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Abstract001

Long chain-of-thought (CoT) supervision has002
become a common strategy to enhance reason-003
ing in language models. While effective for004
large models, we identify a phenomenon we005
call Long CoT Degradation, in which small lan-006
guage models (SLMs; ≤3B parameters) trained007
on limited long CoT data experience significant008
performance deterioration. Through extensive009
experiments on the Qwen2.5, LLaMA3 and010
Gemma3 families, we demonstrate that this011
degradation is widespread across SLMs. In012
some settings, models trained on only 8k long013
CoT examples lose up to 75% of their original014
performance before fine-tuning. Strikingly, we015
further observe that for some particularly small016
models, even training on 220k long CoT exam-017
ples fails to recover or surpass their original018
performance prior to fine-tuning. Our analy-019
sis attributes this effect to error accumulation:020
while longer responses increase the capacity021
for multi-step reasoning, they also amplify the022
risk of compounding mistakes. Furthermore,023
we find that Long CoT Degradation may nega-024
tively impacts downstream reinforcement learn-025
ing (RL), although this can be alleviated by suf-026
ficiently scaled supervised fine-tuning (SFT).027
Our findings challenge common assumptions028
about the benefits of long CoT training for029
SLMs and offer practical guidance for building030
more effective small-scale reasoning models.031

1 Introduction032

Large reasoning models, such as OpenAI-o3 (Ope-033

nAI, 2025), Kimi-k1.5 (Team et al., 2025), and034

DeepSeek-R1 (Guo et al., 2025) have recently035

demonstrated impressive capabilities in complex036

reasoning tasks. A key strength of these models037

is their ability to generate long chain-of-thought038

(CoT) responses, which usually demonstrate ad-039

vanced, reflective reasoning behaviors. These de-040

tailed reasoning responses, referred to as long CoT,041
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Figure 1: Accuracy and response length for Qwen2.5-
0.5B across varying amounts of long CoT SFT data.
Performance drops markedly at smaller data scales (8k-
16k), even as response length increases significantly,
indicating a critical failure mode in which the model
generates longer but less accurate reasoning traces. We
term this phenomenon Long CoT Degradation.

constitute valuable resources for enhancing the rea- 042

soning ability of large language models (LLMs). 043

Despite the growing use of long CoT data in 044

LLM training, there remains no consistent strategy 045

for its integration. Current practices vary widely 046

across models and objectives. For instance, some 047

studies show that even supervised fine-tuning (SFT) 048

with a relatively small amount of long CoT data 049

(e.g., ≤10k examples) can effectively enhance rea- 050

soning capabilities in LLMs (Muennighoff et al., 051

2025; Xu et al., 2025; Ye et al., 2025). Others 052

combine either limited or extensive long CoT SFT 053

with subsequent RL training (Face, 2025; Chen 054

et al., 2025; Bercovich et al., 2025; Wen et al.; Guo 055

et al., 2025). However, in almost all these cases, 056

the choice of data scale tends to be heuristic, and 057

currently, there is limited empirical understanding 058

of how the scale of long CoT data influences model 059

performance across different training paradigms 060

and different model sizes. 061

The call for a closer examination of this un- 062

derexplored topic is especially pertinent given the 063

growing interest in developing and deploying small 064
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language models (SLMs), where strong reasoning065

capabilities are crucial due to their rising popu-066

larity and prevalence (Li et al., 2023; Hui et al.,067

2024; Lee et al., 2024; Agarwal et al., 2024). Com-068

pared to larger models, SLMs typically have lim-069

ited capacity, which may affect their ability to070

generalize from verbose supervision, such as long071

CoT data (Feng et al., 2024). Although effective072

for large models, long CoT’s verbosity may over-073

whelm smaller models, making it unclear to what074

extent SLMs can benefit from such training. Recent075

work even suggests that short CoT may be more076

effective for SLMs (Li et al., 2025a). However,077

these findings are based on relatively small-scale078

datasets (e.g., 8k examples), leaving it uncertain079

whether they hold at larger data scales.080

In this paper, we conduct a systematic investi-081

gation into how the scale of long CoT data affects082

the performance of SLMs. Our results show that083

SLMs trained with small amounts of long CoT084

supervision (e.g., 8k to 16k examples) frequently085

suffer from substantial performance degradation086

(e.g., Fig. 1), a phenomenon we refer to as Long087

CoT Degradation. Building on this observation, we088

explore three central research questions: 1) How089

prevalent is Long CoT Degradation, and can SLMs090

recover from it? 2) What underlying mechanisms091

drive this degradation of SLMs? 3) Does long CoT092

degradation carry over to subsequent reinforcement093

learning (RL) stages, and can integrating long CoT094

SFT with RL mitigate its effects and improve over-095

all training efficacy for SLMs?096

To this end, we conduct extensive experiments097

across diverse model scales and families, ranging098

from 0.5B to 14B, confirming the prevalence of099

Long CoT Degradation. We next formulate hy-100

potheses regarding its underlying causes and vali-101

date them through comprehensive experiments. Fi-102

nally, we investigate the impact of long CoT SFT103

on the RL stage by analyzing the performance of104

three representative SLMs after RL.105

Our contributions are threefold:106

• Empirical discovery of Long CoT Degrada-107

tion: To the best of our knowledge, we are108

the first to identify and systematically charac-109

terize the phenomenon of Long CoT Degrada-110

tion, which arises when SLMs are trained with111

limited long CoT supervision. Our findings112

demonstrate that this degradation consistently113

occurs across a variety of model families and114

a wide range of SLM sizes, revealing a critical115

limitation in existing training practices. (§2)116

• Analysis of underlying mechanisms: We at- 117

tribute long CoT Degradation to error accumu- 118

lation driven by length inflation in reasoning 119

outputs. Our experiments reveal how insuffi- 120

cient long CoT supervision leads to dispropor- 121

tionately verbose and error-prone responses, ul- 122

timately harming performance. (§3) 123

• Towards better training pipelines: We exam- 124

ine how SFT with long CoT affects subsequent 125

RL for SLMs. Our results show that while lim- 126

ited long CoT exposure may hinder RL perfor- 127

mance, sufficiently scaled supervision during 128

SFT can significantly boost both the efficiency 129

and final performance of RL, even after the 130

model is degraded. (§4) 131

2 Long CoT Degradation 132

This section presents a comprehensive empirical 133

study on how models of varying sizes and fami- 134

lies respond to long CoT SFT. We uncover a con- 135

sistent degradation phenomenon caused by long 136

CoT supervision and analyze the conditions under 137

which models recover. In addition, we examine 138

how continued exposure to long CoT affects the 139

token efficiency of model outputs across sizes. 140

2.1 Terminology 141

In this work, we define long CoT as a reasoning 142

process involving substantially longer sequences1 143

that explicitly incorporate steps such as reflection, 144

verification, and subproblem decomposition. Such 145

chains are typically produced by large-scale rea- 146

soning models. 147

2.2 Experimental Setup 148

Datasets. We utilize the OpenR1-Math-220k 149

dataset2, comprising approximately 225,000 En- 150

glish math problems from NuminaMath 1.5 (LI 151

et al., 2024), each paired with two to four verified 152

reasoning traces generated by DeepSeek-R1. For 153

training, we sample one correct trace per problem 154

and exclude outliers exceeding 16,384 tokens (<1% 155

of data). To analyze performance scaling, we con- 156

struct six dataset subsets of increasing size: 8k, 157

16k, 32k, 64k, 128k, and 220k samples. 158

1For instance, the average length of long CoT responses in
DeepSeek-R1-Zero approaches 10k tokens, whereas its base
model averages fewer than 1k tokens (Guo et al., 2025).

