

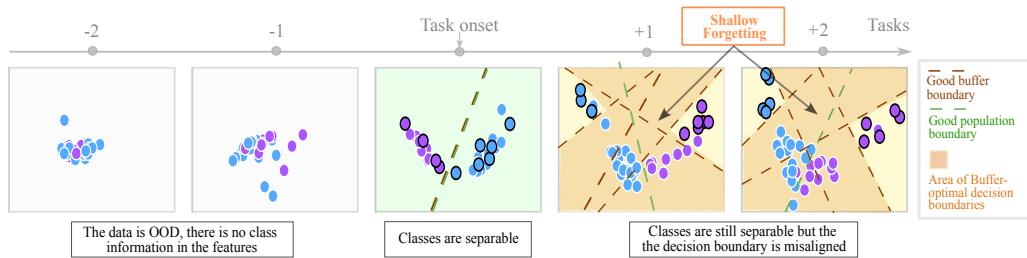
ASYMPTOTIC ANALYSIS OF SHALLOW AND DEEP FORGETTING IN REPLAY WITH NEURAL COLLAPSE

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 A persistent paradox in Continual Learning is that neural networks often retain
 012 linearly separable representations of past tasks even when their output predictions
 013 fail. We formalize this distinction as the gap between *deep* (feature-space)
 014 and *shallow* (classifier-level) forgetting. We demonstrate that experience replay
 015 affects these two levels asymmetrically: while even minimal buffers anchor fea-
 016 ture geometry and prevent deep forgetting, mitigating shallow forgetting requires
 017 substantially larger buffers. To explain this, we extend the *Neural Collapse* frame-
 018 work to sequential training. We theoretically model deep forgetting as a geometric
 019 drift toward out-of-distribution subspaces, proving that replay guarantees asymp-
 020 totic separability. In contrast, we show that shallow forgetting stems from an
 021 *under-determined* classifier optimization: the strong collapse of buffer data leads
 022 to rank-deficient covariances and inflated means, blinding the classifier to the true
 023 population boundaries. Our work unifies continual learning with OOD detection
 024 and challenges the reliance on large buffers, suggesting that explicitly correcting
 025 the statistical artifacts of Neural Collapse could unlock robust performance with
 026 minimal replay.



036 **Figure 1: Evolution of Decision Boundaries and Feature Separability.** PCA evolution of two
 037 CIFAR-100 classes (5% replay). Replay samples are highlighted with a black edge. While features
 038 retain separability across tasks (low deep forgetting), the classifier optimization becomes *under-
 039 determined*: it converges to "buffer-optimal" boundaries (dashed brown) that perfectly classify the
 040 stored samples but diverge from the true population boundary (dashed green), resulting in shallow
 041 forgetting.

1 INTRODUCTION

046 Continual learning (CL) (Hadsell et al., 2020) aims to train neural networks on a sequence of tasks
 047 without catastrophic forgetting. It holds particular promise for adaptive AI systems, such as au-
 048 tonomous agents that must integrate new information without full retraining or centralized data ac-
 049 cess. The theoretical understanding of optimization in non-stationary environments remains limited,
 050 particularly regarding the mechanisms that govern the retention and loss of learned representations.

051 A persistent observation in the literature is that neural networks retain substantially more information
 052 about past tasks in their internal representations than in their output predictions. This phenomenon,
 053 first demonstrated through *linear probe evaluations*, shows that a linear classifier trained on frozen
 last-layer representations achieves markedly higher accuracy on old tasks than the network's own

054 output layer (Murata et al., 2020; Hess et al., 2023). In other words, past-task data remain linearly
 055 separable in feature space, even when the classifier fails to exploit this structure. This motivates
 056 a distinction between two levels of forgetting: **shallow forgetting**, corresponding to output-level
 057 degradation recoverable by a linear probe, and **deep forgetting**, corresponding to irreversible loss
 058 of feature-space separability.

059 In this work, we show that *replay buffers affect these two forms of forgetting in systematically different ways*. Replay—the practice of storing a small subset of past samples for joint training with new
 060 data—is among the most effective and widely adopted strategies in continual learning. Our analysis
 061 reveals that *even small buffers are sufficient to preserve feature separability and prevent deep*
 062 *forgetting*, whereas mitigating shallow forgetting requires substantially larger buffers. Thus, while
 063 replay robustly preserves representational geometry, it often fails to maintain alignment between the
 064 learned head and the true data distribution.

065 To explain this phenomenon, we turn to the geometry of deep network representations. Recent
 066 work has shown that, at convergence, standard architectures often exhibit highly structured, low-
 067 dimensional feature organization. In particular, the *Neural Collapse* (NC) phenomenon (Papyan
 068 et al., 2020) describes a regime in which within-class variability vanishes, class means form an
 069 equiangular tight frame (ETF), and classifier weights align with these means. Originally observed
 070 in simplified settings, NC has now been documented across architectures, training regimes, and
 071 even large-scale language models (Sükenik et al., 2025; Wu & Papyan, 2025), making it a powerful
 072 framework to analyze feature-head interactions.

073 In this work, we extend the NC framework to continual learning, providing a principled character-
 074 ization of the asymptotic geometry of features and heads under extended training. Our analysis
 075 covers task-, class-, and domain-incremental settings and explicitly accounts for replay. To this end,
 076 we formulate *two key hypotheses* for past-task data not included in training: (1) forgotten samples
 077 behave as out-of-distribution (OOD) from the feature-space perspective, and (2) increasing replay
 078 buffer size induces a smooth transition from OOD-like to collapsed representations for the past
 079 tasks’ data. These insights allow us to construct a simple yet predictive theory of feature-space
 080 forgetting that lower-bounds separability and captures the influence of weight decay, feature-norm
 081 scaling, and buffer size.

082 In summary, this paper makes the following distinct contributions:

- 083 1. **Empirical insight.** Replay consistently mitigates deep forgetting, whereas shallow for-
 084 getting remains unless buffer size is sufficiently large, revealing an *intrinsic asymmetry* in
 085 replay-based continual learning.
- 086 2. **Asymptotic framework for continual learning.** We extend Neural Collapse theory
 087 to continual learning, characterizing the limiting geometry of both single-head and
 088 multi-head architectures and identifying unique phenomena like rank reduction in TIL.
- 089 3. **Explaining shallow–deep gap.** We demonstrate that shallow forgetting arises because
 090 classifier optimization on buffers is *under-determined*—a condition structurally *exacer-
 091 bated by Neural Collapse*. The resulting geometric simplification (covariance deficiency
 092 and norm inflation) blinds the classifier to the true population boundaries.
- 093 4. **Connection to OOD detection.** We interpret representational forgetting as a form of drift
 094 out of distribution, linking continual learning to OOD detection and unifying previously
 095 disconnected literatures.

096 1.1 NOTATION AND SETUP

097 We adopt the standard compositional formulation of a neural network, decomposing it into a feature
 098 map and a classification head. The network function is defined as $f_\theta(x) = h(\phi(x))$, where $h(z) =$
 099 $W_h z + b_h$, with parameters $\theta = \{\phi, W_h\}$.

100 We refer to ϕ as the *feature map*, to $\phi(x)$ as the *features* or *representation* of input x , and to their
 101 image as the *feature space*.

102 We consider sequential classification problems subdivided into tasks. For each class c , a dataset of
 103 labeled examples (X_c, Y_c) is available. Given any sample (x, y) , the network prediction is obtained

108 via the maximum-logit rule

$$\hat{y} = \arg \max_k \langle w_k, \phi(x) \rangle,$$

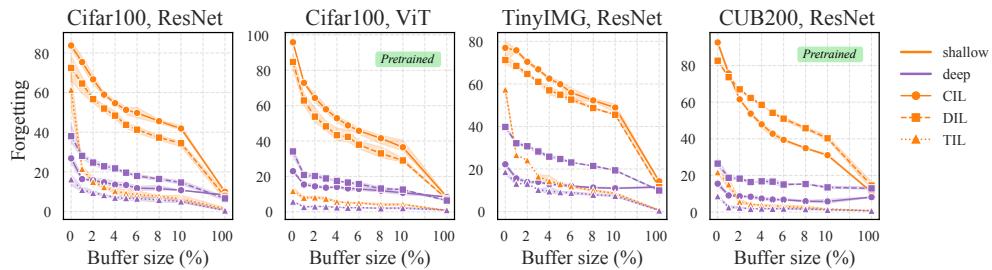
111 where w_k denotes the k -th column vector of W_h . Network performance is evaluated after each task
112 on all previously seen tasks.

113 Following Lopez-Paz & Ranzato (2017), *shallow forgetting* is quantified as the difference $A_{ij} - A_{jj}$,
114 where A_{ij} denotes the accuracy on task j measured after completing learning session i . In contrast,
115 *deep forgetting* is defined as the difference $A_{ij}^* - A_{jj}^*$, where A_{ij}^* represents the accuracy of a *linear*
116 *probe* trained on the frozen representations of task j at the end of session i .

117 We adopt the three continual learning setups introduced by van de Ven et al. (2022), described
118 in detail in Section 3: *task-incremental learning* (TIL), *class-incremental learning* (CIL), and
119 *domain-incremental learning* (DIL).

120 For the experimental analysis, we train both ResNet and ViT architectures, from scratch and from
121 pre-trained initialization. We train on three widely used benchmarks adapted to the continual learning
122 setting: *CIFAR-100* (Krizhevsky & Hinton, 2009), *Tiny-ImageNet* (Torralba et al., 2008), and
123 *CUB-200* (Wah et al., 2011). A detailed description of datasets and training protocols, including
124 linear probing, is provided in Appendix A.1.

126 2 EMPIRICAL CHARACTERIZATION OF DEEP AND SHALLOW FORGETTING



138 Figure 2: **Deep–shallow forgetting gap.** Forgetting decays at different rates in the feature space and
139 the classifier head, producing a persistent gap between deep and shallow forgetting. Increasing the
140 replay buffer closes this gap only gradually, with substantial buffer sizes required for convergence.
141 See Appendix A.2 for details.

142 We first present our main empirical finding. We evaluate forgetting in both the network output layer
143 and a linear probe trained on frozen features across varying buffer sizes, datasets, and architectures
144 (randomly initialized and pre-trained). Our results, summarized in Figure 2, reveal a robust phe-
145 nomenon: **the gap between deep and shallow forgetting closes only asymptotically as buffer
146 size increases.**

148 While small replay buffers are sufficient to prevent *deep forgetting* (preserving feature separability),
149 mitigating *shallow forgetting* requires substantially larger buffers. This extends prior observations
150 of feature-output discrepancies (Murata et al., 2020; Hess et al., 2023) by demonstrating that *replay*
151 *stabilizes representations far more efficiently than it maintains classifier alignment*. The gap persists
152 across settings, vanishing only near full replay (100%).

153 We highlight three specific trends:

1. *Head architecture.* The deep–shallow gap is pronounced in single-head setups (CIL, DIL)
155 but significantly smaller in multi-head setups (TIL).
2. *Replay efficacy in DIL.* Contrary to the assumption that class-incremental learning is the
157 most challenging, Domain-Incremental Learning (DIL) exhibits high levels of deep forget-
158 ting, converging to levels similar to CIL.
3. *Pre-training robustness.* Corroborating Ramasesh et al. (2021), pre-trained models exhibit
160 negligible deep forgetting. Their feature spaces remain robust even with constrained replay,
161 yielding nearly flat deep-forgetting curves.

162 We now propose a theoretical model explaining this *asymmetric effect* of replay via the asymptotic
 163 dynamics of the feature space.
 164

165 3 NEURAL COLLAPSE UNDER SEQUENTIAL TRAINING

166 3.1 PRELIMINARIES ON NEURAL COLLAPSE

169 Recent work (Papyan et al., 2020; Lu & Steinerberger, 2022) characterizes the geometry of
 170 representations in the *terminal phase of training* (TPT) the regime in which the training loss has reached
 171 zero and features stabilize. In this regime, features converge to a highly symmetric configuration
 172 known as *Neural Collapse* (NC), which is provably optimal for standard supervised objectives and
 173 emerges naturally under a range of optimization dynamics (Tirer & Bruna, 2022; Súkeník et al.,
 174 2025).

175 We denote the feature class means by $\mu_c(t) = \mathbb{E}_{x \in X_c}[\phi_t(x)]$, $\tilde{\mu}_c(t)$ the centered means, and the
 176 matrix of centered means by $\tilde{U}(t)$. We focus on first three properties defining NC:
 177

- 178 • **$\mathcal{NC}1$ (Variability Collapse).** Within-class variability vanishes as features collapse to their
 179 class means: $\phi_t(x) \rightarrow \mu_c(t)$, implying the within-class covariance approaches $\mathbf{0}$.
- 180 • **$\mathcal{NC}2$ (Simplex ETF).** Centered class means form a simplex Equiangular Tight Frame
 181 (ETF). They attain equal norms and maximal pairwise separation:
 182

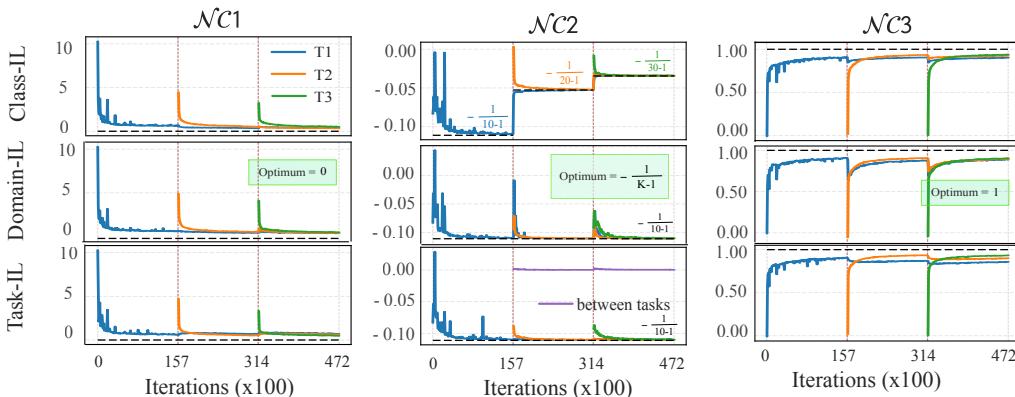
$$\lim_{t \rightarrow \infty} \langle \tilde{\mu}_c(t), \tilde{\mu}_{c'}(t) \rangle = \begin{cases} \beta_t & \text{if } c = c' \\ -\frac{\beta_t}{K-1} & \text{if } c \neq c' \end{cases}$$

- 183 • **$\mathcal{NC}3$ (Neural Duality).** Classifier weights align with the class means up to scaling, i.e.,
 184 $W_h^\top(t) \propto \tilde{U}(t)$.
 185

190 3.2 NEURAL COLLAPSE IN CONTINUAL LEARNING

192 Standard evaluation in Continual Learning measures performance strictly at the completion of each
 193 task. Thus, while forgetting arises from optimization dynamics, its magnitude is defined effectively
 194 by the network’s asymptotic configuration. The Neural Collapse framework is therefore the ideal
 195 analytical tool for this setting, as it rigorously characterizes the stable geometric structure to which
 196 features converge at the precise moment of evaluation.

197 While prior work focuses on stationary settings, we extend the NC framework to continual learning.
 198 We empirically verify its emergence in domain- (DIL), class- (CIL), and task-incremental (TIL)
 199 settings (Figure 3, see Appendix C.4).



214 Figure 3: **NC metrics in sequential training (Cifar100, ResNet with 5% replay).** NC emerges
 215 across all tasks. In DIL, the ETF structure ($\mathcal{NC}2$) remains stable; in CIL, it evolves as class count
 increases; in TIL, it arises per-head with variable cross-task alignment. See Appendix A.2 for details.

216 *Observed vs. Population Statistics.* NC emerges on the training data (current task + buffer). We
 217 must therefore distinguish between *observed* statistics $\hat{\mu}$ (computed on available training samples)
 218 and *population* statistics μ (computed on the full distribution). The following empirical analysis
 219 concerns $\hat{\mu}$; in subsequent sections, we develop a theory for μ to quantify forgetting.
 220

221 3.2.1 SINGLE-HEAD ARCHITECTURES

222 In **Domain-Incremental Learning (DIL)**, all tasks share a fixed label set, with each task introducing
 223 a new input distribution. Consequently, while the estimated class means $\hat{\mu}_c$ and global mean $\hat{\mu}_G$
 224 evolve throughout the task sequence, the asymptotic target geometry remains invariant. We find that
 225 the NC properties established in the single-task regime (Definitions 4 to 6) persist under DIL. When
 226 a replay buffer is employed, the class means are effectively computed over the mixture of new data
 227 and buffered samples.
 228

229 In **Class-Incremental Learning (CIL)**, each task introduces a disjoint subset of classes. The
 230 asymptotic structure of the feature space is therefore redefined after each task, governed by the relative
 231 representation of old versus new classes. When past classes are under-represented in the training
 232 objective, they effectively act as *minority classes*. Their features collapse toward a degenerate distribution
 233 centered near the origin, and their classifier weights converge to constant vectors (Fang et al.,
 234 2021; Dang et al., 2023). This phenomenon, known as *Minority Collapse* (MC), occurs sharply
 235 below a critical representation threshold. Without replay, MC dominates the asymptotic structure as
 236 past classes are absent from the loss. However, we observe that replay mitigates this effect when
 237 buffers are sampled in a *class-balanced manner*. This strategy ensures that all classes—both new
 238 and old—are equally represented in each training batch, thereby preserving the global ETF structure
 239 and preventing the marginalization of past tasks (Figure 3).
 240

241 3.2.2 MULTI-HEAD ARCHITECTURES

242 Neural Collapse has not previously been characterized in *multi-head* architectures. In **Task-
 243 Incremental Learning (TIL)**, the network output is partitioned into separate heads, each associated
 244 with a distinct task. This ensures that error propagation is localized to the assigned head (see Figure
 245 25). While this local normalization prevents minority collapse even without replay, the resulting
 246 global geometry across tasks is non-trivial. Specifically, we investigate the relative angles and norms
 247 between class means belonging to different tasks.
 248

249 We measure standard NC metrics including within-class variance, inter-task inner products, and
 250 feature norms. Our findings reveal a clear distinction between local and global structure in TIL:
 251

- 252 1. *Local Collapse.* NC emerges consistently *within* each head. Each task-specific head satisfies
 253 NC1–NC3 locally.
- 254 2. *Global Misalignment.* A coherent cross-task NC structure is absent. Across tasks, class
 255 means display variable scaling and alignment (Figure 3, Figures 12 to 14).
- 256 3. *Rank Reduction.* We find that local normalization induces a dimensionality reduction in the
 257 feature space. The global feature space attains a maximal rank of $n(K - 1)$ for n tasks,
 258 which is strictly lower than the $nK - 1$ rank observed in single-head settings (Figure 16).
 259

260 These empirical observations—specifically that balanced replay restores global NC in single-head
 261 setups while TIL lacks global alignment—serve as the foundation for the theoretical model of class
 262 separability developed in the next section.
 263

264 4 ASYMPTOTIC BEHAVIOUR OF DEEP AND SHALLOW FORGETTING

265 4.1 PRELIMINARIES

266 **Linear Separability.** To analyse deep forgetting, we require a mathematically tractable measure
 267 of linear separability in feature space. Formally, linear separability between two distributions P_1
 268 and P_2 is the maximum classification accuracy achievable by any linear classifier. Given the first
 269 two moments (μ_1, Σ_1) and (μ_2, Σ_2) , the Mahalanobis distance is a standard proxy. Here, we use

270 the *signal-to-noise ratio* (SNR) between class distributions, defined as
 271

$$272 \quad SNR(c_1, c_2) = \frac{\|\mu_1 - \mu_2\|^2}{\text{Tr}(\Sigma_1 + \Sigma_2)}. \\ 273$$

274 Higher SNR values imply greater separability. In Appendix C.2, we show that this quantity lower-
 275 bounds the Mahalanobis distance, and thus linear separability itself. Accordingly, we focus on the
 276 first- and second-order statistics of class representations (means and covariances), as these directly
 277 govern the SNR.
 278

280 **Asymptotic Notation.** We use $\mathcal{O}(\cdot)$ and $\Theta(\cdot)$ to characterize the scaling of time-dependent quan-
 281 tities $f(t)$, suppressing constants independent of t . When bounds depend on controllable quantities
 282 such as the buffer size b , we retain these dependencies explicitly. This notation highlights scaling
 283 behaviour relevant to training dynamics and experimental design choices.
 284

285 4.2 ANALYSIS OF DEEP FORGETTING

286 4.2.1 FORGOTTEN \approx OOD

287 The Neural Collapse (NC) framework characterizes the
 288 asymptotic geometry of representations for *training* data. For-
 289 getting, however, concerns the evolution of representations for
 290 samples of past tasks that are no longer part of the optimization
 291 objective. We bridge this conceptual gap through the following
 292 hypothesis:
 293

294 **Hypothesis 1.** Forgotten samples behave analogously to sam-
 295 ples that were never learned, i.e., they are effectively *out-of-
 296 distribution* (OOD) with respect to the current model.
 297

298 This perspective motivates our analysis of forgetting as a form
 299 of *shift to out-of-distribution* in feature space. Specifically, in
 300 the absence of replay, data from past tasks exhibits the same
 301 geometric behaviour as future-task (OOD) inputs. To formal-
 302 ize this correspondence, we adopt a feature-space definition of
 303 OOD based on the recently proposed *ID/OOD orthogonality* property (NC5, Ammar et al., 2024).
 304

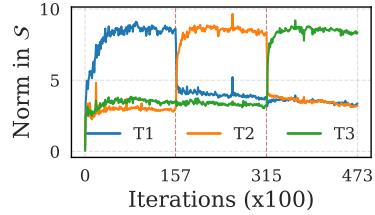
305 **Definition 1** (Out-of-distribution (OOD)). Let X_c denote the samples of class c , and let
 306 $\phi_t(x)$ be the feature map of a network trained on dataset D with K classes. Denote by
 307 $S_t = \text{span}\{\tilde{\mu}_1(t), \dots, \tilde{\mu}_K(t)\}$ the **active subspace** spanned by the centered class means of the
 308 training data at time t . We say that X_c is *out-of-distribution* for ϕ_t if the average representation of
 309 X_c is orthogonal to S_t .
 310

311 In Appendix C.6 (Proposition 2), we show that, under the NC regime, the empirical observation
 312 that OOD inputs yield higher predictive entropy than in-distribution (ID) inputs is mathematically
 313 equivalent to this orthogonality condition—thus establishing a formal connection between predictive
 314 uncertainty and the geometric structure of NC5.
 315

316 We validate our hypothesis by monitoring the projection of class means μ_c onto the active subspace
 317 S_t . As shown in Figure 4 (and Figures 17 to 19), shortly after a task switch, the projection of
 318 past-task means *collapses sharply*, indistinguishably matching the behavior of unseen (OOD) tasks.
 319

320 4.2.2 ASYMPTOTIC DISTRIBUTION OF OOD CLASSES

321 Leveraging the connection between forgetting and OOD dynamics, we now characterize the asymp-
 322 totic behavior of past-task data. We find that *the residual signal of past classes is confined to the
 323 inactive subspace* S^\perp , making it susceptible to erasure by weight decay.



