

(1− π)2
.

Corollary 2. If π > 0 (non-empty buffer), the SNR does not vanish: SNR(c, c′) ∈ Θ(r2) as t → ∞.

The corollary formalizes the intuition that any non-empty buffer anchors features in S. The anchor-
ing strength r2 grows with buffer size; empirically, this growth is superlinear in single-head models
(CIL, DIL) but sublinear in multi-head TIL.
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Figure 5: Empirical validation for the theoretical model of feature space structure (Cifar100,
ResNet with 5% replay). Plot shows the average over all past tasks after training the last task for
four metrics. Results are shown for different buffer sizes and weight decay parameters (different
lines). Details in Appendix A.2.

Discussion. These results rigorously establish replay as an anchor within the active subspace S.
While the absence of replay forces representations into S⊥—causing exponential signal decay—any
non-empty buffer guarantees a persistent signal proportional to r2, ensuring asymptotic separability.
Crucially, the efficiency of this anchoring varies by architecture: empirical trends (SNR, Figure 5)
indicate sublinear growth of πc in single-head settings (CIL, DIL) versus superlinear growth in
multi-head TIL, suggesting fundamental differences in how shared versus partitioned heads utilize
replay capacity.

4.3 THE DEEP–SHALLOW FORGETTING GAP

We have established that even modest replay buffers suffice to anchor the feature space, preserving
a non-vanishing Signal-to-Noise Ratio (mitigating deep forgetting). This resolves the first half of
the puzzle. We now address the second half: why does this preserved separability not translate into
classifier performance (shallow forgetting)?

Mechanism: The Under-Determined Classifier. Shallow forgetting arises from the fundamental
statistical divergence between the finite replay buffer and the true population distribution. This
divergence is structurally amplified by Neural Collapse. As noted by Hui et al. (2022), small sample
sizes induce a ”strong” NC regime where samples collapse aggressively to their empirical means
(Figure 15). Geometrically, this projects the buffer data onto a low-dimensional subspace SB ⊂ S

8
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(rank ≈ K − 1). However, the true population retains variance in directions orthogonal to SB

(specifically within S⊥).

This geometric mismatch renders the optimization of the classifier head an ill-posed, under-
determined problem. Let W be the classifier weights. Since the buffer variance vanishes in di-
rections orthogonal to SB , the cost function is invariant to changes in W along these directions.
Consequently, the optimization landscape contains a manifold of ”Buffer-optimal” solutions that
achieve near-zero training error. However, these solutions can vary arbitrarily in the orthogonal
complement, leading to decision boundaries that are misaligned with the true population mass (as
visualized in Figure 1). The classifier overfits the simplified geometry of the buffer, failing to gen-
eralize to the richer geometry of the population.
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Figure 6: Deconstructing the Statistical Gap. Left and middle-left: Gap (measured as L2 distance)
between population and observed metrics. Center-right: Rank of the population (light shade) and
observed (dark shade) covariance, the gap persists as the buffer size is increased. Right: Synthetic
Linear Discriminant Analysis (LDA) on TinyIMG. We replace true statistics (µ,Σ) with buffer esti-
mates (µ̂, Σ̂) to isolate error sources. Details in Appendix A.2.

Mechanistic Analysis of Statistical Divergence . We quantitatively decompose this divergence
into two primary artifacts, validated via synthetic Linear Discriminant Analysis (LDA) counterfac-
tuals (Figure 6). First, covariance deficiency: the buffer’s empirical covariance Σ̂B is rank-deficient
and blind to variance in S⊥. The criticality of second-order statistics is evidenced by the sharp accu-
racy drop observed when replacing the true population covariance with the identity matrix in LDA.
Second, mean norm inflation: buffer means exhibit inflated norms relative to population means
due to repulsive forces. Our LDA analysis confirms that replacing population means with buffer
estimates causes a distinct, additive performance degradation. Notably, replacing true labels with
pseudo-labels—derived from clustering initialized by the buffer—recovers performance comparable
to the test-mean/identity-covariance baseline. Metrics such as mean and covariance gap (Figure 6,
Left) further confirm that these discrepancies—particularly covariance rank—persist until the buffer
approaches full size.

Implications. These findings mechanistically explain the deep–shallow gap: the feature space
retains linear separability, yet the classifier remains statistically blinded to it. Consequently, simply
increasing buffer size is an inefficient, brute-force solution. Instead, our results suggest that to
bridge the gap between shallow and deep forgetting, one must explicitly counteract the effects of
Neural Collapse—specifically by preventing the extreme concentration and radial repulsion of buffer
distributions. We further elaborate on these implications in the discussion of future work.

5 RELATED WORK

Our work intersects three main research directions: the geometry of neural feature spaces, out-of-
distribution (OOD) detection, and continual learning (CL). A more detailed overview is provided in
Appendix B. Below we highlight the most relevant connections and our contributions.

Deep vs. shallow forgetting. Classical definitions of catastrophic forgetting focus on output degra-
dation (shallow forgetting). More recent studies show that internal representations often retain past-
task structure, recoverable via probes (deep forgetting) (Murata et al., 2020; Ramasesh et al., 2020;
Fini et al., 2022; Davari et al., 2022; Zhang et al., 2022; Hess et al., 2023). Replay is known to mit-
igate deep forgetting in hidden layers (Murata et al., 2020; Zhang et al., 2022). To our knowledge,

9
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we are the first to demonstrate that deep and shallow forgetting scale fundamentally differently with
buffer size.

Neural Collapse (NC). NC describes the emergence of an ETF structure in last-layer features at con-
vergence (Papyan et al., 2020; Mixon et al., 2022; Tirer & Bruna, 2022; Jacot et al., 2024; Súkenı́k
et al., 2025). Extensions address class imbalance (Minority Collapse) (Fang et al., 2021; Dang et al.,
2023; Hong & Ling, 2023) and overcomplete regimes (Jiang et al., 2024; Liu et al., 2023; Wu &
Papyan, 2024). In CL, NC has been leveraged to fix global ETF heads to reduce forgetting (Yang
et al., 2023; Dang et al., 2024; Wang et al., 2025). Our approach is distinct: we apply NC theory to
the asymptotic analysis of continual learning and introduce the multi-head setting, common in CL
but previously unexplored in NC theory.

OOD detection. Early work observed that OOD inputs yield lower softmax confidence (Hendrycks
& Gimpel, 2018), while later studies showed that OOD features collapse toward the origin due to
low-rank compression (Kang et al., 2024; Harun et al.). Recent results connect this behavior to NC:
L2 regularization accelerates NC and sharpens ID/OOD separation (Haas et al., 2023), and ID/OOD
orthogonality has been proposed as an additional NC property, with OOD scores derived from ETF
subspace norms (Ammar et al., 2024). Our work extends these insights by formally establishing
orthogonality, clarifying the role of weight decay and feature norms, and—crucially—providing the
first explicit link between OOD detection and forgetting in CL.

6 FINAL DISCUSSION & CONCLUSION

Takeaways. This work has shown that: (1) replay affects network features and classifier heads in
fundamentally different ways, leading to a slow reduction of the deep–shallow forgetting gap as
buffer size increases; (2) the Neural Collapse framework can be systematically extended to contin-
ual learning, with particular emphasis on the multi-head setting—a case not previously addressed in
the NC literature; (3) continual learning can be formally connected to the out-of-distribution (OOD)
detection literature, and our results extend existing discussions of NC on OOD data. We further elu-
cidated how weight decay and the growth of class feature norms jointly determine linear separability
in feature space. Our analysis also uncovered several unexpected phenomena: (i) class feature norms
grow with the number of classes in class- and task-incremental learning; (ii) multi-head models yield
structurally lower-rank feature spaces compared to single-head models; and (iii) weight decay exerts
a double-edged influence on feature separability, with its effect differing across continual learning
setups.

Limitations. Our theoretical analysis adopts an asymptotic perspective, thereby neglecting the tran-
sient dynamics of early training, which are likely central to the onset of forgetting (Łapacz et al.,
2024). Moreover, our modeling of replay buffers as interpolations between idealized extremes sim-
plifies the true distributional dynamics and may not fully capture practical scenarios. Finally, many
aspects of feature-space evolution under sequential training—particularly the nature of cross-task
interactions in multi-head architectures—remain poorly understood and require further investiga-
tion.

Broader Implications. By establishing a formal link between Neural Collapse, OOD represen-
tations, and continual learning, our findings highlight key design choices—including buffer size,
weight decay, and head structure—that shape the stability of past-task knowledge. These results
raise broader questions: What constitutes an “optimal” representation for continual learning? Is
the Neural Collapse structure beneficial or detrimental in this context? Our results suggest that
while NC enhances feature organization, it also exacerbates the mismatch between replay and true
distributions, thereby contributing to the deep–shallow forgetting gap. Addressing these open ques-
tions will be essential for designing future continual learning systems.
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A EMPIRICAL APPENDIX

A.1 EXPERIMENTAL DETAILS

We utilize the benchmark codebase developed by Buzzega et al. (2020)1. To accommodate our
experiments we performed several changes to the default implementation.

Training Configurations. Table 1 summarizes the configurations used in our main experiments.
All models are trained in an offline continual learning setting, where each task’s dataset is trained
for a specified number of iterations before transitioning to the next task. Models are trained to
reach error convergence on each task and more training does not improve performance. For all
experiments, the random seeds were set to [1000, 2000, 3000]. The class ordering was randomized
in each run, meaning that a specific tasks consist of different classes in each run. This was done
to ensure that the results are not biased by a specific class sequence. However, we observed that
this increases the variance when metrics are evaluated task wise compared to using a fixed class
assignment.

Dataset Tasks Epochs first task Network Batch Size

Cifar100 10 200 ResNet18 (11M) 64
Cifar100 10 40 ViT base, pretrained on ImageNET (86M) 256
TinyIMG 10 200 ResNet18 (11M) 64
CUB200 10 80 ResNet50, pretrained on ImageNET (24M) 32

Table 1: Experiment configurations.

Hyper Parameters Our hyper parameters were largely adapted from (Buzzega et al., 2020) and
are listed in Table 2. We use a constant learning rate. For all buffer sizes the same hyper parameters
are used. Finally to study the effects of weight decay, we vary the weight decay strength in our
experiments while keeping all other factors constant.

