

000 001 SUBSPACE INFERENCE ENABLES ACTIVE PREFER- 002 ENCE BASED LEARNING OF NEURAL NETWORK RE- 003 WARD MODELS 004

005
006 **Anonymous authors**
007 Paper under double-blind review
008

009 010 ABSTRACT 011

012
013 Reinforcement learning from human feedback (RLHF) has emerged as a powerful
014 approach for aligning decision-making agents with human intentions, primarily
015 through the use of reward models trained on human preferences. However, RLHF
016 suffers from poor sample efficiency, as each feedback provides minimal information,
017 making it necessary to collect large amounts of human feedback. Active
018 learning addresses this by enabling agents to select informative queries, but ef-
019 fective uncertainty quantification required for active learning remains a challenge.
020 While ensemble methods and dropout are popular for their simplicity, they are
021 computationally expensive at scale and do not always provide good posterior ap-
022 proximation. Inspired by the recent advances in approximate Bayesian inference,
023 we develop a method that leverages Bayesian filtering in neural network subspaces
024 to efficiently maintain model posterior for active reward modeling. Our approach
025 enables scalable sampling of neural network reward models to efficiently com-
026 pute active learning acquisition functions. Experiments on the D4RL benchmark
027 demonstrate that our approach achieves superior sample efficiency, scalability, and
028 calibration compared to other Bayesian deep learning approaches, and leads to
029 competitive offline reinforcement learning policy performance. This highlights
030 the potential of scalable Bayesian methods for preference-based reward modeling
031 in RLHF.

032 1 INTRODUCTION 033

034 In recent years, reinforcement learning from human feedback (RLHF) has become the dominant
035 technique for aligning decision-making agents with human intentions (Christiano et al., 2017;
036 Ouyang et al., 2022). The ease of providing preference feedback has been a crucial factor in their
037 popularity as a feedback type for reward modeling, but since each feedback provides at most 1 bit
038 of information, they are also known for their poor sample efficiency; asking a human thousands of
039 comparison questions to learn a reward model (RM) is often not scalable.

040 A core problem of RLHF is active learning, where we want an agent to be judicious about the
041 queries it asks to learn about a human’s preferences as efficiently as possible (Sadigh et al., 2017;
042 Casper et al., 2023; Baraka et al., 2025). Many active learning approaches require probabilistic
043 modeling of uncertainty for computing data acquisition functions, making proper uncertainty repre-
044 sentation an active area of research (Ovadia et al., 2019; Tran et al., 2020; Papamarkou et al., 2024).
045 While Bayesian methods are well-principled, they are hard to scale to large neural networks (NN)
046 (Izmailov et al., 2021). On the other hand, the simplicity of ensemble method (Dietterich, 2000;
047 Lakshminarayanan et al., 2016) has made it a popular choice for active learning. However, training
048 multiple models can be computationally intensive, especially for large NN reward models.

049 Due to recent advancements in approximate inference, Bayesian deep learning have become in-
050 creasingly scalable (Daxberger et al., 2024; Shen et al., 2024). In this work, we develop a method
051 called PreferenceEKF that enables efficient training of Bayesian neural networks for representing
052 reward models in active preference-based reward learning. Specifically, by performing Bayesian
053 filtering in a constructed neural network subspace, we maintain model uncertainty in a compute-
and memory-efficient manner. The reduced dimensionality of the subspace enables application of

054 the extended Kalman filter, a classic inference method, for training neural networks. This allows
 055 sampling of arbitrary number of reward models from the model posterior, and use the samples for
 056 computing common uncertainty-based acquisition functions such as expected information gain and
 057 disagreement (Hennig & Schuler, 2012; Hernández-Lobato et al., 2014; Bıyık et al., 2022).

058 To the best of our knowledge, we are the first to leverage subspace filtering (Duran-Martin et al.,
 059 2022) to train neural network reward models for preference-based reward learning. We compare our
 060 method, PreferenceEKF to four widely used Bayesian deep learning methods for active preference-
 061 based reward learning, and conduct experiments in the D4RL (Fu et al., 2020) benchmark. Our
 062 findings are as follows:

- 064 • Active reward learning using PreferenceEKF leads to better sample efficiency (in terms of
 065 the number of queries required) compared to reward learning from random queries.
- 066 • PreferenceEKF performs on par with or better than all Bayesian deep learning baselines in
 067 terms of sample efficiency and calibration in preference modeling tasks.
- 068 • PreferenceEKF’s runtime scales better with both model size and number of posterior sam-
 069 ples used for computing acquisition function compared to all other methods.
- 070 • When the learned rewards are used for policy optimization in offline RL tasks (Levine et al.,
 071 2020), the reward model learned using active PreferenceEKF resulted in the best overall
 072 policy rollout performance compared to reward models learned using other methods.

073 2 RELATED WORK

074 **Reinforcement learning from human preferences.** While early works in reward learning focused
 075 on learning from expert demonstrations (Abbeel & Ng, 2004; Finn et al., 2016; Ho & Ermon, 2016),
 076 much recent interest has focused on reward learning from pairwise comparisons where human
 077 annotators are asked to compare two potential outcomes, e.g., labels, responses, or trajectories (Wirth
 078 et al., 2017; Christiano et al., 2017; Brown et al., 2019). Although preference feedback is much
 079 easier for annotators to provide than demonstrations, the minimal amount of information contained
 080 within a binary preference query necessitates collection of large amounts of feedback data.

081 Active learning is a widely used approach for minimizing the time-consuming process of collecting
 082 human feedback. It is a sequential problem in nature, as it iteratively collects the most useful data
 083 sample based on the model’s current state, such as parameter posterior uncertainty. (Sadigh et al.,
 084 2017; Settles, 2009). While Bayesian methods have been successfully applied to obtain posteri-
 085 ors for active reward learning using lower-dimensional linear and Gaussian process reward models
 086 (Bıyık et al., 2022; 2024), it has not been widely adopted for neural reward models, since acquisi-
 087 tion functions typically require sampling from the high-dimensional distribution of model parame-
 088 ters. Instead, ensembles have been the key enabler of neural network based active reward learning
 089 (Lee et al., 2021b; Christiano et al., 2017). Our work focuses on efficient yet performant posterior
 090 inference for active reward learning, without expensive training of multiple independent models.

091 **Uncertainty Quantification for neural networks.** Classic Bayesian methods that have been
 092 successfully used for neural network uncertainty quantification include Laplace approximation
 093 (Daxberger et al., 2024), Hamiltonian Monte Carlo (Neal, 2011), and variational inference (Blei
 094 et al., 2017). While not strictly motivated by Bayesian principles, the simplicity of ensemble
 095 method (Dietterich, 2000; Lakshminarayanan et al., 2016) and dropout (Srivastava et al., 2014; Gal
 096 & Ghahramani, 2016) has made them popular for UQ. While dropout method gets around ensem-
 097 ble method’s expense cost of training multiple independent models, it has been shown to lead to poor
 098 posterior approximation quality (Hron et al., 2018; Osband, 2016).

099 Bayesian filtering methods, which focuses on inferring hidden states from noisy observations, pro-
 100 vide a principled approach to sequential learning, and have been widely used in robotics and signal
 101 processing (Thrun et al., 2005; Särkkä & Svensson, 2023). Application of Bayesian filtering for
 102 training neural networks (Singhal & Wu, 1988; de Freitas et al., 2000) has only recently been ap-
 103 plied to deep neural networks via subspace methods by Duran-Martin et al. (2022) for neural bandits.

104 Instead of deriving epistemic uncertainty from posterior inference, a separate line of work has fo-
 105 cused on leveraging nonparametric statistics techniques such as the bootstrap to perform UQ (Efron,
 106 1992), and has successfully applied this technique for exploration in deep reinforcement learning
 107 (Osband et al., 2018; 2016). The same group of authors have also leveraged joint predictions for

108 UQ, and has applied the idea to finetuning large language models (Osband et al., 2023b;a). Our
 109 work leverages Bayesian filtering to train neural network reward models in active reward learning
 110 settings, where we focus primarily on parameter uncertainty instead of joint prediction uncertainty.
 111

112 **Subspace methods for neural networks.** While there exists a vast literature on decreasing neural
 113 network size for efficient training and serving via architecture search (Elsken et al., 2019), quanti-
 114 zation (Gholami et al., 2021), and pruning (Frankle & Carbin, 2022), we focus only on works
 115 that enable tractable inference in the reduced model. Specifically, there is growing evidence that
 116 the number of parameters required to fit a neural network is much smaller than its total parameter
 117 count; optimization and inference in the subspace spanned by these parameters offer not only com-
 118 putational efficiency, but also tractability of applying Bayesian methods for neural network training
 119 (Fort et al., 2020; Larsen et al., 2022). These parameters are found either as a subset of neural
 120 network parameters, or within a lower-dimensional subspace of the parameters.

121 Methods focusing on parameter subsets typically apply Bayesian methods such as Bayesian lin-
 122 ear regression or variational inference to the last layer of the neural network, and point estimation
 123 methods like stochastic gradient descent (SGD) for intermediate layers (Snoek et al., 2015; Harrison
 124 et al., 2023; Brunzema et al., 2024). On the other hand, subspace methods typically constructs the
 125 low-dimensional subspaces via either random projection or singular value decomposition of SGD it-
 126 erates of the full network; any inference or optimization technique such as sliced sampling (Izmailov
 127 et al., 2020) or SGD Li et al. (2018) can then be applied in the subspace in a tractable manner.

128 3 PRELIMINARIES

130 **Preference-based reward modeling.** We consider a Markov decision process (MDP)
 131 $\langle \mathcal{S}, \mathcal{A}, \mathcal{T}, r, \gamma \rangle$ with state space \mathcal{S} , action space \mathcal{A} , transition function \mathcal{T} , reward function $r : \mathcal{S} \rightarrow \mathbb{R}$,
 132 and discount factor $\gamma \in [0, 1]$. We assume access to a dataset of trajectories $\mathcal{D}^{traj} = \{\tau_1, \dots, \tau_N\}$,
 133 where each trajectory τ_i is a sequence of T steps $\tau_i = \{(s_{i,t}, a_{i,t}, s_{i,t+1})\}_{t=0}^{T-1}$, with each step
 134 consisting of state $s_t \in \mathcal{S}$, action $a_t \in \mathcal{A}$, and next-state $s_{t+1} \in \mathcal{S}$. In preference-based reward
 135 modeling, we do not assume access to a reward function. Instead, our task supervision comes from
 136 annotators who provide binary preference labels over pairwise trajectory comparisons queries, and
 137 the goal is to learn the annotator’s reward function that informed their preference labels.