324 **Figure 4: Projection of $\tilde{\mu}(t)$ onto**
 325 **S_t (Cifar100, no Replay).** The
 326 population means of past and future
 327 tasks exhibit equivalent (near-zero)
 328 norms when projected onto the active
 329 subspace S_t .
 330

324
Theorem 1 (Asymptotic distribution of OOD data). *Let X_c be OOD inputs (Definition 1) for a
325 feature map ϕ_t trained with a sufficiently small learning rate η and weight decay λ . Let β_t denote
326 the in-distribution class-mean norm. In the terminal phase ($t \geq t_0$), the feature distribution of X_c
327 has mean μ_c and variance σ_c^2 given by:*

$$\mu_c(t) = (1 - \eta\lambda)^{t-t_0} \mu_{c,S^\perp}(t_0), \quad (1)$$

$$\sigma_c^2(t) \in \Theta\left(\beta_t + (1 - \eta\lambda)^{2(t-t_0)}\right). \quad (2)$$

332
Corollary 1 (Collapse to null distribution). *If $\lambda > 0$, the OOD distribution converges to a degener-
333 ate null distribution: the mean decays to zero, and the variance limits depend on β_t .*

335 The proof (see Theorem 4) relies on the observation that, once $\mathcal{NC}3$ (alignment between class fea-
336 ture means and classifier weights) emerges, *optimization updates become restricted to the active*
337 *subspace S_t* . Consequently, components of the representation in the orthogonal complement S_t^\perp are
338 frozen—or decay exponentially under weight decay—, yielding the dynamics above.

339 **Notation.** For brevity, let $v = 1 - \eta\lambda$, and note that $S_t = S_{t_0} = S$ for all $t \geq t_0$.

341 **Theorem 2** (Lower bound on OOD Linear Separability). *For two OOD classes c, c' in the TPT, let
342 $v = 1 - \eta\lambda$. The Signal-to-Noise Ratio (SNR), which lower-bounds linear separability, satisfies:*

$$\text{SNR}(c, c') \in \Theta\left(\left(\frac{\beta_t}{v^{2(t-t_0)}} + 1\right)^{-1}\right).$$

347 **Discussion.** Crucially, Theorem 2 does not imply that separability necessarily vanishes; consistent
348 with our empirical findings (Figure 2), a residual signal persists in S^\perp . However, this signal is
349 fragile. The result reveals the *dual role of weight decay*: it accelerates the exponential decay of the
350 signal in S^\perp (reducing the numerator), yet simultaneously prevents the explosion of the class-mean
351 norm β_t (constraining the denominator). Thus, weight decay both erases and indirectly preserves
352 past-task representations.

353 Finally, we empirically observe that β_t tends to increase upon introducing new classes (Ap-
354 pendix A.3.3), which Theorem 2 suggests amplifies forgetting. We hypothesize this is an artifact
355 of classifier head initialization in sequential settings. Preliminary experiments, discussed in Ap-
356 pendix A.3.3, lend support to this hypothesis; however, we leave a comprehensive investigation of
357 this finding to future research.

359 4.2.3 ASYMPTOTIC DISTRIBUTION OF PAST DATA WITH REPLAY

360 Having seen that, without replay, past-task data behaves like OOD inputs drifting into S^\perp , we now
361 consider how replay alters this picture. Replay provides a foothold in the active subspace S , prevent-
362 ing the collapse of old-task representations and preserving linear separability. Intuitively, the effect
363 of replay should interpolate between the two extremes: no replay (\mathcal{D}_{OOD}) and full replay (\mathcal{D}_{NC}).

365 **Hypothesis 2.** The class structure in feature space emerges smoothly as a function of the buffer
366 size, with past-task features retaining a progressively larger component in S .

368 To formalize this intuition, we introduce a mixture model for the asymptotic feature distribution
369 under replay. Let $\pi_c \in [0, 1]$ denote a monotonic function of the buffer size $|B_c|$, representing the
370 fraction of the NC-like component retained in S . Then, in the terminal phase of training, the feature
371 distribution of class c can be expressed as a mixture

$$\phi(x) \sim \pi_c \mathcal{D}_{\text{NC}} + (1 - \pi_c) \mathcal{D}_{\text{OOD}}.$$

373 This model is exact in the extremes ($\pi_c = 0$ or 1) and interpolates for intermediate buffer sizes.

375 Validation (Figure 5) confirms that increasing replay transfers variance from S^\perp to S , improving
376 separability. We observe that stronger weight decay reduces global norms and accelerates NC con-
377 vergence. Notably, we find an inverse relationship between buffer size and feature norms: while
OOD data gravitates toward the origin, representations in small-buffer regimes are subject to a

378 distinct *repulsive force*, pushing partially collapsed features outward. Finally, feature norms are
 379 consistently lower in DIL than in TIL or CIL.
 380

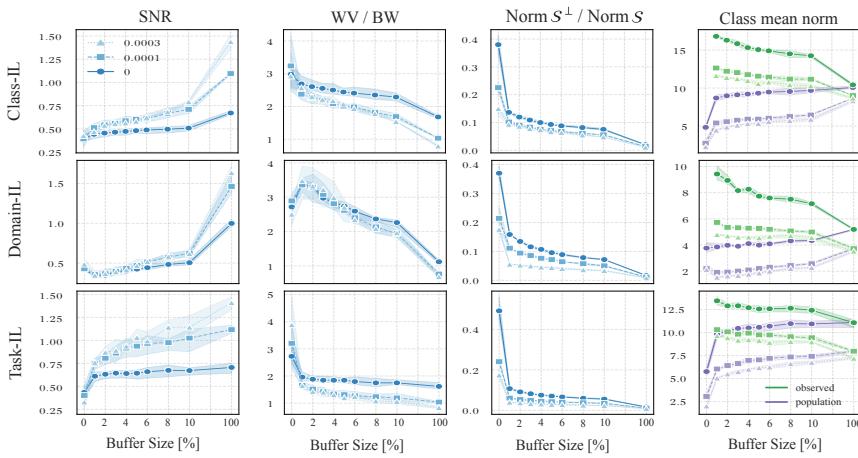
381 This mixture model yields a lower bound on the Signal-to-Noise Ratio (SNR), proving that replay
 382 guarantees asymptotic separability.
 383

Theorem 3 (Lower bound on separability with replay). *Let c, c' be past-task classes and $\pi \in (0, 1]$ the buffer mixing coefficient. In the TPT,*

$$\text{SNR}(c, c') \in \Theta\left(\frac{r^2 \beta_t + v^{2(t-t_0)}}{r^2 \delta_t + \beta_t + v^{2(t-t_0)}}\right), \quad \text{where } r^2 = \frac{\pi^2}{(1-\pi)^2}.$$

388 **Corollary 2.** *If $\pi > 0$ (non-empty buffer), the SNR does not vanish: $\text{SNR}(c, c') \in \Theta(r^2)$ as $t \rightarrow \infty$.*
 389

390 The corollary formalizes the intuition that any non-empty buffer anchors features in S . The anchoring
 391 strength r^2 grows with buffer size; empirically, this growth is superlinear in single-head models
 392 (CIL, DIL) but sublinear in multi-head TIL.
 393



409 **Figure 5: Empirical validation for the theoretical model of feature space structure (Cifar100,
 410 ResNet with 5% replay).** Plot shows the average over all past tasks after training the last task for
 411 four metrics. Results are shown for different buffer sizes and weight decay parameters (different
 412 lines). Details in Appendix A.2.
 413

414 **Discussion.** These results rigorously establish replay as an *anchor* within the active subspace S .
 415 While the absence of replay forces representations into S^\perp —causing exponential signal decay—any
 416 non-empty buffer guarantees a persistent signal proportional to r^2 , ensuring asymptotic separability.
 417 Crucially, the efficiency of this anchoring varies by architecture: empirical trends (SNR, Figure 5)
 418 indicate *sublinear* growth of π_c in single-head settings (CIL, DIL) versus *superlinear* growth in
 419 multi-head TIL, suggesting fundamental differences in how shared versus partitioned heads utilize
 420 replay capacity.
 421

4.3 THE DEEP–SHALLOW FORGETTING GAP

423 We have established that even modest replay buffers suffice to anchor the feature space, preserving
 424 a non-vanishing Signal-to-Noise Ratio (mitigating *deep forgetting*). This resolves the first half of
 425 the puzzle. We now address the second half: *why does this preserved separability not translate into*
 426 *classifier performance (shallow forgetting)?*
 427

428 **Mechanism: The Under-Determined Classifier.** Shallow forgetting arises from the fundamental
 429 statistical divergence between the finite replay buffer and the true population distribution. This
 430 divergence is structurally amplified by Neural Collapse. As noted by Hui et al. (2022), small sample
 431 sizes induce a “strong” NC regime where samples collapse aggressively to their empirical means
 (Figure 15). Geometrically, this projects the buffer data onto a low-dimensional subspace $S_B \subset S$

(rank $\approx K - 1$). However, the true population retains variance in directions orthogonal to S_B (specifically within S^\perp).

This geometric mismatch renders the optimization of the classifier head an **ill-posed, under-determined problem**. Let W be the classifier weights. Since the buffer variance vanishes in directions orthogonal to S_B , the cost function is invariant to changes in W along these directions. Consequently, the optimization landscape contains a manifold of "Buffer-optimal" solutions that achieve near-zero training error. However, these solutions can vary arbitrarily in the orthogonal complement, leading to decision boundaries that are misaligned with the true population mass (as visualized in Figure 1). The classifier overfits the simplified geometry of the buffer, failing to generalize to the richer geometry of the population.

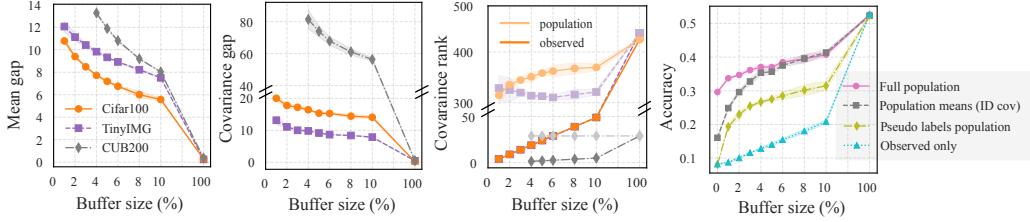


Figure 6: **Deconstructing the Statistical Gap.** *Left and middle-left:* Gap (measured as L2 distance) between population and observed metrics. *Center-right:* Rank of the population (light shade) and observed (dark shade) covariance, the gap persists as the buffer size is increased. *Right:* Synthetic Linear Discriminant Analysis (LDA) on TinyIMG. We replace true statistics (μ, Σ) with buffer estimates $(\hat{\mu}, \hat{\Sigma})$ to isolate error sources. Details in Appendix A.2.

Mechanistic Analysis of Statistical Divergence . We quantitatively decompose this divergence into two primary artifacts, validated via synthetic Linear Discriminant Analysis (LDA) counterfactuals (Figure 6). First, *covariance deficiency*: the buffer's empirical covariance $\hat{\Sigma}_B$ is rank-deficient and blind to variance in S^\perp . The criticality of second-order statistics is evidenced by the sharp accuracy drop observed when replacing the true population covariance with the identity matrix in LDA. Second, *mean norm inflation*: buffer means exhibit inflated norms relative to population means due to repulsive forces. Our LDA analysis confirms that replacing population means with buffer estimates causes a distinct, additive performance degradation. Notably, replacing true labels with pseudo-labels—derived from clustering initialized by the buffer—recovers performance comparable to the test-mean/identity-covariance baseline. Metrics such as mean and covariance gap (Figure 6, Left) further confirm that these discrepancies—particularly covariance rank—persist until the buffer approaches full size.

Implications. These findings mechanistically explain the deep–shallow gap: the feature space retains linear separability, yet the classifier remains statistically blinded to it. Consequently, simply increasing buffer size is an inefficient, brute-force solution. Instead, our results suggest that *to bridge the gap between shallow and deep forgetting*, one must explicitly counteract the effects of Neural Collapse—specifically by preventing the extreme concentration and radial repulsion of buffer distributions. We further elaborate on these implications in the discussion of future work.

5 RELATED WORK

Our work intersects three main research directions: the geometry of neural feature spaces, out-of-distribution (OOD) detection, and continual learning (CL). A more detailed overview is provided in Appendix B. Below we highlight the most relevant connections and our contributions.

Deep vs. shallow forgetting. Classical definitions of catastrophic forgetting focus on output degradation (*shallow forgetting*). More recent studies show that internal representations often retain past-task structure, recoverable via probes (*deep forgetting*) (Murata et al., 2020; Ramasesh et al., 2020; Fini et al., 2022; Davari et al., 2022; Zhang et al., 2022; Hess et al., 2023). Replay is known to mitigate deep forgetting in hidden layers (Murata et al., 2020; Zhang et al., 2022). To our knowledge,

486 we are the first to demonstrate that deep and shallow forgetting scale fundamentally differently with
 487 buffer size.

488 **Neural Collapse (NC).** NC describes the emergence of an ETF structure in last-layer features at
 489 convergence (Papyan et al., 2020; Mixon et al., 2022; Tirer & Bruna, 2022; Jacot et al., 2024; Súkeník
 490 et al., 2025). Extensions address class imbalance (*Minority Collapse*) (Fang et al., 2021; Dang et al.,
 491 2023; Hong & Ling, 2023) and overcomplete regimes (Jiang et al., 2024; Liu et al., 2023; Wu &
 492 Papyan, 2024). In CL, NC has been leveraged to fix global ETF heads to reduce forgetting (Yang
 493 et al., 2023; Dang et al., 2024; Wang et al., 2025). Our approach is distinct: we apply NC theory to
 494 the *asymptotic analysis* of continual learning and introduce the multi-head setting, common in CL
 495 but previously unexplored in NC theory.

496 **OOD detection.** Early work observed that OOD inputs yield lower softmax confidence (Hendrycks
 497 & Gimpel, 2018), while later studies showed that OOD features collapse toward the origin due to
 498 low-rank compression (Kang et al., 2024; Harun et al.). Recent results connect this behavior to NC:
 499 L_2 regularization accelerates NC and sharpens ID/OOD separation (Haas et al., 2023), and ID/OOD
 500 orthogonality has been proposed as an additional NC property, with OOD scores derived from ETF
 501 subspace norms (Ammar et al., 2024). Our work extends these insights by formally establishing
 502 orthogonality, clarifying the role of weight decay and feature norms, and—crucially—providing the
 503 first explicit link between OOD detection and forgetting in CL.

504 6 FINAL DISCUSSION & CONCLUSION

505 **Takeaways.** This work has shown that: (1) replay affects network features and classifier heads in
 506 fundamentally different ways, leading to a slow reduction of the deep–shallow forgetting gap as
 507 buffer size increases; (2) the Neural Collapse framework can be systematically extended to continual
 508 learning, with particular emphasis on the multi-head setting—a case not previously addressed in
 509 the NC literature; (3) continual learning can be formally connected to the out-of-distribution (OOD)
 510 detection literature, and our results extend existing discussions of NC on OOD data. We further elu-
 511 cidated how weight decay and the growth of class feature norms jointly determine linear separability
 512 in feature space. Our analysis also uncovered several unexpected phenomena: (i) class feature norms
 513 grow with the number of classes in class- and task-incremental learning; (ii) multi-head models yield
 514 structurally lower-rank feature spaces compared to single-head models; and (iii) weight decay exerts
 515 a double-edged influence on feature separability, with its effect differing across continual learning
 516 setups.

517 **Limitations.** Our theoretical analysis adopts an asymptotic perspective, thereby neglecting the trans-
 518 sient dynamics of early training, which are likely central to the onset of forgetting (Łapacz et al.,
 519 2024). Moreover, our modeling of replay buffers as interpolations between idealized extremes sim-
 520 plifies the true distributional dynamics and may not fully capture practical scenarios. Finally, many
 521 aspects of feature-space evolution under sequential training—particularly the nature of cross-task
 522 interactions in multi-head architectures—remain poorly understood and require further investiga-
 523 tion.

524 **Broader Implications.** By establishing a formal link between Neural Collapse, OOD represen-
 525 tations, and continual learning, our findings highlight key design choices—including buffer size,
 526 weight decay, and head structure—that shape the stability of past-task knowledge. These results
 527 raise broader questions: *What constitutes an “optimal” representation for continual learning? Is*
 528 *the Neural Collapse structure beneficial or detrimental in this context?* Our results suggest that
 529 while NC enhances feature organization, it also exacerbates the mismatch between replay and true
 530 distributions, thereby contributing to the deep–shallow forgetting gap. Addressing these open ques-
 531 tions will be essential for designing future continual learning systems.

532
 533
 534
 535
 536
 537
 538
 539

540 REFERENCES
541

542 Mouïn Ben Ammar, Nacim Belkhir, Sebastian Popescu, Antoine Manzanera, and Gianni Franchi.
543 NECO: NEural Collapse Based Out-of-distribution detection, February 2024. URL <http://arxiv.org/abs/2310.06823>. arXiv:2310.06823 [stat].
544

545 Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and SIMONE CALDER-
546 ARA. Dark experience for general continual learning: a strong, simple baseline. In
547 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-
548 ral Information Processing Systems*, volume 33, pp. 15920–15930. Curran Associates, Inc.,
549 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/b704ea2c39778f07c617f6b7ce480e9e-Paper.pdf.
550

551 Hien Dang, Tho Tran, Stanley Osher, Hung Tran-The, Nhat Ho, and Tan Nguyen. Neural Collapse in
552 Deep Linear Networks: From Balanced to Imbalanced Data, June 2023. URL <http://arxiv.org/abs/2301.00437>. arXiv:2301.00437 [cs].
553

554 Trung-Anh Dang, Vincent Nguyen, Ngoc-Son Vu, and Christel Vrain. Memory-efficient Conti-
555 nual Learning with Neural Collapse Contrastive, December 2024. URL <http://arxiv.org/abs/2412.02865>. arXiv:2412.02865 [cs].
556

557 MohammadReza Davari, Nader Asadi, Sudhir Mudur, Rahaf Aljundi, and Eugene Belilovsky. Prob-
558 abing representation forgetting in supervised and unsupervised continual learning. In *Proceedings of
559 the IEEE/CVF conference on computer vision and pattern recognition*, pp. 16712–16721, 2022.
560

561 Cong Fang, Hangfeng He, Qi Long, and Weijie J. Su. Exploring Deep Neural Networks via Layer-
562 Pealed Model: Minority Collapse in Imbalanced Training. *Proceedings of the National Academy
563 of Sciences*, 118(43):e2103091118, October 2021. ISSN 0027-8424, 1091-6490. doi: 10.1073/
564 pnas.2103091118. URL <http://arxiv.org/abs/2101.12699>. arXiv:2101.12699 [cs].
565

566 Enrico Fini, Victor G Turrisi Da Costa, Xavier Alameda-Pineda, Elisa Ricci, Karteek Alahari, and
567 Julien Mairal. Self-supervised models are continual learners. In *Proceedings of the IEEE/CVF
568 conference on computer vision and pattern recognition*, pp. 9621–9630, 2022.

