
Analyzing Similarity Metrics for Data Selection for
Language Model Pretraining

Dylan Sam∗

Carnegie Mellon University
Ayan Chakrabarti
Google Research

Afshin Rostamizadeh
Google Research

Srikumar Ramalingam
Google Research

Gui Citovsky
Google Research

Sanjiv Kumar
Google Research

Abstract

Measuring similarity between training examples is critical for curating high-quality
and diverse pretraining datasets for language models. However, similarity is
typically computed with a generic off-the-shelf embedding model that has been
trained for tasks such as retrieval. Whether these embedding-based similarity
metrics are well-suited for pretraining data selection remains largely unexplored.
In this paper, we propose a new framework to assess the suitability of a similarity
metric specifically for data curation in language model pretraining applications.
Our framework’s first evaluation criterion captures how well distances reflect
generalization in pretraining loss between different training examples. Next, we use
each embedding model to guide a standard diversity-based data curation algorithm
and measure its utility by pretraining a language model on the selected data and
evaluating downstream task performance. Finally, we evaluate the capabilities of
embeddings to distinguish between examples from different data sources. With
these evaluations, we demonstrate that standard off-the-shelf embedding models
are not well-suited for the pretraining data curation setting, underperforming even
remarkably simple embeddings that are extracted from models trained on the same
pretraining corpus. Our experiments are performed on the Pile, for pretraining
a 1.7B parameter language model on 200B tokens. We believe our analysis and
evaluation framework serves as a foundation for the future design of embeddings
that specifically reason about similarity in pretraining datasets.

1 Introduction

The recent success of language models [Brown et al., 2020, Chowdhery et al., 2023] is in no small
part due to pretraining on large and diverse text corpora scraped from a variety of sources [Raffel
et al., 2020, Gao et al., 2020, Penedo et al., 2024]. Researchers have explored a variety of approaches
to assemble effective pretraining sets, typically by selecting a high-quality and diverse subset from a
larger corpus of examples scraped from multiple data sources. These data curation approaches have
shown promising results by improving example quality and reducing redundancy in pretraining sets.
Many of these methods use notions of similarity between examples. Similarity of an example to
text from known high-quality sources (such as Wikipedia) has been used as a proxy for the quality
of that example [Gunasekar et al., 2023, Penedo et al., 2024]. Meanwhile, methods focused on
diversification [Abbas et al., 2023, Tirumala et al., 2023] make direct use of similarity metrics to
identify and remove redundant examples.

In this context, similarity between training examples has often been measured in terms of distances
in an embedding space. Many approaches have typically used generic embeddings for this purpose
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“Your for loop has a small error. it is a ; for (i = 0; i < 
electionVotes.length > i++); So the for loop effectively 
does nothing and just increments i to 5 and access the 
elements at index 5 in the 2 arrays which would throw the 
exception that you are seeing. Q: Copie, how do I 
remove it? I copied my site to a new virtual server with 
Softlayer but when I try to log to my new development…”

Loss = 0.81

Distance = 0.16

Distance = 0.55 Distance = 0.56

“Is there any solution in PERL to do this? Meanwhile, my 
df had 10,000 columns and I need my output be like a 
csv.dataframe.and I need todo it in linux 
A: The following program will do what you want. It should 
work with your system Perl and does not require 
additional modules. use strict; use warnings; my 
%headings; # we keep track of all headings…”

Loss = 0.79

“Clinical Results and Functional Outcomes in Adult 
Patients After Revision Surgery for Spinal Deformity 
Correction: Patients Younger than 65 Years Versus 65 
Years and Older. Retrospective comparison. To 
compare complications and radiographic and 
functional outcomes of patients undergoing…”

Loss = 1.94

“Hepatic metabolism and biliary excretion of Taxol in 
rats and humans. To date there have been limited 
studies of the metabolism and disposition of Taxol in 
animals and humans. Renal disposition of 
unmetabolized Taxol has been documented to 
account for a maximum of 5% to 10% of an…”

Loss = 2.01

“Sir Richard Knightley KB (1617–1661), of Fawsley in 
Northamptonshire, was an English Member of 
Parliament (MP). A member of Gray's Inn, Knightley 
was a member of a prominent…”

Loss = 1.70

“County lists him as a "painter" by trade. Almost 
nothing else is known about Zeliff, although his name 
appears on a list of Commissioners of Deeds for 
Morris County in 1892, and in a handful of legal 
records ...”

Loss: 1.77

Distance = 0.11

Distance = 0.14

Distance = 0.80 Distance = 0.79

Figure 1: A visualization of the correlation between pretraining loss and embedding distance. Each
row shows a pair of examples close in embedding space (from the same K-means cluster), with
examples in different rows being far from each other (from different clusters). We find that close
pairs of examples tend to have similar pretraining losses, while there is a greater variation in losses
across clusters. Close example pairs are "thematically" similar but have different content. These
results are from averaged embeddings from the final layer of a small decoder-only language model.

