
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GENERALIZING BEYOND SUBOPTIMALITY: OFFLINE
REINFORCEMENT LEARNING LEARNS EFFECTIVE
SCHEDULING THROUGH RANDOM SOLUTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

The Job Shop Scheduling Problem (JSP) and Flexible Job Shop Scheduling Prob-
lem (FJSP) are combinatorial optimization problems with wide-ranging applica-
tions in industrial operations. In recent years, many online reinforcement learning
(RL) approaches have been proposed to learn constructive heuristics for JSP and
FJSP. Although effective, these online RL methods require millions of interac-
tions with simulated environments, and their random policy initialization leads
to poor sample efficiency. To address these limitations, we introduce Conserva-
tive Discrete Quantile Actor-Critic (CDQAC), a novel offline RL algorithm that
learns effective scheduling policies directly from datasets, eliminating the need for
training in a simulated environment, while still being able to improve upon subop-
timal training data. CDQAC couples a quantile-based critic with a delayed policy
update, estimating the return distribution of each machine–operation pair rather
than selecting pairs outright. Our extensive experiments demonstrate CDQAC’s
remarkable ability to learn from diverse data sources. CDQAC consistently out-
performs the original data-generating heuristics and surpasses state-of-the-art of-
fline and online RL baselines. In addition, CDQAC is highly sample efficient,
requiring only 10–20 training instances to learn high-quality policies. Notably,
CDQAC performs best when trained on datasets generated by a random heuristic,
leveraging their wider distribution over the state space, to surpass policies trained
on datasets generated by significantly stronger heuristics.

1 INTRODUCTION

The Job Shop Scheduling Problem (JSP) and Flexible Job Shop Scheduling Problem (FJSP) are
fundamental challenges in manufacturing and industrial operations (Bhatt & Chauhan, 2015), where
the goal is to optimally schedule jobs on available machines to minimize objectives such as total
completion time (makespan). Exact methods such as Constraint Programming (CP) (Da Col &
Teppan, 2022) and Mathematical Programming (Fan & Su, 2022) guarantee optimality but face
scalability issues for large-sized instances. Therefore, in practice, heuristic methods such as Genetic
Algorithms (GA) (Bhatt & Chauhan, 2015) and Priority Dispatching Rules (PDRs) (Veronique Sels
& Vanhoucke, 2012) are preferred, as they can find acceptable solutions in reasonable time.

Recently, deep reinforcement learning (RL) has shown promise for learning priority dispatching
rules (PDRs). Approaches such as Learning-to-Dispatch (L2D) (Zhang et al., 2020) learn policies
that generalize from small to larger instances and solve new cases orders of magnitude faster than
exact solvers or evolutionary algorithms. However, most RL methods train policies from scratch
via trial-and-error in simulators. Due to random initialization, they typically require millions of
interactions to converge, leading to severe sample inefficiency (Mai et al., 2022). At the same time,
a wide range of heuristics, such as PDR and GA, are commonly used for JSP, FJSP, and related
scheduling problems. This widespread use should allow for the collection of training data. However,
because these heuristics do not guarantee optimality, this training data is inherently suboptimal.

Offline RL emerges as an alternative approach to learning effective dispatching policies by train-
ing directly on datasets generated by suboptimal heuristics. Instead of simply imitating observed
actions, offline RL methods learn their estimated value and leverage this to generalize policies that
can surpass the heuristics that generated the dataset (Levine et al., 2020; Kumar et al., 2022). Re-
cently, Remmerden et al. (2025) proposed the first offline RL method, called Offline-LD, to solve

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

JSP, and showed that it can learn good scheduling policies with a small training dataset of only 100
instances, outperforming several methods, including the online RL method L2D, behavioral cloning,
and heuristics. Despite its promising performance, Offline-LD relies on high-quality solutions gen-
erated by a Constraint Programming (CP) solver for training. However, generating training data
using the CP solver is computationally expensive and intractable for large problem instances.

We propose Conservative Discrete Quantile Actor-Critic (CDQAC), a novel offline RL method,
that learns effective scheduling policies from low-quality data generated by a wide range of heuris-
tics. CDQAC learns an approximated representation of the value of each action from which it can
generalize a new policy that can outperform the heuristic that generated the data. CDQAC achieves
this through a quantile-based critic, with a novel dueling architecture. This critic provides value
estimates that guide the actor, while a delayed policy update prevents the propagation of early noisy
critic predictions, ensuring stable joint learning of the policy and value function.