569 Jarrod Haas, William Yolland, and Bernhard Rabus. Linking Neural Collapse and L2 Normalization
570 with Improved Out-of-Distribution Detection in Deep Neural Networks, January 2023. URL
571 <http://arxiv.org/abs/2209.08378>. arXiv:2209.08378 [cs].
572

573 Raia Hadsell, Dushyant Rao, Andrei A Rusu, and Razvan Pascanu. Embracing change: Continual
574 learning in deep neural networks. *Trends in Cognitive Sciences*, 24(12):1028–1040, 2020. doi: 10.
575 1016/j.tics.2020.09.004. URL <https://doi.org/10.1016/j.tics.2020.09.004>.
576

577 Yousuf Harun, Kyungbok Lee, Jhair Gallardo, Giri Krishnan, and Christopher Kanan. What Vari-
578 ables Affect Out-of-Distribution Generalization in Pretrained Models?
579

580 Dan Hendrycks and Kevin Gimpel. A Baseline for Detecting Misclassified and Out-of-Distribution
581 Examples in Neural Networks, October 2018. URL <http://arxiv.org/abs/1610.02136>. arXiv:1610.02136 [cs].
582

583 Timm Hess, Eli Verwimp, Gido M van de Ven, and Tinne Tuytelaars. Knowledge accumula-
584 tion in continually learned representations and the issue of feature forgetting. *arXiv preprint
585 arXiv:2304.00933*, 2023.

586 Wanli Hong and Shuyang Ling. Neural Collapse for Unconstrained Feature Model under Cross-
587 entropy Loss with Imbalanced Data, October 2023. URL <http://arxiv.org/abs/2309.09725>. arXiv:2309.09725 [stat] version: 2.
588

589 Like Hui, Mikhail Belkin, and Preetum Nakkiran. Limitations of neural collapse for understanding
590 generalization in deep learning. *arXiv preprint arXiv:2202.08384*, 2022.
591

592 Arthur Jacot, Peter Súkeník, Zihan Wang, and Marco Mondelli. Wide Neural Networks Trained
593 with Weight Decay Provably Exhibit Neural Collapse, October 2024. URL <http://arxiv.org/abs/2410.04887>. arXiv:2410.04887 [cs] version: 1.

594 Jiachen Jiang, Jinxin Zhou, Peng Wang, Qing Qu, Dustin G. Mixon, Chong You, and Zhihui
 595 Zhu. Generalized Neural Collapse for a Large Number of Classes. In *Proceedings of the 41st*
 596 *International Conference on Machine Learning*, pp. 22010–22041. PMLR, July 2024. URL
 597 <https://proceedings.mlr.press/v235/jiang24i.html>. ISSN: 2640-3498.

598
 599 Katie Kang, Amrith Setlur, Claire Tomlin, and Sergey Levine. Deep Neural Networks Tend
 600 To Extrapolate Predictably, March 2024. URL <http://arxiv.org/abs/2310.00873>.
 601 arXiv:2310.00873 [cs].

602 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny im-
 603 ages. <https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf>, 2009.

604
 605 Weiyang Liu, Longhui Yu, Adrian Weller, and Bernhard Schölkopf. Generalizing and Decoupling
 606 Neural Collapse via Hyperspherical Uniformity Gap, April 2023. URL <http://arxiv.org/abs/2303.06484>. arXiv:2303.06484 [cs] version: 2.

607
 608 David Lopez-Paz and Marc'Aurelio Ranzato. Gradient episodic memory for continual learning.
 609 *Advances in neural information processing systems*, 30, 2017.

610
 611 Jianfeng Lu and Stefan Steinerberger. Neural collapse under cross-entropy loss. *Applied and Com-
 612 putational Harmonic Analysis*, 59:224–241, 2022. Publisher: Elsevier.

613
 614 Dustin G Mixon, Hans Parshall, and Jianzong Pi. Neural collapse with unconstrained features.
 615 *Sampling Theory, Signal Processing, and Data Analysis*, 20(2):11, 2022. Publisher: Springer.

616
 617 Kengo Murata, Tetsuya Toyota, and Kouzou Ohara. What is happening inside a continual learning
 618 model? a representation-based evaluation of representational forgetting. In *Proceedings of the*
 619 *IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops*, pp. 234–235,
 620 2020.

621
 622 Vardan Petyan, XY Han, and David L Donoho. Prevalence of neural collapse during the terminal
 623 phase of deep learning training. *Proceedings of the National Academy of Sciences*, 117(40):
 624 24652–24663, 2020. Publisher: National Acad Sciences.

625
 626 Vinay V Ramasesh, Ethan Dyer, and Maithra Raghu. Anatomy of catastrophic forgetting: Hidden
 627 representations and task semantics. *arXiv preprint arXiv:2007.07400*, 2020.

628
 629 Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and Ethan Dyer. Effect of scale on catastrophic
 630 forgetting in neural networks. In *International Conference on Learning Representations*, October
 631 2021.

632
 633 Peter Súkeník, Christoph H. Lampert, and Marco Mondelli. Neural Collapse is Globally Optimal in
 634 Deep Regularized ResNets and Transformers, May 2025. URL <http://arxiv.org/abs/2505.15239>. arXiv:2505.15239 [cs].

635
 636 Tom Tirer and Joan Bruna. Extended Unconstrained Features Model for Exploring Deep Neural
 637 Collapse, October 2022. URL <http://arxiv.org/abs/2202.08087>. arXiv:2202.08087
 638 [cs].

639
 640 Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny images: A large data set for
 641 nonparametric object and scene recognition. *IEEE transactions on pattern analysis and machine*
 642 *intelligence*, 30(11):1958–1970, 2008.

643
 644 Gido M van de Ven, Tinne Tuytelaars, and Andreas S Tolias. Three types of incremental learning.
 645 *Nature Machine Intelligence*, 4:1185–1197, 2022. doi: 10.1038/s42256-022-00568-3. URL
 646 <https://doi.org/10.1038/s42256-022-00568-3>.

647
 648 Roman Vershynin. *High-Dimensional Probability: An Introduction with Applications in Data Sci-
 649 ence*. Cambridge University Press, Cambridge, UK, 2018. ISBN 9781108415217.

650
 651 Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd
 652 birds-200-2011 dataset. 2011.

648 Zheng Wang, Wanhao Yu, Li Yang, and Sen Lin. Rethinking Continual Learning with Pro-
649 gressive Neural Collapse, May 2025. URL <http://arxiv.org/abs/2505.24254>.
650 arXiv:2505.24254 [cs].

651

652 Robert Wu and Vardan Petyan. Linguistic Collapse: Neural Collapse in (Large) Language Models,
653 November 2024. URL <http://arxiv.org/abs/2405.17767>. arXiv:2405.17767 [cs]
654 version: 2.

655

656 Robert Wu and Vardan Petyan. Linguistic collapse: Neural collapse in (large) language models.
657 *Advances in Neural Information Processing Systems*, 37:137432–137473, 2025.

658

659 Yibo Yang, Haobo Yuan, Xiangtai Li, Zhouchen Lin, Philip Torr, and Dacheng Tao. Neural col-
660 lapse inspired feature-classifier alignment for few-shot class incremental learning. *arXiv preprint*
661 *arXiv:2302.03004*, 2023.

662

663 Xiao Zhang, Dejing Dou, and Ji Wu. Feature forgetting in continual representation learning. *arXiv*
664 *preprint arXiv:2205.13359*, 2022.

665

666 Wojciech Łapacz, Daniel Marczak, Filip Szatkowski, and Tomasz Trzciński. Exploring the Stability
667 Gap in Continual Learning: The Role of the Classification Head, November 2024. URL <http://arxiv.org/abs/2411.04723>. arXiv:2411.04723 [cs] version: 2.

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

Appendix

Table of Contents

A Empirical Appendix	15
A.1 Experimental Details	15
A.2 Figure Details	16
A.3 Ablations	17
A.4 Additional Figures and Empirical Substantiation	19
B Overview of Related Work	26
C Mathematical derivations	28
C.1 Setup	28
C.2 Linear Separability	29
C.3 Terminal Phase of Training (TPT)	30
C.4 Neural Collapse in a Continual Learning Setup	31
C.5 Main result 1: stabilization of the training feature subspace.	35
C.6 Another definition of OOD	36
C.7 Asymptotics of OOD data	37
C.8 Main results 3: feature space asymptotic structure with replay.	39

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A EMPIRICAL APPENDIX**
757758 **A.1 EXPERIMENTAL DETAILS**
759760 We utilize the benchmark codebase developed by Buzzega et al. (2020)¹. To accommodate our
761 experiments we performed several changes to the default implementation.
762763 **Training Configurations.** Table 1 summarizes the configurations used in our main experiments.
764 All models are trained in an offline continual learning setting, where each task’s dataset is trained
765 for a specified number of iterations before transitioning to the next task. Models are trained to
766 reach error convergence on each task and more training does not improve performance. For all
767 experiments, the random seeds were set to [1000, 2000, 3000]. The class ordering was randomized
768 in each run, meaning that a specific tasks consist of different classes in each run. This was done
769 to ensure that the results are not biased by a specific class sequence. However, we observed that
770 this increases the variance when metrics are evaluated task wise compared to using a fixed class
771 assignment.
772

772 Dataset	773 Tasks	773 Epochs first task	773 Network	773 Batch Size
774 Cifar100	775 10	775 200	775 ResNet18 (11M)	775 64
776 Cifar100	777 10	777 40	776 ViT base, pretrained on ImageNET (86M)	776 256
777 TinyIMG	778 10	778 200	777 ResNet18 (11M)	777 64
778 CUB200	779 10	779 80	778 ResNet50, pretrained on ImageNET (24M)	778 32

778 **Table 1: Experiment configurations.**
779780 **Hyper Parameters** Our hyper parameters were largely adapted from (Buzzega et al., 2020) and
781 are listed in Table 2. We use a constant learning rate. For all buffer sizes the same hyper parameters
782 are used. Finally to study the effects of weight decay, we vary the weight decay strength in our
783 experiments while keeping all other factors constant.
784

786 Dataset	787 Method	787 Optimizer	787 Hyper Parameters
788 Cifar100, ResNet	789 ER	789 SGD	788 $lr : 0.1, wd : 0.0001$
789 Cifar100, ResNet	790 DER	790 SGD	789 $lr : 0.03, \alpha = 0.3,$
790 Cifar100, ResNet	791 FDR	791 SGD	790 $lr : 0.03, \alpha = 0.3,$
791 Cifar100, ResNet	792 iCaRL	792 SGD	791 $lr : 0.1, wd : 0.00005$
792 Cifar100, ViT	793 ER	793 AdamW	792 $lr : 0.0001, wd = 0.0001$
793 TinyIMG, ResNet	794 ER	794 SGD	793 $lr : 0.1, wd : 0.0001$
794 CUB200, ResNet	795 ER	795 SGD	794 $lr : 0.03, wd : 0.0001$

795 **Table 2: Hyper Parameters**
796797 **Datasets and Preprocessing.** We adopt publicly available image classification benchmarks: Ci-
798 far100 (32×32 RGB, 100 classes), TinyIMG (64×64 RGB, 200 classes) and CUB200 (224×224 RGB,
799 200 classes). Standard train/test splits are used. We apply standard augmentations like random crops
800 and flips, without increasing the dataset size.
801

803 Buffer Sizes (% of dataset)
804 1, 2, 3, 4, 5, 6, 8, 10, 100

805 Table 3: Buffer sizes in percentage over the training dataset. The same are used for all experiment
806 configurations.
807808 ¹Their codebase is publicaly available at: <https://github.com/aimagelab/mammoth>
809

810
811 **Measures of Superficial and Deep Forgetting.** *Shallow forgetting* quantifies the drop in output
812 accuracy on past tasks after learning new ones, defined as

$$813 \quad F_{i \rightarrow j}^{\text{shallow}} = A_{jj} - A_{ij},$$

814 where A_{ij} is the accuracy on task j measured after learning session i .

815 *Deep forgetting* measures the loss of discriminative information in the features themselves, independent
816 of the head. To measure it, we train a logistic regression classifier (scikit-learn’s LogisticRe-
817 gression, default settings, C=100) on frozen features extracted from the full dataset after learning
818 session i . The resulting accuracy, evaluated at the end of session j , is denoted by A_{ij}^* .

819 Formally,

$$821 \quad F_{i \rightarrow j}^{\text{deep}} = A_{jj}^* - A_{ij}^*.$$

822 For single-head models, one probe is trained over all classes; for multi-head architectures, one probe
823 per task-specific head is used.

824 **Experience Replay (ER).** In our implementation of ER, we adopt a balanced sampling strategy,
825 where each task contributes equally to the mini-batches. This strategy would normally require more
826 iterations for later tasks. To avoid this, we fix the total number of iterations for all tasks to match the
827 number performed on the first task. This effectively reduces the number of epochs for later tasks.

828 To maintain precise control over buffer composition, we employ an offline sampling scheme. Samples
829 (together with their labels) from a new task are added to the buffer only after training on that
830 task is completed. This ensures a balanced number of samples per class in the buffer. When setting
831 the buffer size to zero, ER naturally reduces to standard SGD.

834 A.2 FIGURE DETAILS

835 This subsection details the computations behind the figures presented in the main text. **Figure 2.**
836 Forgetting metrics are evaluated after the final training session, following the procedure described
837 in Appendix A.1, and across buffer sizes specified in Table 3. Different line styles correspond to
838 distinct continual learning settings.

839 **Figure 3.** Neural Collapse (NC) metrics are computed for each task every 100 steps during training
840 of a ResNet from scratch on CIFAR100 in both CIL, DIL and TIL settings. Metrics are evaluated
841 on the available training data, which includes the current task’s dataset plus the replay buffer which
842 contains 5% of the past task’s dataset. In TIL, for $\mathcal{NC}2$ the within-class-pair values for each task
843 are shown in the standard task colors, while the values across class pairs from different tasks are
844 highlighted in violet. The brown vertical lines indicate the task switches.

845 **Figure 4.** Average norm of $\tilde{\mu}_c(t)$ projected to S_t over all classes belonging to a task is computed
846 every 100 steps during training of a ResNet from scratch on CIFAR100 under CIL. The brown
847 vertical lines indicate the task switches.

848 **Figure 5** Measurements are collected after the final training session on Cifar100 using a ResNet
849 trained from scratch, averaged over all past-task classes. The buffer sizes correspond to those
850 listed in Table 3. The signal-to-noise ratio (SNR) is computed as described in Section 1.1.
851 The second panel displays the normalized variance ratio, where the *within-class variance* is de-
852 fined as $\frac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} \text{Tr}(\text{Cov}(\phi(x) \mid x \in X_c))$, and the *between-class variance* is defined as
853 $\text{Tr}(\text{Cov}(\{\mu_c\}_{c \in \mathcal{C}}))$, with μ_c the population feature mean vector of class c . The third panel dis-
854 plays the average ratio: $S_t^\perp \tilde{\mu}(t) / S_t \tilde{\mu}(t)$. And the fourth panel displays the average norm of $\tilde{\mu}_c(t)$
855 and $\tilde{\mu}_c(t)$.

856 **Figure 6 (first three plots).** At the end of the last training session, the network is evaluated on
857 multiple datasets under a CIL protocol. For CUB200 we do not report buffer sizes which are smaller
858 than 4%, as at least two samples per class are needed to calculate the covariance matrix. For each
859 buffer size reported in Table 3, we collect the class-wise mean vectors $\hat{\mu}_c(t)$ and covariances $\hat{\Sigma}_c(t)$
860 from the buffer, as well as the corresponding population statistics $\mu_c(t)$ and $\Sigma_c(t)$. The following
861 metrics are computed and averaged across past classes:

862

- 863 • Mean gap: $\|\mu_c(t) - \hat{\mu}_c(t)\|_2$.

- Covariance gap: $\|\Sigma_c(t) - \hat{\Sigma}_c(t)\|_F$, the Frobenius norm of the difference between covariances.
- Covariance rank: both the rank of the population covariance matrix $\Sigma_c(t)$ and the observed covariance matrix $\hat{\Sigma}_c(t)$ are reported. Note that the rank is upper bounded by the number of samples which are used to calculate the covariance matrix.

These quantities quantify the discrepancy between the buffer and true class distributions in feature space, which drives shallow forgetting.

Figure 6 (right-most panel). Same experimental setup as the first three panels. We evaluate different linear classifiers on TinyIMG using class-wise feature statistics. Specifically, we construct linear discriminant analysis (LDA) classifiers. For a class c , the LDA decision rule is

$$\hat{y}(x) = \arg \max_c (x - \hat{\mu}_c(t))^\top \hat{\Sigma}^{-1}(t) (x - \hat{\mu}_c(t)),$$

where $\hat{\mu}_c$ and $\hat{\Sigma}$ denote the estimated class mean and shared covariance matrix, respectively. We vary the estimates used for each class as follows:

- **Full population:** both mean $\mu_c(t)$ and covariance $\Sigma_c(t)$ are taken from population.
- **Population means (ID cov):** mean is taken from population $\mu_c(t)$, but covariance is fixed to the identity.
- **Pseudo labels test:** pseudo-labels are inferred by assigning each population sample to the closest buffer mean, effectively using a simplified linear classifier with diagonal covariance.
- **Buffer-only:** both mean $\hat{\mu}_c(t)$ and covariance $\hat{\Sigma}_c(t)$ are computed from the replay buffer.

This evaluation highlights how errors in buffer-based mean and covariance estimates contribute to shallow forgetting, and quantifies the impact of each component on linear decoding performance.

A.3 ABLATIONS

A.3.1 EFFECT OF PRETRAINING

Our results in Figure 3 demonstrate that models trained from scratch indeed undergo Neural Collapse (NC) in a continual learning setting. However, when comparing this to pre-trained models, we find that while both settings converge to the same asymptotic feature geometry, the pre-trained models do so at a substantially accelerated rate. This difference in convergence speed is illustrated in Figure 7. A side-by-side comparison of the initial 15 iterations confirms that pre-trained models rapidly achieve the high NC scores that their de novo counterparts only reach much later in training.

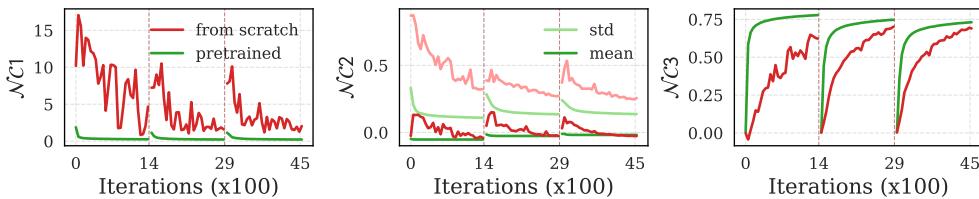


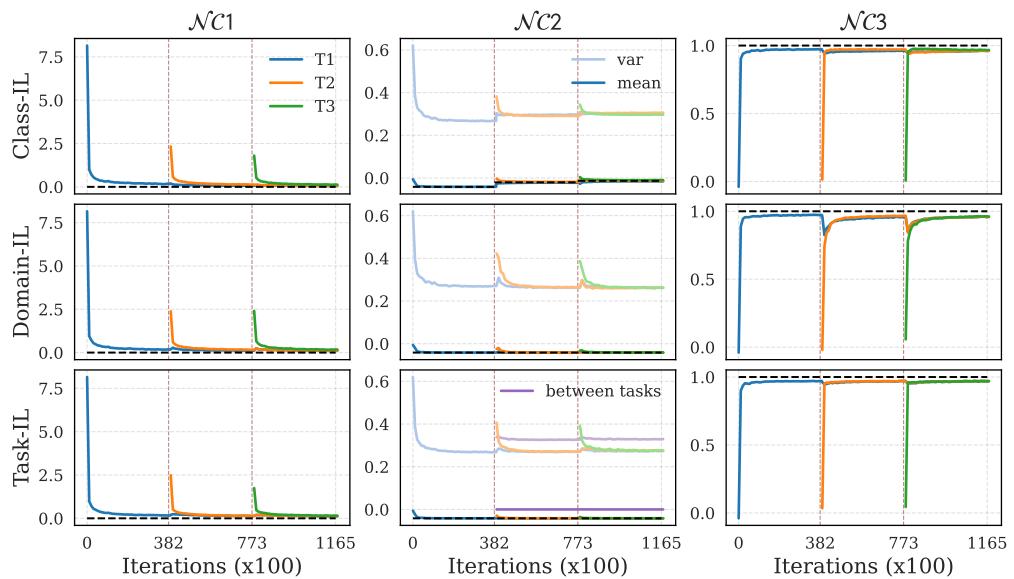
Figure 7: Convergence to Neural Collapse (NC) for pre-trained versus from-scratch models under CIL on CUB200. Pre-trained models achieve asymptotic NC scores significantly faster than their de novo counterparts.