[Chang and Jia, 2023, Vo et al.]—off-the-shelf embedding models that have been trained for tasks such
as semantic retrieval or mask-based reconstruction. However, whether these embeddings are optimal
for reasoning about similarity between pretraining examples and whether there is any benefit to using
more sophisticated and computationally expensive models remains an open question. Furthermore,
evaluating such embeddings in pretraining applications is fundamentally challenging, as the sheer
scale of pretraining data makes many experiments intractable. Such challenges necessitate specialized
evaluations — new criteria for assessing the utility of embeddings in pretraining applications.

In this paper, we propose a novel evaluation framework to assess the suitability of an embedding
model for curating pretraining data for language models. Our goal is to establish a new standard
for evaluating similarity metrics in the context of language model pretraining. We begin by asking:
what should a similarity metric ideally capture to be useful in this setting? Unlike prior work that
evaluates embeddings for downstream tasks like retrieval or classification, we argue that embeddings
used for data curation must reflect training dynamics—such as generalization behavior or corpus
redundancy—that are unique to the pretraining setting.

Our first evaluation criterion measures how well distances in the embedding space correlate with
generalization behavior during pretraining—specifically, whether nearby examples in embedding
space exhibit similar pretraining loss under the same model state (see Fig. 1). This captures their
utility of similarity metrics in loss-based data selection strategies [Jiang et al., 2023] or for selecting
examples similar to high-quality references [Penedo et al., 2024]. Next, we evaluate the embedding
model’s utility in guiding a simple diversity-based curation method (similar to those employed in
[Tirumala et al., 2023]) and assess its effectiveness by pretraining a model on the curated subset and
measuring downstream task performance. Finally, we also measure whether the embedding space can
distinguish between examples from different data sources. While not directly used in data selection,
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this serves as a useful proxy for embedding quality under the assumption that these sources were
curated by human expertise and reflect meaningful human-curated structure.

We conduct all of our experiments using the Pile [Gao et al., 2020] as our data corpus, and in the
context of pretraining a 1.7B parameter decoder-only language model with a UL2 objective [Tay et al.,
2022] on 200B tokens. We evaluate a number of different off-the-shelf embedding models—from
representations of generic language models (e.g., trained with mask-based reconstruction or mixtures
of pretraining objectives) to embeddings specifically trained for retrieval or semantic equivalence.
We compare these to two specialized approaches that are derived from smaller, proxy models of
the downstream model being trained on the same pretraining set: (1) computing the average token
embedding at the final hidden state, and (2) a significantly more computationally efficient and simple
average of the token-embeddings from the input layer (i.e., requiring no forward passes).

Despite their strong performance on standard semantic similarity and retrieval benchmarks, we
find that off-the-shelf embedding models underperform in the context of pretraining data curation,
suggesting that existing benchmarks may not reflect the inductive biases most relevant to language
model pretraining. Surprisingly, even this simple method that averages input token embeddings—
requiring no forward pass—matches or outperforms these more computationally intensive models.
Adding a forward pass in this specialized model yields further improvements. These results strongly
suggest that embedding models for reasoning about similarity between pretraining examples should
be specialized to the data distribution at hand, and that properties that make embeddings suitable
for retrieval and semantic matching may not transfer to the pretraining setting. More broadly, our
work establishes a standardized framework to evaluate and highlight failures of current off-the-shelf
models, facilitating the design of new models tailored for data curation in language model pretraining.

2 Related Work

Data Curation. Many works have studied the problem of selecting high-quality and informative
subsets from a larger corpus for efficient and effective language pretraining [Albalak et al., 2024].
Indeed, works have shown that data curation for pretraining (both for language and vision-language
models) improves neural scaling laws [Sorscher et al., 2022], and that curation techniques should be
aware of the particular compute budget [Goyal et al., 2024].

