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ABSTRACT

Reinforcement learning from human feedback (RLHF) has emerged as a powerful
approach for aligning decision-making agents with human intentions, primarily
through the use of reward models trained on human preferences. However, RLHF
suffers from poor sample efficiency, as each feedback provides minimal informa-
tion, making it necessary to collect large amounts of human feedback. Active
learning addresses this by enabling agents to select informative queries, but ef-
fective uncertainty quantification required for active learning remains a challenge.
While ensemble methods and dropout are popular for their simplicity, they are
computationally expensive at scale and do not always provide good posterior ap-
proximation. Inspired by the recent advances in approximate Bayesian inference,
we develop a method that leverages Bayesian filtering in neural network subspaces
to efficiently maintain model posterior for active reward modeling. Our approach
enables scalable sampling of neural network reward models to efficiently com-
pute active learning acquisition functions. Experiments on the D4RL benchmark
demonstrate that our approach achieves superior sample efficiency, scalability, and
calibration compared to other Bayesian deep learning approaches, and leads to
competitive offline reinforcement learning policy performance. This highlights
the potential of scalable Bayesian methods for preference-based reward modeling
in RLHF.

1 INTRODUCTION

In recent years, reinforcement learning from human feedback (RLHF) has become the dominant
technique for aligning decision-making agents with human intentions (Christiano et al., 2017;
Ouyang et al., 2022). The ease of providing preference feedback has been a crucial factor in their
popularity as a feedback type for reward modeling, but since each feedback provides at most 1 bit
of information, they are also known for their poor sample efficiency; asking a human thousands of
comparison questions to learn a reward model (RM) is often not scalable.

A core problem of RLHF is active learning, where we want an agent to be judicious about the
queries it asks to learn about a human’s preferences as efficiently as possible (Sadigh et al., 2017;
Casper et al., 2023; Baraka et al., 2025). Many active learning approaches require probabilistic
modeling of uncertainty for computing data acquisition functions, making proper uncertainty repre-
sentation an active area of research (Ovadia et al., 2019; Tran et al., 2020; Papamarkou et al., 2024).
While Bayesian methods are well-principled, they are hard to scale to large neural networks (NN)
(Izmailov et al., 2021). On the other hand, the simplicity of ensemble method (Dietterich, 2000;
Lakshminarayanan et al., 2016) has made it a popular choice for active learning. However, training
multiple models can be computationally intensive, especially for large NN reward models.

Due to recent advancements in approximate inference, Bayesian deep learning have become in-
creasingly scalable (Daxberger et al., 2024; Shen et al., 2024). In this work, we develop a method
called PreferenceEKF that enables efficient training of Bayesian neural networks for representing
reward models in active preference-based reward learning. Specifically, by performing Bayesian
filtering in a constructed neural network subspace, we maintain model uncertainty in a compute-
and memory-efficient manner. The reduced dimensionality of the subspace enables application of
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the extended Kalman filter, a classic inference method, for training neural networks. This allows
sampling of arbitrary number of reward models from the model posterior, and use the samples for
computing common uncertainty-based acquisition functions such as expected information gain and
disagreement (Hennig & Schuler, 2012; Hernández-Lobato et al., 2014; Bıyık et al., 2022).

To the best of our knowledge, we are the first to leverage subspace filtering (Duran-Martin et al.,
2022) to train neural network reward models for preference-based reward learning. We compare our
method, PreferenceEKF to four widely used Bayesian deep learning methods for active preference-
based reward learning, and conduct experiments in the D4RL (Fu et al., 2020) benchmark. Our
findings are as follows:

• Active reward learning using PreferenceEKF leads to better sample efficiency (in terms of
the number of queries required) compared to reward learning from random queries.

• PreferenceEKF performs on par with or better than all Bayesian deep learning baselines in
terms of sample efficiency and calibration in preference modeling tasks.

• PreferenceEKF’s runtime scales better with both model size and number of posterior sam-
ples used for computing acquisition function compared to all other methods.

• When the learned rewards are used for policy optimization in offline RL tasks (Levine et al.,
2020), the reward model learned using active PreferenceEKF resulted in the best overall
policy rollout performance compared to reward models learned using other methods.

2 RELATED WORK

Reinforcement learning from human preferences. While early works in reward learning focused
on learning from expert demonstrations (Abbeel & Ng, 2004; Finn et al., 2016; Ho & Ermon, 2016),
much recent interest has focused on reward learning from pairwise comparisons where human an-
notators are asked to compare two potential outcomes, e.g., labels, responses, or trajectories (Wirth
et al., 2017; Christiano et al., 2017; Brown et al., 2019). Although preference feedback is much
easier for annotators to provide than demonstrations, the minimal amount of information contained
within a binary preference query necessitates collection of large amounts of feedback data.

Active learning is a widely used approach for minimizing the time-consuming process of collecting
human feedback. It is a sequential problem in nature, as it iteratively collects the most useful data
sample based on the model’s current state, such as parameter posterior uncertainty. (Sadigh et al.,
2017; Settles, 2009). While Bayesian methods have been successfully applied to obtain posteri-
ors for active reward learning using lower-dimensional linear and Gaussian process reward models
(Bıyık et al., 2022; 2024), it has not been widely adopted for neural reward models, since acquisi-
tion functions typically require sampling from the high-dimensional distribution of model parame-
ters. Instead, ensembles have been the key enabler of neural network based active reward learning
(Lee et al., 2021b; Christiano et al., 2017). Our work focuses on efficient yet performant posterior
inference for active reward learning, without expensive training of multiple independent models.

Uncertainty Quantification for neural networks. Classic Bayesian methods that have been
successfully used for neural network uncertainty quantification include Laplace approximation
(Daxberger et al., 2024), Hamiltonian Monte Carlo (Neal, 2011), and variational inference (Blei
et al., 2017). While not strictly motivated by Bayesian principles, the simplicity of ensemble
method (Dietterich, 2000; Lakshminarayanan et al., 2016) and dropout (Srivastava et al., 2014; Gal
& Ghahramani, 2016) has made them popular for UQ. While dropout method gets around ensem-
ble method’s expense cost of training multiple independent models, it been shown to lead to poor
posterior approximation quality (Hron et al., 2018; Osband, 2016).

Bayesian filtering methods, which focuses on inferring hidden states from noisy observations, pro-
vide a principled approach to sequential learning, and have been widely used in robotics and signal
processing (Thrun et al., 2005; Särkkä & Svensson, 2023). Application of Bayesian filtering for
training neural networks (Singhal & Wu, 1988; de Freitas et al., 2000) has only recently been ap-
plied to deep neural networks via subspace methods by Duran-Martin et al. (2022) for neural bandits.