2https://huggingface.co/datasets/open-r1/
OpenR1-Math-220k, licensed under Apache 2.0.
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Figure 2: Comprehensive evaluation of multiple models trained with varying amounts of long CoT data. Accuracy
is averaged across AIME24, AMC23, and MATH500, while response length is measured as the mean token count
from 4,000 responses to MATH500. Per-benchmark results are provided in Appendix C.1.

Models. Our study considers nine instruct-tuned159

models from the Qwen, LLaMA, and Gemma160

model families, including Qwen-2.5 (0.5B, 1.5B,161

3B, 7B, 14B) (Yang et al., 2024), LLaMA (3.2-162

1B, 3.2-3B, 3.1-8B) (Grattafiori et al., 2024), and163

Gemma-3-1B-it (Team, 2025).164

Training Setup. Each model is fine-tuned us-165

ing full-parameter SFT on each subset with consis-166

tent hyperparameters detailed in Appendix B. We167

use the LLaMA-Factory framework (Zheng et al.,168

2024) for training.169

Evaluation Setup. We evaluate on three170

prevalent mathematical reasoning benchmarks:171

AIME243, AMC234, and MATH500 (Hendrycks172

et al., 2021). Generation length is capped at 16,384173

tokens. Following the evaluation protocol of Guo174

et al. (2025), we use sampling with temperature175

0.6 and top-p 0.95 to generate k responses per176

question (k = 8 for AIME24 and AMC23, k = 4177

for MATH500)5. For each benchmark, we report178

the average accuracy computed over k responses179

(avg@k).180

3https://huggingface.co/datasets/AI-MO/aimo-
validation-aime

4https://huggingface.co/datasets/AI-MO/aimo-
validation-amc

5Greedy decoding is avoided due to its high repetition rate
and instability across checkpoints when evaluating long-output
reasoning models (Guo et al., 2025).

2.3 Results 181

Degradation under long CoT supervision is 182

prevalent, even in moderately sized models. 183

Across all model families and sizes, we observe 184

a notable drop in accuracy following exposure to 185

long CoT SFT (Figures 1 and 2). Notably, the 186

accuracy of Gemma3-1B-it falls to approximately 187

25% of its baseline after training on just 8k long 188

CoT examples. Even the largest model in our study, 189

Qwen2.5-14B-Instruct, suffers a drop from 50% 190

to 45% accuracy. Moreover, this degradation is 191

consistently accompanied by a sharp increase in 192

response length. This suggests a deeper underlying 193

issue in how models handle long CoT supervision, 194

which we analyze further in Section 3. 195

All models exhibit recovery on more long CoT 196

data, while larger models recover faster and 197

more fully. Given the consistent performance 198

degradation observed after training on 8k long 199

CoT examples, we investigate whether models 200

can recover as the number of training samples 201

increases, and how recovery dynamics vary with 202

model size. Figure 2 shows that larger models, such 203

as Qwen2.5-7B and 14B, recover more quickly, 204

requiring fewer additional examples before even- 205

tually surpassing their baseline performance. For 206

instance, Qwen2.5-14B recovers and significantly 207

exceeds its baseline after training on just 16k ex- 208

amples, while Qwen2.5-1.5B slightly surpasses its 209

baseline with 32k examples. In contrast, as can 210
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be seen in Figure 1 and 2, smaller models strug-211