One family of works approaches data curation with the goal of retaining only high quality examples.
The simplest approaches in this family look at heuristics that can filter out noisy or extremely low-
quality instances, such as documents containing less than 5 sentences or those with extremely short
lines of text [Raffel et al., 2020, Xue, 2020]. Beyond these heuristic approaches, a line of work
focuses on extracting high-quality examples based on similarity to known high-quality sources, such
as Wikipedia or textbooks [Gunasekar et al., 2023, Penedo et al., 2024]. Other works look at creating
targeted sets—defining quality in terms of their relevance for particular downstream tasks [Xie et al.,
2023], with some creating these by adaptively updating weights over domain mixtures [Xie et al.,
2024, Jiang et al., 2024]. The other family of data curation approaches focus on pruning datasets to
ensure a notion of diversity and reducing redundancies in pretraining examples [Abbas et al., 2023,
2024, Tirumala et al., 2023]. While some of these works [Abbas et al., 2024, Tirumala et al., 2023]
compare different embedding models as part of brief ablations, these comparisons are in the narrow
context of their specific diversification algorithms. Finally, it is worth mentioning that some works in
data selection use the model being trained as part of the selection process, often through the use of
influence functions [Garima et al., 2020, Xia et al., 2024, Engstrom et al., 2024]. However, these
are typically only used in data-curation on small datasets or only during finetuning, and would be
prohibitively expensive in pretraining.

Text Embedding Models. Another related line of work is the task of learning embedding models
for text. Many various approaches to learn text embedding models, with objectives including mask-
based reconstruction [Devlin, 2018, Liu et al., 2019], a combination of multiple different tasks [Cer,
2018], and contrastive learning-based approaches [Gao et al., 2021, Neelakantan et al., 2022, Izacard
et al., 2022, Lee et al., 2024]. More recent work has studied extracting embeddings from standard
decoder-only language models [BehnamGhader et al., 2024], even via prompting [Sam et al., 2025].

These embedding models have largely been studied in the context for classification or similarity
measures [Gomaa et al., 2013, Agirre et al., 2013, 2016], and recent focus has been on improving
performance on aggregate on large-scale benchmarks [Muennighoff et al., 2022] that are comprised
of multiple tasks (e.g., retrieval, clustering, classification, ranking). Many models that achieve
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strong performance on these large-scale benchmarks have benefitted from scaling [Jiang et al., 2023,
Chowdhery et al., 2023], with the help of distilled information from autoregressive models [Lee et al.,
2024]. However, this has conflicting incentives with their utility in the pretraining setting, as large
text embedding models are impractical and too computationally expensive to run inference over the
full pretraining corpus. To the best of our knowledge, our work provides the first study of various text
embedding models for pretraining data curation.

3 An Evaluation Framework for Embeddings in Pretraining Data Curation

We now describe our new framework for analyzing text embedding models in terms of their suitability
for reasoning about similarity among pretraining examples. As previously mentioned, similarity
is used to (a) find examples that are similar to known “desirable” examples (e.g., examples of
known high-quality or those representing downstream tasks of interest) and to (b) discover and
remove redundancies in the pretraining corpus. Accordingly, we design standardized experiments
that measure a text embedding model’s performance towards these criteria.

3.1 Evaluating Correlation with Pretraining Loss

We begin by evaluating whether low distances in a model’s embedding space correlate with similar
values of difficulty, which we measure by intermediate losses during language model pretraining.
Examples of positive correlations are visualized in Figure 1. To do so, we first use a balanced K-
Means clustering algorithm in the embedding space to cluster all examples in the pretraining set for a
target cluster size. Then, we look at the variance of loss values within each cluster. This within-cluster
variance captures whether points with similar pretraining loss (or difficulty) are grouped together and
are close in embedding space. Crucially, we note that the converse is not necessarily true; two very
different examples can have the same loss because they happen to be equally difficult to learn. This
asymmetry is an important reason we chose our cluster-based approach rather than alternatives such
as pairwise correlation. We note that we use balanced clustering (allowing only some variation in
the sizes of different clusters) to ensure that average within-cluster variance is comparable across
clusterings from different embedding models. We repeat this process for multiple target cluster sizes
for all embeddings.

When reporting our results, we measure variance reduction, or the ratio of the overall variance
across all examples in the pretraining dataset to the variance in loss computed within clusters in the
given embedding space. Formally, we define variance reduction as

V (C) =
Ex∼D[(ℓ(x)− E[ℓ(x)])2]

ECi∼C [Ex∼Ci
[(ℓ(x)− Ex∼Ci

[ℓ(X)])2]]
,

where C = {C1, ..., Cm} is a clustering or partition of all datapoints in the dataset D, and C is a
uniform distribution over each disjoint set in the partition C. Random clustering achieves a variance
reduction of 1, and larger values of variance reduction imply that points with more similar pretraining
loss are clustered together.

A high value of variance reduction implies that similarity in the embedding space correlates well with
pretraining loss. While an isolated pair of examples having similar pretraining loss may be entirely
unrelated in quality and content, the fact that an embedding space that consistently brings together
examples of similar loss values strongly suggests that these similar examples will behave similarly in
terms of contributing to the quality of the language model (when used in pretraining).

