
Unifying physical systems’ inductive biases in neural ODE using dynamics
constraints

Yi Heng Lim 1 Muhammad Firmansyah Kasim 1

Abstract

Conservation of energy is at the core of many
physical phenomena and dynamical systems.
There have been a significant number of works in
the past few years aimed at predicting the trajec-
tory of motion of dynamical systems using neural
networks while adhering to the law of conserva-
tion of energy. Most of these works are inspired
by classical mechanics such as Hamiltonian and
Lagrangian mechanics as well as Neural Ordinary
Differential Equations. While these works have
been shown to work well in specific domains re-
spectively, there is a lack of a unifying method
that is more generally applicable without requir-
ing significant changes to the neural network ar-
chitectures. In this work, we aim to address this
issue by providing a simple method that could be
applied to not just energy-conserving systems, but
also dissipative systems, by including a different
inductive bias in different cases in the form of
a regularisation term in the loss function. The
proposed method does not require changing the
neural network architecture and could form the
basis to validate a novel idea, therefore showing
promises to accelerate research in this direction.

1. Introduction
Learning systems’ dynamics with neural networks from data
is one of the promising applications of deep neural networks
in physical sciences. It has been shown that given enough
data, neural networks can uncover the hidden dynamics of
physical systems (Chen et al., 2018; Greydanus et al., 2019;
Cranmer et al., 2020; Chen et al., 2019) and can be used to
simulate the systems with new conditions (Greydanus and
Sosanya, 2022).

The most straightforward way in learning a system’s dy-
namics is by training a neural network to learn the system’s

1Machine Discovery, Oxford, U.K.. Correspondence to: Yi
Heng Lim <yi.heng@machine-discovery.com>, Muhammad Fir-
mansyah Kasim <muhammad@machine-discovery.com>.

2nd AI4Science Workshop at the 39 th International Conference on
Machine Learning (ICML), 2022. Copyright 2022 by the author(s).

dynamics given the states at the time, s(t), i.e.

ṡ =
ds

dt
= f(s(t)). (1)

Once the neural network is trained, the system’s behaviour
can be simulated by solving the equation above using or-
dinary differential equations solver (ODE). This method
is typically called neural ordinary differential equations
(NODE) (Chen et al., 2018) in the literature.

Despite its simplicity, NODE has a difficulty in incorporat-
ing inductive biases of systems into training. For example, if
a system is known to conserve energy, the NODE approach
above typically results in growing or shrinking of the energy
over a long period of time. A popular workaround is to learn
the Hamiltonian (Greydanus et al., 2019; Toth et al., 2019;
Sanchez-Gonzalez et al., 2019) or Lagrangian (Cranmer
et al., 2020) of the energy-conserving system with a neural
network, then get the dynamics as the derivatives of the
learned quantity. Although this approach works in learning
energy-conserving systems, it shows that it takes a signifi-
cant effort to design a special neural network architecture to
incorporate a specific inductive bias.

Another example is incorporating a bias if the system is
known to be dissipative or losing energy. Like in the energy-
conserving case, a lot of efforts go into designing spe-
cial neural network architectures or choosing the optimal
weights to ensure stability (Tuor et al., 2020; Xiong et al.,
2021). Although those methods work well in getting sta-
ble dynamics, changing neural network architectures could
potentially reduce the expressiveness of the neural networks.

In this paper, we show how to incorporate various induc-
tive biases in learning systems’ dynamics by having various
constraints on the dynamics function, including Hamilto-
nian systems and dissipative systems, without changing the
architecture of the neural networks. Where necessary, we
also include Invertible Neural Network to transform the
coordinate system of the input states, and enforce the induc-
tive biases in the transformed coordinate system. Our code
for this paper is available at https://github.com/machine-
discovery/research/tree/master/constr.