gle to fully recover. Despite full exposure to 220k212

training examples, Qwen2.5-0.5B and Gemma-3-213

1B fail to reach their original baselines, with final214

accuracies dropping from 14% to 11% and from215

24% to 15%, respectively. These results highlight216

that recovery from long CoT degradation is both217

data- and capacity-dependent.218

Token efficiency improves with increased long219

CoT data and larger models. Figure 2 also re-220

veals another interesting observation that increas-221

ing the number of long CoT training examples222

leads to improvements in both accuracy and re-223

duced response length across all models, indicating224

a general gain in token efficiency. We suspect this is225

because models initially mimic superficial patterns226

in long CoT traces, resulting in verbose outputs.227

With more training, they gradually shift towards228

capturing the underlying reasoning structure, lead-229

ing to shorter and more accurate responses. This230

effect is more evident in larger models. For in-231

stance, with training on 32k instances of long CoT232

data, Qwen2.5-14B-Instruct achieves an accuracy233

of 66% with an average response length of only234

4k tokens, whereas its smaller counterpart, the 7B235

model, reaches only 53% accuracy despite produc-236

ing longer responses averaging 5k tokens. This237

contrast suggests that larger models are more capa-238

ble of leveraging long CoT to generate concise yet239

accurate answers. These findings motivate further240

investigation into the underlying mechanisms driv-241

ing degradation and recovery, which we explore in242

the following section.243

3 The Mechanism Behind Degradation244

To better understand the phenomenon of Long CoT245

Degradation, we propose two hypotheses and de-246

sign targeted experiments to empirically validate247

them.248

3.1 Hypotheses249

Our hypotheses are grounded in two lines of prior250

research. First, recent studies have examined251

system-2 reasoning in large language models, re-252

vealing phenomena such as multi-step reasoning253

and reflection (Xiang et al., 2025; Yu et al., 2024;254

Li et al., 2025b). While these behaviors are preva-255

lent in long CoT data, their precise impact on the256

length and structure of reasoning chains remains257

unclear. Second, prior work on CoT has shown that258

as reasoning chains grow longer, the accumulation259

of intermediate mistakes increasingly undermines 260

final output accuracy (Wu et al., 2025). However, 261

analyses of error accumulation have thus far been 262

largely limited to short CoT sequences and rela- 263

tively small-scale models (e.g., variants of GPT-2 264

with fewer than 10 layers) (Wu et al., 2025), leav- 265

ing open the question of whether similar mecha- 266

nisms persist in longer, more real-world reasoning 267

settings with modern LLMs. 268

Building on these insights, we aim to explain 269

the degradation and recovery behaviors observed 270

in our empirical study. To this end, we propose the 271

following two hypotheses: 272

• Hypothesis 1: Early adoption of surface-level 273

reasoning patterns contributes to verbose 274

outputs. When exposed to a limited amount 275

of long CoT supervision, SLMs rapidly adopt 276

surface features of system-2 reasoning, such as 277

reflection and multi-step structure. This early 278

emergence of stylistic patterns is highly corre- 279

lated with increased response length and may 280

contribute to initial performance degradation, 281

even before deeper reasoning skills are fully 282

acquired. 283

• Hypothesis 2: Longer outputs exacerbate er- 284

ror accumulation, reducing answer accuracy. 285

As output length increases, the reasoning pro- 286

cess involves a greater number of steps, each 287

of which introduces the potential for errors to 288

propagate. Consequently, longer responses tend 289

to accumulate more noise and irrelevant content, 290

ultimately resulting in a noticeable decline in 291

overall accuracy. 292

These two hypotheses are closely linked: the 293

first aims to explain why models tend to generate 294

long responses under long CoT supervision, while 295

the second aims to account for the resulting drop in 296

accuracy. Using these hypotheses as guidance, we 297

further conduct empirical analyses in the following 298

subsections. 299

3.2 Reflection Behavior Analysis 300

To validate Hypothesis 1, we examine whether 301

models rapidly acquire surface-level features of 302

system-2 reasoning, particularly reflective behav- 303

ior, during early stages of fine-tuning on long CoT 304

data. Our goal is to determine whether the emer- 305

gence of such patterns coincides with the increase 306

in response length observed in Section 2.3. 307

Setup. We identify reflective behavior in model 308

outputs using a cross-validation approach follow- 309
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Figure 3: Reflection ratios of Qwen models of differ-
ent sizes trained on varying amounts of long CoT data.
The reflection ratio refers to the proportion of model
responses (out of 4,000 on the MATH500 benchmark)
that exhibit reflective behavior, as identified through
cross-validation.

ing Liu et al. (2025). To robustly detect self-310

reflection in generated responses, we use two in-311

dependent methods: 1) a keyword-based approach312

that labels a response as reflective if it contains any313

curated indicative keywords or phrases, and 2) an314

LLM-based approach, where GPT-4o-mini (Hurst315

et al., 2024) is prompted to determine whether the316

response exhibits reflective behavior. This dual-317

criteria strategy helps reduce false positives and en-318

hances reliability. Full implementation details and319

prompt templates are provided in Appendix B.4.320
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Figure 4: Average response lengths of Qwen2.5-{1.5B,
3B}-Instruct models trained with varying amounts of
long CoT data. Solid lines represent responses exhibit-
ing reflection behavior; dashed lines denote responses
without reflection. Results for more models are pro-
vided in Appendix C.2.

Result. Figure 3 shows a significant increase in321

the proportion of reflective responses across Qwen322

models, even with only 8k long CoT training ex-323

amples. Specifically, the reflection ratio increases324

sharply from below 5% to approximately 75%, in-325

dicating that reflective behaviors are quickly picked326

up and internalized. Additionally, Figure 4 under-327

scores that reflective responses are substantially328

longer than non-reflective ones. Notably, for both 329

the 1.5B and 3B models, reflective responses con- 330

sistently exceed non-reflective ones by approxi- 331

mately 2,000 tokens, a trend that holds across all 332

training data scales. These findings suggest that 333

the acquisition of reflective behavior is closely tied 334

to the growth in response length. These findings 335

support Hypothesis 1: with limited long CoT su- 336

pervision, models quickly adopt surface features 337

of system-2 reasoning, especially reflection which 338

contributes to longer responses. 339

3.3 Cumulative Error Analysis 340

While the previous analysis focused on the emer- 341

gence of surface-level reasoning patterns, it did not 342

directly assess how output length impacts answer 343

accuracy. Hypothesis 2 posits that longer responses 344

increase the risk of cumulative errors, thereby re- 345

ducing overall accuracy. In this subsection, we test 346

this hypothesis in a controlled setting. 347

Standard mathematical benchmarks introduce 348

confounding factors such as domain knowledge, 349

problem interpretation, and strategy selection. 350

These complexities make it difficult to isolate the ef- 351

fect of response length on performance. To address 352

this, we design a synthetic arithmetic benchmark 353

that controls for external variables while preserving 354

step-by-step reasoning structure. This allows us to 355

directly examine how output length correlates with 356

error accumulation. 357

Benchmark Design. Each instance in our syn- 358

thetic dataset is a randomly generated arithmetic 359

expression composed of 5 to 15 operations. To 360

ensure controlled difficulty and interpretability: 361

• Operands are uniformly sampled from the range 362

[1, 100]. 363

• Operators include addition, subtraction, multi- 364

plication, and division. 365

• All intermediate results are constrained to be 366

integers. 367

• Each problem requires a fixed number of simple, 368

sequential reasoning steps. 369

This setup enables a rigorous empirical evalua- 370

tion of Hypothesis 2 by explicitly correlating re- 371

sponse length (number of arithmetic steps) with 372

accuracy under consistent and controlled condi- 373

tions. An example problem from the benchmark is 374

shown in Figure 6. 375

Setup. We evaluate the models described in Sec- 376

tion 2.2 on 400 synthetic arithmetic problems. Fol- 377
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Figure 5: Arithmetic accuracy and response length on our synthetic benchmark for models trained with increasing
amounts of long CoT data. Most models exhibit a sharp drop in arithmetic accuracy and a corresponding increase in
response length after training on the 8k subset, with the exception of Llama-3.2-{1B,3B}-Instruct, whose initial
performance is already low (<20% accuracy).

lowing the same evaluation protocol as in Sec-378

tion 2.2, we use sampling with temperature 0.6379

and top-p 0.95 to generate k = 4 responses per380

problem. We report the average accuracy across381

the k responses (avg@k).382

Result. As shown in Figure 5, most models ex-383

perience a significant drop in arithmetic accuracy384

after training on the 8k long CoT subset, accompa-385

nied by a substantial increase in response length.386

For instance, Qwen2.5-7B-Instruct exhibits a 30%387

drop in accuracy, while its average output length388

grows from approximately 600 to 3,600 tokens.389

With more long CoT data, performance gradually390

recovers. These trends closely mirrors the degrada-391

tion and recovery patterns observed on real-world392

math benchmarks (Fig. 1 and 2). Qualitative analy-393

sis further supports these findings. As shown in Ap-394

pendix B.5, the model trained on 8k CoT data fre-395

quently generates verbose responses with repetitive396

phrasing (e.g., “wait”) and restates equations mul-397

tiple times, yet still makes similar arithmetic mis-398

takes that compound across steps despite proposing399

alternative solutions. In contrast, the model trained400

on 64k CoT data demonstrates more disciplined401

reasoning behavior. It verifies steps more effec-402

tively and proposes alternatives with clearer intent.403

Overall, these results offer strong empirical sup-404

port for Hypotheses 2: although longer responses405

may enable more elaborate reasoning, they also406

increase the likelihood of compounding errors, re-407

sulting in Long CoT Degradation.408

4 Impact of Long CoT Supervision on RL 409

As we continue exploring the impact of different 410

methods for using long CoT data to train SLMs, 411

the next natural research question for us to investi- 412

gate is how the performance of these SLMs, after 413

training with long CoTs under different settings, 414

might affect the subsequent RL stage. 415

Existing approaches generally fall into two cat- 416

egories: 1) using a limited number of long CoT 417

examples (≤10k) during SFT as a cold start for sub- 418

sequent RL (Guo et al., 2025; Ren et al., 2025), and 419

2) applying RL to models heavily distilled with sub- 420

stantial amounts of long CoT data (>100k) (Luo 421

et al., 2025; Michael Luo, 2025; Liu et al., 2024). 422

However, a systematic understanding of how vary- 423

ing levels of long CoT supervision influence sub- 424

sequent RL performance remains underexplored – 425

particularly in the context of SLMs. 426

To address this limitation, we systematically an- 427

alyze how different amounts of long CoT supervi- 428

sion during SFT impact RL outcomes, particularly 429

focusing on performance degradation, token effi- 430

ciency, and overall learning dynamics. 431

4.1 Training Setup 432

We conduct RL training on three models, Qwen2.5- 433

{0.5B, 1B, 3B}-Instruct, which represent small lan- 434

guage models with distinct degradation patterns 435

observed in prior SFT experiments (§2). 436

For training, we adopt the dataset configura- 437

tion introduced by Zeng et al. (2025), where the 438

6



Question: 
Compute the answer to this arithmetic expression: 93/3+77+(12-
32)-11+61*78+44*39+55