138 Formally, an annotator takes a trajectory pair query $Q_i = (\tau_a^i, \tau_b^i)$, and returns a preference label
 139 $y_i = \mathbb{1}(\tau_a^i \succ \tau_b^i) \in \{0, 1\}$ according to their internal reward function r . Given a dataset of queries
 140 and responses $\mathcal{D} = \{Q_i, y_i\}_i$, a widely-used approach for preference learning is to approximate
 141 r with a parameterized reward model r_θ via maximum likelihood estimation, where the likelihood
 142 $p_\theta(y \mid \tau_a, \tau_b)$ is typically defined using the Bradley-Terry (BT) model (Bradley & Terry, 1952),

$$143 \quad p_\theta(y \mid \tau_a, \tau_b) = p_\theta(\tau_a \succ \tau_b) = \frac{\exp(\beta \cdot \mathcal{R}(\tau_a))}{\exp(\beta \cdot \mathcal{R}(\tau_a)) + \exp(\beta \cdot \mathcal{R}(\tau_b))}. \quad (1)$$

146 In particular, β is a temperature parameter that models noisily optimal behavior of an annotator,
 147 and $\mathcal{R}(\tau_i)$ is the return of trajectory τ_i where the per-timestep reward is computed using a neural
 148 network-based RM r_θ , i.e., $\mathcal{R}(\tau_i) = \sum_{t=0}^{T-1} r_\theta(s_{i,t})$ (Lee et al., 2021a). ¹

149 **Information-theoretic active learning.** We adopt the InfoGain acquisition function from Biyik
 150 et al. (2022) for active preference-based reward learning, which assumes a distribution over RM
 151 parameters $p(\theta)$ such that, given a query-response pair (Q, y) the predictive distribution is given by
 152 $p(y \mid Q) = \mathbb{E}_{p(\theta)}[p(y \mid Q, \theta)]$. It selects the query Q_i that maximizes expected information gain on
 153 θ by maximizing the mutual information between a query’s answer label y_i and θ :

$$154 \quad Q_i^* = \arg \max_{Q_i} I(\theta; y_i \mid Q_i, \mathbf{b}^{i-1}) \quad (2a)$$

$$156 \quad = \arg \max_{Q_i} H(y_i \mid Q_i, \mathbf{b}^{i-1}) - \mathbb{E}_\theta [H(y_i \mid \theta, Q_i)] \quad (2b)$$

158 where I is the mutual information, H is the Shannon entropy (Cover & Thomas, 2006), and $\mathbf{b}^{i-1} =$
 159 $p(\theta \mid \mathcal{D}_{1:i-1})$ is the posterior distribution over RM parameters after learning from $(i-1)$ queries.
 160

161 ¹This formalism extends to state or state-action RMs, and whole trajectories or partial trajectory segments.
 Our experiments use state-based RM and partial trajectories.

162 We approximate this acquisition function via sampling as follows:
 163

$$164 Q_i^* \doteq \arg \max_{Q_i} \frac{1}{M} \sum_{y_i \in \{0,1\}} \sum_{\theta \in \Theta} \left(P(y_i | Q_i, \theta) \log_2 \left(\frac{M \cdot P(y_i | Q_i, \theta)}{\sum_{\theta' \in \Theta} P(y_i | Q_i, \theta')} \right) \right) \quad (3)$$

166 where Θ is the set of models sampled from the posterior b^{i-1} , and M is the number of drawn samples.
 167 This approximation is asymptotically equivalent to Eq. 2b as $M \rightarrow \infty$. Due to the necessity
 168 of sampling models from the posterior b^{i-1} , the work by Büyükk et al. (2020) has been limited to
 169 low-dimensional RMs, such as linear models. We now present our method, PreferenceEKF, which
 170 enables sampling of high-dimensional RMs, such as neural networks, that in turn allows us to scal-
 171 ably compute sampling-based acquisition functions like InfoGain to perform active learning.
 172

173 4 METHOD

175 Sampling neural network models to approximate acquisition functions as in Eq. 3 can be expensive
 176 due to the high-dimensional parameter space of neural networks (Izmailov et al., 2021). Ensemble
 177 methods approximate this by training M independent models, which can be infeasible for large M
 178 and model sizes (Lakshminarayanan et al., 2016). We leverage the insight that neural networks are
 179 overparameterized and that solutions actually live in a much smaller subspace (Li et al., 2018), and
 180 perform posterior inference within this subspace. This allows us to sample an arbitrary number of
 181 models from a lower-dimensional posterior to approximate Eq. 3, without the overhead of training
 182 ensembles. We first show how to use extended Kalman filter (EKF), a widely used filtering algo-
 183 rithm, to train neural network reward models from preference data, then we show how to scale EKF
 184 to deep neural networks using subspace methods, as shown in Algorithm 1.

185 **Extended Kalman filter for training neural networks.** Using the formulation of sequential
 186 Bayesian inference, we perform posterior inference of neural network parameters from streaming
 187 data $\mathcal{D}_{1:i-1} = \{(Q_1, y_1), \dots, (Q_{i-1}, y_{i-1})\}$. Starting from some prior belief $b^0 = p(\theta)$ on the
 188 parameters, our posterior after observing i samples can be expressed using Bayes' rule as follows:

$$189 p(\theta_i | \mathcal{D}_{1:i}) \propto p(\mathcal{D}_i | \theta_i) p(\theta_i | \mathcal{D}_{1:i-1}) \\ 190 = \underbrace{p(\mathcal{D}_i | \theta_i)}_{\text{Measurement}} \underbrace{\int p(\theta_i | \theta_{i-1})}_{\text{Dynamics}} \underbrace{p(\theta_{i-1} | \mathcal{D}_{1:i-1})}_{\text{Previous posterior}} d\theta_{i-1} \quad (4)$$

193 where $p(\theta_{i-1} | \mathcal{D}_{1:i-1})$ is the posterior belief over parameters after observing $i-1$ samples, which
 194 is combined with a parameter dynamics model and measurement model to form the posterior after
 195 observing the i^{th} example. This formulation naturally allows for a recursive estimation scheme
 196 where model parameters can be updated by observing samples one at a time. To make computing
 197 Eq. 4 tractable, we assume additive Gaussian noise for both the dynamics model $p(\theta_i | \theta_{i-1}) =$
 198 $\mathcal{N}(\theta_i | g(\theta_{i-1}), \mathbf{U})$ and the measurement model $p(\mathcal{D}_i | \theta_i) = \mathcal{N}(y_i | h(\theta_i, Q_i), \mathbf{V})$, where
 199 $\mathbf{U} \in \mathbb{R}^{|\theta| \times |\theta|}$ and $\mathbf{V} \in \mathbb{R}^{|y| \times |y|}$ are prespecified Gaussian noise covariance matrices.

200 We treat neural network parameters as hidden states, and model the state dynamics $g : \mathbb{R}^{|\theta|} \rightarrow \mathbb{R}^{|\theta|}$
 201 using an identity function. For preference learning, we model measurements $h : \mathbb{R}^{|\theta|} \times \mathbb{R}^{|Q|} \rightarrow \mathbb{R}^{|y|}$
 202 using BT model $p_\theta(\tau_a \succ \tau_b)$ computed using the learned RM r_θ (Eq. 1). Assumptions on additive
 203 Gaussian noise and nonlinear dynamics and measurement functions make the neural network infer-
 204 ence objective in Eq. 4 solvable in closed-form with the EKF algorithm, where the posterior takes a
 205 Gaussian form $b^i = \mathcal{N}(\mu_i, \Sigma_i)$ where $\mu_i \in \mathbb{R}^{|\theta|}$ and $\Sigma_i \in \mathbb{R}^{|\theta| \times |\theta|}$.

207 **Subspace inference.** Inference using EKF directly in the parameter space of a neural network is
 208 difficult, as the size of the covariance matrix Σ_i of the Gaussian posterior scales in $O(|\theta|^2)$. We
 209 instead perform EKF in a learned subspace of the NN: we denote the full space parameter as θ and
 210 subspace parameter as z , where $|z| \ll |\theta|$, resulting in posterior $b^i = \mathcal{N}(\mu'_i, \Sigma'_i)$ where $\mu'_i \in \mathbb{R}^{|z|}$
 211 and $\Sigma'_i \in \mathbb{R}^{|z| \times |z|}$. We further assume an affine mapping $\theta(z) = \mathbf{A}z + \theta_*$ that allows us to
 212 transform between the subspace and the full space. Here θ_* is initialized via SGD on a small warm-
 213 up dataset in the full space. $\mathbf{A} \in \mathbb{R}^{|\theta| \times |z|}$ is a fixed projection matrix obtained from applying SVD
 214 to the SGD iterates ran in the full space, as shown on Line 8 through Line 10. ²

215 ²The projection matrix can also be computed via random projections (Li et al., 2018), but we found that the
 SVD approach (Izmailov et al., 2020) led to better empirical performance. See Fig. 3b for an ablation.

We perform EKF inference in the subspace to obtain an estimate $\mathbf{b}^i = p(\mathbf{z} \mid \mathcal{D}_{1:i})$ after observing each query-response pair $\mathcal{D}_i = (Q_i, y_i)$, then project each model sampled from \mathbf{b}^i back to the full space via affine projection $\boldsymbol{\theta}(\mathbf{z})$ to perform the forward pass of the neural network to predict $\mathbb{1}(\tau_a^i \succ \tau_b^i)$. Predictive distribution for computing InfoGain is similarly computed via sampling followed by projection as $p(y \mid Q) = \mathbb{E}_{p(\mathbf{z})}[p(y \mid Q, \mathbf{A}\mathbf{z} + \boldsymbol{\theta}_*)]$. The belief update procedure is completely deterministic, with the only source of stochasticity coming from sampling of subspace parameters (followed by affine transformation) for computing the acquisition function and posterior predictive distribution.

Active learning using subspace inference. We refer to the ensemble-based approach as DeepEnsemble and our approach as PreferenceEKF. We also assume a pool-based active learning setting (Settles, 2009) where we denote the set of all possible binary preference queries as \mathcal{P} .³ For belief initialization (Line 12), whereas PreferenceEKF uses a zero-mean isotropic Gaussian of subspace dimension $|\mathbf{z}|$, DeepEnsemble initializes M independent models each of dimension $|\boldsymbol{\theta}|$.

After belief initialization, the sequential phase of active learning begin. For random querying, Line 14 amounts to simply retrieving a random query from the query pool \mathcal{P} , whereas active learning algorithms computes an acquisition function for the optimal query to retrieve from the pool. The algorithm then receives the corresponding label for the retrieved query from an annotator in Line 15. For belief update (Line 16), whereas PreferenceEKF performs filtering in the constructed subspace only on the most recent query-response pair \mathcal{D}_i , DeepEnsemble trains each of the M models using gradient descent on all data seen so far.

The most common uncertainty-based acquisition function is ensemble disagreement, i.e., pick the query Q_i for which the predicted preference label $\mathbb{1}(\tau_a^i \succ \tau_b^i)$ has the highest variance across the ensemble. Disagreement has been popular for neural network-based active learning where it is expensive to scale Bayesian methods to high-dimensional settings (Christiano et al., 2017; Lee et al., 2021b), while InfoGain is the current state of the art acquisition function for lower-dimensional reward learning settings (Biyik et al., 2020; 2024). While our method can be used to compute any sampling-based acquisition functions, we specifically leverage PreferenceEKF’s ability to sample from high-dimensional distributions to scale InfoGain to neural network models. Due to the difficulty of sampling from high dimensional parameter distributions and the cost of training multiple models, DeepEnsemble approximates InfoGain by maintaining a small number of independent models. Dropout does so by sampling parameter dropout masks during inference.