Unifying physical systems’ inductive biases in neural ODE using dynamics constraints

2. Related works
Motivated by Hamiltonian mechanics, Hamiltonian Neural
Network (HNN) was proposed in (Greydanus et al., 2019).
HNN takes a set of positions and their corresponding gen-
eral momenta as input, and models a scalar function called
the Hamiltonian. The derivatives of the learned Hamil-
tonian with respect to the inputs are then computed and
multiplied by a symplectic matrix, giving the learned state
derivatives. Since the symplectic matrix is manually intro-
duced, HNN has a nice property of observing symplectic
structure through time, thus conserving energy. In practice,
however, the applicability of HNN is limited by the fact
that it requires input data to be prepared in canonical form,
which is usually difficult to obtain. There have been a lot
of follow-up works that build on the foundation of HNN
and expand it to different settings including dissipative sys-
tems (Greydanus and Sosanya, 2022; Zhong et al., 2020),
generative networks (Toth et al., 2019) and graph networks
(Sanchez-Gonzalez et al., 2019), while others try to improve
HNN by simplifying it (Finzi et al., 2020; Gruver et al.,
2022).

To tackle the shortcoming of HNN, another line of work
based on Lagrangian mechanics, called Lagrangian Neural
Network (LNN), was proposed in (Cranmer et al., 2020).
As the name suggests, the Lagrangian is modelled by a
neural network, and the expression to compute the second-
order state derivatives could be obtained by algebraically
rearranging the Euler-Lagrange equation. With the intro-
duction of Lagrangian prior in the neural network, LNN
manages to conserve the total energy of a system without
limiting the states to be strictly canonical. Since LNN does
not assume specific coordinate system, it can be applied to
a wider range of problems where HNN fails. However, to
obtain the second-order state derivatives, the inverse Hes-
sian of the neural network must be computed, making LNN
computationally expensive, susceptible to ill-conditioning,
and sensitive to a poor choice of activation function such as
ReLU.

Neural Symplectic Form (NSF) (Chen et al., 2021) exploits
the coordinate-free formulation of the Hamiltonian with
symplectic 2-form. To speed up the computation, an ele-
gant method to model the symplectic 2-form as an exterior
derivative of a parameterised 1-form was proposed. How-
ever, there are a few drawbacks in this work. Firstly, without
a good understanding of exterior calculus and differential
geometry, it could be difficult to understand the motivation
behind the work. Secondly, it is expensive to compute the
inverse of the learnable skew-symmetric matrix which re-
quires O(N3) operations, where 2N is the number of state
variables. Thirdly, the training of NSF is unstable and tends
to plateau very quickly, see Appendix A.1. To the best of
our knowledge, the latter has not been addressed in any

work to date.

Invertible Neural Networks (INNs) are neural networks that
are elegantly designed in such a way that the inverses of
the neural networks are always available with just a forward
pass. They have found wide adoption in flow-based gener-
ative models and are typically used to map data to a latent
space with a simpler distribution. (Dinh et al., 2014; 2016)
propose a simple building block called an affine coupling
layer whose inverse is easily attainable, and an invertible
neural network is obtained by stacking a few of these affine
coupling layers in a sequence. In each affine coupling layer,
the inputs are permuted since the INNs are not permutation
invariant. (Kingma and Dhariwal, 2018) further improves
the model by introducing a learnable 1× 1 invertible convo-
lution to replace the fixed permutation of channel dimension
used in (Dinh et al., 2016). In connection with NODE, (Zhi
et al., 2021) leverages INNs to map the underlying vector
field of an ODE system to a base vector field.

3. Methods
Consider a system with states s ∈ Rns , where its states’
dynamics depend on the states at the given time, as written
in equation 1. The function f from equation 1 can be rep-
resented with an ordinary neural network. The training can
then be done by minimizing the loss function,

L =
∥∥∥ˆ̇s− ṡ

∥∥∥2 + wcC (ṡ) . (2)

The term ˆ̇s is the time-derivative of the observed states s
from the experimental data, ṡ is the computed states’ dy-
namics from equation 1, wc is the constraint’s weight, and
C(·) is the constraint applied to the dynamics function, ṡ.
The last term, i.e. the constraint, is the term that can be
adjusted based on the inductive bias of the system.