Dataset Method Optimizer Hyper Parameters

Cifar100, ResNet ER SGD lr : 0.1, wd : 0.0001
Cifar100, ResNet DER SGD lr : 0.03, α = 0.3,
Cifar100, ResNet FDR SGD lr : 0.03, α = 0.3,
Cifar100, ResNet iCaRL SGD lr : 0.1, wd : 0.00005

Cifar100, ViT ER AdamW lr : 0.0001, wd = 0.0001
TinyIMG, ResNet ER SGD lr : 0.1, wd : 0.0001
CUB200, ResNet ER SGD lr : 0.03, wd : 0.0001

Table 2: Hyper Parameters

Datasets and Preprocessing. We adopt publicly available image classification benchmarks: Ci-
far100 (32× 32 RGB, 100 classes), TinyIMG (64× 64 RGB, 200 classes) and CUB200 (224 RGB,
200 classes). Standard train/test splits are used. We apply standard augmentations like random crops
and flips, without increasing the dataset size.

Buffer Sizes (% of dataset)

1, 2, 3, 4, 5, 6, 8, 10 , 100

Table 3: Buffer sizes in percentage over the training dataset. The same are used for all experiment
configurations.

1Their codebase is publicaly availible at: https://github.com/aimagelab/mammoth
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Measures of Superficial and Deep Forgetting. Shallow forgetting quantifies the drop in output
accuracy on past tasks after learning new ones, defined as

F shallow
i→j = Ajj −Aij ,

where Aij is the accuracy on task j measured after learning session i.

Deep forgetting measures the loss of discriminative information in the features themselves, indepen-
dent of the head. To measure it, we train a logistic regression classifier (scikit-learn’s LogisticRe-
gression, default settings, C=100) on frozen features extracted from the full dataset after learning
session i. The resulting accuracy, evaluated at the end of session j, is denoted by A⋆

ij .

Formally,
F deep
i→j = A⋆

jj −A⋆
ij .

For single-head models, one probe is trained over all classes; for multi-head architectures, one probe
per task-specific head is used.

Experience Replay (ER). In our implementation of ER, we adopt a balanced sampling strategy,
where each task contributes equally to the mini-batches. This strategy would normally require more
iterations for later tasks. To avoid this, we fix the total number of iterations for all tasks to match the
number performed on the first task. This effectively reduces the number of epochs for later tasks.

To maintain precise control over buffer composition, we employ an offline sampling scheme. Sam-
ples (together with their labels) from a new task are added to the buffer only after training on that
task is completed. This ensures a balanced number of samples per class in the buffer. When setting
the buffer size to zero, ER naturally reduces to standard SGD.

A.2 FIGURE DETAILS

This subsection details the computations behind the figures presented in the main text. Figure 2.
Forgetting metrics are evaluated after the final training session, following the procedure described
in Appendix A.1, and across buffer sizes specified in Table 3. Different line styles correspond to
distinct continual learning settings.

Figure 3. Neural Collapse (NC) metrics are computed for each task every 100 steps during training
of a ResNet from scratch on CIFAR100 in both CIL, DIL and TIL settings. Metrics are evaluated
on the available training data, which includes the current task’s dataset plus the replay buffer which
contains 5% of the past task’s dataset. In TIL, for NC2 the within-class-pair values for each task
are shown in the standard task colors, while the values across class pairs from different tasks are
highlighted in violet. The brown vertical lines indicate the task switches.

Figure 4. Average norm of µ̃c(t) projected to St over all classes belonging to a task is computed
every 100 steps during training of a ResNet from scratch on CIFAR100 under CIL. The brown
vertical lines indicate the task switches.

Figure 5 Measurements are collected after the final training session on Cifar100 using a ResNet
trained from scratch, averaged over all past-task classes. The buffer sizes correspond to those
listed in Table 3. The signal-to-noise ratio (SNR) is computed as described in Section 1.1.
The second panel displays the normalized variance ratio, where the within-class variance is de-
fined as 1

|C|
∑

c∈C Tr(Cov(ϕ(x) | x ∈ Xc)), and the between-class variance is defined as
Tr(Cov({µc}c∈C)), with µc the population feature mean vector of class c. The third panel dis-
plays the average ratio: S⊥

t µ̃(t) / Stµ̃(t). And the fourth panel displays the average norm of µ̃c(t)

and ˜̂µc(t).

Figure 6 (first three plots). At the end of the last training session, the network is evaluated on
multiple datasets under a CIL protocol. For CUB200 we do not report buffer sizes which are smaller
then 4%, as at least two samples per class are needed to calculate the covariance matrix. For each
buffer size reported in Table 3, we collect the class-wise mean vectors µ̂c(t) and covariances Σ̂c(t)
from the buffer, as well as the corresponding population statistics µc(t) and Σc(t). The following
metrics are computed and averaged across past classes:

• Mean gap: ∥µc(t)− µ̂c(t)∥2.
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• Covariance gap: ∥Σc(t)− Σ̂c(t)∥F , the Frobenius norm of the difference between covari-
ances.

• Covariance rank: both the rank of the population covariance matrix Σc(t) and the observed
covariance matrix Σ̂c(t) are reported. Note that the rank is upper bounded by the number
of samples which are used to calculate the covariance matrix.

These quantities quantify the discrepancy between the buffer and true class distributions in feature
space, which drives shallow forgetting.

Figure 6 (right-most panel). Same experimental setup as the first three panels. We evaluate differ-
ent linear classifiers on TinyIMG using class-wise feature statistics. Specifically, we construct linear
discriminant analysis (LDA) classifiers. For a class c, the LDA decision rule is

ŷ(x) = argmax
c

(x− µ̂c(t))
⊤Σ̂−1(t)(x− µ̂c(t)),

where µ̂c and Σ̂ denote the estimated class mean and shared covariance matrix, respectively. We
vary the estimates used for each class as follows:

• Full population: both mean µc(t) and covariance Σc(t) are taken from population.

• Population means (ID cov): mean is taken from population µc(t), but covariance is fixed
to the identity.

• Pseudo labels test: pseudo-labels are inferred by assigning each population sample to the
closest buffer mean, effectively using a simplified linear classifier with diagonal covariance.

• Buffer-only: both mean µ̂c(t) and covariance Σ̂c(t) are computed from the replay buffer.

This evaluation highlights how errors in buffer-based mean and covariance estimates contribute to
shallow forgetting, and quantifies the impact of each component on linear decoding performance.

A.3 ABLATIONS

A.3.1 EFFECT OF PRETRAINING

Our results in Figure 3 demonstrate that models trained from scratch indeed undergo Neural Col-
lapse (NC) in a continual learning setting. However, when comparing this to pre-trained models,
we find that while both settings converge to the same asymptotic feature geometry, the pre-trained
models do so at a substantially accelerated rate. This difference in convergence speed is illustrated
in Figure 7. A side-by-side comparison of the initial 15 iterations confirms that pre-trained models
rapidly achieve the high NC scores that their de novo counterparts only reach much later in training.
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Figure 7: Convergence to Neural Collapse (NC) for pre-trained versus from-scratch models under
CIL on CUB200. Pre-trained models achieve asymptotic NC scores significantly faster than their de
novo counterparts.

A.3.2 FEATURE BOTTLENECK: WHEN d ≪ K

In the main paper, we considered settings where the feature dimension exceeds the number of
classes. However, in many practical applications, such as language modeling, the number of classes
(e.g., vocabulary size) is typically much larger than the feature dimension. Recent work by (Liu
et al., 2023) explored this regime. To examine how our framework behaves under these conditions,
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we conducted additional experiments by modifying the Cifar100 with ResNet setup. Specifically,
we split Cifar100 into four tasks of 25 classes each and inserted a bottleneck layer of dimension 10
between the feature layer and the classifier head. All other components are left unchanged.

As illustrated in Figure 8, variability collapse NC1 and neural duality NC3 remain robust in this
constrained setting. However, the equiangularity NC2 exhibits significant degradation. While the
mean pairwise cosine similarity aligns with theoretical expectations, its standard deviation increases
substantially to ≈ 0.3 compared to the typical convergence levels of ≈ 0.1 in our standard setting
(Figure 12 and similarly observed by Papyan et al. (2020)). Therefore, even though the mean appears
correct, the underlying structure is not as the standard deviation is far to high. This high variance
indicates a failure to converge to a rigid simplex, suggesting that in the d ≪ K regime alternative
geometric structures must be considered, such as the Hyperspherical Uniformity explored by Liu
et al. (2023).
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Figure 8: NC metrics in the bottleneck regime (d=10). Same setup as Figure 3. Results for CIFAR-
100 (4 tasks, 25 classes, 5% replay). While variability collapse (NC1) and duality (NC3) persist, the
rigid ETF structure (NC2) degrades, exhibiting high variance in pairwise angles.

Crucially, we find that the deep–shallow forgetting gap persists despite this geometric shift. This
implies that the decoupling between feature separability and classifier alignment is not contingent on
the specific ETF geometry of Neural Collapse. Rather, the gap is a fundamental phenomenon that
emerges even when the learned representations follow alternative geometric structures, provided
they remain separable.

Dataset Learning paradigm Shallow forgetting Deep forgetting

Cifar100 CIL 52.27± 2.41 26.15± 1.92
Cifar100 DIL 46.38± 1.88 35.07± 0.51
Cifar100 TIL 18.45± 2.78 14.89± 1.77

Table 4: The deep-shallow forgetting gap persists in the low feature-dimension regime (Cifar100,
ResNet with 5% replay).

A.3.3 EFFECT OF HEAD INITIALIZATION

We analyze the empirical evolution of the class-mean norm βt across tasks. As illustrated in Fig-
ure 9, we observe a distinct architectural split: βt increases monotonically in setups with increasing
number of classes (CIL and TIL), whereas it remains asymptotically stable in DIL.
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We attribute this drift to a weight norm asymmetry induced by the sequential expansion of the net-
work outputs. In CIL and TIL, new head weights are typically instantiated using standard schemes
(e.g., Kaiming Uniform), which initialize weights with significantly lower norms than those of the
already-converged heads from previous tasks. This creates a recurrent initialization shock. In con-
trast, DIL employs a fixed, shared head across all tasks, inherently avoiding this discontinuity.
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Figure 9: Average (over all seen classes c) norm of the centered observed class means ˜̂µc(t) and
population class means µ̃c(t) after training each task on Cifar100, with varying weight decay coef-
ficients. The three panels on the left correspond to the default head initialization, which results in
a progressively increasing norm in both CIL and TIL. The rightmost panel shows the results when
each new head is initialized with the same norm as the previously trained heads. This adjustment
prevents the norm from growing

To validate this hypothesis, we performed an ablation using a norm-matching initialization strategy.
In this setup, the weights of new tasks are scaled to match the average norm of existing heads while
preserving their random orientation.