Ground_Truth: 6606

Model’s Answer (Before Training): 
To compute the arithmetic expression, we will follow the order of 
operations (PEMDAS/BODMAS):
1. Parentheses/Brackets:  Solve the expression inside the 
parentheses first. 12 - 32 = -20

......
So, the final answer is: 6606

Number of Calculation: 10 Response Length: 502

Model’s Answer (After Training): 
Okay, let's see. I need to compute this arithmetic expression:

......
Let me compute the subtraction and addition from left to right. 
Starting with 108 - 20. That's 88. Then, 88 - 11 is 77. Then, 77 + 
4758. Wait, 77 plus 4758. Let me add those. 70 plus 4750 is 4820, 
and 7 plus 58 is 65, so 4820 + 65 is 4885. So after the subtraction 
and addition so far, we have 4885.

......
So the final answer is 6601. Let me double-check my steps to make 
sure I didn't make a mistake.
First, 93 divided by 3 is 31. Then, 31 + 77 is 108. Then, 12 - 32 is -
20. So the expression becomes 108 -20 -11 + 4758 +1716 +55. 
Then, 108 -20 is 88, 88 -11 is 77. Then, 77 +4758 is 4885, 4885 
+1716 is 6601. Yeah, that seems right. Let me verify each 
multiplication again.

......
Therefore, the answer is 6601

Number of Calculation: 40 Response Length: 1405

Figure 6: A sample problem from our synthetic arith-
metic benchmark, with answers from Qwen2.5-1.5B-
Instruct before and after training on 8k long CoT ex-
amples. “Number of Calculation” indicates the total
number of arithmetic operations performed in the re-
sponse. Errors in the model’s intermediate reasoning
are highlighted in red.

datasets used for each model have been empiri-439

cally shown to be of moderate difficulty and effec-440

tive for their respective scales. The 0.5B model is441

trained on the Medium difficulty subset, composed442

of MATH level 1-4 problems (Hendrycks et al.,443

2021), while the 1B and 3B models are trained on444

the Hard subset, which includes MATH level 3-5445

problems (Hendrycks et al., 2021). Both subsets446

contain approximately 8,000 examples.447

We perform RL training using the verl (Sheng448

et al., 2024) framework. We employ the449

GRPO (Shao et al., 2024) algorithm with a rule-450

based binary reward function: the model receives451

a reward of 1 if the final answer is correct, and 0452

otherwise. The training uses a prompt batch size453

of 1,024, generates 8 rollouts per prompt, and sets454

the maximum rollout length to 8,192 tokens. Op-455

timization is performed using a mini-batch size of456

256. All models are trained with the same set of457

hyperparameters and the evaluation settings remain458

consistent with those outlined in Section 2.2.459

4.2 Results 460

Long CoT degradation negatively impacts sub- 461

sequent RL training. Figure 7 shows that start- 462

ing RL training from a checkpoint fine-tuned with 463

8k long CoT data consistently yields lower accu- 464

racy and longer responses throughout training, as 465

compared to the baseline approach without any 466

SFT. Moreover, the performance gap relative to the 467

baseline persists. These results suggest that the 468

degradation induced by long CoT can hardly be 469

mitigated by RL and continues to adversely affect 470

RL-based optimization. 471

RL further improves token efficiency in long 472

CoT distilled SLMs. As shown in Figure 7, 473

SLMs fine-tuned with long CoT data (at 0.5B, 474

1.5B, and 3B scales) exhibit a rapid reduction in 475

response length during the early stages of RL train- 476

ing, accompanied by a steady increase in accu- 477

racy. This observation aligns with previous find- 478

ings (Luo et al., 2025; Liu et al., 2024). In contrast, 479

instruction-tuned baseline models without long 480

CoT SFT show only slight increases in response 481

length and minor accuracy gains under RL, high- 482

lighting their limited potential for further improve- 483

ment (Zeng et al., 2025). These results demonstrate 484

that RL can further enhance the token efficiency 485

of SLMs distilled with long CoT data. Notably, 486

as observed in Section 2, increasing the scale of 487

long CoT SFT data alone also led to continuous 488

improvements in token efficiency, and this trend is 489

further amplified by RL. This finding underscores 490

the synergistic roles of long CoT SFT and RL in 491

maximizing the efficiency of SLMs. 492

Extensive long CoT SFT training substantially 493

enhances both the efficiency and performance 494

ceiling of subsequent RL. As illustrated in Fig- 495

ure 7, models without prior long CoT SFT show 496

marginal improvement during RL at scales of 0.5B, 497

1.5B, and 3B. In contrast, initializing RL from 498

a checkpoint trained on 128k long CoT exam- 499

ples results in faster accuracy improvements and a 500

markedly higher final performance. In particular, 501

it is interesting to observe that for the 0.5B model, 502

although long CoT SFT initially results in lower 503

performance compared to the baseline, RL training 504

rapidly closes this gap and further enhances model 505

capabilities. Notably, after RL, the model achieves 506

a 13% improvement over the baseline, and over a 507

60% gain relative to its pre-RL state. These results 508

indicate that for SLMs, even when long CoT SFT 509
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Figure 7: Impact of long CoT SFT data on downstream RL training across Qwen2.5 models. Top: Accuracy of
RL-trained models over training steps. Bottom: Average response length during training. Each column corresponds
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temporarily degrades post-SFT performance, large-510