3.1. Hamiltonian systems

The states’ dynamics of Hamiltonian systems can be written
as (Greydanus et al., 2019; Chen et al., 2021)

ṡ = J∇H(s) where J =

(
0 I
−I 0

)
(3)

where H is the Hamiltonian of the system (typically the en-
ergy in some cases) and ∇H is the gradient of the Hamilto-
nian with respect to s. The dynamics in the equation above
preserve the quantity H , i.e. dH/dt = 0, which makes
it suitable to simulate systems with constant Hamiltonian.
If the dynamics are learned using Hamiltonian neural net-
work (Greydanus et al., 2019), the dynamics will be equal
to equation 3. The Jacobian in the Hamiltonian system can
be written as ∂ṡ/∂s = J(∂2H/∂s∂s). As the Hessian of
the Hamiltonian (∂2H/∂s∂s) is a symmetric matrix, the
Jacobian of a Hamiltonian system is a Hamiltonian matrix.



Unifying physical systems’ inductive biases in neural ODE using dynamics constraints

Being a Hamiltonian matrix, the Jacobian of the dynamics
in equation 3 has special properties. One of them is having
zero trace (∇ · ṡ = 0), which means that there is no source
or sink in the vector field of ṡ. Another property is near
the local minimum of H(s) (if any), the eigenvalues of
the Jacobian ∂ṡ/∂s are pure-imaginary which guarantees
stability (see appendix A.2 for the derivations).

In order to get the dynamics as in equation 3 by learning
the dynamics ṡ directly, it has to be constrained so that the
matrix J−1(∂ṡ/∂s) is symmetric. Therefore, we can apply
the constraint

CH (ṡ) =

∥∥∥∥∥JT

(
∂ṡ

∂s

)
−
(
∂ṡ

∂s

)T

J

∥∥∥∥∥
2

F

, (4)

where ∥·∥F is the Frobenius norm to get the matrix
J−1(∂ṡ/∂s) as symmetric as possible. Note that J−1 =
JT .

Theorem 3.1. The dynamics of the states, ṡ ∈ Rn, follow
the form in equation 3 for a function H(s) : Rn → R if and
only if the matrix J−1(∂ṡ/∂s) is symmetric.

Proof. If the dynamics ṡ follow equation 3, then the matrix
J−1(∂ṡ/∂s) represents the Hessian of the Hamiltonian H ,
which is symmetric. To prove the converse, note that the
matrix J−1(∂ṡ/∂s) = (∂ż/∂s) can be a Jacobian matrix of
p = (−ṡl, ṡf ) where ṡf and ṡl are the first half and the last
half elements of ṡ. If the matrix (∂p/∂s) is a symmetric Ja-
cobian matrix, then the expression below must be evaluated
to zero,

∑
i>j

(
∂pi

∂sj
−

∂pj

∂si

)
dsi ∧ dsj =

∑
i,j

(
∂pi

∂sj

)
dsi ∧ dsj = df = 0,

where f =
∑

i pidsi. As df = 0, by Poincaré’s lemma,
there exists an α such that dα = f . In other words, if the
matrix (∂p/∂s) is a symmetric Jacobian matrix, then there
exists an α such that its Hessian is equal to the Jacobian
matrix, i.e. (∂2α/∂s∂s) = (∂p/∂s). This α corresponds
to the Hamiltonian H in equation 3.

3.2. Coordinate-transformed Hamiltonian systems

One of the drawbacks of Hamiltonian systems is that they
have to use the right coordinates for the states, usually
known as the canonical coordinates. In simple cases like
simple harmonic motion of a mass-spring system, the canon-
ical coordinates can easily be found (i.e. they are the po-
sition and momentum of the mass). However, in more
complicated cases, finding the canonical coordinates for
Hamiltonian sometimes requires expertise and analytical
trial-and-error.

Let us denote the canonical states’ coordinates as z and the
observed states’ coordinates as s. As the canonical states’

coordinates z are not usually known, we can find them using
a learnable invertible transformation,

z = g(s) and s = g−1(z), (5)

then learn the dynamics of z with a neural network, i.e. ż =
fz(z, t). This way, the dynamics of s can be computed by
ṡ = (∂g−1/∂z)ż. The invertible transformation above can
be implemented using an invertible neural network (Kingma
and Dhariwal, 2018). With the invertible transformation
between s and z, the dynamics of s in this case can be
written as,

ṡ = G−1(s)JG−T (s)∇H ′(s), (6)

where H ′(s) = H (g(s)), and matrix G(s) = ∂g/∂s is
the Jacobian of the transformation function from s to z
from equation 5. It can also be shown that the dynamics in
equation 6 preserve the quantity of H ′.