Results in Figure 9 (Right) confirm that this intervention effectively suppresses the progressive
growth of βt, recovering the stationary norm behavior observed in DIL. Interestingly, while this
adjustment stabilizes the geometric scale of the representation, we found it yields negligible impact
on final forgetting or test accuracy metrics.

A.4 ADDITIONAL FIGURES AND EMPIRICAL SUBSTANTIATION

This subsection includes placeholder figures for concepts discussed in the main text, for which
specific existing figures were not available or suitable for direct inclusion in the main body.
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Figure 10: Same setup as Figure 2. This plot reports test accuracy.
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Figure 11: Deep–shallow forgetting gap for Dark Experience Replay (DER), Functional Distance
Relation (FDR) and Incremental Classifier and Representation Learning (iCaRL) on Cifar100 with
ResNet. Note that iCaRL does not support Domain-Incremental Learning.
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Figure 12: Same setup as Figure 3. This plot shows the NC metrics on Cifar100 with 5% replay.
For NC2, both the mean and standard deviation are shown.
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Figure 13: Same setup as Figure 3. This plot shows the NC metrics on TinyIMG with 5% replay.
For NC2, both the mean and standard deviation are shown.
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Figure 14: Same setup as Figure 3. This plot shows the NC metrics on CUB200 with 10% replay.
For NC2, both the mean and standard deviation are shown.
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Figure 17: Same setup as Figure 4. This plot shows the norm of µ̃c(t) when projected to St for CIL,
DIL and TIL on Cifar100 with no replay.
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Figure 18: Same setup as Figure 4. This plot shows the norm of µ̃c(t) when projected to St for CIL,
DIL and TIL on TinyIMG with no replay.
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Figure 19: Same setup as Figure 4. This plot shows the norm of µ̃c(t) when projected to St for CIL,
DIL and TIL on CUB200 with no replay.
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Figure 20: Same setup as Figure 5. This plot displays the results for TinyIMG.
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Figure 21: Same setup as Figure 5. This plot displays the results for CUB200.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Class

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

C
la

ss

7.46 5.81 -1.15 10.39 1.34 -6.25 0.53 -3.66 1.55 0.11 -5.17 -4.80 1.34 -10.30 11.56 -2.57 -7.31 8.85 -4.88 -2.85

5.81 8.77 -2.89 8.57 2.62 -5.90 2.53 -5.24 0.70 1.54 -8.62 -6.07 -7.47 -10.95 10.80 1.37 -6.68 9.34 -3.62 5.40

-1.15 -2.89 8.20 -3.01 -0.72 4.92 -0.66 -0.23 1.89 0.82 -12.75 -5.17 10.51 3.90 -4.63 7.92 -0.16 -3.57 1.61 -4.84

10.39 8.57 -3.01 21.73 2.30 -8.95 -0.68 -9.62 2.72 -1.49 -1.47 -11.16 0.22 -8.61 24.40 -4.26 -10.77 5.64 -11.46 -4.50

1.34 2.62 -0.72 2.30 5.37 -2.15 1.02 4.45 -0.84 0.35 -12.02 7.12 -4.71 -1.53 5.13 0.62 -7.54 -1.89 -1.88 2.96

-6.25 -5.90 4.92 -8.95 -2.15 18.99 0.48 -5.47 -2.45 3.32 -6.56 -11.41 -4.25 29.94 -12.87 1.36 3.02 -1.76 8.80 -2.82

0.53 2.53 -0.66 -0.68 1.02 0.48 10.46 -5.75 3.32 4.54 0.00 -8.11 -3.36 -3.15 -0.80 1.38 -15.24 1.74 5.06 6.69

-3.66 -5.24 -0.23 -9.62 4.45 -5.47 -5.75 30.74 -8.12 -6.56 -9.76 43.01 0.39 -10.93 -5.97 -0.67 6.76 -8.26 4.06 -9.19

1.55 0.70 1.89 2.72 -0.84 -2.45 3.32 -8.12 9.74 3.91 1.75 -12.87 12.00 -5.73 1.68 -4.27 -5.65 -3.74 -3.89 8.30

0.11 1.54 0.82 -1.49 0.35 3.32 4.54 -6.56 3.91 7.15 -5.42 -9.69 0.79 3.62 -3.22 -3.46 -11.98 4.36 0.02 11.29

-5.17 -8.62 -12.75 -1.47 -12.02 -6.56 0.00 -9.76 1.75 -5.42 97.57 -5.37 -0.28 -1.48 -6.86 -11.56 3.54 -6.62 -4.92 -4.00

-4.80 -6.07 -5.17 -11.16 7.12 -11.41 -8.11 43.01 -12.87 -9.69 -5.37 66.85 -6.62 -15.12 -4.56 -3.36 7.55 -11.01 -0.64 -8.56

1.34 -7.47 10.51 0.22 -4.71 -4.25 -3.36 0.39 12.00 0.79 -0.28 -6.62 44.39 -12.37 -2.34 -7.70 -2.59 -9.79 -0.63 -7.53

-10.30 -10.95 3.90 -8.61 -1.53 29.94 -3.15 -10.93 -5.73 3.62 -1.48 -15.12 -12.37 65.86 -14.27 -0.74 1.12 -6.72 0.23 -2.78

11.56 10.80 -4.63 24.40 5.13 -12.87 -0.80 -5.97 1.68 -3.22 -6.86 -4.56 -2.34 -14.27 31.61 -5.00 -13.03 1.62 -9.14 -4.12

-2.57 1.37 7.92 -4.26 0.62 1.36 1.38 -0.67 -4.27 -3.46 -11.56 -3.36 -7.70 -0.74 -5.00 47.59 -1.24 -0.07 -11.21 -4.13

-7.31 -6.68 -0.16 -10.77 -7.54 3.02 -15.24 6.76 -5.65 -11.98 3.54 7.55 -2.59 1.12 -13.03 -1.24 78.42 -7.77 -0.73 -9.71

8.85 9.34 -3.57 5.64 -1.89 -1.76 1.74 -8.26 -3.74 4.36 -6.62 -11.01 -9.79 -6.72 1.62 -0.07 -7.77 36.57 -5.29 -1.60

-4.88 -3.62 1.61 -11.46 -1.88 8.80 5.06 4.06 -3.89 0.02 -4.92 -0.64 -0.63 0.23 -9.14 -11.21 -0.73 -5.29 47.89 -9.36

-2.85 5.40 -4.84 -4.50 2.96 -2.82 6.69 -9.19 8.30 11.29 -4.00 -8.56 -7.53 -2.78 -4.12 -4.13 -9.71 -1.60 -9.36 41.35

Cifar100, Class-IL.

10

0

10

20

30

40

50

Figure 22: Class-wise inner products of the centered population class means µ̃c(t) on Cifar100
under Class-Incremental Learning after the second task. Classes 0 to 9 belong to the first task, while
10 to 19 belong to the second task. The classes belonging to task 2 are structured according to the
NC regime, while classes belonging to task 1 show no structure.
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Figure 23: Class-wise inner products of the centered population class means µ̃c(t) on Cifar100
under Task-Incremental Learning after the second task. Classes 0 to 9 belong to the first task, while
10 to 19 belong to the second task. The classes belonging to task 2 are structured according to the
NC regime, while classes belonging to task 1 show no structure.
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Figure 24: Class-wise inner products of the centered population class means µ̃c(t) on Cifar100 under
Domain-Incremental Learning after the second task. The left plot shows the results for samples
belonging to the first task, while the right plot shows results for samples from the second task. Task
2 is structured according to the NC regime, while task 1 shows no structure.
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B OVERVIEW OF RELATED WORK

Our work intersects several strands of research. First, it builds on the literature studying the geomet-
ric structures that emerge in neural feature spaces, extending these analyses to the sequential setting
of continual learning and accounting for the additional challenges introduced by different head ex-
pansion mechanisms. Second, it connects to the out-of-distribution detection literature, where we
reinterpret forgetting as feature drift and broaden existing insights to a more general framework.
Finally, it contributes to the continual learning literature that disentangles knowledge retention at
the representation level from that at the output level, highlighting the systematic mismatch between
the two in replay.

Deep and Shallow Forgetting Traditionally, catastrophic forgetting is defined as the decline in a
network’s performance on a previously learned task after training on a new one, with performance
measured at the level of the network’s outputs. We refer to this notion as shallow forgetting. In con-
trast, Murata et al. (2020) highlighted that forgetting can also be assessed in terms of the network’s
internal representations. They proposed quantifying forgetting at a hidden layer l by retraining the
subsequent layers l+1 to L on past data and comparing the resulting accuracy to that of the original
network. Applied to last-layer features, this procedure coincides with the widely used linear probe
evaluation from the representation learning literature, often complemented by kNN estimators, to
assess task knowledge independently of a task-specific head. In this work, we refer to the loss
of information at the feature level as deep forgetting. This probing-based approach has also been
adopted in continual learning studies (Ramasesh et al., 2020; Fini et al., 2022). Multiple works have
since reported a consistent discrepancy between deep and shallow forgetting across diverse settings
(Davari et al., 2022; Zhang et al., 2022; Hess et al., 2023). Of particular relevance to our study are
the findings of Murata et al. (2020) and Zhang et al. (2022), who observed that replay methods help
mitigate deep forgetting in hidden representations. To our knowledge, however, we are the first to
demonstrate that deep and shallow forgetting exhibit categorically different scaling behaviors with
respect to replay buffer size.