Algorithm 1 PreferenceEKF for active preference-based reward learning

```

1: Input:
2:  $\mathcal{P}$ : Set of all possible binary preference queries without labels
3:  $\mathcal{D}^{\text{init}} = \{(Q_i, y_i)\}_{i=1}^{\tau}$ : Initial preference dataset with  $\tau$  query-label pairs
4:  $B$ : query budget limit
5:  $w$ : number of SGD iterations for subspace construction
6: Procedure:
7: # Subspace Construction
8:  $\boldsymbol{\theta}_{1:w} = \text{SGD}(\mathcal{D}^{\text{init}})$ 
9:  $\boldsymbol{\theta}_* = \boldsymbol{\theta}_w$  ▷ Parameter offset:  $\boldsymbol{\theta}_* \in \mathbb{R}^{|\boldsymbol{\theta}|}$ 
10:  $\mathbf{A} = \text{SVD}(\boldsymbol{\theta}_{1:w})$  ▷ Projection matrix:  $\mathbf{A} \in \mathbb{R}^{|\boldsymbol{\theta}| \times |\mathbf{z}|}$ 
11: # Subspace Inference
12:  $\mathbf{b}^0(\mathbf{z}) = \mathcal{N}(\boldsymbol{\mu}'_0, \boldsymbol{\Sigma}'_0)$  ▷ Belief initialization:  $\mathbf{z} \in \mathbb{R}^{|\mathbf{z}|}$ 
13: for  $t = 1 : B$  do
14:    $Q_t = \text{ComputeQuery}(\mathbf{b}^{t-1}, \mathbf{A}, \boldsymbol{\theta}_*, \mathcal{P})$  ▷ Compute InfoGain:  $\boldsymbol{\theta}(\mathbf{z}) \in \mathbb{R}^{|\boldsymbol{\theta}|}$ 
15:    $y_t = \text{GetLabel}(Q_t)$ 
16:    $\mathbf{b}^t = \text{EKF}(\mathbf{b}^{t-1}, (Q_t, y_t))$  ▷ EKF update:  $\mathbf{z} \in \mathbb{R}^{|\mathbf{z}|}$ 
17: end for

```

³Given a dataset of N trajectories, there would be $|\mathcal{P}| = \binom{n}{2}$ possible pairwise comparison queries.

270 **5 EXPERIMENTS**
 271

272 **Baselines and Evaluation.** We compare our PreferenceEKF method to four Bayesian deep learning
 273 baselines commonly used for reward modeling: DeepEnsemble, Dropout, Laplace, and Last-
 274 Layer MCMC (LLMCMC), which we detail in Section A.2.1. We address the following questions:
 275 (1) Does active learning with PreferenceEKF lead to more data-efficient and effective preference-
 276 based reward learning compared to the baselines (2) Can the reward models sampled from Prefer-
 277 enceEKF’s induced posterior be used to for policy optimization via offline RL? (3) Does represent-
 278 ing parameter uncertainty $p(\theta | \mathcal{D})$ as a subspace distribution lead to computational advantages over
 279 representation using ensembles and dropout? We additionally study the model calibration capability
 280 of all algorithms, as well as ablate the subspace construction procedure for PreferenceEKF.

281 In the reward learning experiments, given a limited query budget B , we would like to learn RMs
 282 from preference queries as sample-efficiently as possible. Evaluation is done by comparing the
 283 Bradley-Terry log-likelihood achieved by a RM on a held-out set of test queries throughout training.
 284 To create the preference query pool \mathcal{P} , we randomly sample pairwise partial trajectories from a tra-
 285 jectory dataset \mathcal{D}^{traj} , then generate noisily optimal synthetic labels: for a given pair of trajectories,
 286 we compute their returns and sample a preference label according to the BT model (Eq. 1).

287 In the offline RL experiments, The learned RMs are then used for training parameterized poli-
 288 cies $\pi_\phi(a | s)$ via offline RL. This is done by first labeling the trajectory dataset \mathcal{D}^{traj} with the
 289 learned RM: we take the average predicted reward over M models $r_\theta^M(s_{i,t}) = \frac{1}{M} \sum_{m=1}^M r_\theta^m(s_{i,t})$
 290 for each state, where r_θ^m is the m^{th} sampled reward model for PreferenceEKF and Dropout, and
 291 the m^{th} model in the ensemble for DeepEnsemble. A reward-labeled trajectory takes the form,
 292 $\tau_i = \{(s_{i,t}, a_{i,t}, s_{i,t+1}, r_\theta^M(s_{i,t}))\}_{t=0}^{T-1}$, and we train policies on the reward-labeled \mathcal{D}^{traj} using Im-
 293 plicit Q-Learning (iQL) (Kostrikov et al., 2021), an empirically successful offline RL algorithm. We
 294 evaluate policies by comparing their empirical rollout returns throughout RL training.
 295

296 **Tasks.** We evaluate our approach in D4RL (Fu et al., 2020), a popular offline RL benchmark, and
 297 choose a mixture of environments spanning MuJoCo locomotion (HalfCheetah, Hopper, Walker2d),
 298 Adroit Shadow Hand (pen twirling), and Maze2D navigation. Within each environment, we choose
 299 trajectory datasets of varying characteristics: MuJoCo trajectories span a range of performance qual-
 300 ity, Adroit trajectories are generated by a human operator and a fine-tuned expert-level RL policy,
 301 and maze navigation trajectories are collected from policies executed in mazes of varying difficulty.
 302 We consider each dataset as a separate task, for a total of 12 tasks. While our main experiments
 303 focus on simulated state-based control tasks, we refer to Appendix A.2.3 for results on pixel-based
 304 tasks.

305 **Implementation Details.** Unless otherwise stated, all experiments are done on a single node with 8
 306 NVIDIA RTX A6000 GPUs via sharding, query budget $B = 60$, and trajectory segments of length
 307 50. On the belief update step (Line 16), PreferenceEKF learn from only the most recent query-label
 308 pair, while all baselines learn from all data seen so far. Further DeepEnsemble is the only method
 309 that needs to train multiple models, so we set $M = 5$ as is commonly done for ensemble-based
 310 uncertainty quantification (Ovadia et al., 2019); all other methods can sample arbitrary number M
 311 of models from the learned posterior, so we set $M = 100$ for them. With the exception of the
 312 scaling experiments in Section 5.3 and the ablation experiments in Section 5.5, all reward models
 313 are represented as multi-layer perceptrons (MLP) with two hidden layers of 64 units, using sub-
 314 space dimensionality $|\mathbf{z}| = 200$. All methods use the InfoGain acquisition function to ensure fair
 315 comparison. We show additional results using the disagreement acquisition function in Appendix
 316 Section A.2.2, and Appendix Section A.2.1 for more details on baseline implementations.

317 **5.1 DOES PREFERENCEEKF LEAD TO SAMPLE-EFFICIENT ACTIVE REWARD LEARNING?**
 318

319 Given a fixed query budget per task, we evaluate each algorithm over 5 seeds. We use state-based
 320 partial trajectories, and compute return of each trajectory as $\mathcal{R}(\tau_i) = \sum_{t=1}^T r_\theta(s_{i,t})/T$. We show in
 321 Fig. 1a that aggregated over all tasks, active PreferenceEKF achieves higher sample efficiency com-
 322 pared to its random counterpart. Additionally, both random and active variants of PreferenceEKF
 323 performs on par with or outperforms all other baselines. In the appendix, we show in Fig. A.1 that
 in most task, active PreferenceEKF outperforms both its random counterpart as well as all other

324 algorithms in terms of sample efficiency and final log-likelihood. See Appendix Section A.1 for
 325 statistical testing results backing up these empirical observations.
 326

341 Figure 1: Fig. 1a shows comparison of the random (dashed line) and active (solid line) variants
 342 of each algorithm for preference-based reward modeling using the InfoGain acquisition function,
 343 aggregated over 12 D4RL tasks (mean \pm s.e. over 5 seeds). Fig. 1b shows comparison of policy
 344 optimization using the reward models learned from random and active variants of each algorithm,
 345 aggregated across 12 D4RL tasks in the offline RL setting (mean \pm s.e. over 5 seeds). See Fig. A.1
 346 and Fig. A.8 in the appendix for per-task results for reward learning and offline RL evaluations
 347 results, respectively. All results here are shown with a moving average over the last 5 evaluations.
 348

349 5.2 CAN RMS LEARNED USING PREFERENCEEKF BE USED FOR POLICY OPTIMIZATION?

350 The goal of the offline RL experiments is to test whether an RM learned from limited number
 351 of preference queries can recover the ground-truth reward information, evaluated by whether the
 352 learned RM can induce a policy that reaches or exceeds the performance of a policy trained with
 353 ground-truth environment rewards (GT), and whether the resulting policy can outperform a separate
 354 RL policy trained on zeroed out rewards (Zero). All policies are trained using IQN (Kostrikov et al.,
 355 2021) over 5 seeds on the reward-labeled dataset for 1M steps. Evaluation is done via 5 rollouts
 356 every 50K steps. In Fig. 1b, we show that when aggregated across all tasks, reward models learned
 357 from all methods converge to similar policy performance, with all methods performing on par with
 358 or slightly worse than the GT policy, and all methods greatly outperforming the Zero policy.
 359

360 While policy optimization using reward models learned from active variant of PreferenceEKF
 361 slightly outperforms that learned from random PreferenceEKF, we note both variants reached
 362 roughly the same final log-likelihood in Fig. 1a, leading to the observed similar policy optimiza-
 363 tion performance in Fig. 1b.

364 5.3 HOW DOES MODEL TRAINING WITH PREFERENCEEKF SCALE?

365 Next, we investigate whether extended Kalman filter can serve as a scalable alternative to gradient
 366 descent for training neural network reward models using preference data. Computing predictive
 367 distributions via sampling (Eq. 3) requires forward passes over M neural networks. We show here
 368 the computational advantage of PreferenceEKF in maintaining a subspace parameter posterior dis-
 369 tribution $p(\theta | \mathcal{D})$ to sample models from, compared to DeepEnsemble’s approach of maintaining
 370 and training M neural networks explicitly and Dropout’s approach of sampling dropout masks. We
 371 run all scaling experiments on CPUs as the larger models and ensemble sizes led to out-of-memory
 372 errors. Finally, while PreferenceEKF’s belief update procedure (Line 16) only requires the most re-
 373 cent query due to EKF being an online estimation algorithm, DeepEnsemble and Dropout train over
 374 all queries observed so far (Lee et al., 2021b; Christiano et al., 2017). All experiments use subspaces
 375 of fixed dimensionality $|\mathbf{z}| = 200$.