Theorem 3.2. For ṡ following the equation 6, the quantity of
H ′(s) are constant throughout the time, i.e. dH ′(s)/dt = 0.

Proof. Denote the matrix D as D = G−1JG−T , where
the matrix D is a skew-symmetric, because

D
T

= (G
−1

JG
−T

)
T

= G
−1

J
T
G

−T
= −(G

−1
JG

−T
) = −D.

The rate of change of H ′ can be written as dH ′(s)/dt =
uT ṡ = uTDu, where u = ∇H ′(s). As the quantity above
is a scalar, it must be equal to its transpose. Thus,

uTDu =
[
uTDu

]T
= uTDTu = −uTDu = 0

as DT = −D because of its skew-symmetricity. Therefore,
dH ′(s)/dt = 0.

As this system is similar to the Hamiltonian system in the
previous subsection, we can apply the constraint below,

CH′(ṡ) = CH(ż) (7)

where CH(·) is the constraint from equation 4.

3.3. Dissipative systems

Dissipative systems have a characteristic that their dynam-
ics are asymptotically stable due to the frictions applied to
the systems. In terms of ODE dynamics, this asymptotic
stablility can be achieved by having the real parts of all
eigenvalues of the Jacobian ∂ṡ/∂s to be negative. There-
fore, the following constraint can be applied to enforce the
condition,

CD(ṡ) =
∑
i

∣∣∣∣max

{
0,Re

[
λi

(
∂ṡ

∂s

)]
− ai

}∣∣∣∣2 , (8)



Unifying physical systems’ inductive biases in neural ODE using dynamics constraints

where λi(·)’s are the eigenvalues of the Jacobian ∂ṡ/∂s,
ai’s are the assumed upper bounds of the real parts of the
eigenvalues. The upper bounds ai’s are sometimes useful
in making sure that the eigenvalues are far from 0, further
ensuring the stability.

4. Experiments
In order to see if the methods described above work, we
tested them on various physical systems.

Task 1 - Ideal mass-spring system. The first case is an
ideal mass-spring system. The Hamiltonian canonical state
of this system is (x,mẋ)T where m is the mass and x is
the displacement of the mass from its equilibrium position.
The acceleration is given by −(k/m)ẍ. In our experiments,
we set m = 1 and the spring constant k = 1, and the
canonical state is simply (x, ẋ)T . We generated the data by
randomly initialising the state from a normal distribution,
and added white noise with σ = 0.1 to the state trajectory.
For training, we generated 250 trajectories, with 30 samples
in each trajectory equally spaced within t = [0, 2π].

Task 2 - Ideal rod-pendulum. The second case is an ideal
rod-pendulum. The Hamiltonian canonical state of this
system is (θ,mθ̇)T where m is the mass and θ is the an-
gular displacement of the mass from its equilibrium posi-
tion. In our experiment, we set m = 1, and the canonical
state becomes (x, ẋ)T . The angular acceleration is given
by θ̈ = −(g/l) sin θ with the value of g and l set to 3 and
1 respectively. Similar to Task 1, we generated the data by
randomly initialising the state from a normal distribution,
and added white noise with σ = 0.1 to the state trajectory.
For training, again, we generated 250 trajectories, with 30
samples in each trajectory equally spaced within t = [0, 2π].
This task is slightly more complicated than Task 1 since it
is a non-linear dynamical system.

Task 3 - Ideal double rod-pendulum. The third case is
an ideal double rod-pendulum. We chose a general state
of (θ1, θ2, θ̇1, θ̇2)T since the Hamiltonian canonical state
of this problem is non-trivial to obtain. Again, we set the
the two masses m1 = m2 = 1 and the two rod lengths
l1 = l2 = 1, and generated the data by randomly initialising
the state from a normal distribution and obtained the trajec-
tory. With the aforementioned parameters, the two angular
accelerations are given by

θ̈1 =
3 sin θ1 − sin(θ1 − 2θ2)(1 + 2(θ̇22 + θ̇21) cos(θ1 − θ2))

3− cos(2θ1 − 2θ2)

θ̈2 =
2 sin(θ1 − θ2)(2θ̇

2
1 − 2 cos(θ1)θ̇

2
2 cos(θ1 − θ2))

3− cos(2θ1 − 2θ2)

Since this is a chaotic dynamical system, we omit the ad-
dition of noise to the trajectory to avoid introducing irre-
ducible aleatoric uncertainty, and generated more data for
training: 2000 trajectories, with 300 samples in each trajec-
tory equally spaced within t = [0, 2π].