A.3.2 FEATURE BOTTLENECK: WHEN $d \ll K$

In the main paper, we considered settings where the feature dimension exceeds the number of classes. However, in many practical applications, such as language modeling, the number of classes (e.g., vocabulary size) is typically much larger than the feature dimension. Recent work by (Liu et al., 2023) explored this regime. To examine how our framework behaves under these conditions,

918 we conducted additional experiments by modifying the Cifar100 with ResNet setup. Specifically,
 919 we split Cifar100 into four tasks of 25 classes each and inserted a bottleneck layer of dimension 10
 920 between the feature layer and the classifier head. All other components are left unchanged.

921 As illustrated in Figure 8, variability collapse $\mathcal{NC}1$ and neural duality $\mathcal{NC}3$ remain robust in this
 922 constrained setting. However, the equiangularity $\mathcal{NC}2$ exhibits significant degradation. While the
 923 mean pairwise cosine similarity aligns with theoretical expectations, its standard deviation increases
 924 substantially to ≈ 0.3 compared to the typical convergence levels of ≈ 0.1 in our standard setting
 925 (Figure 12 and similarly observed by Papyan et al. (2020)). Therefore, even though the mean appears
 926 correct, the underlying structure is not as the standard deviation is far to high. This high variance
 927 indicates a failure to converge to a rigid simplex, suggesting that in the $d \ll K$ regime alternative
 928 geometric structures must be considered, such as the Hyperspherical Uniformity explored by Liu
 929 et al. (2023).



949
 950 **Figure 8: NC metrics in the bottleneck regime ($d=10$).** Same setup as Figure 3. Results for CIFAR-
 951 100 (4 tasks, 25 classes, 5% replay). While variability collapse ($\mathcal{NC}1$) and duality ($\mathcal{NC}3$) persist,
 952 the rigid ETF structure ($\mathcal{NC}2$) degrades, exhibiting high variance in pairwise angles.

953 Crucially, we find that the **deep-shallow forgetting gap persists** despite this geometric shift. This
 954 implies that the decoupling between feature separability and classifier alignment is not contingent on
 955 the specific ETF geometry of Neural Collapse. Rather, the gap is a fundamental phenomenon that
 956 emerges even when the learned representations follow alternative geometric structures, provided
 957 they remain separable.

959 960 961 962 963 964 965 966 967 968 969 970 971	959 960 961 962 963 964 965 966 967 968 969 970 971	959 960 961 962 963 964 965 966 967 968 969 970 971	959 960 961 962 963 964 965 966 967 968 969 970 971	959 960 961 962 963 964 965 966 967 968 969 970 971
Dataset	Learning paradigm	Shallow forgetting	Deep forgetting	
Cifar100	CIL	52.27 ± 2.41	26.15 ± 1.92	
Cifar100	DIL	46.38 ± 1.88	35.07 ± 0.51	
Cifar100	TIL	18.45 ± 2.78	14.89 ± 1.77	

Table 4: The deep-shallow forgetting gap persists in the low feature-dimension regime (Cifar100, ResNet with 5% replay).

A.3.3 EFFECT OF HEAD INITIALIZATION

We analyze the empirical evolution of the class-mean norm β_t across tasks. As illustrated in Figure 9, we observe a distinct architectural split: β_t increases monotonically in setups with increasing number of classes (CIL and TIL), whereas it remains asymptotically stable in DIL.

We attribute this drift to a *weight norm asymmetry* induced by the sequential expansion of the network outputs. In CIL and TIL, new head weights are typically instantiated using standard schemes (e.g., Kaiming Uniform), which initialize weights with significantly lower norms than those of the already-converged heads from previous tasks. This creates a recurrent initialization shock. In contrast, DIL employs a fixed, shared head across all tasks, inherently avoiding this discontinuity.

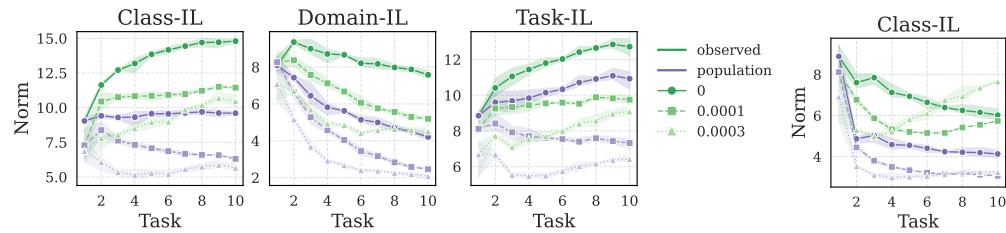


Figure 9: Average (over all seen classes c) norm of the centered observed class means $\tilde{\mu}_c(t)$ and population class means $\hat{\mu}_c(t)$ after training each task on Cifar100, with varying weight decay coefficients. The three panels on the left correspond to the default head initialization, which results in a progressively increasing norm in both CIL and TIL. The rightmost panel shows the results when each new head is initialized with the same norm as the previously trained heads. This adjustment prevents the norm from growing

To validate this hypothesis, we performed an ablation using a *norm-matching initialization* strategy. In this setup, the weights of new tasks are scaled to match the average norm of existing heads while preserving their random orientation.

Results in Figure 9 (Right) confirm that this intervention effectively suppresses the progressive growth of β_t , recovering the stationary norm behavior observed in DIL. Interestingly, while this adjustment stabilizes the geometric scale of the representation, we found it yields negligible impact on final forgetting or test accuracy metrics.

A.4 ADDITIONAL FIGURES AND EMPIRICAL SUBSTANTIATION

This subsection includes placeholder figures for concepts discussed in the main text, for which specific existing figures were not available or suitable for direct inclusion in the main body.

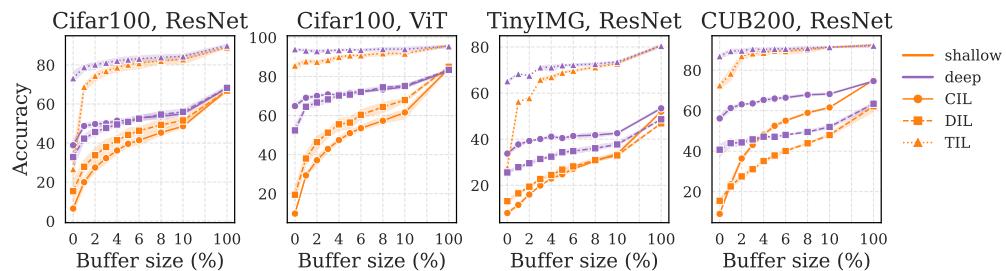
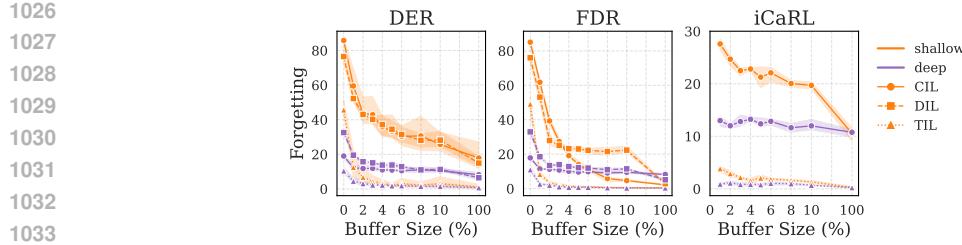
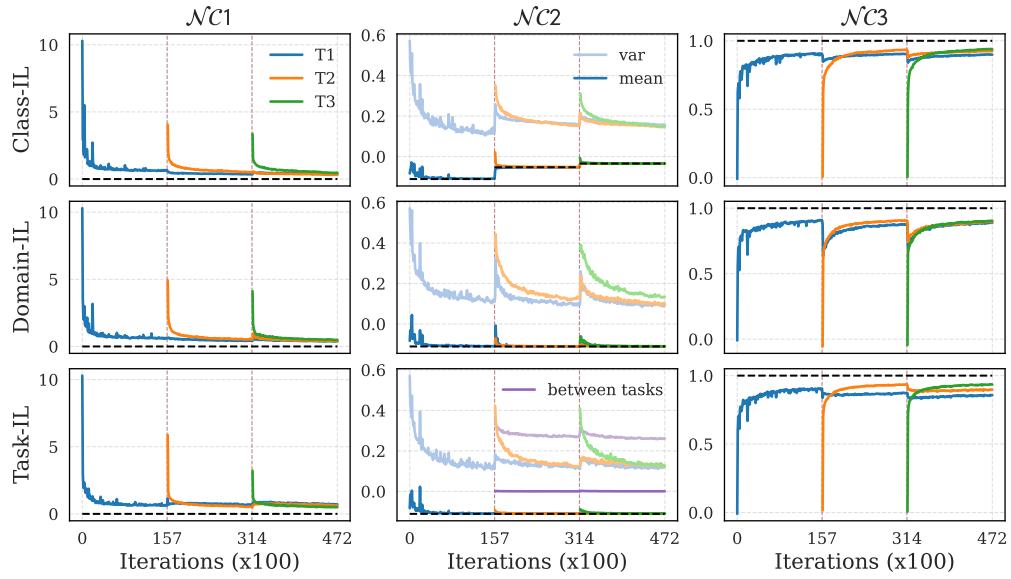


Figure 10: Same setup as Figure 2. This plot reports test accuracy.



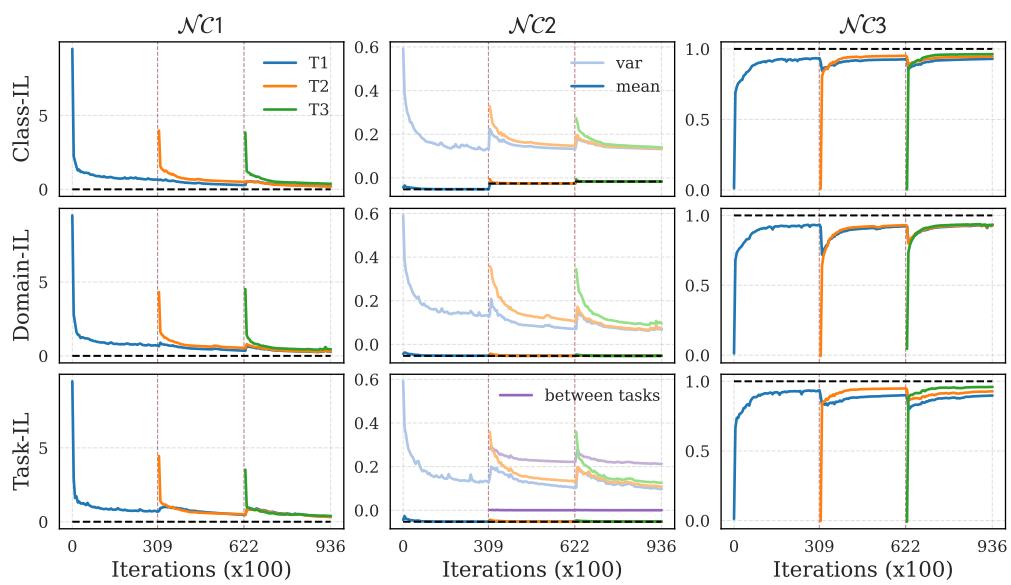
1034
1035
1036
1037

Figure 11: Deep–shallow forgetting gap for *Dark Experience Replay* (DER), *Functional Distance Relation* (FDR) and *Incremental Classifier and Representation Learning* (iCaRL) on Cifar100 with ResNet. Note that iCaRL does not support Domain-Incremental Learning.



1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056

Figure 12: Same setup as Figure 3. This plot shows the NC metrics on Cifar100 with 5% replay. For NC2, both the mean and standard deviation are shown.



1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Figure 13: Same setup as Figure 3. This plot shows the NC metrics on TinyIMG with 5% replay. For NC2, both the mean and standard deviation are shown.

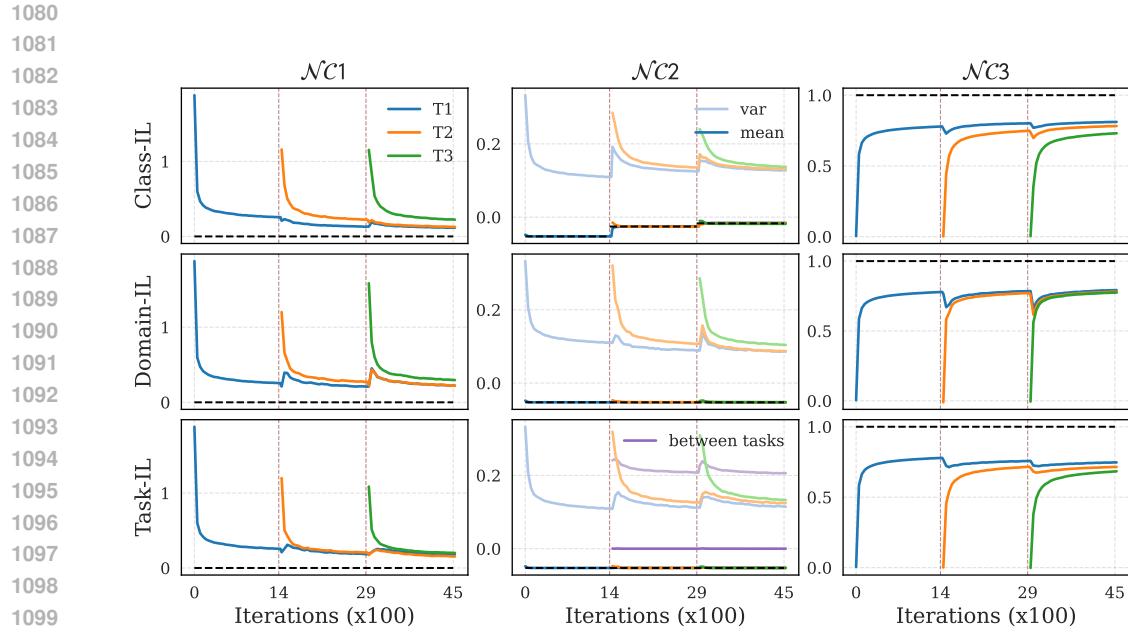


Figure 14: Same setup as Figure 3. This plot shows the NC metrics on CUB200 with 10% replay. For NC2, both the mean and standard deviation are shown.

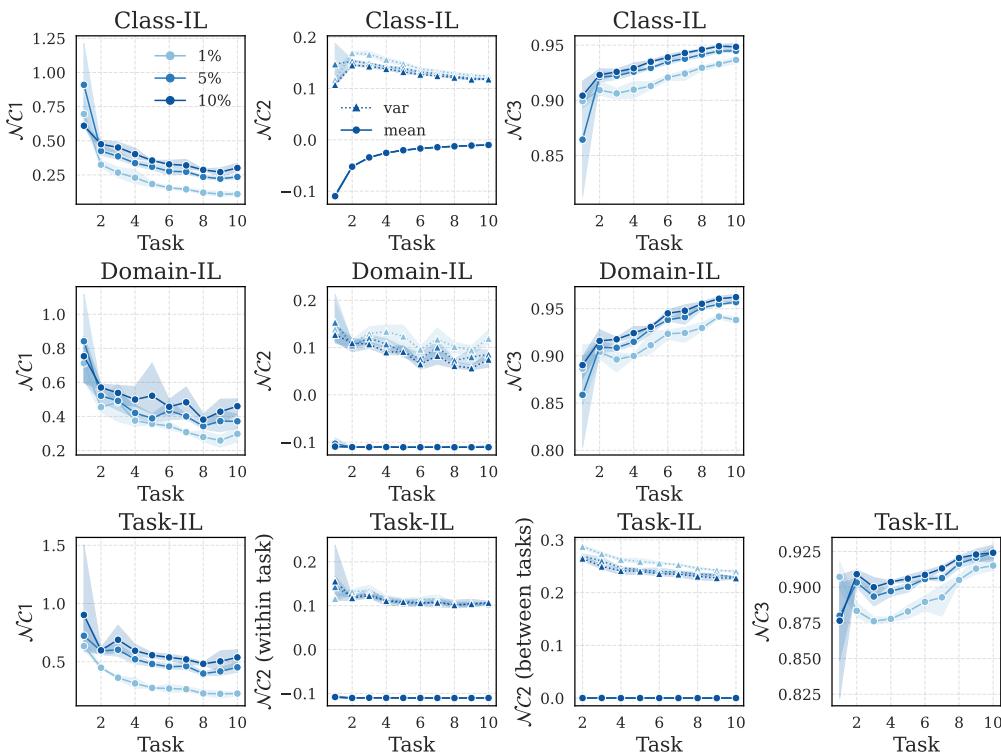


Figure 15: Neural Collapse metrics in sequential training (Cifar100, ResNet) varying the replay buffer size. Neural Collapse is stronger for smaller buffers.

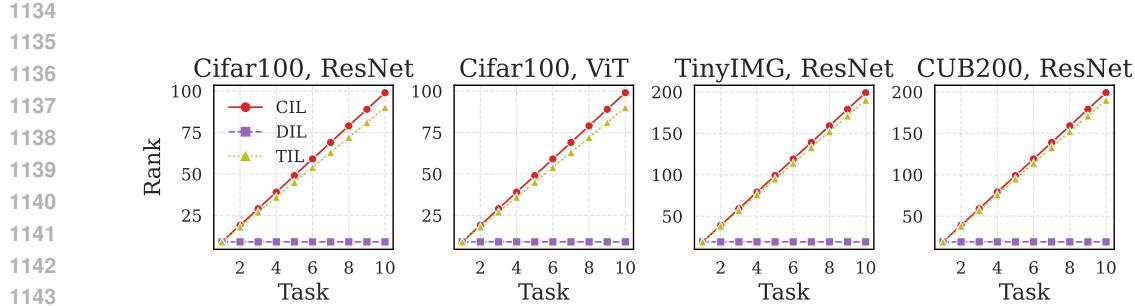


Figure 16: Rank of the centered observed means matrix $\tilde{U}(t)$. In CIL and TIL the rank increases (at different speeds) as more tasks are learned, whereas in DIL the rank remains constant.

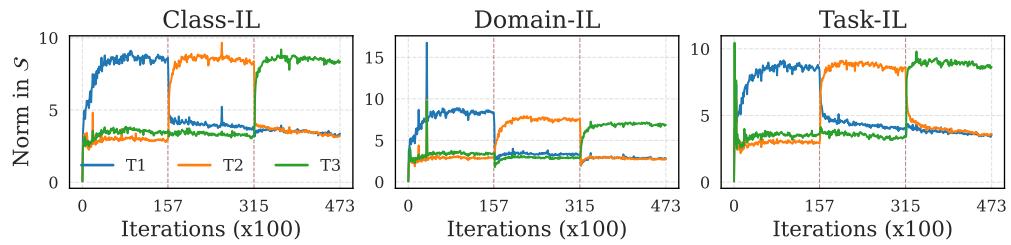


Figure 17: Same setup as Figure 4. This plot shows the norm of $\tilde{\mu}_c(t)$ when projected to S_t for CIL, DIL and TIL on Cifar100 with no replay.

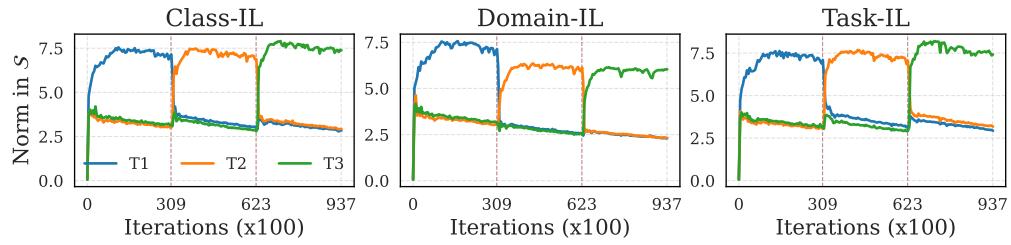


Figure 18: Same setup as Figure 4. This plot shows the norm of $\tilde{\mu}_c(t)$ when projected to S_t for CIL, DIL and TIL on TinyIMG with no replay.