376 We show in Fig. 2a that given a fixed architecture of a two-layer MLP with 64 units per layer,
 377 the runtime of PreferenceEKF for learning a reward model from $B = 60$ queries scales much

more gracefully with increasing M compared to DeepEnsemble. While Dropout does not need to maintain multiple independent models, it is still slower than PreferenceEKF as it performs model update in full parameter space instead of a lower-dimensional subspace. Fig. 2b demonstrates that final test log-likelihood favors PreferenceEKF over the other methods, showcasing that our approach maintains consistent performance on top of computational efficiency given increasing M .

Fig. 2c and Fig. 2d show that given fixed number of model parameter samples ($M = 5$) and increasing neural network architecture size, PreferenceEKF scales more gracefully compared to other methods, on top of maintaining test log-likelihood performance. This showcases the scalability of subspace training to not only settings where we need large number of model samples M , but also to settings where we need larger neural networks $|\theta|$.

Figure 2: Fig. 2a and Fig. 2b show the effect of scaling the number of model samples M , while Fig. 2c and Fig. 2d show the effect of scaling neural network architecture size in the active learning setting (mean \pm std over 3 seeds). Overall, PreferenceEKF scales more gracefully than the other algorithms, showcasing the advantages of both subspace training and uncertainty representation using subspace distribution over model ensembles and dropout masks.

5.4 DOES PREFERENCEEKF LEAD TO BETTER CALIBRATED MODELS?

While effective representation of parameter uncertainty is crucial for efficient active learning, it is also important for calibration of neural network predictions (Guo et al., 2017; Ovadia et al., 2019). We study whether uncertainty quantification (UQ) using subspace methods leads to better calibrated model predictions compared to UQ using ensemble methods and dropout, as quantified by two commonly used UQ metrics: expected calibration error (ECE) using 5 bins (Naeini et al., 2015; Pavlovic, 2025) and Brier score (Brier, 1950; DeGroot & Fienberg, 1983). We provide further calibration experiment details in Appendix Section A.2.4.

We show in Fig. 3a that variants of PreferenceEKF has the lowest ECE among all methods, and the second lowest Brier score along with active DeepEnsemble. This highlights the quality of posterior approximation achieved by subspace inference methods. While dropout-based methods gets around the computational cost of ensembles, the resulting uncertainty representation has led to both poorer active learning and UQ results as compared to subspace methods.

5.5 ABLATION STUDY ON SUBSPACE CONSTRUCTION

The method for subspace construction for PreferenceEKF can be modified to 1) use varying dimensionality of the subspace, and to 2) use random projection to generate the subspace basis instead of running SVD on gradient descent iterates (Li et al., 2018; Izmailov et al., 2020). While all of our experiments so far use a fixed dimensionality of $|\mathbf{z}| = 200$ with SVD-based construction, we perform an ablation analysis over these choices, as shown in Fig. 3b. We observed that while the SVD-based approach works well for smaller subspace dimensions, the random projection approach can eventually reach performance on par with or even outperform the SVD approach as the subspace dimension increases. This finding is similar to what was observed by Duran-Martin et al. (2022) in bandit settings, highlighting the generality of this result for subspace Bayesian filtering methods used to train neural networks.

Figure 3: Fig. 3a shows comparison of the random (dashed line) and active (solid line) variants of the algorithms in model calibration, as evaluated by expected calibration error and Brier score on a test dataset (lower is better for both metrics). Fig. 3b shows an ablation over the subspace construction technique for PreferenceEKF, as evaluated by log-likelihood on a test dataset (higher is better). Both the UQ experiment and ablation analysis here are performed over 3 seeds (mean \pm std) on the Walker Medium Expert task.

6 CONCLUSION

In this work, we successfully adopted extended Kalman filters to train neural networks in active preference-based reward modeling setting. We showed several advantages of maintaining a subspace distribution over neural network parameters $p(\theta | \mathcal{D})$, in comparison to four other widely used Bayesian deep learning methods for active reward learning. Our approach led to more sample efficient active reward learning, similarly performant RL policy optimization, better runtime scaling with respect to model size and model sample count, and better calibration through higher-quality uncertainty representation. Learning a lower-dimensional distribution of neural network parameters further allowed us to scale the current state of the art of the acquisition function for preference-based active reward modeling, InfoGain (Biyik et al., 2020), from lower-dimensional model settings to deep neural networks.

Limitations and future work. While we found subspace method to be an effective tool for scaling Bayesian filtering methods for neural network training, it is unsure whether this approach will be effective for applying Bayesian methods to foundation model-scale reward models (Mahan et al., 2024; Zhang et al., 2024). Due to the unimodality of the Gaussian distribution that extended Kalman filter maintains, alternative methods may need to be investigated for approximating multimodal posteriors, e.g., learning reward functions from annotators with differing preferences (Poddar et al., 2024; Siththaranjan et al., 2023). We would further like to evaluate uncertainty quantification using the recent works on epistemic neural networks (Osband et al., 2023b), which focuses on joint predictions uncertainty instead of marginal predictive distribution.

While our work primarily focused on improving sample-efficiency of reward modeling in RLHF, we would like to further investigate how learned posterior distribution of reward models can aid in RL policy’s exploration and serve as a mechanism for mitigating reward hacking (Yang et al., 2024; Gao et al., 2022; Hadfield-Menell et al., 2017). Finally, due to its sample-efficiency and adaptivity to non-stationary distributions, we believe the subspace filtering method to be a viable candidate for uncertainty quantification and large model finetuning in robot learning domains (Bellemare et al., 2017; Fridovich-Keil et al., 2020; Bobu et al., 2020).

486 7 REPRODUCIBILITY STATEMENT
487488 Our code is anonymously available in the JAX framework at https://github.com/preferenceEKF2025/preference_ekf. We ensured that all pseudo-randomness has been
489 controlled for via JAX's PRNG implementation. We provide all SLURM launch scripts, visualization
490 scripts, and configuration files with all hyperparameters as part of code release.
491492 493 REFERENCES
494495 Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. In
496 *Twenty-First International Conference on Machine Learning - ICML '04*, pp. 1, Banff, Alberta,
497 Canada, 2004. ACM Press. doi: 10.1145/1015330.1015430.498 Kim Baraka, Ifrah Idrees, Taylor Kessler Faulkner, Erdem Biyik, Serena Booth, Mohamed
499 Chetouani, Daniel H Grollman, Akanksha Saran, Emmanuel Senft, Silvia Tulli, Anna-Lisa
500 Vollmer, Antonio Andriella, Helen Beierling, Tiffany Horts, Jens Kober, Isaac Sheidlower,
501 Matthew E Taylor, and Xuesu Xiao. Human-Interactive Robot Learning: Definition, Challenges,
502 and Recommendations, 2025.503 B.M. Bell and F.W. Cathey. The iterated Kalman filter update as a Gauss-Newton method. *IEEE*
504 *Transactions on Automatic Control*, 38(2):294–297, February 1993. ISSN 1558-2523. doi: 10.
505 1109/9.250476.506 Marc G. Bellemare, Will Dabney, and Rémi Munos. A Distributional Perspective on Reinforcement
507 Learning. In *Proceedings of the 34th International Conference on Machine Learning*, pp. 449–
508 458. PMLR, July 2017.509 Erdem Biyik, Nicolas Huynh, Mykel Kochenderfer, and Dorsa Sadigh. Active Preference-Based
510 Gaussian Process Regression for Reward Learning. In *Robotics: Science and Systems XVI*, vol-
511 ume 16, July 2020. ISBN 978-0-9923747-6-1.512 Erdem Biyik, Malayandi Palan, Nicholas C. Landolfi, Dylan P. Losey, and Dorsa Sadigh. Asking
513 Easy Questions: A User-Friendly Approach to Active Reward Learning. In *Proceedings of the*
514 *Conference on Robot Learning*, pp. 1177–1190. PMLR, May 2020.515 Erdem Biyik, Dylan P. Losey, Malayandi Palan, Nicholas C. Landolfi, Gleb Shevchuk, and Dorsa
516 Sadigh. Learning Reward Functions from Diverse Sources of Human Feedback: Optimally Inte-
517 grating Demonstrations and Preferences. *The International Journal of Robotics Research*, 41(1):
518 45–67, January 2022. ISSN 0278-3649. doi: 10.1177/02783649211041652.519 Erdem Biyik, Nicolas Huynh, Mykel J. Kochenderfer, and Dorsa Sadigh. Active Preference-
520 Based Gaussian Process Regression for Reward Learning and Optimization. *The Interna-
521 tional Journal of Robotics Research*, 43(5):665–684, April 2024. ISSN 0278-3649. doi:
522 10.1177/02783649231208729.523 David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational Inference: A Review for Statis-
524 ticians. *Journal of the American Statistical Association*, 112(518):859–877, April 2017. ISSN
525 0162-1459, 1537-274X. doi: 10.1080/01621459.2017.1285773.526 Andreea Bobu, Andrea Bajcsy, Jaime F. Fisac, Sampada Deglurkar, and Anca D. Dragan. Quan-
527 tifying Hypothesis Space Misspecification in Learning From Human–Robot Demonstrations and
528 Physical Corrections. *IEEE Transactions on Robotics*, 36(3):835–854, June 2020. ISSN 1941-
529 0468. doi: 10.1109/TRO.2020.2971415.530 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
531 Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
532 Zhang. JAX: Composable transformations of Python+NumPy programs, 2018.533 Ralph Allan Bradley and Milton E. Terry. Rank Analysis of Incomplete Block Designs: I. The
534 Method of Paired Comparisons. *Biometrika*, 39(3/4):324–345, 1952. ISSN 0006-3444. doi:
535 10.2307/2334029.

540 Glenn W. Brier. Verification of Forecasts Expressed in Terms of Probability. *Monthly Weather*
 541 *Review*, 78:1, January 1950. ISSN 0027-0644. doi: 10.1175/1520-0493(1950)078<0001:
 542 VOFET>2.0.CO;2.

543 Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating Beyond Subop-
 544 timal Demonstrations via Inverse Reinforcement Learning from Observations. In *Proceedings of*
 545 *the 36th International Conference on Machine Learning*, pp. 783–792. PMLR, May 2019.

546 Daniel S. Brown, Russell Coleman, R. Srinivasan, and S. Niekum. Safe Imitation Learning via Fast
 547 Bayesian Reward Inference from Preferences. *ArXiv*, February 2020.

548 Paul Brunzema, Mikkel Jordahn, John Willes, Sebastian Trimpe, Jasper Snoek, and James Harri-
 549 son. Bayesian Optimization via Continual Variational Last Layer Training. In *The Thirteenth*
 550 *International Conference on Learning Representations*, October 2024.