Task 4 - Damped single rod-pendulum with redundant
states. In this case the pendulum is damped with coefficient
α to model a dissipative system. The angular acceleration is
given by θ̈ = −(g/l) sin θ − αθ̇ with m = l = g = 1 and
α = 0.05. The observed states are (x, y, ẋ, ẏ)T where x and
y are respectively the horizontal and vertical positions from
the pivot, i.e. x = l sin θ and y = −l cos θ. These states
are selected instead of (θ, θ̇) to illustrate a system where the
observed states are redundant. As this is a dissipative system,
we use the constraint from equation 8 for the training. For
training, we generated 250 trajectories, with 30 samples in
each trajectory equally spaced within t = [0, 2π].

4.1. Training details

For Task 1 and Task 2, we define our method as being a
simple Neural Ordinary Differential Equation (NODE), but
with constraint 4 added to the loss function. For Task 3,
since the input states were not in canonical form, we added
a component of Invertible Neural Network (INN), with the
FrEIA1 package, based on the invertible architecture defined
in (Kingma and Dhariwal, 2018) to transform the state coor-
dinate system in our method, and applied constraint 7. For
Task 4, since it is a dissipative system, we added constraint
8 to the loss function.

In the first three tasks, we compared our method with base-
line NODE, HNN, LNN and NSF. For Task 4, since it is
well established that HNN, LNN and NSF would not work
in dissipative systems, we only compared our method to
baseline NODE. We trained all models in all tasks with
Adam optimiser (Kingma and Ba, 2014) and the same learn-
ing rate of 10−4. We constructed multi-layer perceptrons
(MLPs) for all models, with 3 layers of 200 hidden units
in each case. INN with 8 blocks was used where needed,
with each block having 2 layers of 100 hidden units. We
chose softplus as the activation function for all models as it
worked well in all cases.

In our experiments, LNN and NSF were difficult to train
and training instabilities were often incurred by these two
models. The training instabilities of LNN were pointed out
in (Chen et al., 2021) and we showed the instabilities of NSF
in Appendix A.1. In those cases, we ran the experiments sev-
eral times to obtain the best training results so that we could
compare our method to the best trained models. We found
that using a smaller batch size to increase the number of
training steps helped in reducing those instabilities. We note
that this is a weakness of LNN and NSF as the instabilities
might make training difficult in practical applications.

For our method, we set the coefficient of the constraint as
large as possible without compromising the loss of time
derivatives of states. In Task 1, 2, 3 and 4 respectively, we

1https://github.com/VLL-HD/FrEIA



Unifying physical systems’ inductive biases in neural ODE using dynamics constraints

set the coefficient to be 105, 104, 103 and 102. We used a
batch size of 32 for Task 1, Task 2 and Task 4, and a larger
batch size of 1280 for Task 3 since there were more data.
We ran all experiments for 1000 epochs on a single NVIDIA
Tesla T4 GPU.

We tested each model on 100 test cases. In each test case,
we rolled out the states from time 0 to 100 by collecting
1000 equally spaced samples in between, and logged the
RMSE of the energy deviations. We recorded the median,
2.5th percentile and 97.5th percentile of the RMSEs since
there are outliers in some of the test results.

5. Results
Overall, our method performed consistently well and ranked
in the top two methods in all tasks in terms of energy drift
from the ground truth. The other methods returned mixed
results, performing well in some tasks but not the others.
While NSF performed reasonably well in all tasks, we show
in Appendix A.1 that training instabilities are often encoun-
tered in NSF.

Our method performed the best in Task 1 and was on par
with HNN in Task 2 which logged the best performance.
This is consistent with our expectation since the input coor-
dinates are in canonical form. It is worth noting that even
though the symplectic structure is enforced inherently in
the HNN architecture while our method employed a soft
constraint, our method still compared competitively with
HNN in the first two tasks. More importantly, as can be
seen in Figure 1(a) and (b), similar to the other known
energy-conserving models, the periodic drift in energy of
our model oscillates around a constant offset from the x-axis
throughout the time span. While this periodic drift is mostly
attributed to the state prediction error due to the white noise
added to the training data, the constant offset from the x-
axis means that the average perceived energy in the system
is conserved.