Instead of deriving epistemic uncertainty from posterior inference, a separate line of work has fo-
cused on leveraging nonparametric statistics techniques such as the bootstrap to perform UQ (Efron,
1992), and has successfully applied this technique for exploration in deep reinforcement learning
(Osband et al., 2018; 2016). The same group of authors have also leveraged joint predictions for
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UQ, and has applied the idea to finetuning large language models (Osband et al., 2023b;a). Our
work leverages Bayesian filtering to train neural network reward models in active reward learning
settings, where we focus primarily on parameter uncertainty instead of joint prediction uncertainty.

Subspace methods for neural networks. While there exists a vast literature on decreasing neural
network size for efficient training and serving via architecture search (Elsken et al., 2019), quan-
tization (Gholami et al., 2021), and pruning (Frankle & Carbin, 2022), we focus only on works
that enable tractable inference in the reduced model. Specifically, there is growing evidence that
the number of parameters required to fit a neural network is much smaller than its total parameter
count; optimization and inference in the subspace spanned by these parameters offer not only com-
putational efficiency, but also tractability of applying Bayesian methods for neural network training
(Fort et al., 2020; Larsen et al., 2022). These parameters are found either as a subset of neural
network parameters, or within a lower-dimensional subspace of the parameters.

Methods focusing on parameter subsets typically apply Bayesian methods such as Bayesian lin-
ear regression or variational inference to the last layer of the neural network, and point estimation
methods like stochastic gradient descent (SGD) for intermediate layers (Snoek et al., 2015; Harrison
et al., 2023; Brunzema et al., 2024). On the other hand, subspace methods typically constructs the
low-dimensional subspaces via either random projection or singular value decomposition of SGD it-
erates of the full network; any inference or optimization technique such as sliced sampling (Izmailov
et al., 2020) or SGD Li et al. (2018) can then be applied in the subspace in a tractable manner.

3 PRELIMINARIES

Preference-based reward modeling. We consider a Markov decision process (MDP)
⟨S,A, T , r, γ⟩ with state space S, action space A, transition function T , reward function r : S → R,
and discount factor γ ∈ [0, 1). We assume access to a dataset of trajectories Dtraj = {τ1, . . . , τN},
where each trajectory τi is a sequence of T steps τi = {(si,t, ai,t, si,t+1)}T−1

t=0 , with each step
consisting of state st ∈ S, action at ∈ A, and next-state st+1 ∈ S. In preference-based reward
modeling, we do not assume access to a reward function. Instead, our task supervision comes from
annotators who provide binary preference labels over pairwise trajectory comparisons queries, and
the goal is to learn the annotator’s reward function that informed their preference labels.

Formally, an annotator takes a trajectory pair query Qi = (τ ia, τ
i
b), and returns a preference label

yi = 1(τ ia ≻ τ ib) ∈ {0, 1} according to their internal reward function r. Given a dataset of queries
and responses D = {Qi, yi}i, a widely-used approach for preference learning is to approximate
r with a parameterized reward model rθ via maximum likelihood estimation, where the likelihood
pθ(y | τa, τb) is typically defined using the Bradley-Terry (BT) model (Bradley & Terry, 1952),

pθ(y | τa, τb) = pθ(τa ≻ τb) =
exp(β · R(τa))

exp(β · R(τa)) + exp(β · R(τb))
. (1)

In particular, β is a temperature parameter that models noisily optimal behavior of an annotator,
and R(τi) is the return of trajectory τi where the per-timestep reward is computed using a neural
network-based RM rθ, i.e., R(τi) =

∑T−1
t=0 rθ(si,t) (Lee et al., 2021a). 1

Information-theoretic active learning. We adopt the InfoGain acquisition function from Bıyık
et al. (2022) for active preference-based reward learning, which assumes a distribution over RM
parameters p(θ) such that, given a query-response pair (Q, y) the predictive distribution is given by
p(y | Q) = Ep(θ)[p(y | Q,θ)]. It selects the query Qi that maximizes expected information gain on
θ by maximizing the mutual information between a query’s answer label yi and θ:

Q∗
i = argmax

Qi

I
(
θ; yi | Qi, b

i−1
)

(2a)

= argmax
Qi

H
(
yi | Qi, b

i−1
)
− Eθ [H(yi | θ, Qi)] (2b)

where I is the mutual information, H is the Shannon entropy (Cover & Thomas, 2006), and bi−1 =
p(θ | D1:i−1) is the posterior distribution over RM parameters after learning from (i − 1) queries.

1This formalism extends to state or state-action RMs, and whole trajectories or partial trajectory segments.
Our experiments use state-based RM and partial trajectories.
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We approximate this acquisition function via sampling as follows:

Q∗
i
.
= argmax

Qi

1

M

∑
yi∈{0,1}

∑
θ∈Θ

(
P (yi | Qi,θ) log2

(
M · P (yi | Qi,θ)∑
θ′∈Θ P (yi | Qi,θ′)

))
(3)

where Θ is the set of models sampled from the posterior bi−1, and M is the number of drawn sam-
ples. This approximation is asymptotically equivalent to Eq. 2b as M → ∞. Due to the necessity
of sampling models from the posterior bi−1, the work by Bıyık et al. (2020) has been limited to
low-dimensional RMs, such as linear models. We now present our method, PreferenceEKF, which
enables sampling of high-dimensional RMs, such as neural networks, that in turn allows us to scal-
ably compute sampling-based acquisition functions like InfoGain to perform active learning.

4 METHOD

Sampling neural network models to approximate acquisition functions as in Eq. 3 can be expensive
due to the high-dimensional parameter space of neural networks (Izmailov et al., 2021). Ensemble
methods approximate this by training M independent models, which can be infeasible for large M
and model sizes (Lakshminarayanan et al., 2016). We leverage the insight that neural networks are
overparameterized and that solutions actually live in a much smaller subspace (Li et al., 2018), and
perform posterior inference within this subspace. This allows us to sample an arbitrary number of
models from a lower-dimensional posterior to approximate Eq. 3, without the overhead of training
ensembles. We first show how to use extended Kalman filter (EKF), a widely used filtering algo-
rithm, to train neural network reward models from preference data, then we show how to scale EKF
to deep neural networks using subspace methods, as shown in Algorithm 1.

Extended Kalman filter for training neural networks. Using the formulation of sequential
Bayesian inference, we perform posterior inference of neural network parameters from streaming
data D1:i−1 = {(Q1, y1), . . . , (Qi−1, yi−1)}. Starting from some prior belief b0 = p(θ) on the
parameters, our posterior after observing i samples can be expressed using Bayes’ rule as follows:

p(θi | D1:i) ∝ p(Di | θi)p(θi | D1:i−1)

= p(Di | θi)︸ ︷︷ ︸
Measurement

∫
p(θi | θi−1)︸ ︷︷ ︸

Dynamics

p(θi−1 | D1:i−1)︸ ︷︷ ︸
Previous posterior

dθi−1
(4)

where p(θi−1 | D1:i−1) is the posterior belief over parameters after observing i− 1 samples, which
is combined with a parameter dynamics model and measurement model to form the posterior after
observing the ith example. This formulation naturally allows for a recursive estimation scheme
where model parameters can be updated by observing samples one at a time. To make computing
Eq. 4 tractable, we assume additive Gaussian noise for both the dynamics model p(θi | θi−1) =
N (θi | g(θi−1),U) and the measurement model p(Di | θi) = N (yi | h(θi, Qi),V), where
U ∈ R|θ|×|θ| and V ∈ R|y|×|y| are prespecified Gaussian noise covariance matrices.