Our work offers the following contributions: (1) We propose CDQAC, a novel offline RL method,
which can effectively learn a scheduling policy from a wide variety of datasets of various quality. (2)
We show that CDQAC significantly outperforms all other baselines, including Offline-LD, heuris-
tics used to generate training sets, and online RL baselines on JSP and FJSP benchmark instances.
(3) CDQAC is highly sample efficient, requiring only 10-20 instances to learn good policies, signifi-
cantly less than online RL approaches, which require up to 1000 instances. (4) CDQAC achieves the
highest performance when trained on a dataset generated by random heuristics, contradicting previ-
ous findings in offline RL research, which generally show that the combination of higher-quality and
slightly lower-quality training examples results in better performance (Schweighofer et al., 2022;
Kumar et al., 2022).

2 RELATED WORK

Learning-based methods for Scheduling Problems. Most prior work on scheduling has focused
on JSP. Early work showed that online reinforcement learning (RL) with graph neural networks
(GNN) can learn effective scheduling policies (Zhang et al., 2020; Park et al., 2021; Smit et al.,
2025), later improved through curriculum (Iklassov et al., 2023) and imitation learning (Tassel
et al., 2023). Recent approaches learn improve heuristics via RL (Zhang et al., 2024a;b), while
self-supervised methods outperform RL at the cost of longer training (Corsini et al., 2024; Pirnay
& Grimm, 2024). None of these methods can learn a policy for the Flexible Job Shop schedul-
ing problem (FJSP), due to the increased complexity of selecting both an operation and a machine.
Song et al. (2023) introduced a heterogeneous GNN for FJSP, which learns the relation between
machines and operations, and Wang et al. (2023) proposed a dual attention architecture to capture
this relation, whereby both methods can also function for JSP (Reijnen et al., 2023). However, all
of these methods for JSP and FJSP remain sample-inefficient, requiring extensive interactions with
simulated environments to learn well-performing scheduling policies. In contrast, we focus on an
offline RL approach that can learn directly from diverse and potentially suboptimal datasets, thereby
eliminating the need for simulator-based training.

Offline Reinforcement Learning. Most offline RL work focus on continuous action spaces (An
et al., 2021; Kostrikov et al., 2021), with limited exploration in discrete domains. Transformer-based
sequence models show promise (Chen et al., 2021; Janner et al., 2021) but assume fixed state/action
sizes, incompatible with FJSP/JSP instance-dependent state/action sizes. Conservative Q-learning
(CQL) (Kumar et al., 2020) has shown promise for discrete action spaces (Kumar et al., 2023) and
prevents overestimation of OOD actions through regularization of Q-values. Offline-LD (Remmer-
den et al., 2025) first demonstrated offline RL’s potential for JSP using (near-)optimal constraint
programming solutions, surpassing online and imitation methods, especially with noisy data. How-
ever, Offline-LD focused solely on JSP and need (near-)optimal data for training. We extend this to
FJSP, focusing on learning from diverse suboptimal examples. Consequently, we build upon CQL,
well-suited for such data, by introducing novel algorithmic and architectural components tailored
for effective scheduling in FJSP and JSP. This distinguishes our setting from imitation learning (IL),
also known as behavioral cloning (BC), which learns to imitate the policy that generated optimal or
near-optimal solutions (Luo et al., 2023; Drakulic et al., 2023; Lee & Kim, 2025).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 PRELIMINARIES

JSP & FJSP. We formulate the Job Shop Scheduling (JSP) and Flexible Job Shop Scheduling
Problem (FJSP) as follows. Given a set of n jobs, represented as J , and a set of m machines, rep-
resented asM, each job Ji ∈ J has ni operations. These operations Oi = {Oi,1, Oi,2, ..., Oi,ni}
must be processed in order, forming a precedence constraint. In JSP, each operation Oi,j can only
be processed by a single machine, whereas in FJSP, Oi,j can be processed on any machine in its
set of compatible available machinesMi,j ⊆ M. Each machine Mk ∈ Mi,j has a specific pro-
cessing time for an operation Oi,j denoted as pki,j , where pki,j > 0. The objective is to minimize
the makespan, defined as the completion of the last operation Cmax = maxOi,j∈O C(Oi,j), where
C(Oi,j) represents the completion time of operation Oi,j .