A more interesting point to note is that our method out-
performed HNN in Task 1, even though in both models the
symplectic structure is preserved. We suspect this is because
the inherent symplecticity in HNN acts as a double-edged
sword: although it is good at preserving the symplecticity, it
reduces the flexibility of the model in some cases especially
in the presence of noise.

Task 3 is the most difficult system to model among the first
three tasks since the motion of a double-pendulum is chaotic
and the input coordinates are not in canonical form. Table 1
shows that our method performed the best in terms of energy
drift of the predicted system. This is further corroborated
by Figure 1(c) where again, the energy drift is at a constant
periodic offset from the x-axis.

In Task 4, our method performed significantly better than
vanilla NODE. It is interesting to note that while NODE
failed spectacularly in the edge cases as indicated by the
large RMSE upper bound in terms of energy drift, our
method worked reasonably well by just including a sim-
ple dissipative bias in the loss function. Figure 1(d) shows
one of the worse predictions that NODE returned, and the
corresponding states are shown in Figure 2 and Figure 3.

The states in Task 4 are redundant as there are 4 states used
while there are only 2 true states. This makes the dynamics
of the pendulum lie on a low dimensional manifold in a
4-dimensional space. Without the constraint, the error in
learning the dynamics by NODE could send the states out-
side the manifold where no training data exists, thus making
the dynamics unstable. On the other hand, the constraint
in equation 8 makes sure the dynamics are stable around
some stationary points which typically lie on the manifold.
Therefore, a slight error in learning the dynamics in our case
can be corrected by attracting it back to the stationary point
on the manifold. This is an important example of ensuring
the stability of a novel system since the true number of states
are usually unknown.

6. Pixel pendulum
6.1. Energy-conserving pendulum

Similar to (Greydanus et al., 2019) and (Chen et al., 2021),
we tested our model with pixel data. This resembles our
model in Task 3 where INN is used to transform the state
coordinates, except that in this case we seek to encode image
data in a latent coordinate system. We used the same training
hyperparameters as the previous experiments, except that a
regularisation weight of 500 is used here for our model and
160 videos of 100 frames equally spaced within [0, 100]
each were used as the training data. We also found that
ReLU activation function worked better for the autoencoder.
Figure 5 shows the predictions for t = [0, 100] using NODE,
HNN, and our method while Figure 4 shows the phase plots
in the encoded latent space. The phase plot of NODE, as
expected, spirals inwards indicating a drift in the symplectic
structure, and Figure 5 shows that its predicted pendulum
dynamics are barely moving due to the energy drift. On the
other hand, HNN and our method performed similarly well
with the predicted pendulum dynamics closely resemble the
ground truth. The phase plots of both HNN and our method
are perfect circles, meaning there is no sink or source in the
latent vector field and the symplectic structure is preserved.
This is, however, a simple proof of concept with a vanilla
autoencoder. We note that going forward, we could improve
the results by using a better autoencoder or even a pretrained
model.



Unifying physical systems’ inductive biases in neural ODE using dynamics constraints

Case Task 1 Task 2 Task 3 Task 4

NODE 0.086+0.095
−0.077 ∞ ∞ 0.18+718.10

−0.059

HNN 0.0065+0.013
−0.0045 0.015+0.066

−0.012 24.44+8.69
−11.40 N/A

LNN 0.0060+0.021
−0.0046 0.032+0.10

−0.022 7.92+124.44
−7.62 N/A

NSF 0.014+0.30
−0.0093 0.027+0.067

−0.016 4.29+15.07
−3.05 N/A

Our method 0.0017+0.0069
−0.0012 0.024+0.068

−0.013 4.03+10.52
−3.16 0.12+0.39

−0.012

Table 1: RMSE of the energy deviations of 100 test trajectories. The numbers shown are mean ± standard deviation. Since
there are outliers in some of the results, the median, 2.5th and 97.5th of the RMSE in each case are logged. The best result
in each case, judging by the 97.5th of the RMSE, is bolded, and the second best result is highlighted in blue. ∞ indicates
numerical overflow.