We treat neural network parameters as hidden states, and model the state dynamics g : R|θ| → R|θ|

using an identity function. For preference learning, we model measurements h : R|θ|×R|Q| → R|y|

using BT model pθ(τa ≻ τb) computed using the learned RM rθ (Eq. 1). Assumptions on additive
Gaussian noise and nonlinear dynamics and measurement functions make the neural network infer-
ence objective in Eq. 4 solvable in closed-form with the EKF algorithm, where the posterior takes a
Gaussian form bi = N (µi,Σi) where µi ∈ R|θ| and Σi ∈ R|θ|×|θ|.

Subspace inference. Inference using EKF directly in the parameter space of a neural network is
difficult, as the size of the covariance matrix Σi of the Gaussian posterior scales in O(|θ|2). We
instead perform EKF in a learned subspace of the NN: we denote the full space parameter as θ and
subspace parameter as z, where |z| ≪ |θ|, resulting in posterior bi = N (µ′

i,Σ
′
i) where µ′

i ∈ R|z|

and Σ′
i ∈ R|z|×|z|. We further assume an affine mapping θ(z) = Az + θ∗ that allows us to

transform between the subspace and the full space. Here θ∗ is initialized via SGD on a small warm-
up dataset in the full space. A ∈ R|θ|×|z| is a fixed projection matrix obtained from applying SVD
to the SGD iterates ran in the full space, as shown on Line 8 through Line 10. 2

2The projection matrix can also be computed via random projections (Li et al., 2018), but we found that the
SVD approach (Izmailov et al., 2020) led to better empirical performance. See Fig. 3b for an ablation.
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We perform EKF inference in the subspace to obtain an estimate bi = p(z | D1:i) after observing
each query-response pair Di = (Qi, yi), then project each model sampled from bi back to the
full space via affine projection θ(z) to perform the forward pass of the neural network to predict
1(τ ia ≻ τ ib). Predictive distribution for computing InfoGain is similarly computed via sampling
followed by projection as p(y | Q) = Ep(z)[p(y | Q,Az + θ∗)]. The belief update procedure is
completely deterministic, with the only source of stochasticity coming from sampling of subspace
parameters (followed by affine transformation) for computing the acquisition function and posterior
predictive distribution.

Active learning using subspace inference. We refer to the ensemble-based approach as Deep-
Ensemble and our approach as PreferenceEKF. We also assume a pool-based active learning setting
(Settles, 2009) where we denote the set of all possible binary preference queries as P . 3 For belief
initialization (Line 12), whereas PreferenceEKF uses a zero-mean isotropic Gaussian of subspace
dimension |z|, DeepEnsemble initializes M independent models each of dimension |θ|.
After belief initialization, the sequential phase of active learning begin. For random querying,
Line 14 amounts to simply retrieving a random query from the query pool P , whereas active learn-
ing algorithms computes an acquisition function for the optimal query to retrieve from the pool. The
algorithm then receives the corresponding label for the retrieved query from an annotator in Line 15.
For belief update (Line 16), whereas PreferenceEKF performs filtering in the constructed subspace
only on the most recent query-response pair Di, DeepEnsemble trains each of the M models using
gradient descent on all data seen so far.

The most common uncertainty-based acquisition function is ensemble disagreement, i.e., pick the
query Qi for which the predicted preference label 1(τ ia ≻ τ ib) has the highest variance across the
ensemble. Disagreement has been popular for neural network-based active learning where it is ex-
pensive to scale Bayesian methods to high-dimensional settings (Christiano et al., 2017; Lee et al.,
2021b), while InfoGain is the current state of the art acquisition function for lower-dimensional re-
ward learning settings (Bıyık et al., 2020; 2024). While our method can be used to compute any
sampling-based acquisition functions, we specifically leverage PreferenceEKF’s ability to sample
from high-dimensional distributions to scale InfoGain to neural network models. Due to the diffi-
culty of sampling from high dimensional parameter distributions and the cost of training multiple
models, DeepEnsemble approximates InfoGain by maintaining a small number of independent mod-
els. Dropout does so by sampling parameter dropout masks during inference.

Algorithm 1 PreferenceEKF for active preference-based reward learning

1: Input:
2: P: Set of all possible binary preference queries without labels
3: Dinit = {(Qi, yi)}τi=1: Initial preference dataset with τ query-label pairs
4: B: query budget limit
5: w: number of SGD iterations for subspace construction
6: Procedure:
7: # Subspace Construction
8: θ1:w = SGD(Dinit)
9: θ∗ = θw ▷ Parameter offset: θ∗ ∈ R|θ|

10: A = SVD(θ1:w) ▷ Projection matrix: A ∈ R|θ|×|z|

11: # Subspace Inference
12: b0(z) = N (µ′

0,Σ
′
0) ▷ Belief initialization: z ∈ R|z|

13: for t = 1 : B do
14: Qt = ComputeQuery(bt−1,A,θ∗,P) ▷ Compute InfoGain: θ(z) ∈ R|θ|

15: yt = GetLabel(Qt)
16: bt = EKF(bt−1, (Qt, yt)) ▷ EKF update: z ∈ R|z|

17: end for

3Given a dataset of N trajectories, there would be |P| =
(
n
2

)
possible pairwise comparison queries.
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5 EXPERIMENTS

Baselines and Evaluation. We compare our PreferenceEKF method to four Bayesian deep learn-
ing baselines commonly used for reward modeling: DeepEnsemble, Dropout, Laplace, and Last-
Layer MCMC (LLMCMC), which we detail in Section A.2.1. We address the following questions:
(1) Does active learning with PreferenceEKF lead to more data-efficient and effective preference-
based reward learning compared to the baselines (2) Can the reward models sampled from Prefer-
enceEKF’s induced posterior be used to for policy optimization via offline RL? (3) Does represent-
ing parameter uncertainty p(θ | D) as a subspace distribution lead to computational advantages over
representation using ensembles and dropout? We additionally study the model calibration capability
of all algorithms, as well as ablate the subspace construction procedure for PreferenceEKF.