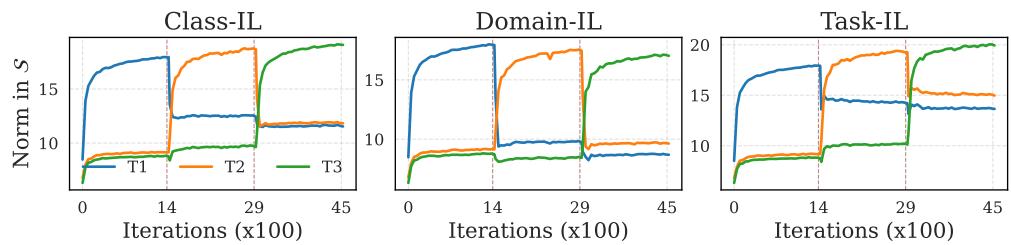


Figure 19: Same setup as Figure 4. This plot shows the norm of $\tilde{\mu}_c(t)$ when projected to S_t for CIL, DIL and TIL on CUB200 with no replay.

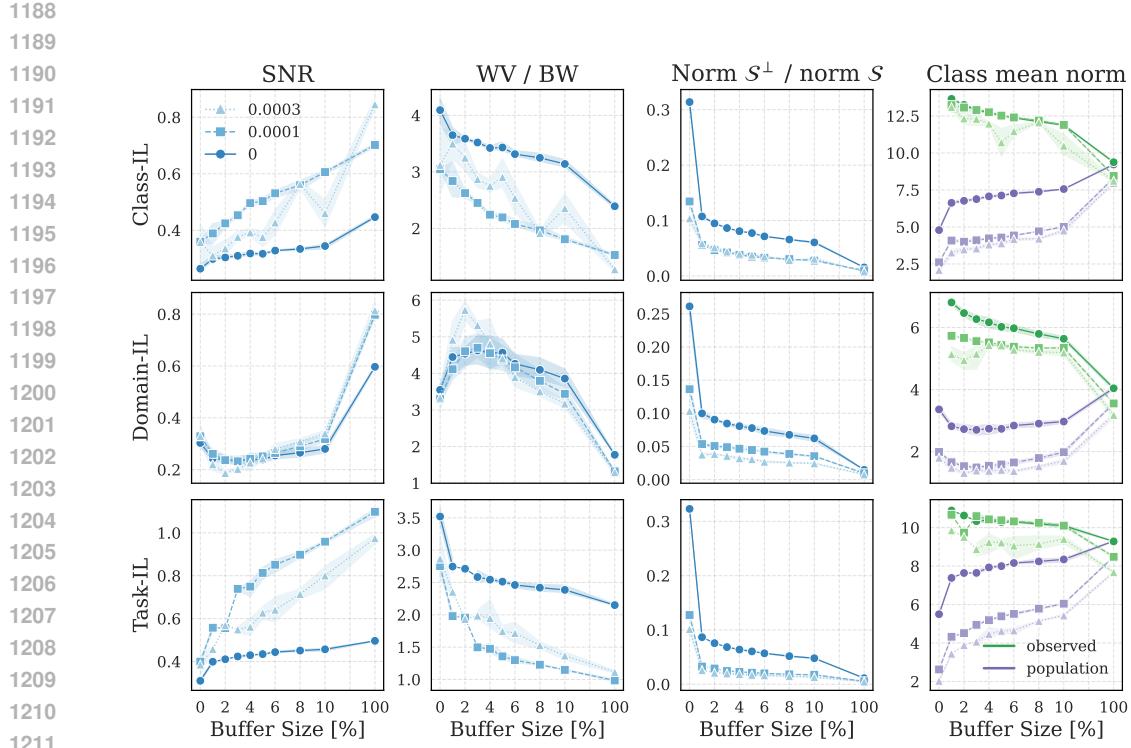


Figure 20: Same setup as Figure 5. This plot displays the results for TinyIMG.

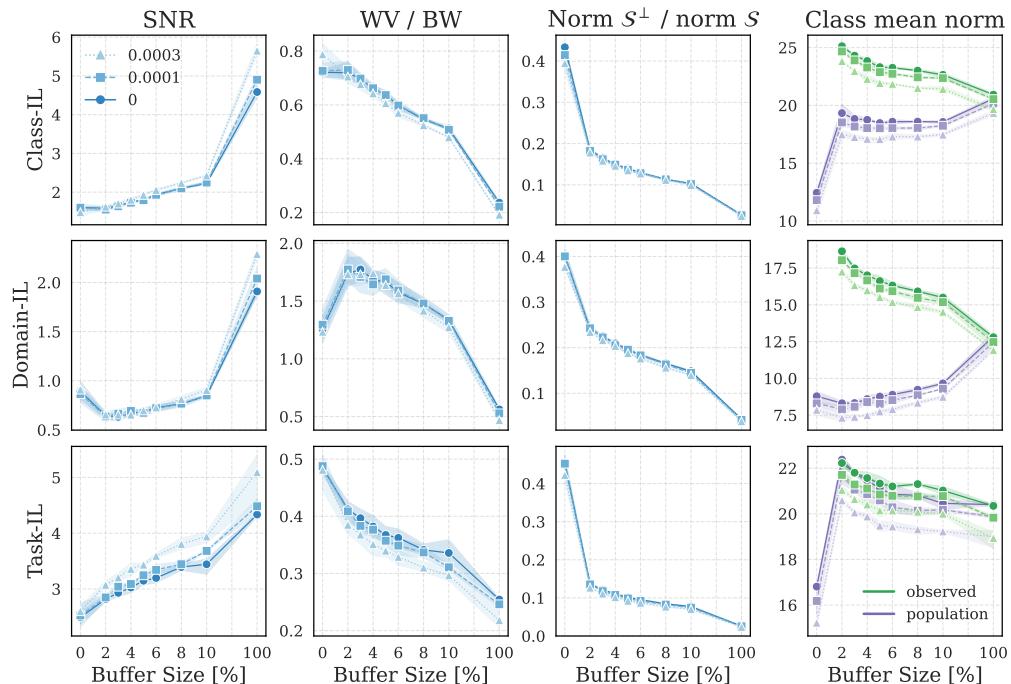


Figure 21: Same setup as Figure 5. This plot displays the results for CUB200.

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

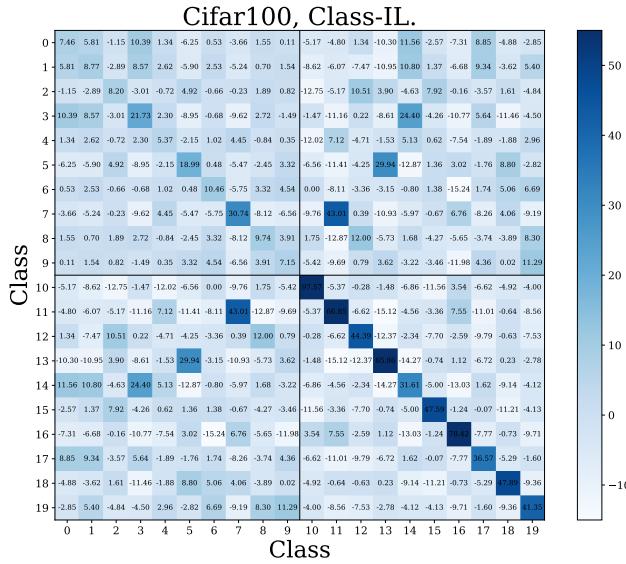
1259

1260

1261

1262

Figure 22: Class-wise inner products of the centered population class means $\tilde{\mu}_c(t)$ on Cifar100 under Class-Incremental Learning after the second task. Classes 0 to 9 belong to the first task, while 10 to 19 belong to the second task. The classes belonging to task 2 are structured according to the NC regime, while classes belonging to task 1 show no structure.



1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

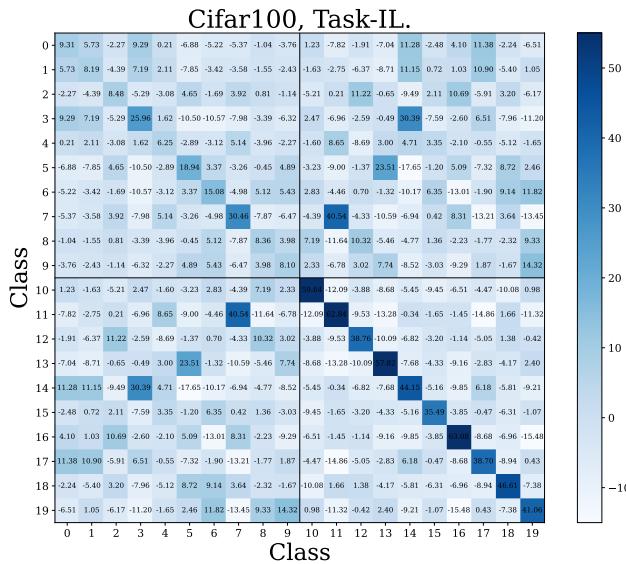


Figure 23: Class-wise inner products of the centered population class means $\tilde{\mu}_c(t)$ on Cifar100 under Task-Incremental Learning after the second task. Classes 0 to 9 belong to the first task, while 10 to 19 belong to the second task. The classes belonging to task 2 are structured according to the NC regime, while classes belonging to task 1 show no structure.

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

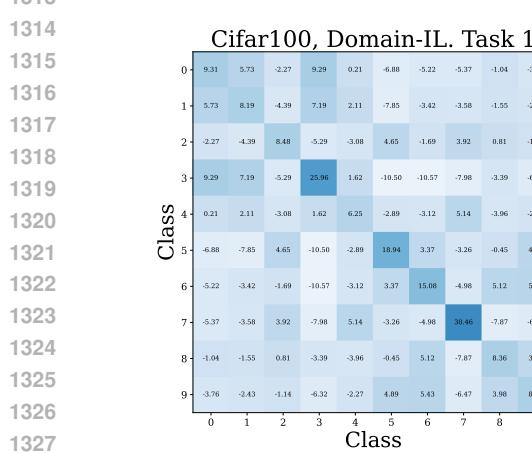


Figure 24: Class-wise inner products of the centered population class means $\tilde{\mu}_c(t)$ on Cifar100 under Domain-Incremental Learning after the second task. The left plot shows the results for samples belonging to the first task, while the right plot shows results for samples from the second task. Task 2 is structured according to the NC regime, while task 1 shows no structure.

1350 **B OVERVIEW OF RELATED WORK**
13511352 Our work intersects several strands of research. First, it builds on the literature studying the geometric
1353 structures that emerge in neural feature spaces, extending these analyses to the sequential setting
1354 of continual learning and accounting for the additional challenges introduced by different head ex-
1355 pansion mechanisms. Second, it connects to the out-of-distribution detection literature, where we
1356 reinterpret forgetting as feature drift and broaden existing insights to a more general framework.
1357 Finally, it contributes to the continual learning literature that disentangles knowledge retention at
1358 the representation level from that at the output level, highlighting the systematic mismatch between
1359 the two in replay.
13601361 **Deep and Shallow Forgetting** Traditionally, *catastrophic forgetting* is defined as the decline in a
1362 network’s performance on a previously learned task after training on a new one, with performance
1363 measured at the level of the network’s outputs. We refer to this notion as *shallow forgetting*. In con-
1364 trast, Murata et al. (2020) highlighted that forgetting can also be assessed in terms of the network’s
1365 internal representations. They proposed quantifying forgetting at a hidden layer l by retraining the
1366 subsequent layers $l+1$ to L on past data and comparing the resulting accuracy to that of the original
1367 network. Applied to last-layer features, this procedure coincides with the widely used *linear probe*
1368 evaluation from the representation learning literature, often complemented by kNN estimators, to
1369 assess task knowledge independently of a task-specific head. In this work, we refer to the loss
1370 of information at the feature level as *deep forgetting*. This probing-based approach has also been
1371 adopted in continual learning studies (Ramasesh et al., 2020; Fini et al., 2022). Multiple works have
1372 since reported a consistent discrepancy between deep and shallow forgetting across diverse settings
1373 (Davari et al., 2022; Zhang et al., 2022; Hess et al., 2023). Of particular relevance to our study are
1374 the findings of Murata et al. (2020) and Zhang et al. (2022), who observed that replay methods help
1375 mitigate deep forgetting in hidden representations. To our knowledge, however, we are the first to
1376 demonstrate that deep and shallow forgetting exhibit categorically different scaling behaviors with
1377 respect to replay buffer size.
13781379 **Neural Collapse and Continual Learning** Neural Collapse (NC) was first introduced by Popyan
1380 et al. (2020) to describe the emergence of a highly structured geometry in neural feature spaces,
1381 namely a *simplex equiangular tight frame* (simplex ETF) characterized by the NC1–NC4 prop-
1382 erties. Its optimality for neural classifiers, as well as its emergence under gradient descent, was
1383 initially established under the simplifying *unconstrained feature model* (UFM) (Mixon et al., 2022).
1384 Subsequent theoretical work extended these results to end-to-end training of modern architectures
1385 with both MSE and CE loss on standard classification tasks (Jacot et al., 2024; Súkeník et al.,
1386 2025). Generalizations of NC have been proposed for settings where the number of classes exceeds
1387 the feature dimension, precluding a simplex structure. In such cases, the NC2 and NC3 properties
1388 are extended via one-vs-all margins (Jiang et al., 2024) or hyperspherical uniformity principles (Liu
1389 et al., 2023; Wu & Popyan, 2024). Another important line of work concerns the class-imbalanced
1390 regime, which arises systematically in continual learning. Here, the phenomenon of *Minority Col-
1391 lage* (MC) (Fang et al., 2021) has been observed, in which minority-class features are pushed
1392 toward the origin. Dang et al. (2023); Hong & Ling (2023) derived an exact law for this collapse,
1393 including a threshold on the number of samples below which features collapse to the origin and
1394 above which the NC configuration is gradually restored. Because class imbalance is inherent in
1395 class-incremental continual learning, NC principles have also been leveraged to design better heads.
1396 Several works (Yang et al., 2023; Dang et al., 2024; Wang et al., 2025) impose a fixed global ETF
1397 structure in the classifier head, rather than learning it, to mitigate catastrophic forgetting. To our
1398 knowledge, we are the first to use NC theory to analyze the *asymptotic* geometry of neural feature
1399 spaces in continual learning. In doing so, we introduce the multi-head setting, which is widely used
1400 in continual learning but has not been formally studied in the NC literature. While a full theory of
1401 multi-head NC lies beyond the scope of this paper, our empirical evidence provides the first steps
1402 toward such a framework.
14031404 **Out-of-Distribution Detection** Out-of-distribution (OOD) detection is a critical challenge for
1405 neural networks deployed in error-sensitive settings. Hendrycks & Gimpel (2018) first observed
1406 that networks consistently assign lower prediction confidences to OOD samples across a wide range
1407 of tasks. Subsequent work has shown that OOD samples occupy distinct regions of the representa-
1408

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
tion space, often collapsing toward the origin due to the in-distribution filtering effect induced by low-rank structures in the backbone (Kang et al., 2024; Harun et al.). Haas et al. (2023) connected this phenomenon to Neural Collapse (NC), demonstrating that L_2 regularization accelerates the emergence of NC and sharpens OOD separation. Building on this, Ammar et al. (2024) proposed an additional NC property—*ID/OOD Orthogonality*—which postulates that in-distribution and out-of-distribution features become asymptotically orthogonal. They further introduced a detection score based on the norm of samples projected onto the simplex ETF subspace S , which closely parallels the analysis in our work. Our results extend this line of research by providing formal evidence for the ID/OOD orthogonality hypothesis, offering a precise characterization of the roles of weight decay and feature norm, and, to our knowledge, establishing the first explicit connection between catastrophic forgetting and OOD detection.

1458 **C MATHEMATICAL DERIVATIONS**
1459
1460
1461**Notation**

1462 D_n	Dataset of task n
1463 \hat{D}_n	Training dataset during session n -may include buffer
1464 \bar{D}	Datasets of all tasks combined
1465 X_c	Instances of class c in all tasks
1466 $\mathcal{L}(\theta, D)$	Average loss function over D
1467 λ	Weight decay factor
1468 η	SGD learning rage
1469 f_θ	Network function $\mathbb{R}^{d_1} \rightarrow \mathbb{R}^P$
1470 ϕ	Feature map $\mathbb{R}^{d_1} \rightarrow \mathbb{R}^{d_L}$
1471 h	Network head $\mathbb{R}^{d_L} \rightarrow \mathbb{R}^P$
1472 W_h	Network head weights
1473 W_h^n	Network head weights for classes of task n (only multi-head)
1474 μ, Σ, σ^2	The mean, covariance and variance of a distribution
1475 $\tilde{\mu}_c = \mu_c - \mathbb{E}_c[\mu_c]$	Centered class c mean
1476 $S = \text{span}(\tilde{\mu}_1, \dots, \tilde{\mu}_K)$	Centered mean span
1477 $\tilde{U} = [\tilde{\mu}_1, \dots, \tilde{\mu}_K]$	Centered mean matrix
1478 P_A	Projection onto the space A
1479 $\beta_t = \ \mu(t)\ ^2$	Training class (squared) norm

1480 **C.1 SETUP**
1481
1482
1483
1484
1485
1486
1487

1488 Consider a neural network with weights θ , divided into a non-linear map $\phi : \mathbb{R}^{d_1} \rightarrow \mathbb{R}^{d_L}$ and a
1489 linear head $h : \mathbb{R}^{d_L} \rightarrow \mathbb{R}^K$. The function takes the form:

$$1490 f_\theta(x) = W_h \phi(x) + b_h$$

1491 We hereafter refer the map $\phi(x)$ as *features* or *representation of the input* x , and to $f(x)$ as output.
1492 The network is trained to minimize a classification loss $\ell((x, y), f_\theta)$ on a given dataset D . We
1493 denote by $\mathcal{L}(D, \theta)$ the average $\ell((x, y), f_\theta)$ over D , and where clear we leave D implicit. The loss
1494 is assumed to be convex in the network output $f_\theta(\cdot)$.

1495 For each task n a new dataset D_n is provided, with K classes. We denote by $\bar{D}_t = \cup_{n \leq t} D_n$ the
1496 union of all datasets for tasks 1 to t and simply \bar{D} the union of all datasets across all tasks. Moreover,
1497 we denote by \hat{D}_t the training data used during the session t - which may include a buffer. For a given
1498 class c we denote by $X_{D,c}$ the available inputs from that class, i.e. $X_{D,c} = \{x : (x, y) \in D \text{ and } y =$
1499 $c\}$. We use $X_c = X_{\bar{D},c}$ the set of inputs for class c across all learning sessions. We assume the
1500 number of classes K to be predicted to be the same for each task.

1501 For a given class data X_c the *class mean feature* vector is:

$$1502 \mu_c(\bar{D}) = \mathbb{E}_{X_c} [\phi(x)].$$

1503 We call $\mu_c(\bar{D})$ the *population* mean, to distinguish it from the *buffer* mean $\mu_c(B)$. If a given class
1504 appears in multiple training session, we additionally distinguish between $\mu_c(\bar{D})$ and $\mu_c(\hat{D}_t)$, where
1505 the latter is the *observed* mean. For a set of classes $\{1, \dots, K\}$ in a dataset D the *global mean*
1506 *feature* vector is:

$$1507 \mu_G(\bar{D}) = \mathbb{E}_c \mathbb{E}_{X_c} [\phi(x)] = \mathbb{E}_{\bar{D}} [\phi(x)],$$

which we call *population* global mean to distinguish it from the *buffer* global mean $\mu_G(B)$. Finally, the *centered class mean feature* vector is:

$$\tilde{\mu}_c(\bar{D}) = \mu_c(\bar{D}) - \mu_G(\bar{D})$$

and similarly $\tilde{\mu}_c(B) = \mu_c(B) - \mu_G(B)$. When clear, we may omit \bar{D} and B from the notation.

C.2 LINEAR SEPARABILITY

In our study we are interested in quantifying the linear separability of the old tasks' classes in feature space. In this section we discuss the metric of linear separability used and derive a lower bound for it.

Definition 2 (Linear Separability). Consider the two distributions P_1 and P_2 . The *linear separability* of the two classes is defined as the maximum success rate achievable by any linear classifier:

$$\xi(P_1, P_2) := \max_{w, b} \left[\mathcal{P}_{P_1}(w^\top x + b > 0) + \mathcal{P}_{P_2}(w^\top x + b < 0) \right].$$

Equivalently, $\xi(P_1, P_2) = 1 - \epsilon_{\min}$, where ϵ_{\min} is the minimal misclassification probability over all linear classifiers.