6.2. Damped pendulum

To test our model for dissipative systems with image data,
we modified the code from OpenAI pendulum gym (Brock-
man et al., 2016) to include a damping factor of 0.05 to the
pendulum motion. In this case, we set the number of latent
states to 20 to mirror the fact that the number of states in a
system is usually unknown, and added constraint 8 weighted
by 500 to the vanilla NODE in our method. In Figure 6,
the predictions of NODE are noisy due to large errors in
latent space. As explained in Task 4, these errors are due
to the predicted states being outside of the 2D manifold.
In contrast, with a simple constraint, we successfully re-
duced these errors and removed the noise from the pixel
predictions.

7. Conclusions
In this paper, we proposed a simple method to enforce induc-
tive bias in a vanilla Neural Ordinary Differential Equation
(NODE) to model both energy-conserving and dissipative
systems. This was conducted by incorporating a regularisa-
tion term in the loss function: in energy-conserving systems
the Hamiltonian symplectic structure is enforced whereas in
dissipative systems the state vector fields are made to spiral
towards a sink.

References
Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K

Duvenaud. Neural ordinary differential equations. Advances in
neural information processing systems, 31, 2018.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski. Hamilto-
nian neural networks. Advances in Neural Information Process-
ing Systems, 32, 2019.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter Battaglia,
David Spergel, and Shirley Ho. Lagrangian neural networks.
arXiv preprint arXiv:2003.04630, 2020.

Zhengdao Chen, Jianyu Zhang, Martin Arjovsky, and Léon Bot-
tou. Symplectic recurrent neural networks. In International
Conference on Learning Representations, 2019.

Sam Greydanus and Andrew Sosanya. Dissipative hamiltonian neu-
ral networks: Learning dissipative and conservative dynamics
separately. arXiv preprint arXiv:2201.10085, 2022.

Peter Toth, Danilo Jimenez Rezende, Andrew Jaegle, Sébastien
Racanière, Aleksandar Botev, and Irina Higgins. Hamiltonian
generative networks. arXiv preprint arXiv:1909.13789, 2019.

Alvaro Sanchez-Gonzalez, Victor Bapst, Kyle Cranmer, and Peter
Battaglia. Hamiltonian graph networks with ode integrators.
arXiv preprint arXiv:1909.12790, 2019.

Aaron Tuor, Jan Drgona, and Draguna Vrabie. Constrained neural
ordinary differential equations with stability guarantees. arXiv
preprint arXiv:2004.10883, 2020.

Jie Xiong, Alan S Yang, Maxim Raginsky, and Elyse Rosenbaum.
Neural networks for transient modeling of circuits. In 2021
ACM/IEEE 3rd Workshop on Machine Learning for CAD (ML-
CAD), pages 1–7. IEEE, 2021.

Yaofeng Desmond Zhong, Biswadip Dey, and Amit Chakraborty.
Dissipative symoden: Encoding hamiltonian dynamics with
dissipation and control into deep learning. arXiv preprint
arXiv:2002.08860, 2020.

Marc Finzi, Ke Alexander Wang, and Andrew G Wilson. Simpli-
fying hamiltonian and lagrangian neural networks via explicit
constraints. Advances in neural information processing systems,
33:13880–13889, 2020.

Nate Gruver, Marc Finzi, Samuel Stanton, and Andrew Gordon
Wilson. Deconstructing the inductive biases of hamiltonian
neural networks. arXiv preprint arXiv:2202.04836, 2022.

Yuhan Chen, Takashi Matsubara, and Takaharu Yaguchi. Neural
symplectic form: Learning hamiltonian equations on general
coordinate systems. Advances in Neural Information Processing
Systems, 34, 2021.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-
linear independent components estimation. arXiv preprint
arXiv:1410.8516, 2014.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density
estimation using real nvp. arXiv preprint arXiv:1605.08803,
2016.

Durk P Kingma and Prafulla Dhariwal. Glow: Generative flow
with invertible 1x1 convolutions. Advances in neural informa-
tion processing systems, 31, 2018.