In the reward learning experiments, given a limited query budget B, we would like to learn RMs
from preference queries as sample-efficiently as possible. Evaluation is done by comparing the
Bradley-Terry log-likelihood achieved by a RM on a held-out set of test queries throughout training.
To create the preference query pool P , we randomly sample pairwise partial trajectories from a tra-
jectory dataset Dtraj , then generate noisily optimal synthetic labels: for a given pair of trajectories,
we compute their returns and sample a preference label according to the BT model (Eq. 1).

In the offline RL experiments, The learned RMs are then used for training parameterized poli-
cies πϕ(a | s) via offline RL. This is done by first labeling the trajectory dataset Dtraj with the
learned RM: we take the average predicted reward over M models rMθ (si,t) =

1
M

∑M
m=1 r

m
θ (si,t)

for each state, where rmθ is the mth sampled reward model for PreferenceEKF and Dropout, and
the mth model in the ensemble for DeepEnsemble. A reward-labeled trajectory takes the form,
τi = {(si,t, ai,t, si,t+1, r

M
θ (si,t))}T−1

t=0 , and we train policies on the reward-labeled Dtraj using Im-
plicit Q-Learning (IQL) (Kostrikov et al., 2021), an empirically successful offline RL algorithm. We
evaluate policies by comparing their empirical rollout returns throughout RL training.

Tasks. We evaluate our approach in D4RL (Fu et al., 2020), a popular offline RL benchmark, and
choose a mixture of environments spanning MuJoCo locomotion (HalfCheetah, Hopper, Walker2d),
Adroit Shadow Hand (pen twirling), and Maze2D navigation. Within each environment, we choose
trajectory datasets of varying characteristics: MuJoCo trajectories span a range of performance qual-
ity, Adroit trajectories are generated by a human operator and a fine-tuned expert-level RL policy,
and maze navigation trajectories are collected from policies executed in mazes of varying difficulty.
We consider each dataset as a separate task, for a total of 12 tasks. While our main experiments
focus on simulated state-based control tasks, we refer to Appendix A.2.3 for results on pixel-based
tasks.

Implementation Details. Unless otherwise stated, all experiments are done on a single node with 8
NVIDIA RTX A6000 GPUs via sharding, query budget B = 60, and trajectory segments of length
50. On the belief update step (Line 16), PreferenceEKF learn from only the most recent query-label
pair, while all baselines learn from all data seen so far. Further DeepEnsemble is the only method
that needs to train multiple models, so we set M = 5 as is commonly done for ensemble-based
uncertainty quantification (Ovadia et al., 2019); all other methods can sample arbitrary number M
of models from the learned posterior, so we set M = 100 for them. With the exception of the
scaling experiments in Section 5.3 and the ablation experiments in Section 5.5, all reward models
are represented as multi-layer perceptrons (MLP) with two hidden layers of 64 units, using sub-
space dimensionality |z| = 200. All methods use the InfoGain acquisition function to ensure fair
comparison. We show additional results using the disagreement acquisition function in Appendix
Section A.2.2, and Appendix Section A.2.1 for more details on baseline implementations.

5.1 DOES PREFERENCEEKF LEAD TO SAMPLE-EFFICIENT ACTIVE REWARD LEARNING?

Given a fixed query budget per task, we evaluate each algorithm over 5 seeds. We use state-based
partial trajectories, and compute return of each trajectory as R(τi) =

∑T
t=1 rθ(si,t)/T . We show in

Fig. 1a that aggregated over all tasks, active PreferenceEKF achieves higher sample efficiency com-
pared to its random counterpart. Additionally, both random and active variants of PreferenceEKF
performs on par with or outperforms all other baselines. In the appendix, we show in Fig. A.1 that
in most task, active PreferenceEKF outperforms both its random counterpart as well as all other
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algorithms in terms of sample efficiency and final log-likelihood. See Appendix Section A.1 for
statistical testing results backing up these empirical observations.

(a) (b)

Figure 1: Fig. 1a shows comparison of the random (dashed line) and active (solid line) variants
of each algorithm for preference-based reward modeling using the InfoGain acquisition function,
aggregated over 12 D4RL tasks (mean±s.e. over 5 seeds). Fig. 1b shows comparison of policy
optimization using the reward models learned from random and active variants of each algorithm,
aggregated across 12 D4RL tasks in the offline RL setting (mean±s.e. over 5 seeds). See Fig. A.1
and Fig. A.8 in the appendix for per-task results for reward learning and offline RL evaluations
results, respectively. All results here are shown with a moving average over the last 5 evaluations.

5.2 CAN RMS LEARNED USING PREFERENCEEKF BE USED FOR POLICY OPTIMIZATION?

The goal of the offline RL experiments is to test whether an RM learned from limited number
of preference queries can recover the ground-truth reward information, evaluated by whether the
learned RM can induce a policy that reaches or exceeds the performance of a policy trained with
ground-truth environment rewards (GT), and whether the resulting policy can outperform a separate
RL policy trained on zerod out rewards (Zero). All policies are trained using IQL (Kostrikov et al.,
2021) over 5 seeds on the reward-labeled dataset for 1M steps. Evaluation is done via 5 rollouts
every 50K steps. In Fig. 1b, we show that when aggregated across all tasks, reward models learned
from all methods converge to similar policy performance, with all methods performing on par with
or slightly worse than the GT policy, and all methods greatly outperforming the Zero policy.

While policy optimization using reward models learned from active variant of PreferenceEKF
slightly outperforms that learned from random PreferenceEKF, we note both variants reached
roughly the same final log-likelihood in Fig. 1a, leading to the observed similar policy optimiza-
tion performance in Fig. 1b.

5.3 HOW DOES MODEL TRAINING WITH PREFERENCEEKF SCALE?

Next, we investigate whether extended Kalman filter can serve as a scalable alternative to gradient
descent for training neural network reward models using preference data. Computing predictive
distributions via sampling (Eq. 3) requires forward passes over M neural networks. We show here
the computational advantage of PreferenceEKF in maintaining a subspace parameter posterior dis-
tribution p(θ | D) to sample models from, compared to DeepEnsemble’s approach of maintaining
and training M neural networks explicitly and Dropout’s approach of sampling dropout masks. We
run all scaling experiments on CPUs as the larger models and ensemble sizes led to out-of-memory
errors. Finally, while PreferenceEKF’s belief update procedure (Line 16) only requires the most re-
cent query due to EKF being an online estimation algorithm, DeepEnsemble and Dropout train over
all queries observed so far (Lee et al., 2021b; Christiano et al., 2017). All experiments use subspaces
of fixed dimensionality |z| = 200.

We show in Fig. 2a that given a fixed architecture of a two-layer MLP with 64 units per layer,
the runtime of PreferenceEKF for learning a reward model from B = 60 queries scales much
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more gracefully with increasing M compared to DeepEnsemble. While Dropout does not need to
maintain multiple independent models, it is still slower than PreferenceEKF as it performs model
update in full parameter space instead of a lower-dimensional subspace. Fig. 2b demonstrates that
final test log-likelihood favors PreferenceEKF over the other methods, showcasing that our approach
maintains consistent performance on top of computational efficiency given increasing M .