Definition 3 (Mahalanobis Distance). Consider two distribution in the feature space μ_1, μ_2 , and covariances Σ_1, Σ_2 . The Mahalanobis distance between the two distributions is defined as

$$d_M^2(\mu_1, \mu_2, \Sigma_1, \Sigma_2) = (\mu_1 - \mu_2)^\top (\Sigma_1 + \Sigma_2)^{-1} (\mu_1 - \mu_2)$$

For two Gaussian distributions with equal covariance the Mahalanobis distance determines the minimal misclassification probability over all linear classifiers:

$$\epsilon_{\min} = \Phi \left(-\frac{1}{2} \sqrt{d_M^2} \right)$$

In this study we take the Mahalanobis distance to be a proxy for the linear separability of two distributions in feature space. When only the first two moments of the distributions are known, this is the best proxy for linear separability. In the following lemma we derive a handy lower bound for the Mahalanobis distance which we will be using throughout.

Lemma 1 (Lower Bound to Mahalanobis Distance). *Let $\mu_1, \mu_2 \in \mathbb{R}^d$ and $\Sigma_1, \Sigma_2 \in \mathbb{R}^{d \times d}$ be positive semidefinite covariance matrices. Then the squared Mahalanobis distance satisfies*

$$d_M^2(\mu_1, \mu_2, \Sigma_1, \Sigma_2) = (\mu_1 - \mu_2)^\top (\Sigma_1 + \Sigma_2)^{-1} (\mu_1 - \mu_2) \geq \frac{\|\mu_1 - \mu_2\|^2}{\text{Tr}(\Sigma_1 + \Sigma_2)}.$$

Proof. Let $A := \Sigma_1 + \Sigma_2 \succeq 0$ and $v := \mu_1 - \mu_2$. Let λ_i be the eigenvalues of A and u_i the corresponding orthonormal eigenvectors. Write

$$v = \sum_i \alpha_i u_i \quad \text{so that} \quad v^\top A^{-1} v = \sum_i \frac{\alpha_i^2}{\lambda_i}.$$

By Jensen's inequality for the convex function $f(x) = 1/x, x \in \mathbb{R}^+$ and the fact that $\sum_i \alpha_i^2 = \|v\|^2$, we have

$$\sum_i \frac{\alpha_i^2}{\lambda_i} \geq \frac{\sum_i \alpha_i^2}{\sum_i \lambda_i} = \frac{\|v\|^2}{\text{Tr}(A)}.$$

Applying this to $v = \mu_1 - \mu_2$ and $A = \Sigma_1 + \Sigma_2$ gives the claimed inequality. \square

In this work we use the lower bound to the Mahalanobis distance as a proxy for linear separability. This quantity is also related to the *signal to noise ratio*, and thus hereafter we use the following

1566 notation:

1567

$$1568 \quad SNR(c_1, c_2) = \frac{\|\mu_1 - \mu_2\|^2}{\text{Tr}(\Sigma_1 + \Sigma_2)}$$

1569

1570 $SNR(c_1, c_2)$ and $\xi(c_1, c_2)$ are directly proportional, although the latter is bounded while the former
1571 is not. Therefore an increase in $SNR(c_1, c_2)$ corresponds to an increase in linear separability, within
1572 the applicability of a Gaussian assumption.

1573

1574

1575 C.3 TERMINAL PHASE OF TRAINING (TPT)

1576

1577 The *terminal phase of training* is the set of training steps including and succeeding the step where
1578 the training loss is zero. Given our network structure, a direct consequence of TPT is that the class-
1579 conditional distributions are *linearly separable* in feature space.

1580

1581 Starting from Papyan et al. (2020), several works have studied the structures that emerge in the
1582 network in this last phase of training (see Appendix B for an overview). In particular, Papyan et al.
1583 (2020) has discovered that TPT induces the phenomenon of *Neural Collapse* (NC) on the features
1584 of the training data. This phenomenon is composed of four key distinct effects, which we outline in
1585 the following definitions. Notably *the definitions below apply exclusively to the training data*, which
1586 we denote generically by D here. Thus, the class means and the global means in Definition 5 are all
1587 computed using the training data (i.e. $\mu_c = \mu_c(D)$, and $\tilde{\mu}_c = \tilde{\mu}_c(D)$).

1588

1589 **Definition 4** (NC1 or Variability collapse). Let t be the training step index and ϕ_t the feature map at
1590 step t trained on data D . Then, the within-class variation becomes negligible as the features collapse
1591 to their class means. In other words, for every $x \in X_{D,c}$, with c in the training data:

1592

$$\mathbb{E}_{X_{D,c}} [\|\phi_t(x) - \mu_c(t)\|^2] = \delta_t, \quad \lim_{t \rightarrow +\infty} \delta_t = 0 \quad (3)$$

1593

1594

1595 **Definition 5** (NC2 or Convergence to Simplex ETF). The vectors of the class means (after centering
1596 by their global mean) converge to having equal length, forming equal-sized angles between any
1597 given pair, and being the maximally pairwise-distanced configuration constrained to the previous
1598 two properties.

1599

$$\lim_{t \rightarrow +\infty} \|\tilde{\mu}_c(t)\|_2 \rightarrow \beta_t \quad \forall c \quad (4)$$

1600

1601

$$\lim_{t \rightarrow +\infty} \cos(\tilde{\mu}_c(t), \tilde{\mu}_{c'}(t)) \rightarrow \begin{cases} 1 & \text{if } c = c' \\ -\frac{1}{K-1} & \text{if } c \neq c' \end{cases} \quad (5)$$

1602

1603

1604

1605 **Definition 6** (NC3 or Convergence to Self-duality). The class means and linear classi-
1606 fiers—although mathematically quite different objects, living in dual-vector spaces—converge to
1607 each other, up to rescaling. Let $\tilde{U}(t) = [\tilde{\mu}_1(t), \dots, \tilde{\mu}_K(t)]$:

1608

1609

1610

$$\frac{W_h^\top(t)}{\|W_h(t)\|} = \frac{\tilde{U}(t)}{\|\tilde{U}(t)\|} \quad (6)$$

1611

1612

As a consequence, $\text{rank}(W_h(t)) = \text{rank}(\tilde{U}(t)) = K - 1$.

1613

1614

1615

1616

1617

1618

1619

Definition 7 (NC4 or Simplification to NCC). For a given deepnet activation, the network classi-
fier converges to choosing whichever class has the nearest train class mean (in standard Euclidean
distance).

Notation. In all the following proofs we denote by $S_t = \text{span}(\{\tilde{\mu}_1(t), \dots, \tilde{\mu}_K(t)\})$ and by S_t^\perp
its orthogonal components, and similarly by P_{S_t} , $P_{S_t^\perp}$ the respective projection operators. Note that
the reference to the training data is implicit. We might signal it explicitly when necessary.

1620
1621
1622
1623

Lemma 2 (Feature classes gram matrix). *Let $\tilde{U}_t = [\tilde{\mu}_1(t), \dots, \tilde{\mu}_K(t)]$ (computed with respect to the training data). Then there exist t_0 in the TPT such that, for all $t > t_0$ the gram matrix $\tilde{U}_t^\top \tilde{U}_t$ has the following structure:*

$$\tilde{U}_t^\top \tilde{U}_t = \beta \left(I_K - \frac{1}{K} \mathbf{1} \mathbf{1}^\top \right) \quad (7)$$

$$(\tilde{U}_t^\top \tilde{U}_t)^{-1} = \beta^{-1} \left(I_K - \frac{1}{2K} \mathbf{1} \mathbf{1}^\top \right) \quad (8)$$

1628

Proof. Let $\tilde{\mu}_c(t) = \mu_c(t) - \mu_G(t)$ be the centered class mean given by ϕ_t on the training data. Then by Definition 5 we know that for all $t > t_0$ for some t_0 :

$$\langle \tilde{\mu}_c(t), \tilde{\mu}_{c'}(t) \rangle = \begin{cases} \beta_t, & c = c', \\ -\frac{\beta_t}{K-1}, & c \neq c', \end{cases}$$

1633

Also, denote by $\tilde{U}_t = [\tilde{\mu}_1(t), \dots, \tilde{\mu}_K(t)]$ the matrix of centered class means. Then the centered Gram matrix $\tilde{U}_t^\top \tilde{U}_t$ has the following structure:

$$\tilde{U}_t^\top \tilde{U}_t = \beta_t \left(I_K - \frac{1}{K} \mathbf{1} \mathbf{1}^\top \right)$$

1636

which is a rank-one perturbation of a diagonal matrix. In fact, the matrix is a projection matrix onto the space orthogonal to $\mathbf{1}$, scaled by β_t . It has eigenvalues β_t with multiplicity $K-1$ and 0 with multiplicity 1. Since it's a projection matrix, it is idempotent (up to the scaling factor β_t). Its inverse does not exist but the pseudo-inverse is well-defined.

1642
1643

$$\beta_t \left(I_K - \frac{1}{K} \mathbf{1} \mathbf{1}^\top \right)^{-1} = \frac{1}{\beta_t} \left(I_K - \frac{1}{K} \mathbf{1} \mathbf{1}^\top \right)$$

□

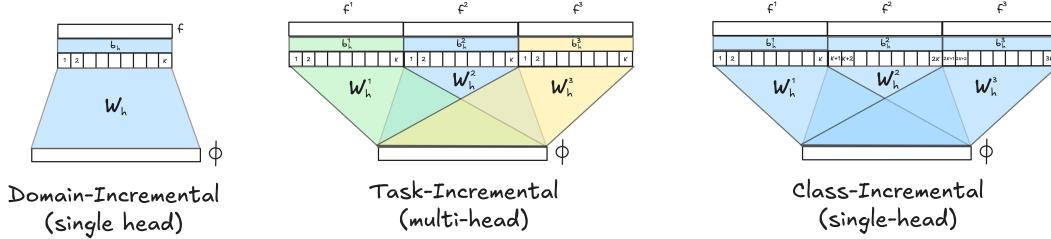
1644

1645

1646 C.4 NEURAL COLLAPSE IN A CONTINUAL LEARNING SETUP

1647
1648
1649
1650

Depending on the continual learning setup, the number of outputs in the network may be increasing with each task. Therefore the neural collapse definitions need to be carefully revisited for different continual learning scenarios.



1659

Figure 25: Depiction of Continual Learning Setups and corresponding head structures. Different colors indicate different gradient information propagated through the weights.

1662
1663
1664

In the case of **task-incremental** and **class-incremental** learning, where each task introduces new classes, we distinguish between the tasks heads as follows:

$$f_\theta^{(i)}(x) = W_h^{(i)} \phi(x) + b_h^{(i)} \quad (9)$$

$$f_\theta(x) = [f_\theta^{(1)}(x), \dots, f_\theta^{(i)}(x)]^\top \quad (10)$$

1668
1669
1670
1671
1672
1673

where only heads from the first to the current task are used in the computation of the network function. For brevity, hereafter we will denote by W_h^A, b_h^A the concatenation of *active heads* at any task: for example, for task n , $W_h^A = [W_h^{(1)}, \dots, W_h^{(n)}]$ and $f_\theta(x) = W_h^A \phi(x) + b_h^A$. In order to unify the notation, the same symbols will be used for domain-incremental learning where $W_h^A = W_h$ and $b_h^A = b_h$. The difference between task- and class-incremental learning is whether the residuals depend only on the current task output $f_\theta^{(n)}(x)$ or on the entire output $f_\theta(x)$, as we will explain shortly.

1674
1675

C.4.1 DOMAIN-INCREMENTAL LEARNING (DIL)

1676
1677
1678
1679
1680
1681
1682
1683

In *Domain-Incremental Learning (DIL)*, the classification head is consistently shared across all tasks, as each task utilizes the same set of classes. Consequently, NC is expected to induce a fixed number of clusters in the feature space, corresponding to the total number of classes. Given that the same class appears in multiple tasks, we must distinguish between the *population mean* $\mu_c(\bar{D})$ and the *observed mean* $\mu_c(\hat{D})$, where \hat{D} is a generic training set. Generally, we expect NC properties (Definitions 4 to 7) to emerge on the training data \hat{D} . If the training data includes a buffer, all class means and the global mean will be computed including the buffer samples. Accounting for this, the NC characteristics emerge analogously to those in single-task training.

1684
1685
1686
1687
1688
1689
1690
1691
1692

Emergent Task-Wise Simplex Structure Curiously, our experiments also observe an emergent *within-task simplex structure*. When features are centered by the *task-wise feature means* (taking, for each task, all samples included in the buffer), we also observe the characteristic NC structure within the task. This finding is non-trivial, because the task-wise mean and the global mean are not the same. It seems, then, that during continual learning in DIL, Neural Collapse emerges on *two distinct levels simultaneously*. This dual emergence creates a highly constrained feature manifold, which substantially limits the degrees of freedom available for learning subsequent tasks. Our observations suggest that *a significantly more constrained version of NC emerges under the DIL paradigm compared to standard single-task training*.

1693
1694

C.4.2 CLASS-INCREMENTAL LEARNING (CIL)

1695
1696
1697
1698

In Class-Incremental Learning (CIL), each task introduces *a new set of classes* (for simplicity, we assume the same number K per task). For task n , the classification head is expanded by adding $W_h^{(n)}$ to form

$$W_h^A(t) = [W_h^{(1)}(t), \dots, W_h^{(n)}(t)].$$

1700
1701
1702
1703
1704
1705
1706

Nevertheless, training proceeds as in a single-task setting: residuals are shared across all outputs,

$$\frac{\partial \ell((x, y), f_\theta)}{\partial f_\theta} = \tilde{f}_\theta(x) - \tilde{y},$$

where both $\tilde{f}_\theta(x)$ and \tilde{y} are vectors of dimension $n \times K$. For instance, $\tilde{f}_\theta(x) = f_\theta(x)$ for MSE loss, and $\tilde{f}_\theta(x) = \text{softmax}(f_\theta(x))$ for cross-entropy loss, while \tilde{y} corresponds to the one-hot encoding of y .

1707
1708
1709
1710
1711

In CIL, the *composition and relative proportion* of classes in the training data affect the asymptotically optimal feature structure. If all classes are present in equal proportion, the Neural Collapse (NC) structure for task n consists of $n \times K$ clusters with vanishing intra-cluster variance, which increases to $(n + 1) \times K$ clusters when the next task is introduced. By Definition 6, the resulting rank of the weight matrix is $n \times K - 1$ after n tasks.

1712
1713
1714
1715
1716

However, if the training dataset is imbalanced—i.e., the number of samples per class is not equal—the network is pushed, during the TPT, toward a variant of NC known as *Minority Collapse (MC)* (Fang et al., 2021). For this reason, in our experiments we use datasets with equal numbers of samples per class and buffers of uniform size across tasks. Assuming all tasks’ datasets have the same size, for a dataset D and buffer B , the degree of imbalance can be quantified by

$$\rho = \frac{|B|}{|D|}.$$

1717
1718
1719
1720
1721
1722

Dang et al. (2023); Hong & Ling (2023) identify a critical threshold for ρ : below this value, the heads of minority classes (i.e., buffer classes) become indistinguishable, producing nearly identical outputs for different classes. Above the threshold, the MC structure is gradually restored to a standard NC configuration, with class mean norms and angles increasing smoothly.

1723
1724
1725
1726
1727

As noted by Fang et al. (2021), MC can be avoided by *over-sampling* from minority classes to restore class balance. In continual learning, this is implemented by sampling in a *balanced* fashion from the buffer, ensuring that each batch contains an equal number of samples per class. Under balanced sampling, the class-incremental setup reproduces the standard NC characteristics observed in single-task training. In contrast, in the absence of replay, class-incremental learning is inherently prone to Minority Collapse.

1728 C.4.3 TASK-INCREMENTAL LEARNING (TIL)
17291730 In Task-Incremental Learning (TIL), each task introduces K new classes, as in the CIL case. The
1731 crucial difference lies in the treatment of the residuals: they are computed separately for each task.
1732 For a sample x belonging to task n , we have
1733

1734
$$\frac{\partial \ell((x, y), f_\theta)}{\partial f_\theta} = \tilde{f}_\theta^{(n)}(x) - \tilde{y}^{(n)},$$

1735
1736

1737 where both $\tilde{f}_\theta^{(n)}(x)$ and $\tilde{y}^{(n)}$ are K -dimensional vectors. For instance, under MSE loss $\tilde{f}_\theta^{(n)}(x) =$
1738 $f_\theta^{(n)}(x)$, while under cross-entropy $\tilde{f}_\theta^{(n)}(x) = \text{softmax}(f_\theta^{(n)}(x))$, and $\tilde{y}^{(n)}$ denotes the one-hot
1739 encoding of $y \in \{0, \dots, K-1\}$.
17401741 Since the outputs are partitioned across tasks, logits corresponding to inactive heads do not
1742 contribute to the loss. That is, for $x \in D_i$, the terms $W_h^{(j)} \phi(x) + b_h^{(j)}$ with $j \neq i$ remain unconstrained.
1743 In contrast, in CIL such logits are explicitly penalized, as the residuals are shared across all heads.
1744 Consequently, the TIL multi-head setting imposes fewer explicit constraints on the relative geometry
1745 of weights and class means across tasks.
17461747 Our empirical results indeed reveal that there is structure within each task, but the relative geometry
1748 across tasks is more variable and does not seem to exhibit a clear pattern. Within each task, the
1749 features exhibit the standard Neural Collapse (NC) geometry, consistent with Definitions 4 to 6.
1750 However, the class means of different tasks can overlap arbitrarily, as there are no explicit constraints
1751 linking them.
17521753 Motivated by these observations, we formalize the emergent structure as follows.
17541755 **Proposition 1** (Neural Collapse in Multi-Head Models). *Let $\mu_c^n(t)$ denote the mean feature of class
1756 c from task n at time t . In the terminal phase of training, under balanced sampling, the following
1757 hold:*1758 1. **NC1 (Variability collapse).** *Within each task, features collapse to their class means, i.e.,*
1759

1760
$$\lim_{t \rightarrow +\infty} \mathbb{E}_{x \in X_c^n} [\|\phi_t(x) - \mu_c^n(t)\|^2] = 0.$$

1761

1762 2. **NC2 (Convergence to simplex ETF within each task).** *Centered class means within each
1763 task converge to an Equiangular Tight Frame (ETF):*

1764
$$\lim_{t \rightarrow +\infty} \|\tilde{\mu}_c^n(t)\|_2 \rightarrow \beta_t^n, \quad \forall c \in \{1, \dots, K\}, \quad (11)$$

1765

1766
$$\lim_{t \rightarrow +\infty} \cos(\tilde{\mu}_c^n(t), \tilde{\mu}_{c'}^n(t)) \rightarrow \begin{cases} 1 & \text{if } c = c', \\ -\frac{1}{K-1} & \text{if } c \neq c', \end{cases} \quad (12)$$

1767

1768 where $\tilde{\mu}_c^n(t) = \mu_c^n(t) - \mu_G^n(t)$ and $\mu_G^n(t)$ is the task mean.
17691770 3. **NC3 (Convergence to self-duality).** *The classifier weights for each head align with the
1771 centered class means of the corresponding task, up to rescaling:*

1772
$$\frac{W_h^{(n)\top}(t)}{\|W_h^{(n)}(t)\|} = \frac{\tilde{U}^{(n)}(t)}{\|\tilde{U}^{(n)}(t)\|},$$

1773

1774 where $\tilde{U}^{(n)}(t) = [\tilde{\mu}_1^n(t), \dots, \tilde{\mu}_K^n(t)]$. Consequently, $\text{rank}(W_h^{(n)}(t)) = \text{rank}(\tilde{U}^{(n)}(t)) =$
1775 $K-1$.
17761777 *In summary, each task forms an ETF simplex in the feature space (NC2), with variability collapse
1778 (NC1) and classifier self-duality (NC3) holding as in the single-task case.*1779 A key implication is the difference in rank scaling compared to CIL. In CIL, the rank of the head
1780 weights after n tasks is $n \times K-1$, whereas in TIL it is *upper bounded* by $n \times (K-1)$, as confirmed
1781 empirically (Figure 16). Thus, the multi-head structure imposes a strictly stronger rank limitation.