scale exposure to long CoT data yields substantial511

benefits during RL training.512

Collectively, the results suggest that special care513

is needed when using long CoT data to improve the514

reasoning capabilities of small language models.515

Effective use of such data first requires sufficient516

exposure during the SFT stage. While the SFT-517

trained model alone may not achieve strong perfor-518

mance, the subsequent RL stage can substantially519

enhance its capabilities.520

5 Related Work521

Recent advances in long CoT reasoning (Jaech522

et al., 2024; Guo et al., 2025) have substantially523

improved downstream performance, particularly524

for large language models (Xiang et al., 2025; Yu525

et al., 2024; Li et al., 2025b; Huang et al., 2024).526

While some progress has been made in efficiently527

distilling long CoT knowledge into smaller mod-528

els (Muennighoff et al., 2025; Ye et al., 2025; Yeo529

et al., 2025; Li et al., 2025a), systematic and com-530

prehensive evaluations remain limited.531

In parallel, RL for reasoning (Guo et al., 2025;532

Schulman et al., 2017; Shao et al., 2024; Liu533

et al., 2025) has achieved promising results across534

a range of math and coding tasks, including for535

SLMs (Zeng et al., 2025; Xie et al., 2025; Hu et al.,536

2025; Bercovich et al., 2025). However, there has537

been little systematic study on the joint impact of 538

long CoT SFT and RL training on SLMs. This gap 539

motivates our present study6. 540

6 Conclusion 541

In this work, we conduct a systematic study of 542

how the scale of long CoT data impacts small lan- 543

guage models (SLMs). Our findings reveal a consis- 544

tent phenomenon, Long CoT Degradation, where 545

limited long CoT supervision significantly impairs 546

model performance across diverse model families 547

and sizes. Through comprehensive experiments, 548

we further analyze the mechanisms behind this 549

degradation, attributing it to error accumulation 550

induced by excessively verbose outputs – an issue 551

to which SLMs are particularly vulnerable. Finally, 552

we show that while long CoT SFT can hinder sub- 553

sequent RL when data is insufficient, scaling up 554

long CoT supervision enables RL to achieve both 555

greater efficiency and higher final performance. 556

Our work highlights the pitfalls and misconcep- 557

tions in current long CoT usage for SLM training, 558

identifies key limitations, and offers practical guid- 559

ance for addressing them. We also hope this work 560

sheds light on future research aimed at designing 561

optimal pipelines for building effective reasoning 562

models. 563

6Due to space limitations, a comprehensive review is pro-
vided in Appendix A.
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Limitations564

While our work offers new insights into the ef-565

fects of long CoT for SLMs, we acknowledge sev-566

eral limitations. First, our analysis focuses on567

mathematical reasoning, which provides a well-568

structured setting and reliable evaluation metrics569

for studying long CoT supervision. While the find-570

ings may offer insights applicable to domains such571

as logical reasoning or code generation, we do not572

directly study these areas. Extending our frame-573

work to these areas is a promising direction for574

future work, though acquiring large-scale, high-575

quality long CoT training data in such domains576

remains a practical challenge. Second, although577

we study multiple model families and sizes and578

observe consistent patterns across them, we do not579

explicitly isolate the impact of pre-training data580

composition. Prior work suggests that pre-training581

plays an important role in shaping long CoT rea-582

soning capabilities. A more controlled investiga-583

tion into how pre-training interacts with long CoT584

supervision, particularly for small models, would585

provide valuable complementary insights.586

Ethical Statement587

This study investigates the effects of long chain-588

of-thought supervision on small language models589

using publicly available models and datasets. The590

research does not involve human subjects or any591

sensitive or proprietary data. This work does not592

propose or support any applications with foresee-593

able potential for harm or misuse. In experiments,594

we comply with all licenses for models, data and595

code.596
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A Related Work788

A.1 Long Chain-of-Thought789

The paradigm of long CoT reasoning is first pop-790

ularized by OpenAI-o1 (Jaech et al., 2024), and791

becomes widely accessible with the open-sourcing792

of DeepSeek-R1 (Guo et al., 2025). Outputs from793

these LRMs are characterized by extended and re-794

flective CoT sequences, which not only exhibit be-795

haviors of system-2 cognition (Xiang et al., 2025;796

Yu et al., 2024; Li et al., 2025b), but also provide797

richer intermediate supervision signals for knowl-798

edge distillation (Hinton et al., 2015). As a result,799

downstream model performance is substantially800

improved (Huang et al., 2024).801

Subsequent research focus on improving the ef-802

ficiency of long CoT distillation. Notably, recent803

studies (Muennighoff et al., 2025; Ye et al., 2025)804

have identified compact yet highly effective prompt805

subsets, demonstrating that strong performance can806

be achieved with as few as 1,000 training examples.807

However, these efforts have predominantly concen-808

trated on large-scale models (e.g., those with 32809

billion parameters), and the impact of long chain-810

of-thought reasoning on smaller models remains811

largely unexplored.812

Preliminary investigations into small language813

models (8B parameters and below) include (Yeo814

et al., 2025; Li et al., 2025a). While these stud-815

ies provide valuable insights into long CoT SFT816

for small language models, they are based on rel-817

atively limited datasets generated by the QwQ-818

Preview model, which was developed before the819

widespread adoption of zero-RL training (Team,820

2024). This limitation raises concerns about the821

generalizability of their findings to contemporary822

training paradigms.823

A.2 RL for Reasoning 824

The release of DeepSeek-R1 (Guo et al., 2025) 825

has sparked broad interest in the RL for reasoning 826

training paradigm, which involves applying rein- 827

forcement learning directly to base models using 828

rule-based rewards in conjunction with established 829

online RL algorithms (Schulman et al., 2017; Shao 830

et al., 2024; Liu et al., 2025). 831

RL has proven highly effective on reasoning 832

tasks with easily verifiable reward signals, partic- 833

ularly in math and coding (Xie et al., 2025; Hu 834

et al., 2025; Bercovich et al., 2025). Notably, re- 835

cent findings suggest that RL remains effective 836

even for small-scale language models, underscor- 837

ing its broad applicability (Zeng et al., 2025). 838

While prior work has shown that initial train- 839

ing with short-CoT SFT can constrain the benefits 840

of subsequent RL (Zeng et al., 2025) in reason- 841

ing tasks, recent studies combining extensive Long 842

CoT SFT with RL report superior performance, 843

sometimes exceeding that of larger models trained 844

via alternative pipelines (Luo et al., 2025; Liu et al., 845

2024; Michael Luo, 2025). However, systematic 846

evaluations of long CoT SFT followed by RL, par- 847

ticularly in the context of small language models, 848

remain limited. This gap motivates the present 849

study’s comprehensive investigation. 850

B Detailed Experimental Setups 851

B.1 Models 852

Category Models

Qwen Family Qwen2.5-0.5B-Instruct,
Qwen2.5-1.5B-Instruct,
Qwen2.5-3B-Instruct,
Qwen2.5-7B-Instruct,
Qwen2.5-14B-Instruct

Llama Family Llama3.2-1B-Instruct,
Llama3.2-3B-Instruct,
Llama3.1-8B-Instruct

Gemma Family Gemma3-1B-IT

Table 1: Overview of models investigated in this work.

Table 1 summarizes all models evaluated in this 853

study. 854

B.2 Supervised Fine-Tuning 855

Supervised Fine-Tuning (SFT) is conducted on a 856

dataset D = {(x(i), y(i))}Ni=1, where each prompt 857

x(i) is paired with an output y(i), which may in- 858

clude a long CoT. The objective is to maximize 859
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the conditional log-likelihood log pθ(y
(i) | x(i)),860

encouraging the model to reproduce high-quality861

responses with structured reasoning.862

Hyper-parameter Long CoT Data Amount

8k 16k 32k 64k 128k 220k

Number of Epochs 4 4 4 3 3 2
Batch Size 8 16 32 64 128 128
Learning Rate 5× 10−5

Optimizer Adamw
Learning Rate Scheduler cosine
Max Sequence Length 16384
Warmup ratio 0.05
Training Precision bfloat16

Table 2: Hyperparameters used for full-parameter super-
vised fine-tuning.