Offline Reinforcement Learning. We formalize FJSP and JSP as a Markov Decision Process
(MDP) denoted as MMDP = ⟨S,A(st), P,R, γ⟩. A state st ∈ S represents the progress of the
current schedule in the timestep t, and includes all operations Oi,j ∈ Ot that are available to be
scheduled on machines Mk ∈ Mt, wherebyMt only contains machines that are free at timestep t.
The action space at ∈ A(st) corresponds to all available machine-operation pairs (Oi,j ,Mk) at t. P
is the transition function and determines the next state st+1 on the selected machine-operation pair
(Oi,j ,Mk), whereby unavailable pairs, due to Mk being selected, being removed and new available
pairs added. The reward rt is the negative increase in the (partial) makespan resulting from action
at: rt = maxOi,j∈O C(Oi,j , st)−maxOi,j∈O C(Oi,j , st+1) γ is the discount factor that determines
the importance of future rewards. We set γ = 1. In offline RL, a policy π(a|s) is learned through
a static dataset D = {(s, a, r(s, a), s′)i}, where s′ is the next state. D is generated through one or
more behavioral policies πβ .

4 CONSERVATIVE DISCRETE QUANTILE ACTOR-CRITIC FOR SCHEDULING

Our goal is to learn a scheduling policy πψ from a static datasetD that surpasses the behavioral poli-
cies πβ that generated it. πβ may be any (possibly non-Markovian) heuristic, such as PDRs, genetic
algorithms, or random schedulers (Kumar et al., 2022). To outperform πβ , the learner must estimate
accurate state–action values Qθ(s, a) in D and “stitch” high-value segments into a better policy.
This differs from Behavioral Cloning, which learns to imitate the actions of πβ . Because πψ is up-
dated solely via Qθ, the critic must (1) model the return distribution for state–action pairs observed
in D and (2) remain conservative on out-of-distribution (OOD) actions to avoid overestimation un-
der distributional shift, while still enabling improvement beyond the data. For this purpose, we
propose Conservative Discrete Quantile Actor-Critic (CDQAC), an offline RL approach for JSP
and FJSP. CDQAC introduces a novel offline RL approach for scheduling, that integrates a quan-
tile critic (Dabney et al., 2018) with a delayed policy update, enabling the learning of a scheduling
policy from a dataset D composed of suboptimal examples, while still discovering policies that
outperform those contained in D.

Quantile Critic. To learn an accurate representation of the value of all scheduling actions in a
datasetD, we utilize a distributional approach for our critic. In a distributional approach, we want to
approximate the random return Zπ =

∑∞
t=0 γ

tr(st, at), rather than approximating the expectation
as Qπ(s, a) = E[Zπ(s, a)], and it has shown to learn more accurate representations than standard
DQN (Bellemare et al., 2017; Dabney et al., 2018). To approximate Zπ , we use a quantile critic,
who approximates the return by learning a set of N quantiles. These quantiles are estimated for
specific fractions τn = 2n−1

2N , n ∈ [1, ..., N ], which represent the target cumulative probabilities for
which the quantile values are estimated, formulated as:

Zθi(s, a) =
1
N

N∑
j=1

δ
(
θji (s, a)

)
, (1)

with θji predicting the j-th ofN quantiles and δ the Dirac delta. We update the quantile critic through
a distributional Bellman update (Bellemare et al., 2017) given as:

T Z(s, a) = r(s, a) + γZθ̂(s
′, a′), s′ ∼ D, a′ ∼ πψ(· | s′), (2)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Illustrative example of overestimating OOD actions. In training steps 1 and 2 examples
are shown of negative outcomes of pairing operation Oi,j with either machine M1, with a reward of
−3, orM2, with a reward of−5, learning thatM3 results in the best outcome, since the combination
(Oi,j ,M3) does not exist in the dataset. The real return Zπ shows that M3 results in the worst
outcome. CQL ensures OOD actions are not overestimated, in comparison to actions in the dataset.

whereby θ̂ represents the target network. The action a′ for the target state s′ is carried out by the
current policy πψ , ensuring that the learned value distribution reflects the expected return under the
policy πψ . We use the distributional Bellman update from Eq. 2 to calculate the temporal difference
(TD) loss for our critic, which is as follows:

LTD(θ) = Es,a,s′∼D,a′∼πψ(·|s)
[
ρHτ (T Zθ̂(s

′, a′)− Zθ(s, a))
]
, (3)

where ρHτ is the asymmetric quantile Huber loss proposed in (Dabney et al., 2018), which updates
θ for all quantile fractions τ . The target network is updated through a Polyak update, whereby θ̂ is
updated as a fraction ρ of θ. We can retrieve a scalar value from Zθ, by the mean over the quantiles
QZθ (s, a) = E[Zθ(s, a)].