Fig. 2c and Fig. 2d show that given fixed number of model parameter samples (M = 5) and in-
creasing neural network architecture size, PreferenceEKF scales more gracefully compared to other
methods, on top of maintaining test log-likelihood performance. This showcases the scalability of
subspace training to not only settings where we need large number of model samples M , but also to
settings where we need larger neural networks |θ|.

(a) (b) (c) (d)

Figure 2: Fig. 2a and Fig. 2b show the effect of scaling the number of model samples M , while
Fig. 2c and Fig. 2d show the effect of scaling neural network architecture size in the active learning
setting (mean ± std over 3 seeds). Overall, PreferenceEKF scales more gracefully than the other
algorithms, showcasing the advantages of both subspace training and uncertainty representation
using subspace distribution over model ensembles and dropout masks.

5.4 DOES PREFERENCEEKF LEAD TO BETTER CALIBRATED MODELS?

While effective representation of parameter uncertainty is crucial for efficient active learning, it is
also important for calibration of neural network predictions (Guo et al., 2017; Ovadia et al., 2019).
We study whether uncertainty quantification (UQ) using subspace methods leads to better calibrated
model predictions compared to UQ using ensemble methods and dropout, as quantified by two
commonly used UQ metrics: expected calibration error (ECE) using 5 bins (Naeini et al., 2015;
Pavlovic, 2025) and Brier score (Brier, 1950; DeGroot & Fienberg, 1983). We provide further
calibration experiment details in Appendix Section A.2.4.

We show in Fig. 3a that variants of PreferenceEKF has the lowest ECE among all methods, and the
second lowest Brier score along with active DeepEnsemble. This highlights the quality of posterior
approximation achieved by subspace inference methods. While dropout-based methods gets around
the computational cost of ensembles, the resulting uncertainty representation has led to both poorer
active learning and UQ results as compared to subspace methods.

5.5 ABLATION STUDY ON SUBSPACE CONSTRUCTION

The method for subspace construction for PreferenceEKF can be modified to 1) use varying dimen-
sionality of the subspace, and to 2) use random projection to generate the subspace basis instead
of running SVD on gradient descent iterates (Li et al., 2018; Izmailov et al., 2020). While all of
our experiments so far use a fixed dimensionality of |z| = 200 with SVD-based construction, we
perform an ablation analysis over these choices, as shown in Fig. 3b. We observed that while the
SVD-based approach works well for smaller subspace dimensions, the random projection approach
can eventually reach performance on par with or even outperform the SVD approach as the subspace
dimension increases. This finding is similar to what was observed by Duran-Martin et al. (2022) in
bandit settings, highlighting the generality of this result for subspace Bayesian filtering methods
used to train neural networks.
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(a) (b)

Figure 3: Fig. 3a shows comparison of the random (dashed line) and active (solid line) variants
of the algorithms in model calibration, as evaluated by expected calibration error and Brier score
on a test dataset (lower is better for both metrics). Fig. 3b shows an ablation over the subspace
construction technique for PreferenceEKF, as evaluated by log-likelihood on a test dataset (higher
is better). Both the UQ experiment and ablation analysis here are performed over 3 seeds (mean ±
std) on the Walker Medium Expert task.

6 CONCLUSION

In this work, we successfully adopted extended Kalman filters to train neural networks in active
preference-based reward modeling setting. We showed several advantages of maintaining a sub-
space distribution over neural network parameters p(θ | D), in comparison to four other widely
used Bayesian deep learning methods for active reward learning. Our approach led to more sample
efficient active reward learning, similarly performant RL policy optimization, better runtime scaling
with respect to model size and model sample count, and better calibration through higher-quality
uncertainty representation. Learning a lower-dimensional distribution of neural network parameters
further allowed us to scale the current state art of the art acquisition function for preference-based
active reward modeling, InfoGain (Bıyık et al., 2020), from lower-dimensional model settings to
deep neural networks.

Limitations and future work. While we found subspace method to be an effective tool for scal-
ing Bayesian filtering methods for neural network training, it is unsure whether this approach will
be effective for applying Bayesian methods to foundation model-scale reward models (Mahan et al.,
2024; Zhang et al., 2024). Due to the unimodality of the Gaussian distribution that extended Kalman
filter maintains, alternative methods may need to be investigated for approximating multimodal pos-
teriors, e.g., learning reward functions from annotators with differing preferences (Poddar et al.,
2024; Siththaranjan et al., 2023). We would further like to evaluate uncertainty quantification us-
ing the recent works on epistemic neural networks (Osband et al., 2023b), which focuses on joint
predictions uncertainty instead of marginal predictive distribution.

While our work primarily focused on improving sample-efficiency of reward modeling in RLHF,
we would like to further investigate how learned posterior distribution of reward models can aid in
RL policy’s exploration and serve as a mechanism for mitigating reward hacking (Yang et al., 2024;
Gao et al., 2022; Hadfield-Menell et al., 2017). Finally, due to its sample-efficiency and adaptivity
to non-stationary distributions, we believe the subspace filtering method to be a viable candidate for
uncertainty quantification and large model finetuning in robot learning domains (Bellemare et al.,
2017; Fridovich-Keil et al., 2020; Bobu et al., 2020).
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7 REPRODUCIBILITY STATEMENT

Our code is anonymously available in the JAX framework at https://github.com/
preferenceEKF2025/preference_ekf. We ensured that all pseudo-randomness has been
controlled for via JAX’s PRNG implementation. We provide all SLURM launch scripts, visualiza-
tion scripts, and configuration files with all hyperparameters as part of code release.
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

Our code is available in the JAX (Bradbury et al., 2018) framework at https://github.com/
preferenceEKF2025/preference_ekf. For implementation of the reward learning algo-
rithms, we use Dynamax (Linderman et al., 2025) for extended Kalman filtering (EKF), Laplax
(Weber et al., 2025) for Laplace approximation, and Blackjax (Cabezas et al., 2024) for MCMC.
For offline RL, we use Unifloral (Jackson et al., 2025) for implementation of implicit Q-learning
(IQL). All statistical testing are done using SciPy (Virtanen et al., 2020). Unless stated otherwise,
all experiments are done on a single node with 8 NVIDIA RTX A6000 GPUs via SLURM sharding.

A.1 STATISTICAL TESTING

To provide statistical significance to the main claims from Section 5.1, we conduct hypothesis testing
of 1) whether the active variant of each algorithm outperforms its random variant and 2) whether
active PreferenceEKF outperforms active variants of other Bayesian deep learning baselines. For
the summary statistic of each active reward learning experiment run, we compute the normalized
area under curve (AUC) of the log-likelihood plot in Fig. 1a. This measures the rate of improvement
for log-likelihood. Since all runs are performed using the same set of 5 random seeds and the same
train/test dataset split, we conduct our hypothesis testing using the one-sided paired t-test to compare
the normalized AUC between two sets of runs. We additionally compute the 95% confidence interval
as well as Cohen’s d for effect size.