Neural Collapse and Continual Learning Neural Collapse (NC) was first introduced by Papyan
et al. (2020) to describe the emergence of a highly structured geometry in neural feature spaces,
namely a simplex equiangular tight frame (simplex ETF) characterized by the NC1–NC4 prop-
erties. Its optimality for neural classifiers, as well as its emergence under gradient descent, was
initially established under the simplifying unconstrained feature model (UFM) (Mixon et al., 2022).
Subsequent theoretical work extended these results to end-to-end training of modern architectures
with both MSE and CE loss on standard classification tasks (?Jacot et al., 2024; Súkenı́k et al.,
2025). Generalizations of NC have been proposed for settings where the number of classes exceeds
the feature dimension, precluding a simplex structure. In such cases, the NC2 and NC3 properties
are extended via one-vs-all margins (Jiang et al., 2024) or hyperspherical uniformity principles (Liu
et al., 2023; Wu & Papyan, 2024). Another important line of work concerns the class-imbalanced
regime, which arises systematically in continual learning. Here, the phenomenon of Minority Col-
lapse (MC) (Fang et al., 2021) has been observed, in which minority-class features are pushed
toward the origin. Dang et al. (2023); Hong & Ling (2023) derived an exact law for this collapse,
including a threshold on the number of samples below which features collapse to the origin and
above which the NC configuration is gradually restored. Because class imbalance is inherent in
class-incremental continual learning, NC principles have also been leveraged to design better heads.
Several works (Yang et al., 2023; Dang et al., 2024; Wang et al., 2025) impose a fixed global ETF
structure in the classifier head, rather than learning it, to mitigate catastrophic forgetting. To our
knowledge, we are the first to use NC theory to analyze the asymptotic geometry of neural feature
spaces in continual learning. In doing so, we introduce the multi-head setting, which is widely used
in continual learning but has not been formally studied in the NC literature. While a full theory of
multi-head NC lies beyond the scope of this paper, our empirical evidence provides the first steps
toward such a framework.

Out-of-Distribution Detection Out-of-distribution (OOD) detection is a critical challenge for
neural networks deployed in error-sensitive settings. Hendrycks & Gimpel (2018) first observed
that networks consistently assign lower prediction confidences to OOD samples across a wide range
of tasks. Subsequent work has shown that OOD samples occupy distinct regions of the representa-
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tion space, often collapsing toward the origin due to the in-distribution filtering effect induced by
low-rank structures in the backbone (Kang et al., 2024; Harun et al.). Haas et al. (2023) connected
this phenomenon to Neural Collapse (NC), demonstrating that L2 regularization accelerates the
emergence of NC and sharpens OOD separation. Building on this, Ammar et al. (2024) proposed an
additional NC property—ID/OOD Orthogonality—which postulates that in-distribution and out-of-
distribution features become asymptotically orthogonal. They further introduced a detection score
based on the norm of samples projected onto the simplex ETF subspace S, which closely paral-
lels the analysis in our work. Our results extend this line of research by providing formal evidence
for the ID/OOD orthogonality hypothesis, offering a precise characterization of the roles of weight
decay and feature norm, and, to our knowledge, establishing the first explicit connection between
catastrophic forgetting and OOD detection.
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C MATHEMATICAL DERIVATIONS

Notation

Dn Dataset of task n

D̂n Training dataset during session n -may include buffer

D̄ Datasets of all tasks combined

Xc Instances of class c in all tasks

L(θ,D) Average loss function over D

λ Weight decay factor

η SGD learning rage

fθ Network function Rd1 → RP

ϕ Feature map Rd1 → RdL

h Network head RdL → RP

Wh Network head weights

Wn
h Network head weights for classes of task n (only multi-

head)

µ,Σ, σ2 The mean, covariance and variance of a distribution

µ̃c = µc − Ec[µc] Centered class c mean

S = span(µ̃1, . . . , µ̃K) Centered mean span

Ũ = [µ̃1, . . . , µ̃K ] Centered mean matrix

PA Projection onto the space A

βt = ∥µ(t)∥2 Training class (squared) norm

C.1 SETUP

Consider a neural network with weights θ, divided into a non-linear map ϕ : Rd1 → RdL and a
linear head h : RdL → RK . The function takes the form:

fθ(x) = Wh ϕ(x) + bh

We hereafter refer the map ϕ(x) as features or representation of the input x, and to f(x) as output.
The network is trained to minimize a classification loss ℓ((x, y), fθ) on a given dataset D. We
denote by L(D, θ) the average ℓ((x, y), fθ) over D, and where clear we leave D implicit. The loss
is assumed to be convex in the network output fθ(·).
For each task n a new dataset Dn is provided, with K classes. We denote by D̄t = ∪n≤t Dn the
union of all datasets for tasks 1 to t and simply D̄ the union of all datasets across all tasks. Moreover,
we denote by D̂t the training data used during the session t - which may include a buffer. For a given
class c we denote by XD,c the available inputs from that class, i.e. XD,c = {x : (x, y) ∈ D and y =
c}. We use Xc = XD̄,c the set of inputs for class c across all learning sessions. We assume the
number of classes K to be predicted to be the same for each task.

For a given class data Xc the class mean feature vector is:
µc(D̄) = EXc [ϕ(x)].

We call µc(D̄) the population mean, to distinguish it from the buffer mean µc(B). If a given class
appears in multiple training session, we additionally distinguish between µc(D̄) and µc(D̂t), where
the latter is the observed mean. For a set of classes {1, . . . ,K} in a dataset D the global mean
feature vector is:

µG(D̄) = Ec EXc
[ϕ(x)] = ED̄ [ϕ(x)],
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which we call population global mean to distinguish it from the buffer global mean µG(B). Finally,
the centered class mean feature vector is:

µ̃c(D̄) = µc(D̄)− µG(D̄)

and similarly µ̃c(B) = µc(B)− µG(B). When clear, we may omit D̄ and B from the notation.

C.2 LINEAR SEPARABILITY

In our study we are interested in quantifying the linear separability of the old tasks’ classes in feature
space. In this section we discuss the metric of linear separability used and derive a lower bound for
it.

Definition 2 (Linear Separability). Consider the two distributions P1 and P2. The linear separability
of the two classes is defined as the maximum success rate achievable by any linear classifier:

ξ(P1, P2) := max
w, b

[
PP1

(w⊤x+ b > 0) + PP2
(w⊤x+ b < 0)

]
.

Equivalently, ξ(P1, P2) = 1− ϵmin, where ϵmin is the minimal misclassification probability over all
linear classifiers.

Definition 3 (Mahalanobis Distance). Consider two distribution in the feature space µ1, µ2, and
covariances Σ1,Σ2. The Mahalanobis distance between the two distributions is defined as

d2M (µ1, µ2,Σ1,Σ2) = (µ1 − µ2)
⊤(Σ1 +Σ2)

−1(µ1 − µ2)

For two Gaussian distributions with equal covariance the Mahalanobis distance determines the min-
imal misclassification probability over all linear classifiers:

ϵmin = Φ

(
− 1

2

√
d2M

)
In this study we take the Mahalanobis distance to be a proxy for the linear separability of two
distributions in feature space. When only the first two moments of the distributions are known, this
is the best proxy for linear separability. In the following lemma we derive a handy lower bound for
the Mahalanobis distance which we will be using throughout.

Lemma 1 (Lower Bound to Mahalanobis Distance). Let µ1, µ2 ∈ Rd and Σ1,Σ2 ∈ Rd×d be
positive semidefinite covariance matrices. Then the squared Mahalanobis distance satisfies

d2M (µ1, µ2,Σ1,Σ2) = (µ1 − µ2)
⊤(Σ1 +Σ2)

−1(µ1 − µ2) ≥
∥µ1 − µ2∥2

Tr(Σ1 +Σ2)
.

Proof. Let A := Σ1 + Σ2 ⪰ 0 and v := µ1 − µ2. Let λi be the eigenvalues of A and ui the
corresponding orthonormal eigenvectors. Write

v =
∑
i

αiui so that v⊤A−1v =
∑
i

α2
i

λi
.

By Jensen’s inequality for the convex function f(x) = 1/x, x ∈ R+ and the fact that
∑

i α
2
i = ∥v∥2,

we have ∑
i

α2
i

λi
≥
∑

i α
2
i∑

i λi
=

∥v∥2

Tr(A)
.

Applying this to v = µ1 − µ2 and A = Σ1 +Σ2 gives the claimed inequality.

In this work we use the lower bound to the Mahalanobis distance as a proxy for linear separability.
This quantity is also related to the signal to noise ratio, and thus hereafter we use the following
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notation:

SNR(c1, c2) =
∥µ1 − µ2∥2

Tr(Σ1 +Σ2)

SNR(c1, c2) and ξ(c1, c2) are directly proportional, although the latter is bounded while the former
is not. Therefore an increase in SNR(c1, c2) corresponds to an increase in linear separability, within
the applicability of a Gaussian assumption.

C.3 TERMINAL PHASE OF TRAINING (TPT)

The terminal phase of training is the set of training steps including and succeeding the step where
the training loss is zero. Given our network structure, a direct consequence of TPT is that the class-
conditional distributions are linearly separable in feature space.

Starting from Papyan et al. (2020), several works have studied the structures that emerge in the
network in this last phase of training (see Appendix B for an overview). In particular, Papyan et al.
(2020) has discovered that TPT induces the phenomenon of Neural Collapse (NC) on the features
of the training data. This phenomenon is composed of four key distinct effects, which we outline in
the following definitions. Notably the definitions below apply exclusively to the training data, which
we denote generically by D here. Thus, the class means and the global means in Definition 5 are all
computed using the training data (i.e. µc = µc(D), and µ̃c = µ̃c(D)).

Definition 4 (NC1 or Variability collapse). Let t be the training step index and ϕt the feature map at
step t trained on data D. Then, the within-class variation becomes negligible as the features collapse
to their class means. In other words, for every x ∈ XD,c, with c in the training data:

EXD,c
[ ∥ϕt(x)− µc(t)∥2 ] = δt, lim

t→+∞
δt = 0 (3)

Definition 5 (NC2 or Convergence to Simplex ETF). The vectors of the class means (after centering
by their global mean) converge to having equal length, forming equal-sized angles between any
given pair, and being the maximally pairwise-distanced configuration constrained to the previous
two properties.

lim
t→+∞

∥µ̃c(t)∥2 → βt ∀ c (4)

lim
t→+∞

cos(µ̃c(t), µ̃c′(t)) →

{
1 if c = c′

− 1
K−1 if c ̸= c′

(5)

Definition 6 (NC3 or Convergence to Self-duality). The class means and linear classi-
fiers—although mathematically quite different objects, living in dual-vector spaces—converge to
each other, up to rescaling. Let Ũ(t) = [µ̃1(t), . . . , µ̃K(t)]:

W⊤
h (t)

∥Wh(t)∥
=

Ũ(t)

∥Ũ(t)∥
(6)

As a consequence, rank(Wh(t)) = rank(Ũ(t)) = K − 1.