Beyond finding examples of similar quality and utility, a high variance reduction score implies that
the clustering above can serve as a particularly useful proxy for more dynamic and online data
sampling strategies [Xie et al., 2024], reducing the number of required forward passes in strategies
where datapoints are selected based on their current pretraining loss. This also has implications
towards approaches that look to self-improve models through propagating labeled information to
nearby examples [Wei et al., 2021, Cai et al., 2021, Pukdee et al., 2023], such as weak-to-strong
generalization [Burns et al., 2023].

3.2 Diversification-based Pretraining Data Curation

Prior work has demonstrated that data curation schemes that encourage diversification, based on
similarity in embedding spaces, leads to improved models when trained on the curated subsets [Abbas
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et al., 2023, Tirumala et al., 2023]. While the diversification techniques tend to be sophisticated,
our goal here is to evaluate the utility of a given embedding for diversification. Therefore, we use a
simplified version of these approaches to (1) select a subset from a pretraining corpus, (2) pretrain a
model on this curated subset, and then (3) report performance on a large set of downstream tasks.

We begin by clustering the larger pretraining corpus in the given embedding space; in contrast to
Section 3.1, we do not use balanced clustering, which can lead to clusters with a wide variation in
“diameters” (distances among points in the same cluster). Instead, since the goal here is diversification,
we find clusters such that distances between all pairs of points in the same cluster are within a
specified threshold ϵ.

Given clusters of pretraining data, prior work often uses complex pruning or sampling schemes from
large clusters. For simplicity, we simply take the point in each cluster that is closest to the cluster
centroid (i.e., the average embedding of all points in the cluster), which likely represents the most
representative example for that cluster. We note that prior work [Tirumala et al., 2023] emphasizes the
importance of a deduplication step in language model pretraining, and our curation strategy implicitly
performs this process when selecting only a single point from each cluster.

Given that we select a single point from each cluster, this implies that we need the number of clusters
to be equal to or greater than the number of desired pretraining examples. In practice, we sweep a
large grid of ϵ values and select the largest threshold that still produces a sufficient number of clusters.
Another important point of note is that producing such a large number of clusters is computationally
expensive. To be able to scale to such a large number of clusters, we use the reciprocal agglomerative
clustering (RAC) [Sumengen et al., 2021] algorithm. This has the advantage of building a clustering
from progressively larger values of ϵ, which works well with our need for a grid of values of ϵ.

Finally, we pretrain a language model on the selected subset of examples, and measure few-shot
performance of the pretrained model on a diverse variety of downstream tasks.

3.3 Measuring Cluster Purity with Respect to Data Sources

Large pretraining datasets such as the Pile [Gao et al., 2020] are comprised of various distinct yet
complementary hand-curated data sources (e.g., high quality sources such as Wikipedia, code-based
data, data from medical domains). While there may be some similarities between datapoints from
different domains, we believe that clusters should generally group points from the same domain
together and separate instances from different domains. In fact, since embedding models are generally
not trained with explicit knowledge of source labels or any domain metadata, the ability to group
together data from the same source and distinguish those from different sources shows an embedding
model’s alignment with meaningful human-curated structure (or at least that of the dataset curators).
This also serves as a useful proxy of embedding model capacity, as they should contain sufficient
information to well-separate these different sources.

Letting s ∈ {0, · · · , S} represent the index of the source in some finite number of sources S, we
compute the cluster purity of a set of clusters C as

P (C) = ECi∼C

[
maxs |Ci ∩Ds|

|Ci|

]
,

where Ds represents the subset of datapoints that are from source s. Intuitively, this represents the
proportion of the maximum frequency source to the total cluster size. A cluster purity of 1 represents
a clustering that completely separates examples from different domains.

4 Experiments

We demonstrate the utility of our framework in evaluating off-the-shelf embedding models in measur-
ing pretraining similarity and compare them with simple ways to produce specialized embeddings.

4.1 Experiment Details

Embedding Models For the off-the-shelf embedding models, we consider: (1) Universal Sentence
Encoders (USE) [Cer, 2018], which are general-purpose text encoders trained on a combination of
objectives, (2) Gecko [Lee et al., 2024], a retrieval-focused text embedding model trained via synthetic
data distilled from LLMs, and (3) BERT [Devlin, 2018] embedding models. These encapsulate a
variety of different training objectives and reflect common embedding model choices in the field.
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Figure 2: Variance reduction as we vary average
cluster size. Larger values are better. Results are
computed over 50 million sampled clusters from
the Pile, where pretraining losses are computed
after 26k gradient steps. Specialized embeddings
yield higher variance reduction than off-the-
shelf models for all cluster sizes.

Figure 3: Variance reduction as we increase the
number of gradient steps in pretraining. Larger
values are better. Results are computed over 50
million sampled clusters from the Pile with an
average cluster size of 50. Benefits in variance
reduction remain consistent throughout pre-
training.