551 Alberto Cabezas, Adrien Corenflos, Junpeng Lao, Rémi Louf, Antoine Carnec, Kaustubh Chaud-
 552 hari, Reuben Cohn-Gordon, Jeremie Couillon, Wei Deng, Sam Duffield, Gerardo Durán-Martín,
 553 Marcin Elantkowski, Dan Foreman-Mackey, Michele Gregori, Carlos Igúaran, Ravin Kumar,
 554 Martin Lysy, Kevin Murphy, Juan Camilo Orduz, Karm Patel, Xi Wang, and Rob Zinkov. Black-
 555 JAX: Composable Bayesian inference in JAX, February 2024.

556 Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémie Scheurer, Javier
 557 Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, Tony Wang, Samuel
 558 Marks, Charbel-Raphaël Segerie, Micah Carroll, Andi Peng, Phillip Christoffersen, Mehul
 559 Damani, Stewart Slocum, Usman Anwar, Anand Siththanjan, Max Nadeau, Eric J. Michaud,
 560 Jacob Pfau, Dmitrii Krasheninnikov, Xin Chen, Lauro Langosco, Peter Hase, Erdem Biyik, Anca
 561 Dragan, David Krueger, Dorsa Sadigh, and Dylan Hadfield-Menell. Open Problems and Funda-
 562 mental Limitations of Reinforcement Learning from Human Feedback, July 2023.

563 Xinyue Chen, Che Wang, Zijian Zhou, and Keith W. Ross. Randomized Ensembled Double Q-
 564 Learning: Learning Fast Without a Model. In *International Conference on Learning Representa-
 565 tions*, October 2020.

566 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
 567 Reinforcement Learning from Human Preferences. In *Advances in Neural Information Processing
 568 Systems*, volume 30. Curran Associates, Inc., 2017.

569 T. M. Cover and Joy A. Thomas. *Elements of Information Theory*. Wiley-Interscience, Hoboken,
 570 N.J, 2nd ed edition, 2006. ISBN 978-0-471-24195-9.

571 Felix Dangel, Runa Eschenhagen, Weronika Ormaniec, Andres Fernandez, Lukas Tatzel, and
 572 Agustinus Kristiadi. Position: Curvature Matrices Should Be Democratized via Linear Opera-
 573 tors, January 2025.

574 Erik Daxberger, Eric Nalisnick, James U. Allingham, Javier Antoran, and Jose Miguel Hernandez-
 575 Lobato. Bayesian Deep Learning via Subnetwork Inference. In *Proceedings of the 38th Interna-
 576 tional Conference on Machine Learning*, pp. 2510–2521. PMLR, July 2021.

577 Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
 578 Philipp Hennig. Laplace redux – effortless Bayesian deep learning. In *Proceedings of the 35th In-
 579 ternational Conference on Neural Information Processing Systems*, NIPS '21, pp. 20089–20103,
 580 Red Hook, NY, USA, June 2024. Curran Associates Inc. ISBN 978-1-7138-4539-3.

581 J.F.G. de Freitas, M. Niranjan, and A. H. Gee. Hierarchical bayesian models for regularisation in
 582 sequential learning. *Neural Computation*, 12(4):933–953, April 2000. ISSN 1530-888X. doi:
 583 10.1162/089976600300015655.

584 DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
 585 Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Clau-
 586 dio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel,
 587 Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch,
 588 Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John
 589 Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider, Eren

594 Sezener, Stephen Spencer, Srivatsan Srinivasan, Miloš Stanojević, Wojciech Stokowiec, Luyu
 595 Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem, 2020.
 596

597 Morris H. DeGroot and Stephen E. Fienberg. The Comparison and Evaluation of Forecasters. *Journal
 598 of the Royal Statistical Society. Series D (The Statistician)*, 32(1):12–22, 1983. ISSN 0039-
 599 0526. doi: 10.2307/2987588.

600 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hier-
 601 archical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*,
 602 pp. 248–255, June 2009. doi: 10.1109/CVPR.2009.5206848.
 603

604 Thomas G. Dietterich. Ensemble Methods in Machine Learning. In *Multiple Classifier Sys-
 605 tems*, pp. 1–15, Berlin, Heidelberg, 2000. Springer. ISBN 978-3-540-45014-6. doi: 10.1007/
 606 3-540-45014-9_1.

607 Gerardo Duran-Martin, Aleyna Kara, and Kevin Murphy. Efficient Online Bayesian Inference for
 608 Neural Bandits. In *Proceedings of The 25th International Conference on Artificial Intelligence
 609 and Statistics*, pp. 6002–6021. PMLR, May 2022.

611 Bradley Efron. Bootstrap Methods: Another Look at the Jackknife. In Samuel Kotz and Nor-
 612 man L. Johnson (eds.), *Breakthroughs in Statistics: Methodology and Distribution*, pp. 569–593.
 613 Springer, New York, NY, 1992. ISBN 978-1-4612-4380-9. doi: 10.1007/978-1-4612-4380-9_41.

615 Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural Architecture Search: A Survey.
 616 *Journal of Machine Learning Research*, 20(55):1–21, 2019. ISSN 1533-7928.

617 Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided Cost Learning: Deep Inverse Optimal
 618 Control Via Policy Optimization. In *Proceedings of the 33rd International Conference on Inter-
 619 national Conference on Machine Learning - Volume 48*, ICML’16, pp. 49–58, New York, NY,
 620 USA, June 2016. JMLR.org.

622 Stanislav Fort, Huiyi Hu, and Balaji Lakshminarayanan. Deep Ensembles: A Loss Landscape Per-
 623 spective, June 2020.

624 Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding Sparse, Trainable
 625 Neural Networks. In *International Conference on Learning Representations*, February 2022.

627 David Fridovich-Keil, Andrea Bajcsy, Jaime F Fisac, Sylvia L Herbert, Steven Wang, Anca D Dra-
 628 gan, and Claire J Tomlin. Confidence-Aware Motion Prediction for Real-Time Collision Avoid-
 629 ance. *The International Journal of Robotics Research*, 39(2-3):250–265, March 2020. ISSN
 630 0278-3649. doi: 10.1177/0278364919859436.

631 Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for
 632 Deep Data-Driven Reinforcement Learning, April 2020.

634 Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Representing Model
 635 Uncertainty in Deep Learning. In *Proceedings of The 33rd International Conference on Machine
 636 Learning*, pp. 1050–1059. PMLR, June 2016.

638 Leo Gao, John Schulman, and Jacob Hilton. Scaling Laws for Reward Model Overoptimization. In
 639 *International Conference on Machine Learning*, October 2022.

640 Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and Kurt Keutzer. A
 641 Survey of Quantization Methods for Efficient Neural Network Inference, June 2021.

643 Adam Gleave and Geoffrey Irving. Uncertainty Estimation for Language Reward Models, March
 644 2022.

646 Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q. Weinberger. On Calibration of Modern Neural
 647 Networks. In *Proceedings of the 34th International Conference on Machine Learning*, pp. 1321–
 1330. PMLR, July 2017.

648 Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart Russell, and Anca D. Dragan. Inverse
 649 Reward Design. In *Proceedings of the 31st International Conference on Neural Information*
 650 *Processing Systems*, NIPS'17, pp. 6768–6777, Red Hook, NY, USA, December 2017. Curran
 651 Associates Inc. ISBN 978-1-5108-6096-4.

652 James Harrison, John Willes, and Jasper Snoek. Variational Bayesian Last Layers. In *The Twelfth*
 653 *International Conference on Learning Representations*, October 2023.

654 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
 655 Recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-*
 656 *nition*, pp. 770–778, 2016.

657 Philipp Hennig and Christian J. Schuler. Entropy Search for Information-Efficient Global Optimiza-
 658 *tion*. *Journal of Machine Learning Research*, 13(57):1809–1837, 2012. ISSN 1533-7928.

659 José Miguel Hernández-Lobato, Matthew W. Hoffman, and Zoubin Ghahramani. Predictive En-
 660 *try Search for Efficient Global Optimization of Black-box Functions*. In *Advances in Neural*
 661 *Information Processing Systems*, volume 27. Curran Associates, Inc., 2014.

662 Jonathan Ho and Stefano Ermon. Generative Adversarial Imitation Learning. In *Advances in Neural*
 663 *Information Processing Systems*, volume 29. Curran Associates, Inc., 2016.

664 Matthew D. Hoffman and Andrew Gelman. The No-U-Turn Sampler: Adaptively Setting Path
 665 Lengths in Hamiltonian Monte Carlo. *Journal of Machine Learning Research*, 15(47):1593–
 666 1623, 2014. ISSN 1533-7928.

667 Ryan Hoque, Ashwin Balakrishna, Ellen Novoseller, Albert Wilcox, Daniel S. Brown, and Ken
 668 Goldberg. ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation
 669 Learning. In *Proceedings of the 5th Conference on Robot Learning*, pp. 598–608. PMLR, January
 670 2022.

671 Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian Active Learning
 672 for Classification and Preference Learning, December 2011.

673 Jiri Hron, Alex Matthews, and Zoubin Ghahramani. Variational Bayesian dropout: Pitfalls and
 674 fixes. In *Proceedings of the 35th International Conference on Machine Learning*, pp. 2019–2028.
 675 PMLR, July 2018.

676 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 677 and Weizhu Chen. LoRA: Low-Rank Adaptation of Large Language Models, October 2021.

678 Pavel Izmailov, Wesley J. Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov, and An-
 679 drew Gordon Wilson. Subspace Inference for Bayesian Deep Learning. In *Proceedings of The*
 680 *35th Uncertainty in Artificial Intelligence Conference*, pp. 1169–1179. PMLR, August 2020.

681 Pavel Izmailov, Sharad Vikram, Matthew D. Hoffman, and Andrew Gordon Gordon Wilson. What
 682 Are Bayesian Neural Network Posteriors Really Like? In *Proceedings of the 38th International*
 683 *Conference on Machine Learning*, pp. 4629–4640. PMLR, July 2021.

684 Matthew Thomas Jackson, Uljad Berdica, Jarek Liesen, Shimon Whiteson, and Jakob Nicolaus
 685 Foerster. A Clean Slate for Offline Reinforcement Learning, April 2025.

686 Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. *CoRR*, December
 687 2014.

688 Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline Reinforcement Learning with Implicit
 689 Q-Learning. In *International Conference on Learning Representations*, October 2021.

690 Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. Should I Run Offline Reinforcement
 691 Learning or Behavioral Cloning? In *International Conference on Learning Representations*,
 692 October 2021.

693 Balaji Lakshminarayanan, A. Pritzel, and C. Blundell. Simple and Scalable Predictive Uncertainty
 694 Estimation using Deep Ensembles. In *Neural Information Processing Systems*, December 2016.

702 Brett W. Larsen, Stanislav Fort, Nic Becker, and Surya Ganguli. How many degrees of freedom do
 703 we need to train deep networks: A loss landscape perspective, February 2022.

704

705 Kimin Lee, Laura Smith, Anca Dragan, and Pieter Abbeel. B-Pref: Benchmarking Preference-Based
 706 Reinforcement Learning. *Proceedings of the Neural Information Processing Systems Track on*
 707 *Datasets and Benchmarks*, 1, December 2021a.