Definition 7 (NC4 or Simplification to NCC). For a given deepnet activation, the network classi-
fier converges to choosing whichever class has the nearest train class mean (in standard Euclidean
distance).

☞ Notation . In all the following proofs we denote by St = span({µ̃1(t), . . . , µ̃K(t)}) and by S⊥
t

its orthogonal components, and similarly by PSt , PS⊥
t

the respective projection operators. Note that
the reference to the training data is implicit. We might signal it explicitly when necessary.
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Lemma 2 (Feature classes gram matrix). Let Ũt = [µ̃1(t), . . . , µ̃K(t)] (computed with respect to
the training data). Then there exist t0 in the TPT such that, for all t > t0 the gram matrix Ũ⊤

t Ũt has
the following structure:

Ũ⊤
t Ũt = β

(
IK − 1

K11⊤
)

(7)

(Ũ⊤
t Ũt)

−1 = β−1
(
IK − 1

2K11⊤) (8)

Proof. Let µ̃c(t) = µc(t)−µG(t) be the centered class mean given by ϕt on the training data. Then
by Definition 5 we know that for all t > t0 for some t0:

⟨µ̃c(t), µ̃c′(t)⟩ =

{
βt, c = c′,

− βt

K−1 , c ̸= c′,

Also, denote by Ũt = [µ̃1(t), . . . , µ̃K(t)] the matrix of centered class means. Then the centered
Gram matrix Ũ⊤

t Ũt has the following structure:

Ũ⊤
t Ũt = βt

(
IK − 1

K11⊤
)

which is a rank-one perturbation of a diagonal matrix. In fact, the matrix is a projection matrix onto
the space orthogonal to 1, scaled by βt. It has eigenvalues βt with multiplicity K − 1 and 0 with
multiplicity 1. Since it’s a projection matrix, it is idempotent (up to the scaling factor βt). Its inverse
does not exist but the pseudo-inverse is well-defined.

βt

(
IK − 1

K11⊤
)−1

=
1

βt

(
IK − 1

K11⊤
)

C.4 NEURAL COLLAPSE IN A CONTINUAL LEARNING SETUP

Depending on the continual learning setup, the number of outputs in the network may be increasing
with each task. Therefore the neural collapse definitions need to be carefully revisited for different
continual learning scenarios.

Figure 25: Depiction of Continual Learning Setups and corresponding head structures. Different
colors indicate different gradient information propagated through the weights.

In the case of task-incremental and class-incremental learning, where each task introduces new
classes, we distinguish between the tasks heads as follows:

f
(i)
θ (x) = W

(i)
h ϕ(x) + b

(i)
h (9)

fθ(x) = [f
(1)
θ (x), . . . , f

(i)
θ (x)]⊤ (10)

where only heads from the first to the current task are used in the computation of the network
function. For brevity, hereafter we will denote by WA

h , bAh the concatenation of active heads at
any task: for example, for task n, WA

h = [W
(1)
h , . . . ,W

(n)
h ] and fθ(x) = WA

h ϕ(x) + bAh . In
order to unify the notation, the same symbols will be used for domain-incremental learning where
WA

h = Wh and bAh = bh. The difference between task- and class-incremental learning is whether
the residuals depend only on the current task output f (n)

θ (x) or on the entire output fθ(x), as we will
explain shortly.
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C.4.1 DOMAIN-INCREMENTAL LEARNING (DIL)

In Domain-Incremental Learning (DIL), the classification head is consistently shared across all
tasks, as each task utilizes the same set of classes. Consequently, NC is expected to induce a fixed
number of clusters in the feature space, corresponding to the total number of classes. Given that the
same class appears in multiple tasks, we must distinguish between the population mean µc(D̄) and
the observed mean µc(D̂), where D̂ is a generic training set. Generally, we expect NC properties
(Definitions 4 to 7) to emerge on the training data D̂. If the training data includes a buffer, all class
means and the global mean will be computed including the buffer samples. Accounting for this, the
NC characteristics emerge analogously to those in single-task training.

Emergent Task-Wise Simplex Structure Curiously, our experiments also observe an emergent
within-task simplex structure. When features are centered by the task-wise feature means (taking,
for each task, all samples included in the buffer), we also observe the characteristic NC structure
within the task. This finding is non-trivial, because the task-wise mean and the global mean are
not the same. It seems, then, that during continual learning in DIL, Neural Collapse emerges on
two distinct levels simultaneously. This dual emergence creates a highly constrained feature mani-
fold, which substantially limits the degrees of freedom available for learning subsequent tasks. Our
observations suggest that a significantly more constrained version of NC emerges under the DIL
paradigm compared to standard single-task training.

C.4.2 CLASS-INCREMENTAL LEARNING (CIL)

In Class-Incremental Learning (CIL), each task introduces a new set of classes (for simplicity, we
assume the same number K per task). For task n, the classification head is expanded by adding
W

(n)
h to form

WA
h (t) = [W

(1)
h (t), . . . ,W

(n)
h (t)].

Nevertheless, training proceeds as in a single-task setting: residuals are shared across all outputs,
∂ℓ((x, y), fθ)

∂fθ
= f̃θ(x)− ỹ,

where both f̃θ(x) and ỹ are vectors of dimension n×K. For instance, f̃θ(x) = fθ(x) for MSE loss,
and f̃θ(x) = softmax(fθ(x)) for cross-entropy loss, while ỹ corresponds to the one-hot encoding
of y.

In CIL, the composition and relative proportion of classes in the training data affect the asymptot-
ically optimal feature structure. If all classes are present in equal proportion, the Neural Collapse
(NC) structure for task n consists of n × K clusters with vanishing intra-cluster variance, which
increases to (n + 1) × K clusters when the next task is introduced. By Definition 6, the resulting
rank of the weight matrix is n×K − 1 after n tasks.

However, if the training dataset is imbalanced—i.e., the number of samples per class is not
equal—the network is pushed, during the TPT, toward a variant of NC known as Minority Collapse
(MC) (Fang et al., 2021). For this reason, in our experiments we use datasets with equal numbers
of samples per class and buffers of uniform size across tasks. Assuming all tasks’ datasets have the
same size, for a dataset D and buffer B, the degree of imbalance can be quantified by

ρ =
|B|
|D|

.

Dang et al. (2023); Hong & Ling (2023) identify a critical threshold for ρ: below this value, the heads
of minority classes (i.e., buffer classes) become indistinguishable, producing nearly identical outputs
for different classes. Above the threshold, the MC structure is gradually restored to a standard NC
configuration, with class mean norms and angles increasing smoothly.

As noted by Fang et al. (2021), MC can be avoided by over-sampling from minority classes to
restore class balance. In continual learning, this is implemented by sampling in a balanced fashion
from the buffer, ensuring that each batch contains an equal number of samples per class. Under
balanced sampling, the class-incremental setup reproduces the standard NC characteristics observed
in single-task training. In contrast, in the absence of replay, class-incremental learning is inherently
prone to Minority Collapse.
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C.4.3 TASK-INCREMENTAL LEARNING (TIL)

In Task-Incremental Learning (TIL), each task introduces K new classes, as in the CIL case. The
crucial difference lies in the treatment of the residuals: they are computed separately for each task.
For a sample x belonging to task n, we have

∂ℓ((x, y), fθ)

∂fθ
= f̃

(n)
θ (x)− ỹ(n),

where both f̃
(n)
θ (x) and ỹ(n) are K-dimensional vectors. For instance, under MSE loss f̃ (n)

θ (x) =

f
(n)
θ (x), while under cross-entropy f̃

(n)
θ (x) = softmax(f

(n)
θ (x)), and ỹ(n) denotes the one-hot

encoding of y ∈ {0, . . . ,K − 1}.

Since the outputs are partitioned across tasks, logits corresponding to inactive heads do not con-
tribute to the loss. That is, for x ∈ Di, the terms W (j)

h ϕ(x) + b
(j)
h with j ̸= i remain unconstrained.

In contrast, in CIL such logits are explicitly penalized, as the residuals are shared across all heads.
Consequently, the TIL multi-head setting imposes fewer explicit constraints on the relative geometry
of weights and class means across tasks.

Our empirical results indeed reveal that there is structure within each task, but the relative geometry
across tasks is more variable and does not seem to exhibit a clear pattern. Within each task, the
features exhibit the standard Neural Collapse (NC) geometry, consistent with Definitions 4 to 6.
However, the class means of different tasks can overlap arbitrarily, as there are no explicit constraints
linking them.

Motivated by these observations, we formalize the emergent structure as follows.

Proposition 1 (Neural Collapse in Multi-Head Models). Let µn
c (t) denote the mean feature of class

c from task n at time t. In the terminal phase of training, under balanced sampling, the following
hold:

1. NC1 (Variability collapse). Within each task, features collapse to their class means, i.e.,

lim
t→+∞

Ex∈Xn
c

[
∥ϕt(x)− µn

c (t)∥2
]
= 0.

2. NC2 (Convergence to simplex ETF within each task). Centered class means within each
task converge to an Equiangular Tight Frame (ETF):

lim
t→+∞

∥µ̃n
c (t)∥2 → βn

t , ∀ c ∈ {1, . . . ,K}, (11)

lim
t→+∞

cos(µ̃n
c (t), µ̃

n
c′(t)) →

{
1 if c = c′,

− 1
K−1 if c ̸= c′,

(12)

where µ̃n
c (t) = µn

c (t)− µn
G(t) and µn

G(t) is the task mean.
3. NC3 (Convergence to self-duality). The classifier weights for each head align with the

centered class means of the corresponding task, up to rescaling:

W
(n)⊤
h (t)

∥W (n)
h (t)∥

=
Ũ (n)(t)

∥Ũ (n)(t)∥
,

where Ũ (n)(t) = [µ̃n
1 (t), . . . , µ̃

n
K(t)]. Consequently, rank(W (n)

h (t)) = rank(Ũ (n)(t)) =
K − 1.