We also consider a few standard approaches to extract specialized embeddings that are extracted
from a small version of the downstream language model we are training (e.g., a 200M parameter
language model). The first and most simple approach is to extract an embedding by simply averaging
the token embeddings matrix over all tokens in the input sequence, which we refer to as LM Token
Embeds. This is extremely efficient as it only requires looking up the token embedding matrix and
does not involve any forward passes. We note that this is also equivalent to a learned unigram
model (i.e., ignoring all positional information). The second approach is to extract an embedding
from the forward pass of the language model by averaging the activations over all tokens in the input
sequence at the final hidden layer, which we refer to as LM Output Embeds.

Finally, in our diversity-based pretraining data curation experiments, we also add a comparison to a
naive, random subset selection (Baseline). This evaluates how much benefit is observed from our
standardized curation strategy with these various embedding models over standard baseline training.

Clustering Details To make clustering with a large number of output clusters feasible and efficient
at pretraining data scales, we perform dimensionality reduction using PCA on a large subset of the
datapoints (∼500,000 examples) and extract the top 64 dimensions upon which to project. The
projected embeddings are then normalized to have a unit L2 norm. We ablate on this choice for
dimensionality reductions by comparing with random projections [Bingham and Mannila, 2001] as
an alternative dimensionality reduction strategy; we find that random projections do not perform as
well as PCA (Section 4.5). Other work [Tirumala et al., 2023] tackles this computational challenge
by running clustering only with a much smaller subset of data, rather than performing dimensionality
reduction and then clustering over all the data.

Dataset and Pretraining Details For all of our experiments (e.g., pretraining data curation and
predicting loss generalization), we use the Pile [Gao et al., 2020]. We pack together documents
into a sequence of length 1280, with “[eod]” as delimiters between documents. For our pretraining
experiments, we train a 1.7B parameter decoder-only language model with a UL2 objective [Tay
et al., 2022]. We curated pretraining subsets from the Pile through the process outlined in Section 3.2.
We use a selection budget of 200B tokens, or approximately 20% of the Pile. This corresponds to
roughly 170 million clusters for each embedding model, with an average cluster size of 5 examples.

We pretrain with a learning rate of 0.001 with a linear decay and a batch size of 1024. For our
tokenizer, we use sentencepiece with a vocabulary size of 256k tokens. For our pretraining evaluation,
we consider the set of 23 downstream evaluation datasets from the work of Brown et al. [2020]. This
involves a wide variety of 1-shot scoring tasks, as well as open-ended text generation tasks. More
details about our evaluation sets are deferred to Appendix B.1. For the embeddings produced via
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Table 1: Average downstream task performance of embedding models in the diversity-based curation
schemes of a 200B token subset from the Pile, to pretrain a 1.7B parameter decoder-only language
model. Bolding and italicizing denote the best and second-best performing methods on each task,
respectively. Results are averaged over 3 pretraining runs, and average results are mean ± standard
error. Specialized embeddings (i.e., extracted from a small version of the downstream language
model) and Gecko perform the best for diversity-based pretraining data curation.

Task Baseline USE Gecko BERT LM Token
Embeds

LM Output
Embeds

ARC - Challenge 32.4 33.0 33.7 32.7 32.5 33.5
ARC - Easy 63.8 65.1 64.2 65.1 64.9 65.5
BoolQ 56.5 59.2 58.3 60.1 62.9 61.9
SuperGLUE - CB 42.4 43.5 48.2 41.7 42.9 48.8
SuperGLUE - Copa 75.3 76.3 77.3 74.0 74.7 78.0
HellaSwag 55.0 56.7 57.1 56.5 56.8 57.5
Multi RC 57.7 55.7 55.9 56.3 56.0 55.2
OpenBook QA 46.3 46.2 46.3 46.6 45.9 46.7
PiQA 72.3 73.0 72.7 73.6 72.8 73.6
Race H 38.0 37.9 38.5 38.8 38.8 38.7
Race M 51.7 52.0 53.3 52.9 52.1 52.6
ReCoRD 85.0 84.4 84.6 84.7 84.5 84.9
RTE 54.5 54.9 51.5 54.9 51.6 52.8
Story Cloze 73.9 74.1 74.3 74.0 73.3 74.5
WiC 48.2 47.9 47.5 47.5 48.2 47.3
Winograd 74.0 76.0 77.1 77.3 77.1 76.6
WinoGrande 59.2 58.9 59.0 59.5 60.0 59.3
WSC 74.1 73.9 73.7 74.7 73.2 75.0
Lambada 21.4 29.9 40.1 34.7 31.4 33.8
Natural Questions 10.0 10.8 10.1 10.5 11.1 11.4
SQuAD v2 51.1 54.3 51.7 51.8 58.6 55.4
TriviaQA Wiki 34.4 35.0 33.0 35.0 34.3 36.1
Web Questions 17.1 17.0 17.9 18.0 18.7 19.1
Average 51.9 ± 0.1 52.9 ±0.1 53.3 ± 0.3 53.1 ± 0.2 53.1 ± 0.3 53.8 ± 0.1

LM Token Embeds and LM Output Embeds, we train a 200M parameter language model in the same
fashion as above, where we also train on a total of 200B randomly selected tokens.