In the first 5 rows of Table 1, we show the performance of active versus random variant of each
algorithm, where each row is conducted over 5 seeds. We see that active PreferenceEKF and Deep-
Ensemble outperforms their random counterparts in normalized AUC with high statistical signifi-
cance, while Dropout, Laplace and LLMCMC fail to do so. We also note that DeepEnsemble and
LLMCMC reach roughly the same log-likelihood results as PreferenceEKF.

In the last 4 rows of Table 1, we show the performance of active PreferenceEKF versus active variant
of other baselines, where each row is conducted over 5 seeds. We see that active PreferenceEKF
outperforms active variants of all baselines in normalized AUC with high statistical significance.

Test t p-value Cohen’s d 95% CI

EKF (A vs. R) 2.43 0.036 1.01 (large) (0.00,∞)
Ensemble (A vs. R) 15.08 < 0.001 5.21 (large) (0.09,∞)
Dropout (A vs. R) -0.69 0.737 -0.44 (small) (−0.05,∞)
Laplace (A vs. R) 0.82 0.230 0.47 (small) (−0.02,∞)
LLMCMC (A vs. R) 1.46 0.109 0.67 (medium) (−0.00,∞)
EKF vs. Ensemble 27.44 < 0.001 7.80 (large) (0.11,∞)
EKF vs. Dropout 16.77 < 0.001 11.22 (large) (0.25,∞)
EKF vs. Laplace 19.44 < 0.001 12.55 (large) (0.26,∞)
EKF vs. LLMCMC 5.21 0.003 3.84 (large) (0.03,∞)

Table 1: One-sided paired t-tests comparing active vs. random variants of each algorithm, and active
EKF vs. active variant of other baseline algorithms.

A.2 PREFERENCE-BASED REWARD LEARNING

Implementation Details. Unless otherwise stated, all reward learning experiments are done using
subspace dimensionality |z| = 200, query budget B = 60, and partial trajectory of length 50. All
neural networks reward model are represented using multi-layer perceptrons (MLP) with two hidden
layers of 64 units. We apply normalization to all input features. PreferenceEKF and Dropout uses
M = 100 model parameter samples to compute the acquisition function and posterior predictive
distribution, while DeepEnsemble trains M = 5 independent networks, each with different weight
initialization and randomness for minibatch shuffling.

All tasks use a pool of 150K pairwise partial trajectory queries drawn from the trajectory dataset
to perform random or active querying over, and 3000 test queries for log-likelihood evaluation.
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For generation of noisy-optimal synthetic labels, we apply trajectory return normalization before
passing trajectory pairs through the BT model (Eq. 1) to compute the likelihood pθ(τa ≻ τb). We
use temperature parameter of β = 7, resulting in roughly 5-15% mistaken preference labels per task.

Before the sequential learning phase starting on Line 13, all algorithms receive a small dataset
consisting of τ = 8 query-response pairs for belief initialization, i.e., all algorithms observe a total
of τ + B = 8 + 60 = 68 samples. All algorithms run variants of gradient descent (GD) on the
warm-up dataset for 420 optimizer steps. While PreferenceEKF uses SGD with learning rate of 1e-4,
momentum of 0.9, and batch size of 1, DeepEnsemble and Dropout uses Adam (Kingma & Ba, 2014)
with learning rate of 1e-4 along with default hyperparamters from Optax (DeepMind et al., 2020),
and batch size of 8. Previous works have found that SGD with a high constant learning is crucial to
producing GD iterates with enough variance to construct a subspace effective for optimization and
inference (Fort et al., 2020), hence the different choice of optimizer for PreferenceEKF.

PreferenceEKF constructs the subspace by running SVD on the GD iterates obtained from running
SGD on the warmup dataset. We throw away the first 20 out of the 420 GD iterates and keep only
every other remaining iterate, for a total of (420 − 20)/2 = 200 iterates. Thus, SVD takes in a
model parameter array of shape (200× |θ|), and return a projection matrix A of shape (200× |z|)
by keeping only the top |z| = 200 principal components. The final GD iterate is used as the
full space parameter offset θ∗, which, along with projection matrix A, is used to transform from
the subspace back up to the full space for, e.g. computing predictive distributions as described in
Section 4. Finally, PreferenceEKF performs belief initialization (Line 12) in the subspace using a
zero-mean isotropic Gaussian of dimension |z| = 200.

On the belief update step (Line 16), PreferenceEKF learns from only the most recent query-label
pair, while DeepEnsemble and Dropout learns learns from all data seen so far over 3 epochs. Note
that the specific filtering algorithm we use is the iterated EKF (Bell & Cathey, 1993), which repeat-
edly re-linearize the measurement model around the estimated posterior. Empirically, we observed
better log-likelihood evaluation performance in exchange for marginally extra runtime. We refer to
the number of such re-linearization steps on every new sample as nlinearize. For further details on
iterated EKF, refer to Section 8.3.2.2 of (Murphy, 2023). We use nlinearize = 5, prior noise of 0.07,
systems noise of 1e-3, and measurement noise of 0.07 for all of our PreferenceEKF experiments.

A.2.1 BASELINE ALGORITHMS

The primary tradeoff that Bayesian deep learning (BDL) algorithms are concerned with is the com-
putational tractability and approximation quality of the posterior distribution over model parameters
given data p(θ | D). For high-dimensional models such as neural networks, the posterior can be
highly multi-modal, which can be difficult to approximate for algorithms that use unimodal distri-
butions (typically Gaussian) such as Laplace approximation and extended Kalman filters. On the
other hand, while Markov chain Monte Carlo (MCMC) has been the gold standard for posterior
approximation (Izmailov et al., 2021), they are very difficult to scale to large models with many
parameters. As such, many BDL algorithms try to “be Bayesian” over only a subset or subspace of
model parameters, or rely on ensembling to hopefully reach multiple posterior modes. Here we pro-
vide a high-level description of the five classes of BDL algorithms we use for our experiments, the
corresponding implementation details, as well as where they have been used in the reward learning
literature.