In summary, each task forms an ETF simplex in the feature space (NC2), with variability collapse
(NC1) and classifier self-duality (NC3) holding as in the single-task case.

A key implication is the difference in rank scaling compared to CIL. In CIL, the rank of the head
weights after n tasks is n×K−1, whereas in TIL it is upper bounded by n× (K−1), as confirmed
empirically (Figure 16). Thus, the multi-head structure imposes a strictly stronger rank limitation.
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Replay vs. no replay. When training without replay, i.e., relying solely on the current task’s data,
the TIL setup reduces to an effective single-task regime: earlier heads receive no gradient signal,
and NC emerges only within the most recent task, as in standard single-task training.

Lemma 3 (Gram Matrix in TIL). Let Ũt = [Ũ
(1)
t , . . . , Ũ

(n)
t ] be the matrix of centered class means

at time t, where Ũ (m)
t = [µ̃

(m)
1 (t), . . . , µ̃

(m)
K (t)], with µ̃

(m)
c (t) = µ

(m)
c (t)−µ

(m)
G (t). Suppose that in

the terminal phase of training Proposition 1 holds. Then for all sufficiently large t, the Gram matrix
Ũ⊤
t Ũt is :

Ũ⊤
t Ũt =


G

(1)
t Ũ

(1)⊤
t Ũ

(2)
t · · · Ũ

(n)⊤
t Ũ

(1)
t

Ũ
(1)⊤
t Ũ

(2)
t G

(2)
t · · · Ũ

(n)⊤
t Ũ

(2)
t

...
...

. . .
...

Ũ
(n)⊤
t Ũ

(1)
t Ũ

(n)⊤
t Ũ

(2)
t · · · G̃

(n)
t

 ,

where each block G
(m)
t satisfies

G
(m)
t = βm

(
IK − 1

K11⊤
)
, G

(m)
t

−1
= β−1

m

(
IK − 1

K11⊤
)
.

Thus, the inverse Gram matrix satisfies (Ũ⊤
t Ũt)

−11 = 0.

Proof. By Proposition 1, in the terminal phase of training each task satisfies NC2 (within-task ETF)
and task subspaces are orthogonal.

Diagonal blocks: Each G
(m)
t = Ũ

(m)⊤
t Ũ

(m)
t is an ETF matrix of size K × K. By definition of

ETF, its columns sum to zero:

G
(m)
t 1 = 0.

Off-diagonal blocks: For B(ij) = Ũ
(i)⊤
t Ũ

(j)
t , we have

B(ij)1 = Ũ
(i)⊤
t Ũ

(j)
t 1 = Ũ

(i)⊤
t · 0 = 0

since the columns of Ũ (j)
t are centered.

Global null vector: For the full block Gram matrix Ũ⊤
t Ũt, the i-th block-row acting on 1n is

n∑
j=1

B(ij)1 = G
(i)
t 1+

∑
j ̸=i

B(ij)1 = 0 +
∑
j ̸=i

0 = 0.

Hence, Ũ⊤
t Ũt1n = 0, so 1n lies in the null space of the Gram matrix.

Inverse / pseudoinverse: Since Ũ⊤
t Ũt is singular, the Moore–Penrose pseudoinverse exists, and

1 ∈ ker(Ũ⊤
t Ũt) implies 1 ∈ ker((Ũ⊤

t Ũt)
+). Thus, 1 is a zero eigenvector of both Ũ⊤

t Ũt and its
pseudoinverse.

C.4.4 FINAL RESULTS AND TAKEAWAYS

The preceding analysis allows us to draw several unifying conclusions regarding the asymptotic
feature geometry in continual learning.

A first key takeaway is that, in the absence of replay, continual learning effectively reduces to re-
peated single-task training. In this regime, only the current task is represented in feature space with
Neural Collapse (NC) geometry, while features from previous tasks degenerate. This observation is
formalized as follows.
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Finding 1 (Asymptotic Structure without Replay). When training exclusively on the most recent
task, irrespective of the continual learning setup, the asymptotically optimal feature representation
for the current task coincides with the Neural Collapse (NC) structure observed in the single-task
regime. In the CIL case, this further implies that the feature representations of all classes from
previous tasks collapse to the zero vector, while only the features of the current task organize
according to NC.

A second key takeaway is that balanced replay fundamentally alters the asymptotic structure. In
this setting, the replay buffer restores balanced exposure to all classes, preventing the degeneration
of past representations. Consequently, in single-head setups (DIL and CIL) the network converges
to a global NC structure over all observed classes (measured on the training data). In contrast, the
multi-head setup of TIL continues to decouple the heads across tasks, yielding NC geometry within
each task but leaving the relative geometry across tasks unconstrained.

Finding 2 (Asymptotic Structure of the Feature Space with Balanced Replay). When training on
n tasks with balanced replay, the single-head setups converge to Neural Collapse over all classes
represented in the training data (K classes for DIL and n×K classes for CIL). For TIL, each task
head individually exhibits Neural Collapse within its K classes, but the relative positioning of class
means across tasks is unconstrained, leading to a blockwise NC structure in feature space.

Taken together, these results highlight a fundamental distinction between single-head and multi-
head continual learning: while replay suffices to recover global NC geometry in single-head
settings, in TIL the absence of cross-task coupling in the loss function enforces only local NC
structure within each task.

C.5 MAIN RESULT 1: STABILIZATION OF THE TRAINING FEATURE SUBSPACE.

Theorem 4 (Subspace stabilization in TPT under SGD.). Let fθt(x) = WA
h (t)ϕt(x) + bAh (t)

be the network at step t in the optimization of a task with P classes and dataset D, and let
St = span({µ̃1(t), . . . , µ̃P (t)}) (µc = µc(D)). Assume NC3 holds on D for all t ≥ t0, i.e.,
span(WA

h (t)) = St. Then, for all t ≥ t0, the gradient ∇θL(θt) is confined to directions in parame-
ter space that affect features in St, and, consequently, St = St0 and S⊥

t = S⊥
t0 .

Proof. Let ϕt(x) be the feature representation of x at time t, and let Jt(x) = ∇θϕt(x) be its
Jacobian with respect to parameters θt. Consider an infinitesimal parameter change ∆θt = ϵ v, with
PSt

Jt(x)v = 0 for all x in the training data, i.e., this change only affects the feature component in
S⊥
t . By a first order approximation the corresponding feature change is:

∆ϕt(x) = Jt(x)∆θt = ϵ Jt(x)v = ϵ PS⊥
t
Jt(x)v

Now, consider the effect of this change on the loss:
L(θt + ϵ v)− L(θt) ≈ ∇ϕL(θt) ·∆ϕt(x) (13)

=

(
∂L
∂f

· ∂f
∂ϕ

)
·∆ϕt(x) (14)

=

(
∂L
∂f

·WA
h (t)

)
·∆ϕt(x) (15)

By NC3, for any t > t0, span(WA
h (t)) = St, and since ∆ϕt(x) ∈ S⊥

t :

WA
h (t) ·∆ϕt(x) = 0 ⇒ L(θt + ϵ v)− L(θt) = 0

Dividing by ϵ and taking the limit ϵ → 0,
∇θL(θt) ⊥ v for all v such that PStJt(x)v = 0 ∀ x ∈ D

This shows that the loss gradient lies entirely in directions that affect St and consequently the S⊥
t

component of the input representation is not changed. It follows that, after NC3 gradient descent
cannot change the subspaces St, S

⊥
t , since all changes in the features for t > t0 will lie in St0 . We

conclude that St = St0 and S⊥
t = S⊥

t0 .
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☞ Notation . Hereafter we denote by S the subspace spanned by the centered class means after its
stabilization at the onset of NC3, i.e. S = St0 . Note that the centered class means may still change,
but their span doesn’t.

Lemma 4 (Freezing and decay of S⊥ in TPT under SGD.). Let fθt(x) = WA
h (t)ϕt(x) + bAh (t) be

the network at time t, where ϕt(x) is the feature representation and WA
h (t) the final layer weights.

Suppose the training loss includes weight decay with coefficient λ > 0, i.e.,

Ltotal(θ) = L(θ) + λ

2
∥θ∥2.

and that for all t ≥ t0, NC3 holds, i.e., span(WA
h (t)) = S, and η sufficiently small. Then the

component of ϕt(x) in S⊥, denoted by ϕt,S⊥(x), evolves as follows:

ϕt,S⊥(x) = υt−t0 ϕt0,S⊥(x)

Proof. By gradient descent the parameter update is:

∆θt = −η (∇θL(θt) + λθt)

and, for small enough η we can approximate the feature update as :

ϕt+1(x)− ϕt(x) ≈ Jt(x)∆θt = −η Jt(x)∇θL(θt)− ηλ Jt(x) θt

Decompose this into components in S and S⊥. By Theorem 4, for all t > t0 and all x ∈ D
Jt(x)∇θL(θ) ∈ S. Then:

ϕt+1,S⊥(x)− ϕt,S⊥(x) = −ηλPS⊥Jt(x)θt

Noticing that θ = 0 makes ϕ(x) = 0 for any x, by a first order approximation we have that ϕt(x) ≈
Jt(x) θt and thus:

ϕt+1,S⊥(x) = ϕt,S⊥(x)(1− ηλ)

for all t > t0. Unrolling this sequence over time, starting from t0, we get our result.

Remark. The results presented in this section hold for both single-head and multi-head training.
When training with more than 1 head, the subspace S corresponds to the span of the class means of
all heads combined, and by Proposition 1 it has lower rank than in the single-head case.

C.6 ANOTHER DEFINITION OF OOD

Definition 8 (ID/OOD orthogonality property of Ammar et al. (2024)). Consider a model with
feature map ϕt(x), trained on dataset D with K classes. Denote by St = span{µ̃1(t), . . . , µ̃K(t)}
the subspace spanned by the centered class means of the training data at time t. The set of data X is
said to be OOD if

cos (EX [ϕt(x)], µc(t)) → 0 ∀ c ∈ [K]

Definition 9 (Out-of-distribution (OOD)). Let Xc be a set of samples from class c. Consider a
network with feature map, ϕt(x), trained on dataset D with K classes, such that Xc ∩ D = ∅.
Denote by St = span{µ̃1(t), . . . , µ̃K(t)} the subspace spanned by the centered class means of the
training data at time t. We say that Xc is out of distribution for fθt (trained on D) if

PSt
EXc

[ϕ(x)] = 0

This definition restates the ID/OOD orthogonality property of Ammar et al. (2024) in a different
form.