708 Kimin Lee, Laura M. Smith, and Pieter Abbeel. PEBBLE: Feedback-Efficient Interactive Rein-
 709 force-ment Learning via Relabeling Experience and Unsupervised Pre-training. In *Proceedings of*
 710 *the 38th International Conference on Machine Learning*, pp. 6152–6163. PMLR, July 2021b.

711

712 Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline Reinforcement Learning:
 713 Tutorial, Review, and Perspectives on Open Problems, May 2020.

714

715 Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the Intrinsic Di-
 716 mension of Objective Landscapes. In *International Conference on Learning Representations*,
 717 February 2018.

718

719 Scott W. Linderman, Peter Chang, Giles Harper-Donnelly, Aleyna Kara, Xinglong Li, Gerardo
 720 Duran-Martin, and Kevin Murphy. Dynamax: A Python package for probabilistic state space
 721 modeling with JAX. *Journal of Open Source Software*, 10(108):7069, April 2025. ISSN 2475-
 9066. doi: 10.21105/joss.07069.

722

723 D. V. Lindley. On a Measure of the Information Provided by an Experiment. *The Annals of*
 724 *Mathematical Statistics*, 27(4):986–1005, December 1956. ISSN 0003-4851, 2168-8990. doi:
 725 10.1214/aoms/1177728069.

726

727 Cong Lu, Philip J. Ball, Tim G. J. Rudner, Jack Parker-Holder, Michael A. Osborne, and Yee Whye
 728 Teh. Challenges and Opportunities in Offline Reinforcement Learning from Visual Observations.
 729 *Transactions on Machine Learning Research*, April 2023. ISSN 2835-8856.

730

731 David J. C. MacKay. Information-Based Objective Functions for Active Data Selection. *Neural*
 732 *Computation*, 4(4):590–604, July 1992. ISSN 0899-7667. doi: 10.1162/neco.1992.4.4.590.

733

734 Dakota Mahan, Duy Van Phung, Rafael Rafailov, Chase Blagden, Nathan Lile, Louis Castricato,
 735 Jan-Philipp Fränken, Chelsea Finn, and Alon Albalak. Generative Reward Models, October 2024.

736

737 Kevin P. Murphy. *Probabilistic Machine Learning: Advanced Topics*. The MIT Press, Cambridge,
 738 Massachusetts, 2023. ISBN 978-0-262-04843-9.

739

740 Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining Well Calibrated Prob-
 741 abilities Using Bayesian Binning. *Proceedings of the AAAI Conference on Artificial Intelligence*,
 742 29(1), February 2015. ISSN 2374-3468. doi: 10.1609/aaai.v29i1.9602.

743

744 Radford M. Neal. MCMC Using Hamiltonian Dynamics. In *Handbook of Markov Chain Monte*
 745 *Carlo*. Chapman and Hall/CRC, 2011.

746

747 Ian Osband. Risk versus Uncertainty in Deep Learning: Bayes, Bootstrap and the Dangers of
 748 Dropout. *NIPS Workshop on Bayesian Deep Learning*, 192, 2016.

749

750 Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep Exploration via
 751 Bootstrapped DQN. In *Advances in Neural Information Processing Systems*, volume 29. Curran
 752 Associates, Inc., 2016.

753

754 Ian Osband, John Aslanides, and Albin Cassirer. Randomized Prior Functions for Deep Reinforce-
 755 ment Learning. In *Advances in Neural Information Processing Systems*, volume 31. Curran As-
 756 sociates, Inc., 2018.

757

758 Ian Osband, Seyed Mohammad Asghari, Benjamin Van Roy, Nat McAleese, John Aslanides, and
 759 Geoffrey Irving. Fine-Tuning Language Models via Epistemic Neural Networks, May 2023a.

760

761 Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi,
 762 Xiuyuan Lu, and Benjamin Van Roy. Epistemic Neural Networks. In *Thirty-Seventh Conference*
 763 *on Neural Information Processing Systems*, November 2023b.

756 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 757 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
 758 ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike,
 759 and Ryan Lowe. Training language models to follow instructions with human feedback. *Advances
 760 in Neural Information Processing Systems*, 35:27730–27744, December 2022.

761 Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua V.
 762 Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can You Trust Your Model’s Uncertainty?
 763 Evaluating Predictive Uncertainty Under Dataset Shift. In *Proceedings of the 33rd International
 764 Conference on Neural Information Processing Systems*, pp. 14003–14014, Red Hook, NY, USA,
 765 December 2019. Curran Associates Inc.

766 Theodore Papamarkou, Maria Skouliaridou, Konstantina Palla, Laurence Aitchison, Julyan Arbel,
 767 David Dunson, Maurizio Filippone, Vincent Fortuin, Philipp Hennig, José Miguel Hernández-
 768 Lobato, Aliaksandr Hubin, Alexander Immer, Theofanis Karaletsos, Mohammad Emtiyaz Khan,
 769 Agustinus Kristiadi, Yingzhen Li, Stephan Mandt, Christopher Nemeth, Michael A. Osborne,
 770 Tim G. J. Rudner, David Rügamer, Yee Whye Teh, Max Welling, Andrew Gordon Wilson, and
 771 Ruqi Zhang. Position: Bayesian Deep Learning is Needed in the Age of Large-Scale AI, June
 772 2024.

773 Maja Pavlovic. Understanding Model Calibration – A gentle introduction and visual exploration of
 774 calibration and the expected calibration error (ECE), March 2025.

775 Sriyash Poddar, Yanming Wan, Hamish Ivison, Abhishek Gupta, and Natasha Jaques. Personalizing
 776 Reinforcement Learning from Human Feedback with Variational Preference Learning, August
 777 2024.

778 Carl Edward Rasmussen and Christopher K. I. Williams. *Gaussian Processes for Machine Learning*.
 779 The MIT Press, Cambridge, Mass, November 2005. ISBN 978-0-262-18253-9.

780 Dorsa Sadigh, Anca Dragan, Shankar Sastry, and Sanjit Seshia. Active Preference-Based Learning
 781 of Reward Functions. In *Robotics: Science and Systems XIII*. Robotics: Science and Systems
 782 Foundation, July 2017. ISBN 978-0-9923747-3-0. doi: 10.15607/RSS.2017.XIII.053.

783 Simo Särkkä and Lennart Svensson. *Bayesian Filtering and Smoothing*. Cambridge University
 784 Press, June 2023. ISBN 978-1-108-92664-5.

785 Burr Settles. Active Learning Literature Survey. Technical Report, University of Wisconsin-
 786 Madison Department of Computer Sciences, 2009.

787 Yuesong Shen, Nico Daheim, Bai Cong, Peter Nickl, Gian Maria Marconi, Bazan Clement
 788 Emile Marcel Raoul, Rio Yokota, Iryna Gurevych, Daniel Cremers, Mohammad Emtiyaz Khan,
 789 and Thomas Möllenhoff. Variational Learning is Effective for Large Deep Networks. In *Proceed-
 790 ings of the 41st International Conference on Machine Learning*, pp. 44665–44686. PMLR, July
 791 2024.

792 Daniel Shin, Anca Dragan, and Daniel S. Brown. Benchmarks and Algorithms for Offline
 793 Preference-Based Reward Learning. *Transactions on Machine Learning Research*, September
 794 2022. ISSN 2835-8856.

795 Sharad Singhal and Lance Wu. Training Multilayer Perceptrons with the Extended Kalman Algo-
 796 rithm. In *Advances in Neural Information Processing Systems*, volume 1. Morgan-Kaufmann,
 797 1988.

798 Anand Sithharanjan, Cassidy Laidlaw, and Dylan Hadfield-Menell. Distributional Preference
 799 Learning: Understanding and Accounting for Hidden Context in RLHF. In *The Twelfth Inter-
 800 national Conference on Learning Representations*, October 2023.

801 Jasper Snoek, Oren Rippel, Kevin Swersky, Ryan Kiros, Nadathur Satish, Narayanan Sundaram,
 802 Mostofa Patwary, Mr Prabhat, and Ryan Adams. Scalable Bayesian Optimization Using Deep
 803 Neural Networks. In *Proceedings of the 32nd International Conference on Machine Learning*,
 804 pp. 2171–2180. PMLR, June 2015.

810 Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
 811 Dropout: A Simple Way to Prevent Neural Networks from Overfitting. *Journal of Machine Learn-
 812 ing Research*, 15(56):1929–1958, 2014. ISSN 1533-7928.

813

814 Sebastian Thrun, Wolfram Burgard, and Dieter Fox. *Probabilistic Robotics*. MIT Press, August
 815 2005. ISBN 978-0-262-20162-9.

816

817 Kevin Tran, Willie Neiswanger, Junwoong Yoon, Qingyang Zhang, Eric Xing, and Zachary W
 818 Ulissi. Methods for comparing uncertainty quantifications for material property predictions.
 819 *Machine Learning: Science and Technology*, 1(2):025006, May 2020. ISSN 2632-2153. doi:
 10.1088/2632-2153/ab7e1a.

820

821 Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
 822 Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
 823 Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,
 824 Eric Jones, Robert Kern, Eric Larson, C. J. Carey, İlhan Polat, Yu Feng, Eric W. Moore,
 825 Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
 826 Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, and Paul van Mulbregt.
 827 SciPy 1.0: Fundamental algorithms for scientific computing in Python. *Nature Methods*,
 828 17(3):261–272, March 2020. ISSN 1548-7105. doi: 10.1038/s41592-019-0686-2.

829

830 Tobias Weber, Bálint Mucsányi, Lenard Rommel, Thomas Christie, Lars Kasüschnke, Marvin
 Pförtner, and Philipp Hennig. Laplax – Laplace Approximations with JAX, July 2025.

831

832 Christian Wirth, Riad Akrou, Gerhard Neumann, and Johannes Fürnkranz. A Survey of Preference-
 833 Based Reinforcement Learning Methods. *The Journal of Machine Learning Research*, 18(1):
 4945–4990, January 2017. ISSN 1532-4435.

834

835 Adam X. Yang, Maxime Robeyns, Thomas Coste, Zhengyan Shi, Jun Wang, Haitham Bou-Ammar,
 836 and Laurence Aitchison. Bayesian Reward Models for LLM Alignment, July 2024.

837

838 Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agar-
 839 wal. Generative Verifiers: Reward Modeling as Next-Token Prediction. In *The 4th Workshop on
 840 Mathematical Reasoning and AI at NeurIPS’24*, October 2024.