DeepEnsemble and Dropout are among the most widely-used BDL algorithms for reward modeling
and more generally, uncertainty quantification in neural networks (Christiano et al., 2017; Gleave &
Irving, 2022; Chen et al., 2020; Hoque et al., 2022). They approximate the posterior by relying on
randomness (e.g., weight initialization, mini-batch sampling order) to train multiple models and av-
erage over their predictions. While DeepEnsemble has the computational burden of actually training
multiple neural networks, Dropout masks out subset of model parameters during training and com-
putes the posterior predictive distribution by averaging predictions from multiple model copies with
different weight masks during inference time, thus requiring training of only one model. The idea
for both approach is for the multiple resulting models to act as samples from the posterior distribu-
tion. All M models trained under DeepEnsemble method receive a different stream of mini-batches
for training. Dropout uses weight dropout probability of 0.3 for all experiments, during both training
and inference.
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Figure A.1: Comparison of the random (dashed line) and active (solid line) variants of the algo-
rithms using the InfoGain acquisition function, across 12 D4RL tasks for preference-based reward
modeling (mean±s.e. over 5 seeds). In all tasks, active PreferenceEKF either performs on par with
or outperforms other algorithms in terms of sample-efficiency and final log-likelihood.

LLMCMC: Despite the high quality posterior approximation of MCMC methods for smaller mod-
els such as linear models (Bıyık et al., 2020; Hadfield-Menell et al., 2017), they have are not widely
used for neural network posterior inference due to their poor scalability to parameter count. Most
application of MCMC to BDL trains the entire NN model using more efficient maximum likelihood
methods like gradient descent, then perform MCMC only over the parameters of the final layer. We
chose this “last-layer Bayesian” approach as it has been shown to strike a good balance between
computational tractability and approximation quality (Brown et al., 2020; Snoek et al., 2015). The
specific MCMC sampler we use is NUTS (Hoffman & Gelman, 2014). On active learning step, we
construct a new log-density function using the aggregated dataset using all samples seen so far. For
belief initialization, we use 500 warm up MCMC iterations followed by 1000 additional iterations.
For belief update steps, since the log-density function should not differ too much with one additional
aggregated sample, we set warm up iteration to be 20, followed by 1000 additional iterations. We
then subsample M models from the resulting MCMC iterates to form our sampling-based posterior.

Laplace: While Laplace approximation (LA) has traditionally been used for smaller models in
logistic regression and Gaussian process-based regression models (Biyik et al., 2020; Rasmussen
& Williams, 2005), recent advancements such as those in Dangel et al. (2025); Daxberger et al.
(2024) have made the technique highly scalable to neural network architectures. Combined with
parameter efficient finetuning technique such as LoRa (Hu et al., 2021), LA has even been ap-
plied to transformer-scaled reward models (Yang et al., 2024). By approximating likelihood cur-
vature around a model solution trained via maximum likelihood methods such as gradient descent,
LA constructs a local Gaussian approximation to the model posterior. We use the full curvature
approximation-based approach of Weber et al. (2025) to perform LA over the entire reward model,
with prior precision value of 1000. Once the curvature information has been constructed for the
Gaussian posterior approximation, we can sample arbitrary number of model parameters from the
posterior.

PreferenceEKF: While the preceding described methods perform inference over either the full
model or a subset thereof, PreferenceEKF find a low dimensional subspace (as opposed to just a
subset of the parameters) within the full parameter space, and perform inference within the sub-
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space. The main insight of subspace inference approaches (Daxberger et al., 2021) is that due to
the overparameterized nature of neural networks, capturing posterior information only over a con-
strained subspace would be a sufficient alternative to posterior inference over the whole network.
Once a Gaussian approximation is obtained via subspace Kalman filtering, we can sample arbitrary
number of model parameters from the posterior.

A.2.2 ACQUISITION FUNCTIONS

The InfoGain acquisition function introduced in Eq. 2a was developed by Bıyık et al. (2020) for
active reward learning using linear reward models. To motivate its origin, we first express the Info-
Gain objective in three equivalent forms below due to symmetry of mutual information. We refer to
Section 5 of Bıyık et al. (2020) for further interpretations of the objective, and Appendix 9.1 of their
work for derivation of the sampling-based approximation shown in Eq. 3.

Q∗
i = argmax

Qi

I
(
θ; yi | Qi, b

i−1
)

(5a)

= argmax
Qi

H
(
θ | Qi, b

i−1
)
− Eyi

[
H(θ | yi, Qi, b

i−1)
]

(5b)

= argmax
Qi

H
(
yi | Qi, b

i−1
)
− Eθ [H(yi | θ, Qi)] (5c)

The idea of mutual information-based acquisition functions is rooted in the concept of expected
information gain studied in Bayesian optimal experiment design and active data selection (MacKay,
1992; Lindley, 1956). It was later extended to Bayesian optimization using Gaussian process models
under the methods Bayesian active learning by disagreement (BALD) (Houlsby et al., 2011), entropy
search (ES) (Hennig & Schuler, 2012), and predictive entropy search (PES) (Hernández-Lobato
et al., 2014). In particular, the mutual information objective function in Eq. 5a is expressed in its ES
form in Eq. 5b, and expressed in its equivalent but computationally efficient PES form in Eq. 5c. Our
PreferenceEKF method focuses on efficient sampling of high-dimensional neural network model
parameters to approximate the predictive distribution for optimizing Eq. 5c.

Although our main experiments all use the InfoGain acquisition function to showcase the advantage
of being able to sample from high-dimensional neural network parameter distributions, the Pref-
erenceEKF method is agnostic to the acquisition function used for active learning. While Fig. 1a
and Fig. A.1 showcase the aggregate and per-task log-likelihood results for active preference-based
reward learning experiments using InfoGain, here we show additional results using the widely used
disagreement acquisition function, which selects the query Qi for which the predicted preference
label 1(τ ia ≻ τ ib) has the highest variance across the ensemble or sampled models. Fig. A.2 and
Fig. A.3 show the aggregate and per-task log-likelihood results, while Fig. A.4 show the calibration
results. Overall, we see that InfoGain led to superior active reward learning performance compared
to disagreement.

A.2.3 PIXEL-BASED REWARD LEARNING

While our main results in Section 5 are performed on state-based control tasks, here we showcase
the applicability of PreferenceEKF to pixel-based tasks. We focus on the Visual D4RL (V-D4RL)
benchmark (Lu et al., 2023), which contains rendered pixel-image observations corresponding to
datasets from the state-based D4RL benchmark.

Our pixel-based reward model architecture consists of an ImageNet-pretrained ResNet18 image
encoder (Deng et al., 2009; He et al., 2016) as the backbone and a two-layer MLP with 256 hidden
units per layer as the reward prediction head. We finetune the entire reward model via SGD as
part of the belief initialization step of Line 12, and perform EKF inference within the subspace of
only the reward head parameters while keeping the finetuned backbone frozen. Due to the increased
task and model complexity, we construct a subspace with dimensionality of 500 (compared to 200
in the state-based tasks with smaller reward models), and use random projection to do so since a
larger subspace benefits equally from random projection versus SVD-based construction techniques
as shown in Fig. 3b.