Next, we show that the observation, common in the OOD detection literature, that old tasks data is
maximally uncertain in the network output is coherent with these definitions of OOD when there is
neural collapse.
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Proposition 2 (Out Of Distribution (OOD) data is maximally uncertain.). A set of samples X from
the same class c is out of distribution for the model fθ with homogeneous head and neural collapse
if and only if the average model output over X is maximally uncertain, i.e. the uniform distribution.

Proof. By definition of S being the span of {µ̃1(t), . . . , µ̃K(t)} we can write

PŨ (t)ϕt(x) = Ũ(t)(Ũ(t)⊤Ũ(t))−1Ũ(t)⊤ϕt(x)

where Ũ is the matrix whose columns are the centered class means µ̃i. By Definition 6 we have, for
all t > t0, Wh(t) = α Ũt, where α = ∥Wh(t)∥

∥Ũ(t)∥ and therefore, for an homogenous head model, the

network outputs are fθ(x) = Ũ(t)⊤ϕt(x) . Finally, to complete the proof see that by the structure
of the gram matrix (Lemma 2), its null space is one-dimensional along the 1 direction. Therefore it
must be that

Ũ(t)⊤EXc [ϕ(x)] ∝ 1 (16)
PŨ (t)EXc

[ϕ(x)] = 0 (17)

are always true concurrently.

Remark (Old task data behaves as OOD without replay). When training on task n without replay,
samples from previous tasks m < n effectively behave as out-of-distribution for the active subspace
corresponding to task n, in the sense of Definition 9. For single-head models, a similar effect occurs
in CIL due to minority collapse, which guarantees that the representations ϕt(x) of old task data sim-
ply converges to the origin, which is trivially orthogonal to St. Consequently, the theoretical results
we derive for OOD data in this section also apply to old task data under training without replay.

Corollary 3 (The OOD class mean vector converges to 0 in TPT under SGD with weight decay.).
In the TPT, with weight decay coefficient λ > 0, OOD class inputs Xc are all mapped to the origin
asymptotically

lim
t→∞

EXc
[ϕt(x)] = 0

C.7 ASYMPTOTICS OF OOD DATA

☞ Notation . To simplify exposition, we introduce the notation υ = 1 − ηλ. Additionally, in this
section we use Wh and Ũ to refer in general to the head and class means used in the current training.
Note that, since we don’t consider replay for now, this is equivalent to the current task’s classes’
head and features.

Theorem 5 (OOD class variance after NC3.). Let bt(x) be the coefficients of the projection of the
input x on the centered training class means space S. In the terminal phase of training, for OOD
inputs, if bt(x), x ∈ Xc has covariance Σc with constant norm in t, then the within-class variance
in feature space for Xc satisfies

VarXc
(ϕt(x)) ∈ Θ

(
βA
t + (1− ηλ)2(t−t0)

)
, (18)

where βA
t accounts for the contribution of all active heads: in the single-head case βA

t = βt, and in
the multi-head case βA

t =
∑n

m=1 β
m with n the number of active heads.

Proof. Consider representations of inputs from an OOD class Xc. By Theorem 4, for any t ≥ t0,
we can decompose

ϕt(x) = ϕt,S(x) + ϕt0,S⊥(x),

where ϕt,S(x) lies in the span of the centered training class means. We can express this component
as

ϕt,S(x) = Ũ(t) bt(x), bt(x) = (Ũ(t)⊤Ũ(t))−1Ũ(t)⊤ϕt(x).
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From Definition 9, EXc
[ϕt,S(x)] = 0. Hence, the within-class variance in feature space is

VarXc(ϕt(x)) = EXc [∥ϕt(x)− EXc [ϕt,S⊥(x)]∥2] (19)

= EXc
[∥Ũ(t) bt(x)∥2] + VarXc,S⊥(ϕt(x)). (20)

The orthogonal component S⊥ shrinks or remains constant due to Lemma 4:

VarXc,S⊥(ϕt(x)) = (1− ηλ)2(t−t0) VarXc,S⊥(ϕt0(x)).

The variance in the S component depends on the covariance Σc of bt(x), which is assumed constant
in t:

CovXc [ϕt,S(x)] = Ũ(t)ΣcŨ(t)⊤.

Thus,
VarXc,S(ϕt(x)) = tr(Ũ(t)ΣcŨ(t)⊤) = tr(AΣc),

where A = Ũ(t)⊤Ũ(t) has the structure described in Definition 5 and Proposition 1.

Single-head case. For P classes, A is an ETF matrix with P vertices

Akk = βt, Ajk = − βt

P − 1
, j ̸= k,

so that

βt
P

P − 1

(
tr(Σc)− λ1(Σc)

)
︸ ︷︷ ︸

Clow

≤ tr(AΣc) ≤ βt
P

P − 1
tr(Σc)︸ ︷︷ ︸

Chigh

.

Multi-head case. For n heads, A has the block structure described in Lemma 3, with each diagonal
block having K − 1 eigenvalues equal to βm and one zero eigenvalue. Hence,

n∑
m=1

βm
t

K

K − 1

(
tr(Σ(m)

c )− λ1(Σ
(m)
c )

)︸ ︷︷ ︸
≥Clow

≤ tr(AΣc) ≤
n∑

m=1

βm
t

K

K − 1
tr(Σ(m)

c )︸ ︷︷ ︸
≤Chigh

.

Denoting by βA
t = 1

n

∑n
1 β

m
t we get:

βA
t

P

K − 1
Clow ≤ tr(AΣc) ≤ βA

t

P

K − 1
Chigh.

Thus, recognising that the only dynamic variable in t is βA
t for both cases, we obtain

VarXc,S(ϕt(x)) ∈ Θ(βA
t ), VarXc,S⊥(ϕt(x)) ∈ Θ

(
(1− ηλ)2(t−t0)

)
,

completing the proof.

☞ Notation . When we are not considering replay, there is only one active head in multi-headed
models. In this cases we use βt to denote the feature norm of the active head. The results of this
section are presented in a more general way, using βA

t to denote the contribution of all active heads.

Theorem 6 (Linear separability of OOD data with neural collapse.). Consider two OOD classes
with inputs Xc1 , Xc2 . During TPT of the model fθt(x) trained on a dataset D, the SNR between the
two classes has asymptotic behaviour:

SNR(c1, c2) ∈ Θ

((
βA
t

(1− ηλ)2(t−t0)
+ 1

)−1
)

where βA
t is the class feature norm, averaged across the active heads.
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Proof. Let PXc1
(ϕt(x)), PXc2

(ϕt(x)) be the distributions of the two OOD classes in feature space.
Let µ1, µ2 and Σ1,Σ2 be the respective mean and covariances in feature space. By Definition 9 we
know that µi = EXci

[ϕt,S⊥(x)] (i = 1, 2). Therefore the SNR lower bound is:

SNR(c1, c2) =
∥EXc1

[ϕt,S⊥(x)]− EXc2
[ϕt,S⊥(x)]∥2

Tr(Σ1 +Σ2)

where ∥EXc1
[ϕt,S⊥(x)] − EXc2

[ϕt,S⊥(x)]∥2 ∈ Θ
(
(1− ηλ)2(t−t0)

)
. Notice that the trace decom-

poses across subspaces as well and therefore:

Tr(Σ1 +Σ2) = Tr(Σ1,S +Σ1,S⊥ +Σ2,S +Σ2,S⊥)

In the proof of Theorem 5 we have that Tr(Σi,S) ∈ Θ(β) and Tr(Σi,S⊥) ∈ Θ
(
(1− ηλ)2(t−t0)

)
.

Thus from a simple asymptotic analysis we get that the linear separability of OOD data grows as:

SNR(c1, c2) ∈ Θ

((
βA
t

(1− ηλ)2(t−t0)
+ 1

)−1
)

Remark. By Theorem 6, when learning a new task without replay, if a class from a previous task
becomes out-of-distribution (OOD) with respect to the current network (and its active subspace), an
increasing class means norm βt or weight decay leads to deep forgetting, with the class information
to degrade over time.

Remark. The SNR also depends on the degree of linear separability of the classes in the orthogonal
subspace S⊥ at the onset of NC. Consequently, in the absence of weight decay or without growth of
the feature norms, the old classes may retain a nonzero level of linear separability asymptotically.

C.8 MAIN RESULTS 3: FEATURE SPACE ASYMPTOTIC STRUCTURE WITH REPLAY.

We now turn our attention to training with replay, to explain how replay mitigates deep forgetting.

☞ Notation. We denote by Di the datasets of task i and by Bi the buffer used when training on task
n > i. Further, let ρi = |Bi|/|Di| be the percentage of the dataset used for replay and assume that
there is balanced sampling, i.e. each task is equally represented in each training batch. We again
look at the case where there is neural collapse on the training data in TPT, which in this case is the
current task data Dn and the buffers B1, . . . , Bn−1. Finally, for DIL we denote by Xi

c the data of
class c in task i and by Xc the data of class c in all tasks, i.e. Xc = ∪n

i=1X
i
c.

Modeling the distribution of data from old tasks with replay Hereafter, we denote by µ̂ :=
µ(B), the mean computed on the buffer samples. Define

µ̂c(t) = µc(t) + ξc(t)

where ξc(t) is the difference between the population mean and the observed mean. For CIL and TIL
this is the buffer Bc, while for DIL this is the union of all buffers B = ∪n−1

i=1 Bi and the current task
class data Xn

c . We know ∥µ̂c(t)−µc(t)∥ decreases with the buffer size b and, in particular, it’s zero
when Bc = Xc.