Unifying physical systems’ inductive biases in neural ODE using dynamics constraints

(a) (b)

(c)

(d)

Figure 1: The energy drift from ground truth in every model
for (a) mass-spring (Task 1), (b) single-pendulum (Task 2),
(c) double-pendulum (Task 3) and (d) damped-pendulum
(Task 4). All test cases were taken from the same distribu-
tion as the training data, except for (c) where the test case
was sampled from si ∼ U(−0.5, 0.5),∀i for better illustra-
tion.

(a)

(b)

(c)

(d)

Figure 2: The trajectories of the four states of damped-
pendulum in Task 4. This sample is picked randomly from
one of the edge cases in NODE. (a) shows the trajectory of
sin θ, (b) shows the trajectory of − cos θ while (c) and (d)
are the trajectories of the horizontal and vertical velocities
respectively.



Unifying physical systems’ inductive biases in neural ODE using dynamics constraints

(a)

(b)

Figure 3: The trajectories of θ and θ̇ of damped-pendulum
in Task 4, transformed from Figure 2.

(a) (b)

(c)

Figure 4: Phase plot of the learned dynamics in the encoded
latent space. Trained (a) vanilla NODE, (b) HNN and (c)
our method.

Figure 5: Predictions of the pendulum position with image
data from time 0 to 100.

Figure 6: Predictions of the damped pendulum position with
image data from time 0 to 100.

Weiming Zhi, Tin Lai, Lionel Ott, Edwin V Bonilla, and Fabio
Ramos. Learning odes via diffeomorphisms for fast and robust
integration. arXiv preprint arXiv:2107.01650, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schnei-
der, John Schulman, Jie Tang, and Wojciech Zaremba. Openai
gym, 2016.



Unifying physical systems’ inductive biases in neural ODE using dynamics constraints

(a) (b)

(c)

Figure 7: (a) Training losses of 10 identical NSF runs, (b)
Validation losses of 10 identical runs, and (c) Comparison
of energy conservation between failed and successful NSF
runs.

A. Appendix
A.1. NSF training instability

To show the training instability often incurred by NSF, we
repeated the training of Task 2 with NSF 10 times using
the same data and plotted the losses of each training, see
Figure 7. We used a single batch that included all data, and a
learning rate of 10−3 here. We note that this problem could
be mitigated, but not removed, by using a smaller batch
size, which we did in the main paper. We also note that
this instability is common to all tasks. The early plateaus
in some of the runs are not due to the expressivity of the
neural networks, since the exact same configuration was
used in all runs. Even though NSF, when converged, gives
relatively good performance in terms of energy conserva-
tion, this training instability is unacceptable in any practical
application.

A.2. Stability of Hamiltonian near a local minimum

The dynamics of Hamiltonian system in equation 3 can be
written as

ṡ = J∇H(s) where J =

(
0 I
−I 0

)
. (9)

The Jacobian matrix of the dynamics ∂ṡ/∂s is then

∂ṡ

∂s
= JB where B =

∂2H(s)

∂s∂s
(10)

where B = ∂2H(s)/∂s∂s is the symmetric Hessian matrix
of the Hamiltonian. Near a local minimum of H(s), the
Hessian matrix B is a positive definite matrix. With posi-
tive definitive property of B, there exists the matrix square
root and its inverse, i.e., B1/2 and B−1/2 which are also
symmetric matrices. Therefore, the matrix JB is similar to
B1/2JB1/2 as

B1/2JB1/2 = B1/2(JB)B−1/2. (11)

As J is a skew-symmetric matrix and B1/2 is a symmetric
matrix, the matrix B1/2JB1/2 is a skew-symmetric matrix.

Being a skew-symmetric matrix, the eigenvalues of
B1/2JB1/2 are pure imaginary. Therefore, from the simi-
larity, we can conclude that the eigenvalues of JB are also
pure imaginary near the local minimum of H(s).


	Introduction
	Related works
	Methods
	Hamiltonian systems
	Coordinate-transformed Hamiltonian systems
	Dissipative systems

	Experiments
	Training details

	Results
	Pixel pendulum
	Energy-conserving pendulum
	Damped pendulum

	Conclusions
	Appendix
	NSF training instability
	Stability of Hamiltonian near a local minimum