1782 **Replay vs. no replay.** When training without replay, i.e., relying solely on the current task’s data,
 1783 the TIL setup reduces to an effective single-task regime: earlier heads receive no gradient signal,
 1784 and NC emerges only within the most recent task, as in standard single-task training.
 1785

1786
 1787 **Lemma 3** (Gram Matrix in TIL). *Let $\tilde{U}_t = [\tilde{U}_t^{(1)}, \dots, \tilde{U}_t^{(n)}]$ be the matrix of centered class means
 1788 at time t , where $\tilde{U}_t^{(m)} = [\tilde{\mu}_1^{(m)}(t), \dots, \tilde{\mu}_K^{(m)}(t)]$, with $\tilde{\mu}_c^{(m)}(t) = \mu_c^{(m)}(t) - \mu_G^{(m)}(t)$. Suppose that in
 1789 the terminal phase of training Proposition 1 holds. Then for all sufficiently large t , the Gram matrix
 1790 $\tilde{U}_t^\top \tilde{U}_t$ is :*

$$\tilde{U}_t^\top \tilde{U}_t = \begin{bmatrix} G_t^{(1)} & \tilde{U}_t^{(1)\top} \tilde{U}_t^{(2)} & \dots & \tilde{U}_t^{(n)\top} \tilde{U}_t^{(1)} \\ \tilde{U}_t^{(1)\top} \tilde{U}_t^{(2)} & G_t^{(2)} & \dots & \tilde{U}_t^{(n)\top} \tilde{U}_t^{(2)} \\ \vdots & \vdots & \ddots & \vdots \\ \tilde{U}_t^{(n)\top} \tilde{U}_t^{(1)} & \tilde{U}_t^{(n)\top} \tilde{U}_t^{(2)} & \dots & G_t^{(n)} \end{bmatrix},$$

1791 where each block $G_t^{(m)}$ satisfies

$$G_t^{(m)} = \beta_m \left(I_K - \frac{1}{K} \mathbf{1} \mathbf{1}^\top \right), \quad G_t^{(m)\top} = \beta_m^{-1} \left(I_K - \frac{1}{K} \mathbf{1} \mathbf{1}^\top \right).$$

1792 Thus, the inverse Gram matrix satisfies $(\tilde{U}_t^\top \tilde{U}_t)^{-1} \mathbf{1} = \mathbf{0}$.

1800 *Proof.* By Proposition 1, in the terminal phase of training each task satisfies NC2 (within-task ETF)
 1801 and task subspaces are orthogonal.

1802 **Diagonal blocks:** Each $G_t^{(m)} = \tilde{U}_t^{(m)\top} \tilde{U}_t^{(m)}$ is an ETF matrix of size $K \times K$. By definition of
 1803 ETF, its columns sum to zero:

$$G_t^{(m)} \mathbf{1} = 0.$$

1804 **Off-diagonal blocks:** For $B^{(ij)} = \tilde{U}_t^{(i)\top} \tilde{U}_t^{(j)}$, we have

$$B^{(ij)} \mathbf{1} = \tilde{U}_t^{(i)\top} \tilde{U}_t^{(j)} \mathbf{1} = \tilde{U}_t^{(i)\top} \cdot 0 = 0$$

1805 since the columns of $\tilde{U}_t^{(j)}$ are centered.

1806 **Global null vector:** For the full block Gram matrix $\tilde{U}_t^\top \tilde{U}_t$, the i -th block-row acting on $\mathbf{1}_n$ is

$$\sum_{j=1}^n B^{(ij)} \mathbf{1} = G_t^{(i)} \mathbf{1} + \sum_{j \neq i} B^{(ij)} \mathbf{1} = 0 + \sum_{j \neq i} 0 = 0.$$

1807 Hence, $\tilde{U}_t^\top \tilde{U}_t \mathbf{1}_n = 0$, so $\mathbf{1}_n$ lies in the null space of the Gram matrix.

1808 **Inverse / pseudoinverse:** Since $\tilde{U}_t^\top \tilde{U}_t$ is singular, the Moore–Penrose pseudoinverse exists, and
 1809 $\mathbf{1} \in \ker(\tilde{U}_t^\top \tilde{U}_t)$ implies $\mathbf{1} \in \ker((\tilde{U}_t^\top \tilde{U}_t)^+)$. Thus, $\mathbf{1}$ is a zero eigenvector of both $\tilde{U}_t^\top \tilde{U}_t$ and its
 1810 pseudoinverse. \square

1811 C.4.4 FINAL RESULTS AND TAKEAWAYS

1812 The preceding analysis allows us to draw several unifying conclusions regarding the asymptotic
 1813 feature geometry in continual learning.

1814 A first key takeaway is that, in the absence of replay, continual learning effectively reduces to re-
 1815 peated single-task training. In this regime, only the current task is represented in feature space with
 1816 Neural Collapse (NC) geometry, while features from previous tasks degenerate. This observation is
 1817 formalized as follows.

1836

Finding 1 (Asymptotic Structure without Replay). *When training exclusively on the most recent task, irrespective of the continual learning setup, the asymptotically optimal feature representation for the current task coincides with the Neural Collapse (NC) structure observed in the single-task regime. In the CIL case, this further implies that the feature representations of all classes from previous tasks collapse to the zero vector, while only the features of the current task organize according to NC.*

1842

A second key takeaway is that balanced replay fundamentally alters the asymptotic structure. In this setting, the replay buffer restores balanced exposure to all classes, preventing the degeneration of past representations. Consequently, in single-head setups (DIL and CIL) the network converges to a global NC structure over all observed classes (measured on the training data). In contrast, the multi-head setup of TIL continues to decouple the heads across tasks, yielding NC geometry within each task but leaving the relative geometry across tasks unconstrained.

1848

Finding 2 (Asymptotic Structure of the Feature Space with Balanced Replay). *When training on n tasks with balanced replay, the single-head setups converge to Neural Collapse over all classes represented in the training data (K classes for DIL and $n \times K$ classes for CIL). For TIL, each task head individually exhibits Neural Collapse within its K classes, but the relative positioning of class means across tasks is unconstrained, leading to a blockwise NC structure in feature space.*

1849

Taken together, these results highlight a fundamental distinction between single-head and multi-head continual learning: while replay suffices to recover global NC geometry in single-head settings, in TIL the absence of cross-task coupling in the loss function enforces only local NC structure within each task.

1850

1851

1852

1853

1854

C.5 MAIN RESULT 1: STABILIZATION OF THE TRAINING FEATURE SUBSPACE.

1855

Theorem 4 (Subspace stabilization in TPT under SGD.). *Let $f_{\theta_t}(x) = W_h^A(t) \phi_t(x) + b_h^A(t)$ be the network at step t in the optimization of a task with P classes and dataset D , and let $S_t = \text{span}(\{\tilde{\mu}_1(t), \dots, \tilde{\mu}_P(t)\})$ ($\mu_c = \mu_c(D)$). Assume NC3 holds on D for all $t \geq t_0$, i.e., $\text{span}(W_h^A(t)) = S_t$. Then, for all $t \geq t_0$, the gradient $\nabla_{\theta} \mathcal{L}(\theta_t)$ is confined to directions in parameter space that affect features in S_t , and, consequently, $S_t = S_{t_0}$ and $S_t^{\perp} = S_{t_0}^{\perp}$.*

1856

1857

1858

1859

1860

1861

1862

Proof. Let $\phi_t(x)$ be the feature representation of x at time t , and let $J_t(x) = \nabla_{\theta} \phi_t(x)$ be its Jacobian with respect to parameters θ_t . Consider an infinitesimal parameter change $\Delta \theta_t = \epsilon v$, with $P_{S_t} J_t(x)v = 0$ for all x in the training data, i.e., this change only affects the feature component in S_t^{\perp} . By a first order approximation the corresponding feature change is:

$$\Delta \phi_t(x) = J_t(x) \Delta \theta_t = \epsilon J_t(x)v = \epsilon P_{S_t^{\perp}} J_t(x)v$$

1870

Now, consider the effect of this change on the loss:

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

$$\mathcal{L}(\theta_t + \epsilon v) - \mathcal{L}(\theta_t) \approx \nabla_{\phi} \mathcal{L}(\theta_t) \cdot \Delta \phi_t(x) \quad (13)$$

$$= \left(\frac{\partial \mathcal{L}}{\partial f} \cdot \frac{\partial f}{\partial \phi} \right) \cdot \Delta \phi_t(x) \quad (14)$$

$$= \left(\frac{\partial \mathcal{L}}{\partial f} \cdot W_h^A(t) \right) \cdot \Delta \phi_t(x) \quad (15)$$

By NC3, for any $t > t_0$, $\text{span}(W_h^A(t)) = S_t$, and since $\Delta \phi_t(x) \in S_t^{\perp}$:

$$W_h^A(t) \cdot \Delta \phi_t(x) = 0 \Rightarrow \mathcal{L}(\theta_t + \epsilon v) - \mathcal{L}(\theta_t) = 0$$

Dividing by ϵ and taking the limit $\epsilon \rightarrow 0$,

$$\nabla_{\theta} \mathcal{L}(\theta_t) \perp v \quad \text{for all } v \text{ such that } P_{S_t} J_t(x)v = 0 \forall x \in D$$

1882

1883

1884

1885

1886

1887

1888

1889

This shows that the loss gradient lies entirely in directions that affect S_t and consequently the S_t^{\perp} component of the input representation is not changed. It follows that, after NC3 gradient descent cannot change the subspaces S_t, S_t^{\perp} , since all changes in the features for $t > t_0$ will lie in S_{t_0} . We conclude that $S_t = S_{t_0}$ and $S_t^{\perp} = S_{t_0}^{\perp}$. \square

1890 **Notation**. Hereafter we denote by S the subspace spanned by the centered class means after its
 1891 stabilization at the onset of NC3, i.e. $S = S_{t_0}$. Note that the centered class means may still change,
 1892 but their span doesn't.
 1893

1894 **Lemma 4** (Freezing and decay of S^\perp in TPT under SGD.). *Let $f_{\theta_t}(x) = W_h^A(t)\phi_t(x) + b_h^A(t)$ be
 1895 the network at time t , where $\phi_t(x)$ is the feature representation and $W_h^A(t)$ the final layer weights.
 1896 Suppose the training loss includes weight decay with coefficient $\lambda > 0$, i.e.,*

$$1897 \quad \mathcal{L}_{\text{total}}(\theta) = \mathcal{L}(\theta) + \frac{\lambda}{2} \|\theta\|^2.$$

1898 and that for all $t \geq t_0$, NC3 holds, i.e., $\text{span}(W_h^A(t)) = S$, and η sufficiently small. Then the
 1899 component of $\phi_t(x)$ in S^\perp , denoted by $\phi_{t,S^\perp}(x)$, evolves as follows:
 1900

$$1901 \quad \phi_{t,S^\perp}(x) = v^{t-t_0} \phi_{t_0,S^\perp}(x)$$

1902 *Proof.* By gradient descent the parameter update is:

$$1903 \quad \Delta\theta_t = -\eta (\nabla_\theta \mathcal{L}(\theta_t) + \lambda\theta_t)$$

1904 and, for small enough η we can approximate the feature update as :

$$1905 \quad \phi_{t+1}(x) - \phi_t(x) \approx J_t(x) \Delta\theta_t = -\eta J_t(x) \nabla_\theta \mathcal{L}(\theta_t) - \eta\lambda J_t(x) \theta_t$$

1906 Decompose this into components in S and S^\perp . By Theorem 4, for all $t > t_0$ and all $x \in D$
 1907 $J_t(x) \nabla_\theta \mathcal{L}(\theta) \in S$. Then:

$$1908 \quad \phi_{t+1,S^\perp}(x) - \phi_{t,S^\perp}(x) = -\eta\lambda P_{S^\perp} J_t(x) \theta_t$$

1909 Noticing that $\theta = 0$ makes $\phi(x) = 0$ for any x , by a first order approximation we have that $\phi_t(x) \approx$
 1910 $J_t(x) \theta_t$ and thus:

$$1911 \quad \phi_{t+1,S^\perp}(x) = \phi_{t,S^\perp}(x)(1 - \eta\lambda)$$

1912 for all $t > t_0$. Unrolling this sequence over time, starting from t_0 , we get our result. \square

1913 *Remark.* The results presented in this section hold for both single-head and multi-head training.
 1914 When training with more than 1 head, the subspace S corresponds to the span of the class means of
 1915 all heads combined, and by Proposition 1 it has lower rank than in the single-head case.

1916 C.6 ANOTHER DEFINITION OF OOD

1917 **Definition 8** (ID/OOD orthogonality property of Ammar et al. (2024)). Consider a model with
 1918 feature map $\phi_t(x)$, trained on dataset D with K classes. Denote by $S_t = \text{span}\{\tilde{\mu}_1(t), \dots, \tilde{\mu}_K(t)\}$
 1919 the subspace spanned by the centered class means of the training data at time t . The set of data X is
 1920 said to be OOD if

$$1921 \quad \cos(\mathbb{E}_X[\phi_t(x)], \mu_c(t)) \rightarrow 0 \quad \forall c \in [K]$$

1922 **Definition 9** (Out-of-distribution (OOD)). Let X_c be a set of samples from class c . Consider a
 1923 network with feature map, $\phi_t(x)$, trained on dataset D with K classes, such that $X_c \cap D = \emptyset$.
 1924 Denote by $S_t = \text{span}\{\tilde{\mu}_1(t), \dots, \tilde{\mu}_K(t)\}$ the subspace spanned by the centered class means of the
 1925 training data at time t . We say that X_c is *out of distribution* for f_{θ_t} (trained on D) if

$$1926 \quad P_{S_t} \mathbb{E}_{X_c}[\phi(x)] = 0$$

1927 This definition restates the *ID/OOD orthogonality* property of Ammar et al. (2024) in a different
 1928 form.

1929 Next, we show that the observation, common in the OOD detection literature, that old tasks data is
 1930 maximally uncertain in the network output is coherent with these definitions of OOD when there is
 1931 neural collapse.

1944
1945
1946
1947

Proposition 2 (Out Of Distribution (OOD) data is maximally uncertain.). *A set of samples X from the same class c is out of distribution for the model f_θ with homogeneous head and neural collapse if and only if the average model output over X is maximally uncertain, i.e. the uniform distribution.*

1948

1949

Proof. By definition of S being the span of $\{\tilde{u}_1(t), \dots, \tilde{u}_K(t)\}$ we can write

1950

1951

$$P_{\tilde{U}}(t) \phi_t(x) = \tilde{U}(t) (\tilde{U}(t)^\top \tilde{U}(t))^{-1} \tilde{U}(t)^\top \phi_t(x)$$

1952

1953

where \tilde{U} is the matrix whose columns are the centered class means \tilde{u}_i . By Definition 6 we have, for all $t > t_0$, $W_h(t) = \alpha \tilde{U}_t$, where $\alpha = \frac{\|W_h(t)\|}{\|\tilde{U}(t)\|}$ and therefore, for an homogenous head model, the network outputs are $f_\theta(x) = \tilde{U}(t)^\top \phi_t(x)$. Finally, to complete the proof see that by the structure of the gram matrix (Lemma 2), its null space is one-dimensional along the $\mathbf{1}$ direction. Therefore it must be that

1954

$$\tilde{U}(t)^\top \mathbb{E}_{X_c}[\phi(x)] \propto \mathbf{1} \quad (16)$$

1955

$$P_{\tilde{U}}(t) \mathbb{E}_{X_c}[\phi(x)] = 0 \quad (17)$$

1956

are always true concurrently. \square

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

Remark (Old task data behaves as OOD without replay). When training on task n without replay, samples from previous tasks $m < n$ effectively behave as out-of-distribution for the *active subspace* corresponding to task n , in the sense of Definition 9. For single-head models, a similar effect occurs in CIL due to *minority collapse*, which guarantees that the representations $\phi_t(x)$ of old task data simply converges to the origin, which is trivially orthogonal to S_t . Consequently, the theoretical results we derive for OOD data in this section also apply to old task data under training without replay.

Corollary 3 (The OOD class mean vector converges to 0 in TPT under SGD with weight decay.). *In the TPT, with weight decay coefficient $\lambda > 0$, OOD class inputs X_c are all mapped to the origin asymptotically*

$$\lim_{t \rightarrow \infty} \mathbb{E}_{X_c}[\phi_t(x)] = 0$$

1975

C.7 ASYMPTOTICS OF OOD DATA

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

Notation . To simplify exposition, we introduce the notation $v = 1 - \eta\lambda$. Additionally, in this section we use W_h and \tilde{U} to refer in general to the head and class means used in the current training. Note that, since we don't consider replay for now, this is equivalent to the current task's classes' head and features.

1986

1987

1988

Theorem 5 (OOD class variance after NC3.). *Let $b_t(x)$ be the coefficients of the projection of the input x on the centered training class means space S . In the terminal phase of training, for OOD inputs, if $b_t(x)$, $x \in X_c$ has covariance Σ_c with constant norm in t , then the within-class variance in feature space for X_c satisfies*

$$\text{Var}_{X_c}(\phi_t(x)) \in \Theta\left(\beta_t^A + (1 - \eta\lambda)^{2(t-t_0)}\right), \quad (18)$$

1989

1990

where β_t^A accounts for the contribution of all active heads: in the single-head case $\beta_t^A = \beta_t$, and in the multi-head case $\beta_t^A = \sum_{m=1}^n \beta_m^m$ with n the number of active heads.

1991

1992

1993

Proof. Consider representations of inputs from an OOD class X_c . By Theorem 4, for any $t \geq t_0$, we can decompose

$$\phi_t(x) = \phi_{t,S}(x) + \phi_{t_0,S^\perp}(x),$$

1994

1995

1996

1997

where $\phi_{t,S}(x)$ lies in the span of the centered training class means. We can express this component as

$$\phi_{t,S}(x) = \tilde{U}(t) b_t(x), \quad b_t(x) = (\tilde{U}(t)^\top \tilde{U}(t))^{-1} \tilde{U}(t)^\top \phi_t(x).$$

1998 From Definition 9, $\mathbb{E}_{X_c}[\phi_{t,S}(x)] = 0$. Hence, the within-class variance in feature space is
 1999

$$\text{Var}_{X_c}(\phi_t(x)) = \mathbb{E}_{X_c}[\|\phi_t(x) - \mathbb{E}_{X_c}[\phi_{t,S^\perp}(x)]\|^2] \quad (19)$$

$$= \mathbb{E}_{X_c}[\|\tilde{U}(t)b_t(x)\|^2] + \text{Var}_{X_c,S^\perp}(\phi_t(x)). \quad (20)$$

2003 The orthogonal component S^\perp shrinks or remains constant due to Lemma 4:
 2004

$$\text{Var}_{X_c,S^\perp}(\phi_t(x)) = (1 - \eta\lambda)^{2(t-t_0)} \text{Var}_{X_c,S^\perp}(\phi_{t_0}(x)).$$

2007 The variance in the S component depends on the covariance Σ_c of $b_t(x)$, which is assumed constant
 2008 in t :

$$\text{Cov}_{X_c}[\phi_t(x)] = \tilde{U}(t)\Sigma_c\tilde{U}(t)^\top.$$

2011 Thus,

$$\text{Var}_{X_c,S}(\phi_t(x)) = \text{tr}(\tilde{U}(t)\Sigma_c\tilde{U}(t)^\top) = \text{tr}(A\Sigma_c),$$

2013 where $A = \tilde{U}(t)^\top\tilde{U}(t)$ has the structure described in Definition 5 and Proposition 1.
 2014

2015 **Single-head case.** For P classes, A is an ETF matrix with P vertices
 2016

$$A_{kk} = \beta_t, \quad A_{jk} = -\frac{\beta_t}{P-1}, \quad j \neq k,$$

2019 so that

$$\beta_t \underbrace{\frac{P}{P-1}(\text{tr}(\Sigma_c) - \lambda_1(\Sigma_c))}_{C_{\text{low}}} \leq \text{tr}(A\Sigma_c) \leq \beta_t \underbrace{\frac{P}{P-1}\text{tr}(\Sigma_c)}_{C_{\text{high}}}.$$

2024 **Multi-head case.** For n heads, A has the block structure described in Lemma 3, with each diagonal
 2025 block having $K-1$ eigenvalues equal to β^m and one zero eigenvalue. Hence,
 2026

$$\sum_{m=1}^n \beta_t^m \underbrace{\frac{K}{K-1}(\text{tr}(\Sigma_c^{(m)}) - \lambda_1(\Sigma_c^{(m)}))}_{\geq C_{\text{low}}} \leq \text{tr}(A\Sigma_c) \leq \sum_{m=1}^n \beta_t^m \underbrace{\frac{K}{K-1}\text{tr}(\Sigma_c^{(m)})}_{\leq C_{\text{high}}}.$$

2030 Denoting by $\beta_t^A = \frac{1}{n} \sum_1^n \beta_t^m$ we get:
 2031

$$\beta_t^A \frac{P}{K-1} C_{\text{low}} \leq \text{tr}(A\Sigma_c) \leq \beta_t^A \frac{P}{K-1} C_{\text{high}}.$$

2035 Thus, recognising that the only dynamic variable in t is β_t^A for both cases, we obtain
 2036

$$\text{Var}_{X_c,S}(\phi_t(x)) \in \Theta(\beta_t^A), \quad \text{Var}_{X_c,S^\perp}(\phi_t(x)) \in \Theta((1 - \eta\lambda)^{2(t-t_0)}),$$

2038 completing the proof. □
 2039

2040 **Notation .** When we are not considering replay, there is only one active head in multi-headed
 2041 models. In this cases we use β_t to denote the feature norm of the active head. The results of this
 2042 section are presented in a more general way, using β_t^A to denote the contribution of all active heads.
 2043

2045 **Theorem 6** (Linear separability of OOD data with neural collapse.). *Consider two OOD classes
 2046 with inputs X_{c_1}, X_{c_2} . During TPT of the model $f_{\theta_t}(x)$ trained on a dataset D , the SNR between the
 2047 two classes has asymptotic behaviour:*

$$\text{SNR}(c_1, c_2) \in \Theta\left(\left(\frac{\beta_t^A}{(1 - \eta\lambda)^{2(t-t_0)}} + 1\right)^{-1}\right)$$

2051 where β_t^A is the class feature norm, averaged across the active heads.