Let DNC be the distribution of the representations when training on 100% of the training data Xc.
We know that this distribution has NC, each class c has mean µc and decaying variance δt. Also let
DOOD denote the OOD data distribution which we observe in the absence of replay (mean in S⊥

and larger variance governed by βt and the decay factor υt−t0 ). Based on these observations, we
model the distribution of ϕt(x) as the mixture of its two limiting distributions with mixing weight
πc(b) ∈ [0, 1] which is a monotonic function of b:

ϕt(x) ∼ πc DNC + (1− πc)DOOD

According to this model, the mean and variance for the distribution of class c asymptotically are:

µc(t) = πc (µ̂c(t) + ξc,S(t)) + (1− πc)
(
υt−t0 µc,S⊥(t0)

)
(21)

σ2
c (t) = Θ

(
π2
cδt + (1− πc)

2
(
βA
t + υ2(t−t0)

))
(22)
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Note that in Equation (21) S is defined based on πc, and we absorbed the S⊥ component of ξc(t)
in µc,S⊥(t0). In the variance expression we used the results of Theorem 5 for the OOD component
and the fact that the variance of DNC is δt. In the TIL case, βA

t is the average of the class feature
means across all active heads.

Remark (Interpretation of the buffer–OOD mixture model). The proposed model interpolates be-
tween two limiting regimes smoothly, and is based on our hypothesis regarding the evolution of the
feature representation of past tasks as the buffer size is gradually increased. For small buffer size
b, the representation distribution is dominated by the OOD component DOOD, which contributes
variance in the orthogonal subspace S⊥ and acts as structured noise with respect to the span S of the
current task. As b increases, the mixture weight πc grows monotonically, and the replayed samples
increasingly constrain the class means inside S. In the limit b = |Xc|, πc = 1 and the representation
collapses to the Neural Collapse distribution DNC with vanishing variance. For intermediate b, the
replay buffer introduces signal in S through the term µ̂c(t), while the residual OOD component adds
noise. The evolution of πc therefore captures how replay gradually aligns the buffer distribution with
the NC structure, while modulating the relative strength of signal (from in-span replay) versus noise
(from OOD drift).

Proposition 3 (Concentration of buffer estimates). Let Dc be the feature distribution of class c at
time t, with mean µc,S(t) in the active subspace S and covariance Σc. Let Bc ⊂ Dc denote a replay
buffer of size b obtained by i.i.d. sampling. Then the buffer statistics µ̂c and Σ̂c satisfy

E
[
∥µ̂c − µc∥2

]
= O

(
Tr(Σ)

b

)
, E

[
∥Σ̂c − Σc∥2F

]
= O

(
Tr(Σ)

b

)
.

In particular, the standard deviation of both estimators decays as O(b−1/2).

Proof. Let {xi}bi=1 ∼ Dc be i.i.d. samples with mean µ = µc and covariance Σ = Σc. The sample
mean satisfies µ̂c − µ = 1

b

∑b
i=1(ϕ(xi)− µ), so by independence ((Vershynin, 2018)),

E
[
∥µ̂c − µ∥2

]
=

1

b2

b∑
i=1

E
[
∥ϕ(xi)− µ∥2

]
=

1

b
Tr(Σ) = O

(
Tr(Σ)

b

)
.

Similarly, for the buffer covariance Σ̂c we have

E
[
∥Σ̂c − Σ∥2F

]
= O

(
Tr(Σ)

b

)
,

Thus the standard deviations of both estimators decay as O(b−1/2).

In the above result we have hidden many other constants as they are independent of training time.

Remark. This bound should be interpreted as a heuristic scaling law rather than a formal guarantee.
The key caveat is that feature evolution ϕt(x) is coupled to the buffer Bc through training, violating
independence. Nevertheless, the i.i.d. assumption is reasonable if buffer-induced correlations are
small relative to the intrinsic variance of the features. In this sense, the bound captures the typical
order of fluctuations in ξc(t), even if the exact constants may differ in practice.

Theorem 7 (Linear separability of replay data under neural collapse). Let c1, c2 be two replay-buffer
classes decoded by the same head, and let µ̂i(t) denote their observed class means with deviation
ξi,S(t) from the population mean inside the NC subspace S. Assume that the old classes features
follow the mixture model

ϕt(x) ∼ πi DNC + (1− πi)DOOD,

with mixing proportion πi, and that the class means norms for each task m follow the same growth
pattern βm

t ∈ Θ(βt). Then the signal-to-noise ratio between c1 and c2 satisfies

SNR(c1, c2) ∈ Θ

(
r2 βA

t + υ2(t−t0)

r2 δt + (βA
t + υ2(t−t0))

)
, r2 = (π1+π2)

2

(1−(π1+π2))2
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Proof. Let µi(t),Σi(t) be the mean and covariance of class i in feature space. If there is replay we
assume they follow the mixed distribution described above with mixing proportion π1, π2 respec-
tively. Therefore, for each of them we know the following:

µi(t) = πi (µ̂i(t) + ξi,S(t)) + (1− πi)
(
υt−t0 µi,S⊥(t0)

)
(23)

Σi(t) = π2
i Σ

NC
i (t) + (1− πi)

2 ΣOOD
i (t) (24)

Moreover, by Theorem 5 we know that

tr
(
ΣOOD

i (t)
)
∈ Θ

(
βA
t + υ2(t−t0)

)
and by Definition 4 we also know that tr

(
ΣNC

i (t)
)
= δt → 0 with t → +∞. Using this, we can

write the SNR lower bound:

SNR(c1, c2) =
∥µ1,S(t)− µ2,S(t)∥2 + ∥µ1,S⊥(t)− µ2,S⊥(t)∥2

Tr(Σ1(t) + Σ2(t))

where by definition of µi(t):

∥µ1,S(t)− µ2,S(t)∥2 = ∥π1µ̂1,S(t)− π2µ̂2,S(t) + π1ξ1,S − π2ξ2,S∥2

∥µ1,S⊥(t)− µ2,S⊥(t)∥2 = (π1 − π2)
2∥µG∥2 + υt−t0∥(1− π1)µ1,S⊥(t0)− (1− π2)µ2,S⊥(t0)∥2

Using the linearity of the trace and the fact that it decomposes across subspaces:

Tr(Σi(t)) = π2
i Tr(ΣNC

i (t))+(1−πi)
2 Tr(ΣOOD

i (t)) ∈ Θ
(
π2
i δt + (1− πi)

2
(
βA
t + υ2(t−t0)

))
The mean difference in the S component expands into

∥π1µ̂1,S − π2µ̂2,S∥2 + ∥π1ξ1,S − π2ξ2,S∥2 − 2⟨π1µ̃1(B)− π2µ̃2(B), π1ξ1,S − π2ξ2,S⟩

and the first term

∥π1µ̃1(B)− π2µ̃2(B)∥2 = π2
1∥µ̃1(B)∥2 + π2

2∥µ̃2(B)∥2 + 2π1π2⟨µ̃1(B), µ̃2(B)⟩

By Definition 5 and Proposition 1, and by the fact that c1, c2 belong to the same head m, also in
multi-headed models, we know that ∥µ̃1(B)∥2 = ∥µ̃2(B)∥2 ≈ βt and ⟨µc1 , µc2⟩ = − βA

t

K−1 . Then:

∥π1µ̃1(B)− π2µ̃2(B)∥2 = (π2
1 + π2

2)βt + 2π1π2
βA
t

K−1 ∈ Θ((π1 + π2)
2βA

t ) (25)

Define the per-class ratios

η1 :=
∥ξ1,S∥
∥µ̃1(B)∥

, η2 :=
∥ξ2,S∥
∥µ̃2(B)∥

.

Notice that the deviations in S must behave in norm as the variance in the S component, which by
Proposition 3, Tr(Σi(t)) ∈ Θ

(
βA
t

)
. Thus the coefficients satisfy η1, η2 = Θ(1). By the Cauchy-

Schwarz inequality, we have∣∣⟨π1µ̃1(B)− π2µ̃2(B), π1ξ1,S − π2ξ2,S⟩
∣∣ ≤ ∥π1µ̃1(B)− π2µ̃2(B)∥ ∥π1ξ1,S − π2ξ2,S∥.

Bound the second factor:

∥π1ξ1,S − π2ξ2,S∥ ≤ ∥π1ξ1,S∥+ ∥π2ξ2,S∥ = η1∥π1µ̃1(B)∥+ η2∥π2µ̃2(B)∥.

Therefore, the magnitude of the cross-term is bounded by

2
∣∣⟨π1µ̃1(B)−π2µ̃2(B), π1ξ1,S−π2ξ2,S⟩

∣∣ ≤ 2∥π1µ̃1(B)−π2µ̃2(B)∥ (η1∥π1µ̃1(B)∥+η2∥π2µ̃2(B)∥))

Putting everything together, we obtain

|2⟨π1µ̃1(B)− π2µ̃2(B), π1ξ1,S − π2ξ2,S⟩| ∈ Θ
(
(π1 + π2)

2 βA
t

)
Since the cross-product is signed, it could contribute negatively to the mean difference. However, by
the same argument it cannot exceed the leading term in magnitude. Unless the two terms perfectly
cancel each other, the scaling with t is dominated by the positive norms:

∥µ1,S(t)− µ2,S(t)∥2 ∈ Θ((π1 + π2)
2 βA

t ),
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Putting everything together we obtain the asymptotic behaviour of the SNR lower bound:

SNR(c1, c2) ∈ Θ

(
(π1 + π2)

2 βA
t + (1− (π1 + π2))

2 υ2(t−t0)

(π1 + π2)2 δt + (1− (π1 + π2))2
(
βA
t + υ2(t−t0)

))

To write it more clearly, define by r2 = (π1+π2)
2

(1−(π1+π2))2
:

SNR(c1, c2) ∈ Θ

(
r2 βA

t + υ2(t−t0)

r2 δt +
(
βA
t + υ2(t−t0)

))
For r → 0 we recover the asymptotic behaviour of OOD data. For r > 0, the SNR is guaranteed
not to vanish in the TPT.

Corollary 4 (Asymptotic SNR with Replay). Under the conditions of Theorem 7, let r2 =
(π1+π2)

2

(1−(π1+π2))2
denote the buffer-weighted ratio of signal to residual OOD contribution. Then:

• In the limit r → 0 (corresponding to no replay), the SNR asymptotically reduces to the
OOD case, and old-task features remain vulnerable to drift in S⊥.

• For any r > 0 (non-zero buffer fraction), the SNR is guaranteed not to vanish in the TPT
as long as balanced replay is used. In particular, with increasing βt or weight decay, the
limiting SNR satisfies

lim
t→∞

SNR(c1, c2) ∈ Θ(r2),

ensuring that replay effectively preserves linear separability between old-task classes in
the NC subspace.
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