Training Setup. Our SFT training is conducted863

using LLaMA-Factory (Zheng et al., 2024) on a864

server equipped with 8 H100 (80GB) GPUs. The865

SFT experiments consumed approximately 2,500866

GPU hours in total. We adopt full-parameter fine-867

tuning for all SFT experiments. The detailed hyper-868

parameters we used are presented in Table 2, which869

are determined through a preliminary hyperparam-870

eter search.871

B.3 Reinforcement Learning872

DeepSeek-R1 (Guo et al., 2025) conducts large-873

scale RL using long CoT supervised fine-tuning874

as a cold start, establishing a widely adopted train-875

ing pipeline for reasoning-oriented models. In this876

work, we adopt the same setup to study how long877

CoT supervision during SFT influences model be-878

havior in the subsequent RL stage.879

For the RL algorithm, we use GRPO (Shao880

et al., 2024), a computationally efficient variant881

of PPO (Schulman et al., 2017) that eliminates the882

need for a separate value model by estimating ad-883

vantages using group-normalized rewards.884

In line with DeepSeek-R1 and similar works, we885

employ a rule-based binary reward function: the886

model receives a reward of 1 if the final answer is887

correct, and 0 otherwise. This simple yet effective888

setup allows us to isolate the effect of long CoT889

SFT on the optimization behavior during RL.890

Training Setup. Our RL training is conducted891

using verl (Sheng et al., 2024) framework, on a892

server equipped with eight H100 GPUs (each with893

80GB of memory). The RL experiments consumed894

approximately 5,000 GPU hours in total. The de-895

tailed hyperparameters used in our experiments are896

Hyper-parameter Value

Training Algorithm GRPO
Prompt Batch Size 1024
Rollout Per Prompt 8
Maximum Rollout Length 8192
Mini-Batch Size 256
Sampling Temperature 1.0
KL Loss Coefficient 1× 10−4

Table 3: Hyperparameters used for RL training.

shown in Table 3. 897

B.4 Reflection Behavior Analysis Setup 898

We adopt a cross-validation approach, following 899

the methodology proposed in (Liu et al., 2025), 900

combining both keyword detection and LLM-based 901

identification to detect the self-reflective behaviors 902

in model outputs. In particular, the keyword pool 903

used in this work is limited to: recheck, rethink, 904

reassess, reevaluate, re-evaluate, reevaluation, re- 905

examine, reexamine, reconsider, reanalyze, double- 906

check, check again, think again, verify again, and 907

go over the steps. 908

Figure 9 presents the prompt employed to deter- 909

mine whether a response contains self-reflection 910

behaviors with an LLM-based approach. 911

B.5 Arithmetic Benchmark 912

Qualitative Examples. To complement our quan- 913

titative analysis, we present three representative ex- 914

amples in Figures 13, 14, and 15. These responses 915

are generated by Qwen2.5-3B-Instruct models un- 916

der different training settings: the baseline model, 917

the model finetuned on 8k-length CoT data, and 918

the model finetuned on 64k-length CoT data, re- 919

spectively. The baseline model solves the problem 920

correctly with a clear and concise reasoning pro- 921

cess. In contrast, the 8k-finetuned model produces 922

a much longer and more verbose response. Despite 923

proposing multiple alternative solutions, it repeat- 924

edly makes the same arithmetic mistakes, which 925

propagate across steps and compound the final er- 926

ror. The response also exhibits disfluency, includ- 927

ing repetitive phrases like “wait” and redundant 928

equation restatements. The 64k-finetuned model 929

shows significant improvement: it maintains more 930

coherent structure, reflects on its steps more ef- 931

fectively, and proposes alternatives in a way that 932

leads to the correct solution. These examples re- 933

inforce our hypothesis that longer responses intro- 934

duce more room for error and noise—unless offset 935

12



by sufficient training on long-form reasoning pat-936

terns.937

C Detailed Evaluation Results938

C.1 Long CoT Degradation939

Figure 11 and 12 show more detailed evaluation940

results for the experiments in Section 2.941
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Figure 8: Reflection ratios of LLaMA and Gemma mod-
els of different sizes trained on varying amounts of long
CoT data. The reflection ratio refers to the proportion
of model responses (out of 4,000 on the MATH500
benchmark) that exhibit reflective behavior, as identi-
fied through cross-validation.

C.2 Reflection Behavior Analysis942

Figure 8 and 10 are the detailed evaluation results943

for the experiments in Section 3.2.944
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I will send you a mathematical question along with a detailed response. Your task is to determine whether the 
response is attempting to answer the question. If the response is off-topic, hallucinated, random talk, or 
otherwise irrelevant, mark it as 0. Otherwise, assess whether the response exhibits self-reflection.
Categorization Rules:

1. Category 0: The response is off-topic, nonsensical, incoherent, overly repetitive, or lacks logical 
reasoning.

• Example cases:
– The response does not relate to the question.
– It contains meaningless or hallucinated content.
– It consists of excessive repetition without coherence.

2. Category 1: The response attempts to answer the question but does not exhibit self-reflection.
• Example cases:

– The response directly solves the problem without revisiting steps.
– No attempt is made to verify the correctness of the answer or explore  alternative 

solutions.
3. Category 2: The response demonstrates self-reflection at any level.

• This may include:
– Explicit self-reflection keywords, such as: *recheck, rethink, reassess, reevaluate, 
re-evaluate, reevaluation, re-examine, reexamine,  reconsider, reanalyze, double-
check, check again, think again, verify  again, go over the steps*, etc.
– Implicit self-reflection behaviors, such as revisiting the solution,  questioning 
assumptions, or considering alternative approaches without explicit keywords.

• If any form of self-reflection is present, always categorize it as 2, regardless of correctness 
or answer quality.

4. Category 3: The response consists solely of Python code for calculations without exhibiting self-r
          eflection.
• Example cases:

– The response only provides a Python script to compute the solution without any   
verification, re-evaluation, or alternative considerations.

Output Format:
Your response should first provide a very brief explanation of your analysis, followed by a single category 
number (0, 1, 2, or 3) at the end. You must include the  category number at the end of your response.
Example outputs:

• ‘The response is off-topic and does not attempt to answer the question. 0.’
• ‘The response provides a direct solution without self-reflection. 1.’
• ‘The response demonstrates self-reflection. 2.’
• ‘The response consists solely of Python code without any self-reflection. 3.’

Question: {question} 
Response: {response}

Figure 9: Prompt template used by GPT-4o-mini for reflection behavior identification.
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Figure 11: Comprehensive evaluation of Qwen models trained with varying amounts of long CoT data.