2052 *Proof.* Let $P_{X_{c_1}}(\phi_t(x))$, $P_{X_{c_2}}(\phi_t(x))$ be the distributions of the two OOD classes in feature space.
 2053 Let μ_1, μ_2 and Σ_1, Σ_2 be the respective mean and covariances in feature space. By Definition 9 we
 2054 know that $\mu_i = \mathbb{E}_{X_{c_i}}[\phi_{t,S^\perp}(x)]$ ($i = 1, 2$). Therefore the SNR lower bound is:
 2055

$$2056 \quad SNR(c_1, c_2) = \frac{\|\mathbb{E}_{X_{c_1}}[\phi_{t,S^\perp}(x)] - \mathbb{E}_{X_{c_2}}[\phi_{t,S^\perp}(x)]\|^2}{2057 \quad \text{Tr}(\Sigma_1 + \Sigma_2)}$$

2058 where $\|\mathbb{E}_{X_{c_1}}[\phi_{t,S^\perp}(x)] - \mathbb{E}_{X_{c_2}}[\phi_{t,S^\perp}(x)]\|^2 \in \Theta((1 - \eta\lambda)^{2(t-t_0)})$. Notice that the trace decom-
 2059 poses across subspaces as well and therefore:
 2060

$$2061 \quad \text{Tr}(\Sigma_1 + \Sigma_2) = \text{Tr}(\Sigma_{1,S} + \Sigma_{1,S^\perp} + \Sigma_{2,S} + \Sigma_{2,S^\perp})$$

2062 In the proof of Theorem 5 we have that $\text{Tr}(\Sigma_{i,S}) \in \Theta(\beta)$ and $\text{Tr}(\Sigma_{i,S^\perp}) \in \Theta((1 - \eta\lambda)^{2(t-t_0)})$.
 2063 Thus from a simple asymptotic analysis we get that the linear separability of OOD data grows as:
 2064

$$2065 \quad SNR(c_1, c_2) \in \Theta\left(\left(\frac{\beta_t^A}{(1 - \eta\lambda)^{2(t-t_0)}} + 1\right)^{-1}\right)$$

□

2068 *Remark.* By Theorem 6, when learning a new task without replay, if a class from a previous task
 2069 becomes out-of-distribution (OOD) with respect to the current network (and its active subspace), an
 2070 increasing class means norm β_t or weight decay leads to *deep forgetting*, with the class information
 2071 to degrade over time.
 2072

2073 *Remark.* The SNR also depends on the degree of linear separability of the classes in the orthogonal
 2074 subspace S^\perp at the onset of NC. Consequently, in the absence of weight decay or without growth of
 2075 the feature norms, the old classes may retain a nonzero level of linear separability asymptotically.
 2076

2077 C.8 MAIN RESULTS 3: FEATURE SPACE ASYMPTOTIC STRUCTURE WITH REPLAY.

2079 We now turn our attention to training with replay, to explain how replay mitigates deep forgetting.
 2080

2081 **Notation.** We denote by D_i the datasets of task i and by B_i the buffer used when training on task
 2082 $n > i$. Further, let $\rho_i = |B_i|/|D_i|$ be the percentage of the dataset used for replay and assume that
 2083 there is *balanced sampling*, i.e. each task is equally represented in each training batch. We again
 2084 look at the case where there is neural collapse on the training data in TPT, which in this case is the
 2085 current task data D_n and the buffers B_1, \dots, B_{n-1} . Finally, for DIL we denote by X_c^i the data of
 2086 class c in task i and by X_c the data of class c in all tasks, i.e. $X_c = \cup_{i=1}^n X_c^i$.
 2087

2088 **Modeling the distribution of data from old tasks with replay** Hereafter, we denote by $\hat{\mu} :=$
 2089 $\mu(B)$, the mean computed on the buffer samples. Define

$$2090 \quad \hat{\mu}_c(t) = \mu_c(t) + \xi_c(t)$$

2091 where $\xi_c(t)$ is the difference between the *population mean* and the *observed mean*. For CIL and TIL
 2092 this is the buffer B_c , while for DIL this is the union of all buffers $B = \cup_{i=1}^{n-1} B_i$ and the current task
 2093 class data X_c^n . We know $\|\hat{\mu}_c(t) - \mu_c(t)\|$ decreases with the buffer size b and, in particular, it's zero
 2094 when $B_c = X_c$.
 2095

2096 Let \mathcal{D}_{NC} be the distribution of the representations when training on 100% of the training data X_c .
 2097 We know that this distribution has NC, each class c has mean μ_c and decaying variance δ_t . Also let
 2098 \mathcal{D}_{OOD} denote the OOD data distribution which we observe in the absence of replay (mean in S^\perp
 2099 and larger variance governed by β_t and the decay factor v^{t-t_0}). Based on these observations, we
 2100 model the distribution of $\phi_t(x)$ as the mixture of its two limiting distributions with mixing weight
 $\pi_c(b) \in [0, 1]$ which is a monotonic function of b :

$$2101 \quad \phi_t(x) \sim \pi_c \mathcal{D}_{NC} + (1 - \pi_c) \mathcal{D}_{OOD}$$

2102 According to this model, the mean and variance for the distribution of class c asymptotically are:
 2103

$$2104 \quad \mu_c(t) = \pi_c (\hat{\mu}_c(t) + \xi_{c,S}(t)) + (1 - \pi_c) (v^{t-t_0} \mu_{c,S^\perp}(t_0)) \quad (21)$$

$$2105 \quad \sigma_c^2(t) = \Theta\left(\pi_c^2 \delta_t + (1 - \pi_c)^2 (\beta_t^A + v^{2(t-t_0)})\right) \quad (22)$$

2106 Note that in Equation (21) S is defined based on π_c , and we absorbed the S^\perp component of $\xi_c(t)$
 2107 in $\mu_{c,S^\perp}(t_0)$. In the variance expression we used the results of Theorem 5 for the OOD component
 2108 and the fact that the variance of \mathcal{D}_{NC} is δ_t . In the TIL case, β_t^A is the average of the class feature
 2109 means across all active heads.

2110 *Remark* (Interpretation of the buffer–OOD mixture model). The proposed model interpolates be-
 2111 tween two limiting regimes smoothly, and is based on our hypothesis regarding the evolution of the
 2112 feature representation of past tasks as the buffer size is gradually increased. For small buffer size
 2113 b , the representation distribution is dominated by the OOD component \mathcal{D}_{OOD} , which contributes
 2114 variance in the orthogonal subspace S^\perp and acts as structured noise with respect to the span S of the
 2115 current task. As b increases, the mixture weight π_c grows monotonically, and the replayed samples
 2116 increasingly constrain the class means inside S . In the limit $b = |X_c|$, $\pi_c = 1$ and the representation
 2117 collapses to the Neural Collapse distribution \mathcal{D}_{NC} with vanishing variance. For intermediate b , the
 2118 replay buffer introduces signal in S through the term $\hat{\mu}_c(t)$, while the residual OOD component adds
 2119 noise. The evolution of π_c therefore captures how replay gradually aligns the buffer distribution with
 2120 the NC structure, while modulating the relative strength of signal (from in-span replay) versus noise
 2121 (from OOD drift).

2122
 2123 **Proposition 3** (Concentration of buffer estimates). *Let \mathcal{D}_c be the feature distribution of class c at
 2124 time t , with mean $\mu_{c,S}(t)$ in the active subspace S and covariance Σ_c . Let $B_c \subset \mathcal{D}_c$ denote a replay
 2125 buffer of size b obtained by i.i.d. sampling. Then the buffer statistics $\hat{\mu}_c$ and $\hat{\Sigma}_c$ satisfy*

$$\mathbb{E}[\|\hat{\mu}_c - \mu_c\|^2] = O\left(\frac{\text{Tr}(\Sigma)}{b}\right), \quad \mathbb{E}[\|\hat{\Sigma}_c - \Sigma_c\|_F^2] = O\left(\frac{\text{Tr}(\Sigma)}{b}\right).$$

2130 *In particular, the standard deviation of both estimators decays as $O(b^{-1/2})$.*

2131
 2132 *Proof.* Let $\{x_i\}_{i=1}^b \sim \mathcal{D}_c$ be i.i.d. samples with mean $\mu = \mu_c$ and covariance $\Sigma = \Sigma_c$. The sample
 2133 mean satisfies $\hat{\mu}_c - \mu = \frac{1}{b} \sum_{i=1}^b (\phi(x_i) - \mu)$, so by independence ((Vershynin, 2018)),
 2134

$$\mathbb{E}[\|\hat{\mu}_c - \mu\|^2] = \frac{1}{b^2} \sum_{i=1}^b \mathbb{E}[\|\phi(x_i) - \mu\|^2] = \frac{1}{b} \text{Tr}(\Sigma) = O\left(\frac{\text{Tr}(\Sigma)}{b}\right).$$

2135
 2136 Similarly, for the buffer covariance $\hat{\Sigma}_c$ we have
 2137

$$\mathbb{E}[\|\hat{\Sigma}_c - \Sigma\|_F^2] = O\left(\frac{\text{Tr}(\Sigma)}{b}\right),$$

2138 Thus the standard deviations of both estimators decay as $O(b^{-1/2})$. □
 2139

2140 In the above result we have hidden many other constants as they are independent of training time.
 2141

2142 **Remark.** This bound should be interpreted as a heuristic scaling law rather than a formal guarantee.
 2143 The key caveat is that feature evolution $\phi_t(x)$ is coupled to the buffer B_c through training, violating
 2144 independence. Nevertheless, the i.i.d. assumption is reasonable if buffer-induced correlations are
 2145 small relative to the intrinsic variance of the features. In this sense, the bound captures the typical
 2146 order of fluctuations in $\xi_c(t)$, even if the exact constants may differ in practice.

2147
 2148 **Theorem 7** (Linear separability of replay data under neural collapse). *Let c_1, c_2 be two replay-buffer
 2149 classes decoded by the same head, and let $\hat{\mu}_i(t)$ denote their observed class means with deviation
 2150 $\xi_{i,S}(t)$ from the population mean inside the NC subspace S . Assume that the old classes features
 2151 follow the mixture model*

$$\phi_t(x) \sim \pi_i \mathcal{D}_{NC} + (1 - \pi_i) \mathcal{D}_{OOD},$$

2152 with mixing proportion π_i , and that the class means norms for each task m follow the same growth
 2153 pattern $\beta_t^m \in \Theta(\beta_t)$. Then the signal-to-noise ratio between c_1 and c_2 satisfies

$$SNR(c_1, c_2) \in \Theta\left(\frac{r^2 \beta_t^A + v^{2(t-t_0)}}{r^2 \delta_t + (\beta_t^A + v^{2(t-t_0)})}\right), \quad r^2 = \frac{(\pi_1 + \pi_2)^2}{(1 - (\pi_1 + \pi_2))^2}$$

2160 *Proof.* Let $\mu_i(t), \Sigma_i(t)$ be the mean and covariance of class i in feature space. If there is replay we
 2161 assume they follow the mixed distribution described above with mixing proportion π_1, π_2 respectively. Therefore, for each of them we know the following:
 2162

$$\mu_i(t) = \pi_i(\hat{\mu}_i(t) + \xi_{i,S}(t)) + (1 - \pi_i) (v^{t-t_0} \mu_{i,S^\perp}(t_0)) \quad (23)$$

$$\Sigma_i(t) = \pi_i^2 \Sigma_i^{NC}(t) + (1 - \pi_i)^2 \Sigma_i^{OOD}(t) \quad (24)$$

2166 Moreover, by Theorem 5 we know that
 2167

$$\text{tr}(\Sigma_i^{OOD}(t)) \in \Theta(\beta_t^A + v^{2(t-t_0)})$$

2170 and by Definition 4 we also know that $\text{tr}(\Sigma_i^{NC}(t)) = \delta_t \rightarrow 0$ with $t \rightarrow +\infty$. Using this, we can
 2171 write the SNR lower bound:

$$\text{SNR}(c_1, c_2) = \frac{\|\mu_{1,S}(t) - \mu_{2,S}(t)\|^2 + \|\mu_{1,S^\perp}(t) - \mu_{2,S^\perp}(t)\|^2}{\text{Tr}(\Sigma_1(t) + \Sigma_2(t))}$$

2172 where by definition of $\mu_i(t)$:
 2173

$$\begin{aligned} \|\mu_{1,S}(t) - \mu_{2,S}(t)\|^2 &= \|\pi_1 \hat{\mu}_{1,S}(t) - \pi_2 \hat{\mu}_{2,S}(t) + \pi_1 \xi_{1,S} - \pi_2 \xi_{2,S}\|^2 \\ \|\mu_{1,S^\perp}(t) - \mu_{2,S^\perp}(t)\|^2 &= (\pi_1 - \pi_2)^2 \|\mu_G\|^2 + v^{t-t_0} \|(1 - \pi_1) \mu_{1,S^\perp}(t_0) - (1 - \pi_2) \mu_{2,S^\perp}(t_0)\|^2 \end{aligned}$$

2174 Using the linearity of the trace and the fact that it decomposes across subspaces:
 2175

$$\text{Tr}(\Sigma_i(t)) = \pi_i^2 \text{Tr}(\Sigma_i^{NC}(t)) + (1 - \pi_i)^2 \text{Tr}(\Sigma_i^{OOD}(t)) \in \Theta(\pi_i^2 \delta_t + (1 - \pi_i)^2 (\beta_t^A + v^{2(t-t_0)}))$$

2176 The mean difference in the S component expands into
 2177

$$\|\pi_1 \hat{\mu}_{1,S} - \pi_2 \hat{\mu}_{2,S}\|^2 + \|\pi_1 \xi_{1,S} - \pi_2 \xi_{2,S}\|^2 - 2 \langle \pi_1 \tilde{\mu}_1(B) - \pi_2 \tilde{\mu}_2(B), \pi_1 \xi_{1,S} - \pi_2 \xi_{2,S} \rangle$$

2178 and the first term
 2179

$$\|\pi_1 \tilde{\mu}_1(B) - \pi_2 \tilde{\mu}_2(B)\|^2 = \pi_1^2 \|\tilde{\mu}_1(B)\|^2 + \pi_2^2 \|\tilde{\mu}_2(B)\|^2 + 2\pi_1 \pi_2 \langle \tilde{\mu}_1(B), \tilde{\mu}_2(B) \rangle$$

2180 By Definition 5 and Proposition 1, and by the fact that c_1, c_2 belong to the same head m , also in
 2181 multi-headed models, we know that $\|\tilde{\mu}_1(B)\|^2 = \|\tilde{\mu}_2(B)\|^2 \approx \beta_t$ and $\langle \mu_{c_1}, \mu_{c_2} \rangle = -\frac{\beta_t^A}{K-1}$. Then:
 2182

$$\|\pi_1 \tilde{\mu}_1(B) - \pi_2 \tilde{\mu}_2(B)\|^2 = (\pi_1^2 + \pi_2^2) \beta_t + 2\pi_1 \pi_2 \frac{\beta_t^A}{K-1} \in \Theta((\pi_1 + \pi_2)^2 \beta_t^A) \quad (25)$$

2183 Define the per-class ratios
 2184

$$\eta_1 := \frac{\|\xi_{1,S}\|}{\|\tilde{\mu}_1(B)\|}, \quad \eta_2 := \frac{\|\xi_{2,S}\|}{\|\tilde{\mu}_2(B)\|}.$$

2185 Notice that the deviations in S must behave in norm as the variance in the S component, which by
 2186 Proposition 3, $\text{Tr}(\Sigma_i(t)) \in \Theta(\beta_t^A)$. Thus the coefficients satisfy $\eta_1, \eta_2 = \Theta(1)$. By the Cauchy-
 2187 Schwarz inequality, we have
 2188

$$|\langle \pi_1 \tilde{\mu}_1(B) - \pi_2 \tilde{\mu}_2(B), \pi_1 \xi_{1,S} - \pi_2 \xi_{2,S} \rangle| \leq \|\pi_1 \tilde{\mu}_1(B)\| \|\pi_1 \xi_{1,S} - \pi_2 \xi_{2,S}\|.$$

2189 Bound the second factor:
 2190

$$\|\pi_1 \xi_{1,S} - \pi_2 \xi_{2,S}\| \leq \|\pi_1 \xi_{1,S}\| + \|\pi_2 \xi_{2,S}\| = \eta_1 \|\pi_1 \tilde{\mu}_1(B)\| + \eta_2 \|\pi_2 \tilde{\mu}_2(B)\|.$$

2191 Therefore, the magnitude of the cross-term is bounded by
 2192

$$2|\langle \pi_1 \tilde{\mu}_1(B) - \pi_2 \tilde{\mu}_2(B), \pi_1 \xi_{1,S} - \pi_2 \xi_{2,S} \rangle| \leq 2\|\pi_1 \tilde{\mu}_1(B) - \pi_2 \tilde{\mu}_2(B)\| (\eta_1 \|\pi_1 \tilde{\mu}_1(B)\| + \eta_2 \|\pi_2 \tilde{\mu}_2(B)\|)$$

2193 Putting everything together, we obtain
 2194

$$|2\langle \pi_1 \tilde{\mu}_1(B) - \pi_2 \tilde{\mu}_2(B), \pi_1 \xi_{1,S} - \pi_2 \xi_{2,S} \rangle| \in \Theta((\pi_1 + \pi_2)^2 \beta_t^A)$$

2195 Since the cross-product is signed, it could contribute negatively to the mean difference. However, by
 2196 the same argument it cannot exceed the leading term in magnitude. Unless the two terms perfectly
 2197 cancel each other, the scaling with t is dominated by the positive norms:
 2198

$$\|\mu_{1,S}(t) - \mu_{2,S}(t)\|^2 \in \Theta((\pi_1 + \pi_2)^2 \beta_t^A),$$

2214 Putting everything together we obtain the asymptotic behaviour of the SNR lower bound:
 2215

$$2216 \quad SNR(c_1, c_2) \in \Theta \left(\frac{(\pi_1 + \pi_2)^2 \beta_t^A + (1 - (\pi_1 + \pi_2))^2 v^{2(t-t_0)}}{(\pi_1 + \pi_2)^2 \delta_t + (1 - (\pi_1 + \pi_2))^2 (\beta_t^A + v^{2(t-t_0)})} \right)$$

2219 To write it more clearly, define by $r^2 = \frac{(\pi_1 + \pi_2)^2}{(1 - (\pi_1 + \pi_2))^2}$:
 2220

$$2221 \quad SNR(c_1, c_2) \in \Theta \left(\frac{r^2 \beta_t^A + v^{2(t-t_0)}}{r^2 \delta_t + (\beta_t^A + v^{2(t-t_0)})} \right)$$

2224 For $r \rightarrow 0$ we recover the asymptotic behaviour of OOD data. For $r > 0$, the SNR *is guaranteed*
 2225 *not to vanish in the TPT*. \square

2226 **Corollary 4** (Asymptotic SNR with Replay). *Under the conditions of Theorem 7, let $r^2 =$*
 2227 $\frac{(\pi_1 + \pi_2)^2}{(1 - (\pi_1 + \pi_2))^2}$ *denote the buffer-weighted ratio of signal to residual OOD contribution. Then:*

- 2230 • *In the limit $r \rightarrow 0$ (corresponding to no replay), the SNR asymptotically reduces to the*
 2231 *OOD case, and old-task features remain vulnerable to drift in S^\perp .*
- 2232 • *For any $r > 0$ (non-zero buffer fraction), the SNR is guaranteed not to vanish in the TPT*
 2233 *as long as balanced replay is used. In particular, with increasing β_t or weight decay, the*
 2234 *limiting SNR satisfies*

$$2235 \quad \lim_{t \rightarrow \infty} SNR(c_1, c_2) \in \Theta(r^2),$$

2236 *ensuring that replay effectively preserves linear separability between old-task classes in*
 2237 *the NC subspace.*

2239
 2240
 2241
 2242
 2243
 2244
 2245
 2246
 2247
 2248
 2249
 2250
 2251
 2252
 2253
 2254
 2255
 2256
 2257
 2258
 2259
 2260
 2261
 2262
 2263
 2264
 2265
 2266
 2267