4.2 Pretraining Loss Correlation Results

To measure the ability of embedding models to reflect pretraining loss generalization and to cluster
together datapoints with similar difficulty, we report their variance reduction as we vary (1) the
number of gradient updates performed by the intermediate pretraining checkpoint and (2) as we vary
the average cluster size in our K-Means clustering.

We observe that specialized embeddings (i.e., LM Token Embeds and LM Output Embeds) from
a small version of the downstream trained model, which is trained on the same pretraining data,
achieve a much larger reduction in loss variance when compared to off-the-shelf models. These
specialized embeddings produce better clusters with datapoints with similar intermediate pretraining
losses, across all cluster sizes (Figure 2) and for all intermediate pretraining checkpoints (Figure 3).
This suggests that training models specifically on the data to perform data curation is preferable to
using off-the-shelf embedding models for predicting pretraining loss generalization. Furthermore,
we also generally observe that newer embedding models (e.g., Gecko) do not improve upon older
alternatives (e.g., BERT and USE), supporting that embedding model improvements in other settings,
such as retrieval do not translate to this application in the pretraining setting.

Visualizing Within-Cluster Examples To better interpret these similarity metrics, we visualize
pairs of datapoints from the clusters in Figure 1 to understand what types of examples are placed
closely together and which have similar pretraining losses. We randomly sample 3 clusters produced
by K-Means clusters with the smallest average cluster size, with the LM Output Embeds method to
extract embeddings. We randomly sample 2 points from these 3 clusters and observe that samples
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Figure 4: Comparison of the purity with respect to data source of K-Means clustering produced
by various embedding models on the Pile, when averaged over 50 million clusters from the Pile.
Specialized embedding models have higher cluster purity scores.

from the same cluster are thematically similar, although containing very different information (e.g.,
the last pair referring to two different government-related people, although from different times and
different countries). We observe that pretraining losses are similar among within-cluster examples,
and lower distances correspond to smaller differences in pretraining loss.

4.3 Diversification-based Pretraining Data Curation Results

We report the average downstream task performance of language models trained on pretraining data
subsets produced by using various embedding models in the simple diversity-based data curation
strategy in Table 1. We first observe that the standardized diversity-based data curation technique
applied to all embedding models (both off-the-shelf and those based on small downstream trained
language models) outperforms the naive random subset selection baseline. Secondly, we observe that
the LM Output Embeds achieves the best performance when averaged across all tasks.

A notable result is that LM Token Embeds performs comparably to Gecko, while outperforming all
other off-the-shelf embeddings. This is of immediate practical interest due to the simplicity of LM
Token Embeds; they require no forward pass and, consequently, are extremely quick to compute in
comparison to all other considered alternatives. Thus, LM Token Embeds serves as a viable alternative
in settings that are compute-limited. This also suggests that even simple notions of similarity, even
those that do not account for positional information, are sufficient for many pretraining data curation
applications. Finally, they support that models specialized to this task (e.g., trained on the same
dataset) often outperform the current, general-purpose, off-the-shelf embedding models. While this
does include training an additional model, it is a single-time investment that is amortized across all
embedding use cases and is easily offset by the significant improvements in data curation quality.

4.4 Cluster Purity Results

To better understand and interpret the similarity metrics defined by these embedding models, we
measure the purity of clusters with respect to the underlying data source. We again remark that none
of these embedding models have been trained with knowledge of the data source. Overall, we observe
that most embedding models produce fairly pure clusters, where a majority of points come from the
same underlying data source (Figure 4). This supports that these embeddings models are generally
aligned with human judgment about differences between types of data.

We observe that the embeddings extracted from the small version of the trained downstream language
model achieve the highest cluster purity. We also note that Gecko embeddings achieve the third-
highest cluster purity, whereas it performs poorly on the task of predicting loss generalization through
variance reduction. This suggests that an improved ability to predict pretraining loss generalization
cannot simply be explained via producing clusters that are more pure with respect to underlying
data sources. Future work could explore incorporating domain information or metadata into the
embedding model’s learning objective, as a form of weak supervision [Sam and Kolter, 2023].
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Figure 5: Ablation on the number of components in PCA for Gecko and LM Output Embeds. Results
are averaged over 50 million sampled clusters from the Pile. Using more components in PCA better
clusters points with similar pretraining loss.