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864 **A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL**
865866 Our code is available in the JAX (Bradbury et al., 2018) framework at https://github.com/preferenceEKF2025/preference_ekf. For implementation of the reward learning
867 algorithms, we use Dynamax (Linderman et al., 2025) for extended Kalman filtering (EKF), Laplax
868 (Weber et al., 2025) for Laplace approximation, and Blackjax (Cabezas et al., 2024) for MCMC.
869 For offline RL, we use Uniflora (Jackson et al., 2025) for implementation of implicit Q-learning
870 (IQL). All statistical testing are done using SciPy (Virtanen et al., 2020). Unless stated otherwise,
871 all experiments are done on a single node with 8 NVIDIA RTX A6000 GPUs via SLURM sharding.
872873 **A.1 STATISTICAL TESTING**
874875 To provide statistical significance to the main claims from Section 5.1, we conduct hypothesis testing
876 of 1) whether the active variant of each algorithm outperforms its random variant and 2) whether
877 active PreferenceEKF outperforms active variants of other Bayesian deep learning baselines. For
878 the summary statistic of each active reward learning experiment run, we compute the normalized
879 area under curve (AUC) of the log-likelihood plot in Fig. 1a. This measures the rate of improvement
880 for log-likelihood. Since all runs are performed using the same set of 5 random seeds and the same
881 train/test dataset split, we conduct our hypothesis testing using the one-sided paired t -test to compare
882 the normalized AUC between two sets of runs. We additionally compute the 95% confidence interval
883 as well as Cohen’s d for effect size.
884885 In the first 5 rows of Table 1, we show the performance of active versus random variant of each
886 algorithm, where each row is conducted over 5 seeds. We see that active PreferenceEKF and Deep-
887 Ensemble outperforms their random counterparts in normalized AUC with high statistical signifi-
888 cance, while Dropout, Laplace and LLMCMC fail to do so. We also note that DeepEnsemble and
889 LLMCMC reach roughly the same log-likelihood results as PreferenceEKF.
890891 In the last 4 rows of Table 1, we show the performance of active PreferenceEKF versus active variant
892 of other baselines, where each row is conducted over 5 seeds. We see that active PreferenceEKF
893 outperforms active variants of all baselines in normalized AUC with high statistical significance.
894

Test	t	p -value	Cohen’s d	95% CI
EKF (A vs. R)	2.43	0.036	1.01 (large)	(0.00, ∞)
Ensemble (A vs. R)	15.08	< 0.001	5.21 (large)	(0.09, ∞)
Dropout (A vs. R)	-0.69	0.737	-0.44 (small)	(-0.05, ∞)
Laplace (A vs. R)	0.82	0.230	0.47 (small)	(-0.02, ∞)
LLMCMC (A vs. R)	1.46	0.109	0.67 (medium)	(-0.00, ∞)
EKF vs. Ensemble	27.44	< 0.001	7.80 (large)	(0.11, ∞)
EKF vs. Dropout	16.77	< 0.001	11.22 (large)	(0.25, ∞)
EKF vs. Laplace	19.44	< 0.001	12.55 (large)	(0.26, ∞)
EKF vs. LLMCMC	5.21	0.003	3.84 (large)	(0.03, ∞)

904 Table 1: One-sided paired t -tests comparing active vs. random variants of each algorithm, and active
905 EKF vs. active variant of other baseline algorithms.
906907 **A.2 PREFERENCE-BASED REWARD LEARNING**
908909 **Implementation Details.** Unless otherwise stated, all reward learning experiments are done using
910 subspace dimensionality $|z| = 200$, query budget $B = 60$, and partial trajectory of length 50. All
911 neural networks reward model are represented using multi-layer perceptrons (MLP) with two hidden
912 layers of 64 units. We apply normalization to all input features. PreferenceEKF and Dropout uses
913 $M = 100$ model parameter samples to compute the acquisition function and posterior predictive
914 distribution, while DeepEnsemble trains $M = 5$ independent networks, each with different weight
915 initialization and randomness for minibatch shuffling.
916917 All tasks use a pool of 150K pairwise partial trajectory queries drawn from the trajectory dataset
918 to perform random or active querying over, and 3000 test queries for log-likelihood evaluation.
919

918 For generation of noisy-optimal synthetic labels, we apply trajectory return normalization before
 919 passing trajectory pairs through the BT model (Eq. 1) to compute the likelihood $p_\theta(\tau_a \succ \tau_b)$. We
 920 use temperature parameter of $\beta = 7$, resulting in roughly 5-15% mistaken preference labels per task.
 921

922 Before the sequential learning phase starting on Line 13, all algorithms receive a small dataset
 923 consisting of $\tau = 8$ query-response pairs for belief initialization, i.e., all algorithms observe a total
 924 of $\tau + B = 8 + 60 = 68$ samples. All algorithms run variants of gradient descent (GD) on the
 925 warm-up dataset for 420 optimizer steps. While PreferenceEKF uses SGD with learning rate of 1e-4,
 926 momentum of 0.9, and batch size of 1, DeepEnsemble and Dropout uses Adam (Kingma & Ba, 2014)
 927 with learning rate of 1e-4 along with default hyperparameters from Optax (DeepMind et al., 2020),
 928 and batch size of 8. Previous works have found that SGD with a high constant learning rate is crucial to
 929 producing GD iterates with enough variance to construct a subspace effective for optimization and
 930 inference (Fort et al., 2020), hence the different choice of optimizer for PreferenceEKF.

931 PreferenceEKF constructs the subspace by running SVD on the GD iterates obtained from running
 932 SGD on the warmup dataset. We throw away the first 20 out of the 420 GD iterates and keep only
 933 every other remaining iterate, for a total of $(420 - 20)/2 = 200$ iterates. Thus, SVD takes in a
 934 model parameter array of shape $(200 \times |\theta|)$, and return a projection matrix \mathbf{A} of shape $(200 \times |z|)$
 935 by keeping only the top $|z| = 200$ principal components. The final GD iterate is used as the
 936 full space parameter offset θ_* , which, along with projection matrix \mathbf{A} , is used to transform from
 937 the subspace back up to the full space for, e.g. computing predictive distributions as described in
 938 Section 4. Finally, PreferenceEKF performs belief initialization (Line 12) in the subspace using a
 939 zero-mean isotropic Gaussian of dimension $|z| = 200$.

940 On the belief update step (Line 16), PreferenceEKF learns from only the most recent query-label
 941 pair, while DeepEnsemble and Dropout learns from all data seen so far over 3 epochs. Note
 942 that the specific filtering algorithm we use is the iterated EKF (Bell & Cathey, 1993), which repeatedly
 943 re-linearize the measurement model around the estimated posterior. Empirically, we observed
 944 better log-likelihood evaluation performance in exchange for marginally extra runtime. We refer to
 945 the number of such re-linearization steps on every new sample as $n_{\text{linearize}}$. For further details on
 946 iterated EKF, refer to Section 8.3.2.2 of (Murphy, 2023). We use $n_{\text{linearize}} = 5$, prior noise of 0.07,
 947 systems noise of 1e-3, and measurement noise of 0.07 for all of our PreferenceEKF experiments.

948 A.2.1 BASELINE ALGORITHMS

950 The primary tradeoff that Bayesian deep learning (BDL) algorithms are concerned with is the computational
 951 tractability and approximation quality of the posterior distribution over model parameters
 952 given data $p(\theta | \mathcal{D})$. For high-dimensional models such as neural networks, the posterior can be
 953 highly multi-modal, which can be difficult to approximate for algorithms that use unimodal distributions
 954 (typically Gaussian) such as Laplace approximation and extended Kalman filters. On the
 955 other hand, while Markov chain Monte Carlo (MCMC) has been the gold standard for posterior
 956 approximation (Izmailov et al., 2021), they are very difficult to scale to large models with many
 957 parameters. As such, many BDL algorithms try to “be Bayesian” over only a subset or subspace of
 958 model parameters, or rely on ensembling to hopefully reach multiple posterior modes. Here we pro-
 959 vide a high-level description of the five classes of BDL algorithms we use for our experiments, the
 960 corresponding implementation details, as well as where they have been used in the reward learning
 961 literature.

962 **DeepEnsemble** and **Dropout** are among the most widely-used BDL algorithms for reward modeling
 963 and more generally, uncertainty quantification in neural networks (Christiano et al., 2017; Gleave &
 964 Irving, 2022; Chen et al., 2020; Hoque et al., 2022). They approximate the posterior by relying on
 965 randomness (e.g., weight initialization, mini-batch sampling order) to train multiple models and average
 966 over their predictions. While DeepEnsemble has the computational burden of actually training
 967 multiple neural networks, Dropout masks out subset of model parameters during training and computes
 968 the posterior predictive distribution by averaging predictions from multiple model copies with
 969 different weight masks during inference time, thus requiring training of only one model. The idea
 970 for both approach is for the multiple resulting models to act as samples from the posterior distribution.
 971 All M models trained under DeepEnsemble method receive a different stream of mini-batches
 972 for training. Dropout uses weight dropout probability of 0.3 for all experiments, during both training
 973 and inference.

Figure A.1: Comparison of the random (dashed line) and active (solid line) variants of the algorithms using the InfoGain acquisition function, across 12 D4RL tasks for preference-based reward modeling (mean \pm s.e. over 5 seeds). In all tasks, active PreferenceEKF either performs on par with or outperforms other algorithms in terms of sample-efficiency and final log-likelihood.

LLMCMC: Despite the high quality posterior approximation of MCMC methods for smaller models such as linear models (Biyik et al., 2020; Hadfield-Menell et al., 2017), they have not been widely used for neural network posterior inference due to their poor scalability to parameter count. Most application of MCMC to BDL trains the entire NN model using more efficient maximum likelihood methods like gradient descent, then perform MCMC only over the parameters of the final layer. We chose this “last-layer Bayesian” approach as it has been shown to strike a good balance between computational tractability and approximation quality (Brown et al., 2020; Snoek et al., 2015). The specific MCMC sampler we use is NUTS (Hoffman & Gelman, 2014). On active learning step, we construct a new log-density function using the aggregated dataset using all samples seen so far. For belief initialization, we use 500 warm up MCMC iterations followed by 1000 additional iterations. For belief update steps, since the log-density function should not differ too much with one additional aggregated sample, we set warm up iteration to be 20, followed by 1000 additional iterations. We then subsample M models from the resulting MCMC iterates to form our sampling-based posterior.

Laplace: While Laplace approximation (LA) has traditionally been used for smaller models in logistic regression and Gaussian process-based regression models (Biyik et al., 2020; Rasmussen & Williams, 2005), recent advancements such as those in Dangel et al. (2025); Daxberger et al. (2024) have made the technique highly scalable to neural network architectures. Combined with parameter efficient finetuning technique such as LoRa (Hu et al., 2021), LA has even been applied to transformer-scaled reward models (Yang et al., 2024). By approximating likelihood curvature around a model solution trained via maximum likelihood methods such as gradient descent, LA constructs a local Gaussian approximation to the model posterior. We use the full curvature approximation-based approach of Weber et al. (2025) to perform LA over the entire reward model, with prior precision value of 1000. Once the curvature information has been constructed for the Gaussian posterior approximation, we can sample arbitrary number of model parameters from the posterior.

PreferenceEKF: While the preceding described methods perform inference over either the full model or a subset thereof, PreferenceEKF finds a low dimensional subspace (as opposed to just a subset of the parameters) within the full parameter space, and perform inference within the sub-

space. The main insight of subspace inference approaches (Daxberger et al., 2021) is that due to the overparameterized nature of neural networks, capturing posterior information only over a constrained subspace would be a sufficient alternative to posterior inference over the whole network. Once a Gaussian approximation is obtained via subspace Kalman filtering, we can sample arbitrary number of model parameters from the posterior.