16



Llama-3.2-1B-Instruct

0 8k 16k 32k 64k 128k 220k
0.0

0.3

0.6

0.9

1.2

Ac
cu

ra
cy

 (
%

)

AIME24

0

3

6

9

12

15

0 8k 16k 32k 64k 128k 220k4

6

8

10

12

14

16 AMC23

0

2

4

6

8

10

12

0 8k 16k 32k 64k 128k 220k12

16

20

24

28

32 MATH500

0

2

4

6

8

10

Re
sp

on
se

 L
en

gt
h 

(K
)

Llama-3.2-3B-Instruct

0 8k 16k 32k 64k 128k 220k
0

3

6

9

12

Ac
cu

ra
cy

 (
%

)

AIME24

0

3

6

9

12

15

18

0 8k 16k 32k 64k 128k 220k14

21

28

35

42

49 AMC23

0

3

6

9

12

15

0 8k 16k 32k 64k 128k 220k35

42

49

56

63

70 MATH500

0

2

4

6

8

10

Re
sp

on
se

 L
en

gt
h 

(K
)

Llama-3.1-8B-Instruct

0 8k 16k 32k 64k 128k 220k
0

6

12

18

24

30

Ac
cu

ra
cy

 (
%

)

AIME24

0

3

6

9

12

15

0 8k 16k 32k 64k 128k 220k10

20

30

40

50

60

70 AMC23

0

3

6

9

12

0 8k 16k 32k 64k 128k 220k30

40

50

60

70

80
MATH500

0

2

4

6

8

10

Re
sp

on
se

 L
en

gt
h 

(K
)

Gemma-3-1b-it

0 8k 16k 32k 64k 128k 220k
0.0

0.5

1.0

1.5

2.0

2.5

Ac
cu

ra
cy

 (
%

)

AIME24

0

3

6

9

12

15

0 8k 16k 32k 64k 128k 220k0

5

10

15

20

25
AMC23

0

3

6

9

12

0 8k 16k 32k 64k 128k 220k8

16

24

32

40

48 MATH500

0

2

4

6

8

10
Re

sp
on

se
 L

en
gt

h 
(K

)

Figure 12: Comprehensive evaluation of LLaMA and Gemma models trained with varying amounts of long CoT
data.
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Example 1 Qwen2.5-3B-Instruct

Question
Compute the answer to this arithmetic expression: (14*21*38+32+23+31+3)-11+59+71+60

Response
To solve the arithmetic expression (14× 21× 38+ 32+ 23+ 31+ 3)− 11+ 59+ 71+ 60, we need to follow the
order of operations, which means we should perform the multiplication before the addition and subtraction.
First, calculate the product 14× 21× 38:

14× 21 = 294

294× 38 = 11172

Now substitute this back into the expression:

11172 + 32 + 23 + 31 + 3− 11 + 59 + 71 + 60

Next, add the numbers inside the parentheses:

11172 + 32 + 23 + 31 + 3 = 11261

Now, substitute this back into the expression:

11261− 11 + 59 + 71 + 60

Perform the subtraction and addition from left to right:

11261− 11 = 11250

11250 + 59 = 11309

11309 + 71 = 11380

11380 + 60 = 11440

Thus, the final answer is:

11440

Figure 13: Example from our synthetic arithmetic benchmark. The response is generated by the Qwen2.5-3B-
Instruct model. The model follows a step-by-step approach, applying the order of operations to solve the arithmetic
expression.
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Example 2 Qwen2.5-3B-Instruct 8k

Question
Compute the answer to this arithmetic expression: (14*21*38+32+23+31+3)-11+59+71+60

Response
Okay, let’s see. I need to compute this arithmetic expression: (14*21*38 + 32 + 23 + 31 + 3) - 11 + 59 + 71 + 60.
Hmm, that looks a bit complicated, but let’s break it down step by step.
First, I should handle the operations inside the parentheses before dealing with the numbers outside. The expression
starts with 14 multiplied by 21 multiplied by 38. Let me calculate that first. Multiplying those numbers might take
some time, so maybe I can do them step by step. Let’s see, 14 times 21. Hmm, 14*20 is 280, and 14*1 is 14, so
280+14=294. Then, multiplying that result by 38. Okay, 294*38. Let me break that down too. Maybe 294*30 is
8820, and 294*8 is 2352. Adding those together, 8820+2352. Let me add them step by step: 8820 + 2000 is 10820,
then +352 more is 11172. So, 14*21*38 equals 11172.
Next, the problem adds 32 to that result. So, 11172 + 32. That’s straightforward, 11172 + 30 is 11202, plus 2 more is
11204. Then, it adds 23: 11204 +23. Let’s see, 11204 +20 is 11224, plus 3 is 11227. Next, adding 31: 11227 +31.
11227 +30 is 11257, plus 1 more is 11258. Then, adding 3: 11258 +3. That’s just 11261. So, inside the parentheses
simplifies to 11261.
Now, the expression continues with minus 11: 11261 -11. That’s easy, 11261 -10 is 11251, minus 1 more is 11250.
Then, adding 59: 11250 +59. Let me check that. 11250 +50 is 11290, plus 9 is 11299. Next, adding 71: 11299 +70 is
11369, plus 1 is 11370. Then, adding 60: 11370 +60. That’s 11370 +60. Let me verify. 11370 +60: 11370 +50 is
11320, plus 10 is 11330, plus 10 is 11340. Wait, no, hold on. Wait, 11370 +60: 11370 +60. Let me do this differently.
11370 + 60 is the same as 11370 + 6*10. So, 11370 +60 = 11370 + 6*10. 11370 +60 is 11370 + 60. Alternatively,
11370 + 60 = 11370 + 60. Let me add 11370 + 60. 11370 + 60: 11370 + 50 is 11320, then +10 is 11330. Wait, that
doesn’t seem right. Wait, 11370 +60: 11370 + 60. Let’s think of 11370 as 1137*10. Then 1137*10 +6*10 = 11370
+60. Alternatively, 11370 +60: 11370 + 60. Let’s do 11370 + 60. 11370 + 50 = 11320, then +10 = 11330. Wait, but
11370 +60 is actually 11370 + 6*10. So, 11370 +60 = 11370 + 60. Let me verify with another approach. 11370 +60:
11370 + 60. If I break down 60 into 50 +10, then 11370 +50 = 11320, then +10 = 11330. Alternatively, 11370 +60:
11370 + 60. Let me do 11370 + 60. Let’s count from 11370: adding 10 is 11380, adding another 10 is 11390. Wait,
no. Wait, 11370 +60: 11370 + 60. Let me use column addition.
......
Wait, that’s correct. So, 11370 +60 = 11430. So, in that case, 11370 +60 = 11430. So, 11430 is the sum of 11370 and
60. Okay, so that’s correct. Therefore, 11261 -11 +59 +71 +60 equals 11261 -11 + (59+71+60). Let me compute
59+71 first. 59+71: 50+70 is 120, 9+1 is 10, so 120+10=130. Then, 130+60 is 190. So, 59+71+60=190. Then, 11261
-11 is 11250, plus 190 is 11250 +190. Let me add those. 11250 +190: 11250 +100 is 11350, then +90 is 11350
+90=11340. So, the total is 11340.
Wait, let me check that again. 11261 -11 is 11261 -10=11251, minus 1=11250. Then, 11250 +59=11250+59. Let’s
do 11250 +50=11290, then +9=11299. Then, 11299 +71=11299+70=11369, +1=11370. Then, 11370 +60=11430.
So, total is 11430.
Alternatively, maybe there’s a different way to compute the total without breaking it down so many times. Let me see.
The original expression is (14*21*38 +32+23+31+3) -11+59+71+60. So, the first part is 14*21*38 + (32+23+31+3).
......
So, that’s 11261. Then, 11261 -11=11250, +59=11250+59=11250+50+9=11290+9=11299. Then,
+71=11299+70=11369+1=11370. Then, +60=11370+60=11430. So, total is 11430.
......
Wait, maybe the error is in the initial step of adding the numbers inside the parentheses. Let me check that again. The
first part is (14*21*38 +32 +23 +31 +3). Let’s compute each term:
14*21*38: 14*21=294, 294*38=11172. Correct.
......
So, inside the parentheses is 11261. Then, subtract 11: 11261 -11=11250. Correct.
Then, add 59: 11250 +59=11250 +50 +9=11290 +9=11299. Correct.
Add 71: 11299 +71=11299 +70 +1=11369 +1=11370. Correct.
Add 60: 11370 +60=11370 +60=11430. Correct.
So, the total is 11430. Therefore, the first method is correct. Then, why does the second method give a different
result? Because in the second method, the user added the constants first. ......
Therefore, the total is 11430. Therefore, the second method is incorrect because it misapplies the order of operations.
The user added the constants first, which is not the case in the original expression. The original expression requires
the constants to be added after the product is computed and before the subtraction and additions. Therefore, the
correct total is 11430.
Therefore, the final answer is 11430 .