Figure 6: Ablation comparing the use of PCA or Random projections for dimensionality reduction in
Gecko and LM Output Embeds. Results are averaged over 50 million sampled clusters from the Pile.
Dimensionality reduction via PCA performs better than via Random Projections.

4.5 Ablations

We present ablations on components of our evaluation framework — specifically in how we have
chosen to perform dimensionality reduction (i.e., technique and resulting size), which is used for the
embedding models before running clustering. We present the ablations for Gecko and LM Output
Embeds and defer results on others embeddings to Appendix A.

Less Components in PCA Does Not Significantly Hurt Performance. The dimensionality of
the embeddings used in clustering often must be low for pretraining scales. Here, we run an
ablation studying the role of dimensionality (i.e., the number of components in PCA onto which
the embeddings are projected) in the variance reduction through clustering (Figure 5). We remark
that scaling clustering to accommodate smaller average cluster sizes (i.e., more cluster centers) is
intractable for embeddings that have high dimensionality. Thus, we can only report results on various
embeddings with a large number (i.e., 256) of components in PCA with larger average cluster sizes.
We observe the trend across all embeddings that a higher dimension and larger number of PCA
components improves the embedding models’ ability to cluster points by pretraining loss (see other
embedding model results in Appendix A.1).

Dimensionality Reduction with PCA Outperforms Random Projections. Another common
technique to perform dimensionality reduction (especially with respect to maintaining pairwise
distances and similarities) is to use random projections. We experiment with using random projections
in our loss clustering experiments and observe that it is outperformed by PCA in terms of variance
reduction across all cluster sizes (Figure 6).
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5 Discussion

We present a new evaluation framework for the understudied area of similarity metrics used in lan-
guage model pretraining data curation. Using our framework, we show that off-the-shelf embeddings—
despite their widespread use—often underperform even simple, specialized alternatives such as an
average of token embeddings that requires no forward pass. This also suggests that practitioners
should train their own embedding models, and it suffices to train them on a small fraction of the data
(∼20%) and at a much smaller parameter scale. While it may seem intuitive that embeddings tailored
to the pretraining task would outperform generic ones, this has not been systematically demonstrated
and is certainly not yet standard practice. Our framework both surfaces this gap and offers a practical
tool for guiding the design of embedding models optimized for data curation, which can lead to
significant improvements in data efficiency.

While we believe that our results are fairly general, future work could extend our findings to other
pretraining corpora. Beyond evaluation, our findings have broader implications for pretraining
workflows—for example, in selecting task-specific finetuning data [Xia et al., 2024], or identifying
synthetic examples that resemble real data [Meng et al., 2022, Sam et al., 2024], and even studying
the impacts of scaling up embedding models in these tasks. Overall, our results underscore the
importance of using task-aligned similarity metrics in pretraining, and our framework provides a
foundation for future research in building and optimizing the design of embedding models tailored to
this critical step of the language modeling pipeline.

Limitations One limitation of our work is that the empirical demonstration of our new evaluation
framework is restricted to the Pile dataset. We believe this is fairly standard in the language model
pretraining data curation literature to focus on a single pretraining corpus (e.g., as is done in Tirumala
et al. [2023]), due to the computational costs of both data curation algorithms and pretraining.
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A Additional Experimental Results

A.1 Impact of Dimensionality Reduction on Variance Reduction

We now present the remaining results for other embedding models, when we ablate the number
of components used in PCA for K-Means clustering, specifically when looking at the reduction in
variance of pretraining loss of points within the same cluster. We observe that more components in
PCA indeed help achieve higher variance reduction across all embedding models.

Figure 7: Ablation on the number of components in PCA for embeddings from BERT, USE, and LM
Token Embeds. Results are averaged over 50 million sampled clusters from the Pile.

A.2 Comparison of Random Projections to PCA for Dimensionality Reduction

We now present the remaining results for other embedding models, when we use Random Projections
for dimensionality reduction instead of using PCA. We consistently observe that embeddings paired
with PCA outperform those using Random Projections.

B Additional Experimental Details

B.1 Additional Evaluation Details

We report results averaged over a large number of downstream tasks. These datasets largely follow
two categories: scoring and decoding tasks. Scoring tasks primarily look at the output distribution of
the model, while decoding tasks look at text generations from the language model. Scoring tasks
are performed as 1-shot (i.e., giving one demonstration of format and answer), while decoding is
performed zeroshot. For scoring tasks, we look at the standard top-1 accuracy. The list of scoring
tasks is as follows:

• ARC Challenge: Easy and Challenge [Clark et al., 2018]

• BoolQ [Clark et al., 2019]

• SuperGLUE - CB and Copa [Wang et al., 2019]

• HellaSwag [Zellers et al., 2019]
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Figure 8: Ablation where we compare using Random Projections for dimensionality reduction with
embeddings from BERT, USE, and LM Token Embeds. Results are averaged over 50 million sampled
clusters from the Pile.