A.2.2 ACQUISITION FUNCTIONS

The InfoGain acquisition function introduced in Eq. 2a was developed by Biyik et al. (2020) for active reward learning using linear reward models. To motivate its origin, we first express the InfoGain objective in three equivalent forms below due to symmetry of mutual information. We refer to Section 5 of Biyik et al. (2020) for further interpretations of the objective, and Appendix 9.1 of their work for derivation of the sampling-based approximation shown in Eq. 3.

$$Q_i^* = \arg \max_{Q_i} I(\boldsymbol{\theta}; y_i | Q_i, \mathbf{b}^{i-1}) \quad (5a)$$

$$= \arg \max_{Q_i} H(\boldsymbol{\theta} | Q_i, \mathbf{b}^{i-1}) - \mathbb{E}_{y_i} [H(\boldsymbol{\theta} | y_i, Q_i, \mathbf{b}^{i-1})] \quad (5b)$$

$$= \arg \max_{Q_i} H(y_i | Q_i, \mathbf{b}^{i-1}) - \mathbb{E}_{\boldsymbol{\theta}} [H(y_i | \boldsymbol{\theta}, Q_i)] \quad (5c)$$

The idea of mutual information-based acquisition functions is rooted in the concept of expected information gain studied in Bayesian optimal experiment design and active data selection (MacKay, 1992; Lindley, 1956). It was later extended to Bayesian optimization using Gaussian process models under the methods Bayesian active learning by disagreement (BALD) (Houlsby et al., 2011), entropy search (ES) (Hennig & Schuler, 2012), and predictive entropy search (PES) (Hernández-Lobato et al., 2014). In particular, the mutual information objective function in Eq. 5a is expressed in its ES form in Eq. 5b, and expressed in its equivalent but computationally efficient PES form in Eq. 5c. Our PreferenceEKF method focuses on efficient sampling of high-dimensional neural network model parameters to approximate the predictive distribution for optimizing Eq. 5c.

Although our main experiments all use the InfoGain acquisition function to showcase the advantage of being able to sample from high-dimensional neural network parameter distributions, the PreferenceEKF method is agnostic to the acquisition function used for active learning. While Fig. 1a and Fig. A.1 showcase the aggregate and per-task log-likelihood results for active preference-based reward learning experiments using InfoGain, here we show additional results using the widely used disagreement acquisition function, which selects the query Q_i for which the predicted preference label $\mathbb{1}(\tau_a^i \succ \tau_b^i)$ has the highest variance across the ensemble or sampled models. Fig. A.2 and Fig. A.3 show the aggregate and per-task log-likelihood results, while Fig. A.4 show the calibration results. Overall, we see that InfoGain led to superior active reward learning performance compared to disagreement.

A.2.3 PIXEL-BASED REWARD LEARNING

While our main results in Section 5 are performed on state-based control tasks, here we showcase the applicability of PreferenceEKF to pixel-based tasks. We focus on the Visual D4RL (V-D4RL) benchmark (Lu et al., 2023), which contains rendered pixel-image observations corresponding to datasets from the state-based D4RL benchmark.

Our pixel-based reward model architecture consists of an ImageNet-pretrained ResNet18 image encoder (Deng et al., 2009; He et al., 2016) as the backbone and a two-layer MLP with 256 hidden units per layer as the reward prediction head. We finetune the entire reward model via SGD as part of the belief initialization step of Line 12, and perform EKF inference within the subspace of only the reward head parameters while keeping the finetuned backbone frozen. Due to the increased task and model complexity, we construct a subspace with dimensionality of 500 (compared to 200 in the state-based tasks with smaller reward models), and use random projection to do so since a larger subspace benefits equally from random projection versus SVD-based construction techniques as shown in Fig. 3b.

Since EKF’s belief update procedure scales cubically with dimensionality of the observation space, we use a measurement likelihood function (Eq. 4) over trajectory embeddings rather than raw trajectory pixels. We compute embeddings from the final layer of the ResNet18 backbone before the

Figure A.2: Comparison of the random (dashed line) and active (solid line) variants of the algorithms for preference-based reward modeling using the disagreement acquisition function, aggregated over 12 D4RL tasks (mean \pm s.e. over 5 seeds). While PreferenceEKF and LLMCMC outperforms all other methods, their active variants did not outperform their random variants.

reward prediction head, and mean-pool the embeddings across all timesteps of a trajectory segment to obtain embeddings that aggregate trajectory-level information. Empirically, raw pixel observations over trajectory segment lengths of 10 steps with images of height, width, channel (84, 84, 3) would result in observation dimension of $10 \times 84 \times 84 \times 3 = 211,680$ per trajectory, while mean-pooled embedding-based observation results in dimension of 512 per trajectory.

To finetune the pixel-based reward model, we start with a much bigger initial query dataset of 150 (compared to just 8 in state-based experiments), and use learning rate of 0.0001 over 3000 mini-batches with batch size 16. In Fig. A.5 and Fig. A.6, we show that PreferenceEKF is indeed a viable method for active preference-based reward learning. While the performance of active versus random sampling varies heavily across the three chosen pixel-based tasks, the active variant as a whole shows promising improvement over the random variant. We leave research on EKF variants that efficiently scale with observation dimension, and more parameter efficient subspace inference methods such as those based on LoRa (Hu et al., 2021) to future work.

A.2.4 MODEL CALIBRATION EXPERIMENTS

In addition to the results from Section 5.4 on expected calibration error and Brier scores, we provide in Fig. A.7 reliability diagrams computed from model predictions over all tasks and seeds. Due to the per-timestep parameterization of the reward model for computing the Bradley-Terry loss function Eq. 1, our binary preference query dataset is implemented to always have the second item be preferred over the first item. This corresponds to label of always 1, hence why the reliability diagrams only show calibration for half of the probability line. Upon inspection, we can see that PreferenceEKF and LLMCMC exhibit the lowest model calibration error.

A.3 OFFLINE REINFORCEMENT LEARNING

The extent to which offline RL algorithms leverages reward information for policy optimization, i.e., whether reward-induced policy performance is a good metric for assessing learned reward models, is heavily dependent on the trajectory dataset: when ran on datasets consisting solely of expert demonstrations, offline RL algorithms will largely ignore reward information and adopt a behavioral cloning-like learning strategy. On the other hand, it is generally difficult to train a policy from a dataset consisting of purely random behavior (Kumar et al., 2021).

Figure A.3: Comparison of the random (dashed line) and active (solid line) variants of the algorithms using the disagreement acquisition function, across 12 D4RL tasks for preference-based reward modeling (mean \pm s.e. over 5 seeds). In most tasks, active PreferenceEKF either performs on par with or outperforms other algorithms in terms of sample-efficiency and final log-likelihood. Pen Human and Maze Large Dense are particular outlier cases where active PreferenceEKF severely underperforms, which explains why the aggregate results in Fig. A.2 look unfavorably for active PreferenceEKF relative to its random variant.

Figure A.4: Comparison of the random (dashed line) and active (solid line) variants of the algorithms in model calibration, as evaluated by expected calibration error and Brier score on a test dataset (lower is better for both metrics).

Figure A.5: Comparison of the random (dashed line) and active (solid line) variant of PreferenceEKF for preference-based reward modeling using the InfoGain acquisition function, aggregated over 3 pixel-based VD4RL tasks (mean \pm s.e. over 5 seeds).

Figure A.6: Comparison of the random (dashed line) and active (solid line) variant of PreferenceEKF for preference-based reward modeling using the InfoGain acquisition function, aggregated over 3 pixel-based VD4RL tasks (mean±s.e. over 5 seeds).

Figure A.7: Reliability diagram over all five methods and their random and active variants.

1290
1291
1292
1293
1294
1295

1296 Following the experiment methodology of Shin et al. (2022) for our offline RL experiments, we
 1297 add two reference performance scores to every task as shown in Fig. A.8: we refer to “GT” as
 1298 the score from an offline RL policy trained on \mathcal{D}^{traj} labeled with ground-truth environment reward
 1299 information, and “Zero” as score from a policy trained on \mathcal{D}^{traj} with reward information zeroed out.
 1300 This serves to test whether an offline RL algorithm is able to effectively leverage reward information
 1301 for a given trajectory dataset. For most tasks, GT and Zero serve as upper and lower performance
 1302 bounds for learned policies.

1303 All offline RL experiments were done by running implicit Q-learning (IQL) (Kostrikov et al., 2021)
 1304 on trajectory transition datasets labeled with different types of rewards, e.g., ground truth environ-
 1305 ment reward, zeroed out reward, or preference-learned reward. An IQL agent consists of four neural
 1306 networks: main and target Q-network, Gaussian policy network, and state-value network. All four
 1307 networks have two hidden layers of 256 units each and are trained using the same optimizer config-
 1308 uration with cosine decay learning rate schedule. All training runs are done using 1M update steps
 1309 with 5 rollouts every 50K steps for evaluation. We apply normalization to both reward and obser-
 1310 vation features, and further apply clipping for reward values exceeding 10. All hyperparameters are
 1311 detailed in Table 2.

1312 Table 2: Shared hyperparameters for IQL across all tasks. Here “Iterations” refers to the number of
 1313 minibatch updates.

Name	Value
Optimizer	Adam
Learning rate	0.0003
Betas	(0.9, 0.999)
Iterations	1M
Batch size	256
Discount factor γ	0.99
Target net update step size	0.005
Expectile τ	0.7
Advantage temperature β	3.0
Exponential advantage clip	100

A.4 SCALING EXPERIMENTS.

1329 JAX offers efficient vectorization of arbitrary functions using `jax.vmap`. While we use this to
 1330 parallelize ensemble model training and prediction in most experiments in Section 5, we do not
 1331 use this for the scalability experiments in Section 5.3. Parallelized training and prediction of up to
 1332 $M = 150$ models with up to 2M parameters (in the case of the three layer neural networks with
 1333 1024 units each) can quickly lead to out-of-memory errors. We instead use python’s native for loop
 1334 to perform ensemble model training and prediction sequentially. All scalability experiments were
 1335 done on CPU instead of GPU to avoid out-of-memory errors.

A.5 LLM USAGE

1339 We used LLMs primarily for writing Python visualization scripts, figures/tables typesetting in Latex,
 1340 finding related work on subspace construction methods, and debugging JAX compilation / model
 1341 loading errors. We did not use LLMs for paper writing, research ideation, or implementing the core
 1342 algorithm parts.

Figure A.8: Comparison of the RM learned using random (dashed line) and active (solid line) variants of the algorithms across 12 D4RL tasks in the offline RL setting (mean \pm s.e. over 5 seeds). Black solid line indicates the performance of a policy trained on ground truth reward (GT), and black dotted line for a policy trained without reward information (Zero). In most tasks, active PreferenceEKF performs on par with other algorithms in terms of rollout score.