Figure 14: Example from our synthetic arithmetic benchmark. The response is generated by Qwen2.5-3B-Instruct
finetuned on 8k long CoT data. Despite proposing multiple alternative solutions, the model makes similar calculation
errors, which propagate through subsequent steps and result in compounding mistakes. Incorrect steps are highlighted
in red. The response is truncated as it exceeds 5,000 tokens.
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Example 3 Qwen2.5-3B-Instruct 64k

Question
Compute the answer to this arithmetic expression: (14*21*38+32+23+31+3)-11+59+71+60

Response
Okay, so I need to compute this arithmetic expression: (14*21*38 + 32 + 23 + 31 + 3) - 11 + 59 + 71 + 60. Hmm, let
me break this down step by step. First, I should handle the operations inside the parentheses, which is the product of
14, 21, and 38, then add the other numbers. Let me start with that.
Calculating 14 multiplied by 21. Let me do 14*20 first, which is 280, and then add 14*1, which is 14. So 280 + 14
= 294. Okay, so 14*21 is 294. Now, I need to multiply that result by 38. Hmm, 294*38. Let me break that down.
Maybe 294*40 would be easier, but subtract 294*2. Wait, 294*40 is 11,760 and 294*2 is 588. So 11,760 - 588 =
11,172. So 14*21*38 is 11,172. Let me check that again to be sure. 294*38: 294*30 is 8,820 and 294*8 is 2,352.
Adding those together: 8,820 + 2,352. Let’s see, 8,000 + 2,000 is 10,000, 820 + 352 is 1,172. So 10,000 + 1,172 is
11,172. Yep, that matches. So that part is correct.
Now, add the numbers 32, 23, 31, and 3. Let’s do that step by step. 32 + 23 is 55. Then 55 + 31 is 86. Then 86 + 3 is
89. So the sum inside the parentheses is 11,172 + 89. Let me compute that. 11,172 + 80 is 11,252, then +9 is 11,261.
So the parentheses part equals 11,261.
Now the entire expression is 11,261 - 11 + 59 + 71 + 60. Let me handle the subtraction and addition from left to right.
So first, 11,261 - 11. That’s straightforward: 11,261 - 10 is 11,251, then subtract 1 more is 11,250. So now we have
11,250 + 59 + 71 + 60.
Let me add those numbers. 59 + 71. 50 + 70 is 120, 9 + 1 is 10, so total 130. Then 130 + 60 is 190. So adding 190 to
11,250 gives 11,250 + 190 = 11,440. Let me verify each step again to make sure I didn’t make a mistake.
First, 14*21*38: 14*21 is 294, 294*38 is 11,172. Then adding 32+23+31+3: 32+23=55, 55+31=86, 86+3=89. So
11,172 + 89 = 11,261. Then 11,261 - 11 = 11,250. Then adding 59+71+60: 59+71=130, 130+60=190. 11,250 + 190
= 11,440. Seems correct.
Wait, let me check the addition again. 59 + 71: 59 + 70 is 129, plus 1 is 130. Then 130 + 60 is 190. Correct. Then
11,250 + 190: 11,250 + 100 is 11,350, plus 90 is 11,440. Yes. So the final answer should be 11,440.
But just to be thorough, let me compute the entire expression step by step again, maybe using a different order or
verify the multiplication another way.
Alternatively, maybe I can compute 14*21*38 again. Let’s see, 14*21 is 294, then 294*38. Let’s compute 294*38 as
(300 - 6)*38. So 300*38 = 11,400, 6*38=228. So 11,400 - 228 = 11,172. Same result. Then adding 32+23+31+3:
32+23=55, 55+31=86, 86+3=89. So 11,172 + 89 = 11,261. Then subtract 11: 11,261 - 11 = 11,250. Then add
59,71,60. Let’s do 59 + 71 first: 59 + 71. 59 + 70 is 129, plus 1 is 130. Then 130 + 60 is 190. So 11,250 + 190 is
11,440. All steps check out.
Alternatively, maybe compute the entire expression as written:
(14*21*38 + 32 + 23 + 31 + 3) - 11 + 59 + 71 + 60
Let me compute all the additions first before subtracting:
First, compute the sum inside the parentheses: 14*21*38 + 32 + 23 + 31 + 3.
But we already did that. Then subtract 11, then add 59, 71, 60.
Alternatively, maybe compute each term step by step:
Start with 14*21*38. Let’s compute that again. 14*21 is 294. Then 294*38. Let me compute 294*38 as 294*(30 + 8)
= 294*30 + 294*8. 294*30 is 8,820. 294*8 is 2,352. Adding those gives 8,820 + 2,352 = 11,172. Correct.
Then 32 + 23 + 31 + 3. Let’s add them in pairs: 32 + 31 = 63, 23 + 3 = 26. Then 63 + 26 = 89. Correct. So the
parentheses total 11,172 + 89 = 11,261.
Now subtract 11: 11,261 - 11 = 11,250. Then add 59, 71, 60. Let’s add 59 + 71 first. 59 + 70 is 129, plus 1 is 130.
Then 130 + 60 = 190. Then 11,250 + 190 = 11,440. All steps confirm the same result.
Alternatively, maybe compute the entire expression as written:
14*21*38 + 32 + 23 + 31 + 3 - 11 + 59 + 71 + 60
But that’s the same as before. Alternatively, compute each term in order:
14*21*38 = 11,172
......
+60 = 11,440
Yes, same result. So regardless of the order, the answer is 11,440.
I think that’s solid. Let me just check if I made any arithmetic errors in the final addition. 11,250 + 190. 11,250 +
100 = 11,350. Then +90 is 11,440. Correct.
Alternatively, 190 is 100 + 90. 11,250 + 100 is 11,350. 11,350 + 90 is 11,440. Yep.
So I think that’s the correct answer. 11,440. So the final answer is 11440 .

**Final Answer** 11440

Figure 15: Example from our synthetic arithmetic benchmark. Response is generated by Qwen2.5-3B-Instruct
finetuned on 64k long CoT data. The model frequently engages in verification steps and occasionally proposes
alternative solutions. Verification steps and alternative solution paths are highlighted in blue.
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