• MultiRC [Khashabi et al., 2018]
• OpenBookQA [Mihaylov et al., 2018]
• PIQA [Bisk et al., 2020]
• RACE-H and RACE-M [Lai et al., 2017]
• ReCoRD [Zhang et al., 2018]
• RTE [Dagan et al., 2010]
• Story Cloze [Mostafazadeh et al., 2016]
• WIC [Pilehvar and Camacho-Collados, 2018]
• Winograd [Levesque et al., 2012]
• WinoGrande [Sakaguchi et al., 2021]
• WSC [Levesque et al., 2012]

For decoding or text generation tasks, we evaluate the language model outputs with its F1 score.
Decoder tasks are also evaluated as 1-shot. The list of decoding tasks is as follows:

• Lambada [Paperno et al., 2016]
• Natural Questions [Kwiatkowski et al., 2019]
• Squad v2 [Rajpurkar et al., 2018]
• Trivia QA Wiki [Joshi et al., 2017]
• Web Questions [Berant et al., 2013]

B.2 Additional Embedding Model Details

The embedding models of BERT, Gecko and USE are trained with sequence lengths of 512, which
we apply on the first 512 tokens of data from the Pile. For Gecko, we use the 110 million parameter
model version, while for USE we use the 109 million parameter version. For BERT, we also use a
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109 million parameter model. For the small language model that we train with the UL2 objective, we
use one with approximately 200 million parameters.

Both the off-the-shelf BERT and USE embedding models have a dimensionality of 512. The Gecko
embedding model has a dimensionality of 768. The small language model has a token embedding
dimension of 512 and an hidden activation dimension of 512, which means that both LM Token
Embeds and LM Output Embeds have 512 dimensions.

B.3 Additional Hyperparameter Details

Clustering For performing RAC clustering for our pretraining experiments, we use a value of ϵ as
the particular diameter of clusters:

• USE: ϵ = 0.2, which defines roughly 225 million clusters
• Gecko: ϵ = 0.2, which defines roughly 220 million clusters
• BERT: ϵ = 0.001, which defines roughly 175 million clusters
• LM Token Embeds: ϵ = 0.001, which defines roughly 170 million clusters
• LM Output Embeds: ϵ = 0.03, which defines roughly 180 million clusters

For our K-Means clustering, we perform clustering at 4 different levels of granularity in our variance
reduction and cluster purity results. We create four sets of clusterings with an average cluster size of
25, 50, 100, 150, with a minimum cluster size of 1

5 times the average cluster size, and a maximum
cluster size of 5 times the average cluster size. For both RAC and K-Means, we use the squared L2
(Euclidean) distance.

B.4 Dimensionality Reduction Details

For running our dimensionality reduction via PCA, we compute the means and components on which
to project on a subset of the data (∼500,000 points). We first standardize the embeddings to have a
mean of 0 and variance of 1 before running PCA. As previously mentioned, after projecting onto the
desired number of principal components, we perform L2 normalization.

For our random projections, we use a sparse random projections onto values of −
√
n√
64
, 0,

√
n√
64

with
probabilities 1

4 ,
1
2 ,

1
4 respectively (i.e., the default parameters via scikit-learn). We also L2 normalize

the result of random projections.

B.5 Compute Details

Pretraining experiments for our 1.7B parameter language models are run on 512 v5 TPUs, where
each pretraining run takes approximately 3 days. Training our proxy 200M parameter model took
less than 1 day on 64 v5 TPUs. Hierarchical clustering for pretraining requires approximately 1-2
days to run over the full pretraining corpus.

B.6 Asset Licenses

The existing assets that we use have the following licenses:

• RAC Clustering: MIT license
• The Pile: CC BY 4.0
• Evaluation Datasets: MIT License
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims are supported by experimental and theoretical results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in the Discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: No theoretical results are included.
Guidelines:
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All experimental details are provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: No code is provided, but all experimental details and evaluation metrics are
clearly defined.
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Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All experimental details are provided in the code in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars are provided when applicable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute details are provided in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The submission conforms with the code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Impacts of the paper are discussed in the discussion section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such risks are posed.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets are properly credited, and licenses are mentioned.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are released.
Guidelines:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: All usage of LLMs (in computing similarities and in pretraining) are clearly
described in the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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