Since EKF’s belief update procedure scales cubically with dimensionality of the observation space,
we use a measurement likelihood function (Eq. 4) over trajectory embeddings rather than raw tra-
jectory pixels. We compute embeddings from the final layer of the ResNet18 backbone before the
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Figure A.2: Comparison of the random (dashed line) and active (solid line) variants of the algorithms
for preference-based reward modeling using the disagreement acquisition function, aggregated over
12 D4RL tasks (mean±s.e. over 5 seeds). While PreferenceEKF and LLMCMC outperforms all
other methods, their active variants did not outperform their random variants.

reward prediction head, and mean-pool the embeddings across all timesteps of a trajectory segment
to obtain embeddings that aggregate trajectory-level information. Empirically, raw pixel observa-
tions over trajectory segment lengths of 10 steps with images of height, width, channel (84, 84, 3)
would result in observation dimension of 10× 84× 84× 3 = 211, 680 per trajectory, while mean-
pooled embedding-based observation results in dimension of 512 per trajectory.

To finetune the pixel-based reward model, we start with a much bigger initial query dataset of 150
(compared to just 8 in state-based experiments), and use learning rate of 0.0001 over 3000 mini-
batches with batch size 16. In Fig. A.5 and Fig. A.6, we show that PreferenceEKF is indeed a
viable method for active preference-based reward learning. While the performance of active versus
random sampling varies heavily across the three chosen pixel-based tasks, the active variant as a
whole shows promising improvement over the random variant. We leave research on EKF variants
that efficiently scale with observation dimension, and more parameter efficient subspace inference
methods such as those based on LoRa (Hu et al., 2021) to future work.

A.2.4 MODEL CALIBRATION EXPERIMENTS

In addition to the results from Section 5.4 on expected calibration error and Brier scores, we pro-
vide in Fig. A.7 reliability diagrams computed from model predictions over all tasks and seeds.
Due to the per-timestep parameterization of the reward model for computing the Bradley-Terry loss
function Eq. 1, our binary preference query dataset is implemented to always have the second item
be preferred over the first item. This corresponds to label of always 1, hence why the reliability
diagrams only show calibration for half of the probability line. Upon inspection, we can see that
PreferenceEKF and LLMCMC exhibit the lowest model calibration error.

A.3 OFFLINE REINFORCEMENT LEARNING

The extent to which offline RL algorithms leverages reward information for policy optimization, i.e.,
whether reward-induced policy performance is a good metric for assessing learned reward models,
is heavily dependent on the trajectory dataset: when ran on datasets consisting solely of expert
demonstrations, offline RL algorithms will largely ignore reward information and adopt a behavioral
cloning-like learning strategy. On the other hand, it is generally difficult to train a policy from a
dataset consisting of purely random behavior (Kumar et al., 2021).
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Figure A.3: Comparison of the random (dashed line) and active (solid line) variants of the algorithms
using the disagreement acquisition function, across 12 D4RL tasks for preference-based reward
modeling (mean±s.e. over 5 seeds). In most tasks, active PreferenceEKF either performs on par
with or outperforms other algorithms in terms of sample-efficiency and final log-likelihood. Pen
Human are Maze Large Dense are particular outlier cases where active PreferenceEKF severely
underperforms, which explains why the aggregate results in Fig. A.2 look unfavorably for active
PreferenceEKF relative to its random variant.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure A.4: Comparison of the random (dashed line) and active (solid line) variants of the algorithms
in model calibration, as evaluated by expected calibration error and Brier score on a test dataset
(lower is better for both metrics).

Figure A.5: Comparison of the random (dashed line) and active (solid line) variant of PreferenceEKF
for preference-based reward modeling using the InfoGain acquisition function, aggregated over 3
pixel-based VD4RL tasks (mean±s.e. over 5 seeds).
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Figure A.6: Comparison of the random (dashed line) and active (solid line) variant of PreferenceEKF
for preference-based reward modeling using the InfoGain acquisition function, aggregated over 3
pixel-based VD4RL tasks (mean±s.e. over 5 seeds).

Figure A.7: Reliability diagram over all five methods and their random and active variants.
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Following the experiment methodology of Shin et al. (2022) for our offline RL experiments, we
add two reference performance scores to every task as shown in Fig. A.8: we refer to “GT” as
the score from an offline RL policy trained on Dtraj labeled with ground-truth environment reward
information, and “Zero” as score from a policy trained on Dtraj with reward information zeroed out.
This serves to test whether an offline RL algorithm is able to effectively leverage reward information
for a given trajectory dataset. For most tasks, GT and Zero serve as upper and lower performance
bounds for learned policies.

All offline RL experiments were done by running implicit Q-learning (IQL) (Kostrikov et al., 2021)
on trajectory transition datasets labeled with different types of rewards, e.g., ground truth environ-
ment reward, zeroed out reward, or preference-learned reward. An IQL agent consists of four neural
networks: main and target Q-network, Gaussian policy network, and state-value network. All four
networks have two hidden layers of 256 units each and are trained using the same optimizer config-
uration with cosine decay learning rate schedule. All training runs are done using 1M update steps
with 5 rollouts every 50K steps for evaluation. We apply normalization to both reward and obser-
vation features, and further apply clipping for reward values exceeding 10. All hyperparameters are
detailed in Table 2.

Table 2: Shared hyperparameters for IQL across all tasks. Here “Iterations” refers to the number of
minibatch updates.

Name Value
Optimizer Adam
Learning rate 0.0003
Betas (0.9, 0.999)
Iterations 1M
Batch size 256
Discount factor γ 0.99
Target net update step size 0.005
Expectile τ 0.7
Advantage temperature β 3.0
Exponential advantage clip 100

A.4 SCALING EXPERIMENTS.

JAX offers efficient vectorization of arbitrary functions using jax.vmap. While we use this to
parallelize ensemble model training and prediction in most experiments in Section 5, we do not
use this for the scalability experiments in Section 5.3. Parallelized training and prediction of up to
M = 150 models with up to 2M parameters (in the case of the three layer neural networks with
1024 units each) can quickly lead to out-of-memory errors. We instead use python’s native for loop
to perform ensemble model training and prediction sequentially. All scalability experiments were
done on CPU instead of GPU to avoid out-of-memory errors.

A.5 LLM USAGE

We used LLMs primarily for writing Python visualization scripts, figures/tables typesetting in Latex,
finding related work on subspace construction methods, and debugging JAX compilation / model
loading errors. We did not use LLMs for paper writing, research ideation, or implementing the core
algorithm parts.
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Figure A.8: Comparison of the RM learned using random (dashed line) and active (solid line) vari-
ants of the algorithms across 12 D4RL tasks in the offline RL setting (mean±s.e. over 5 seeds).
Black solid line indicates the performance of a policy trained on ground truth reward (GT), and
black dotted line for a policy trained without reward information (Zero). In most tasks, active Pref-
erenceEKF performs on par with other algorithms in terms of rollout score.
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