Conservative Q-Learning. In the offline setting, CDQAC updates Zθ using targets that can in-
volve actions without support in the static dataset D. This support mismatch, i.e. distributional shift
between the state–action distribution in D and that induced by the learned policy, leads the critic to
overestimate the values for out-of-distribution (OOD) actions, as illustrated in Fig. 1. This overes-
timation is not an issue for online RL, since it can explore these actions during training; however,
offline RL cannot due to learning from a static dataset. To avoid this overestimation, we add Conser-
vative Q-learning (CQL) (Kumar et al., 2020) to the loss of the critic. CQL penalizes overestimation
of OOD actions, by introducing a regularization term used in combination with standard critic loss:

LZ(θ) = αCQLEs∼D

[
log

∑
a′∈A(s)

exp(QZθ (s, a
′))− Ea∼D[QZθ (s, a)]

]
+ LTD(θ), (4)

where, αCQL determines the strength of the penalty, and LTD(θ) is the loss in Eq. 3.

Delayed Policy. The approximated return Zθ allows CDQAC to learn which scheduling action to
perform and which not. This requires Zθ to accurately model the real return Zπ , which it does not
yet do at the start of training. πψ will learn to maximize based on a noisy critic Zθ, who in turn will
be updated based on noisy updates of πψ (Eq. 2). To prevent this, we introduce a delayed policy
update, where πψ is updated every η steps, based on prior work in online RL (Fujimoto et al., 2018).
This allows Zθ to receive more updates than πψ , improving the stability and accuracy of both πψ
and Zθ. We formalize the loss of πψ as follows:

Lπ(ψ) = Es∼D,a∼πψ(·|s)
[
−QZθ (s, a) + λH

[
πψ(· | s)

]]
, (5)

where H[πψ(· | s)] is an entropy bonus preventing πψ from converging to a single action and its
strength is determined by λ. To avoid overestimation in Q-learning-based actor-critic methods, we
parameterize Zθ with two heads (Zθ1 , Zθ2 ) and calculate the target Zθ̂ (Eq. 3) and QZθ in the policy
update (Eq. 5) as the minimum value of both heads Zθ = min(Zθ1 , Zθ2) (Christodoulou, 2019;
Zhou et al., 2024).

4.1 NETWORK ARCHITECTURE

To encode an FJSP or JSP instance, we use a dual attention network (DAN), adapted from
DANIEL (Wang et al., 2023), for both the policy network πψ and the quantile critic Zθ. Fig. 2

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: The network architecture. (Left) The Dual Attention Network (DAN) encodes the op-
erations and machines. (Right) The Dueling Quantile Network uses these embeddings to learn the
machine-operation pair, whereby it combines the Value Vθ and AdvantageAθ streams through Eq. 6.

shows our network architecture. DAN processes two parallel attention streams that take the rele-
vant operations Oi,j ∈ Ot and machines Mk ∈ Mt. DAN learns the complex relation between
each machine-operation pair at timestep t as input and embeds them as hOi,j and hMk

. A detailed
explanation of DAN and the input features can be found in App. B.

From machine embeddings hMk
and operation embeddings hOi,j , we calculate a global embedding

as hG =
[(

1
|Ot|

∑
Oi,j∈Ot hOi,j

)
∥
(

1
|Mt|

∑
Mk∈Mt

hMk

)]
, where ∥ is a concatenation.

For the actor network, we use the global embeddings hG, combined with the embeddings of the oper-
ation hOi,j and machine hMk

, and the specific features of the machine-operation pair h(Oi,j ,Mk), as
input for the policy πψ . This allows πψ to select a machine-operation pair, based on the embeddings
of the machine-operation pair in relation to the global embedding.

Dueling Quantile Network. The quantile critic in CDQAC uses a novel dueling architecture based
on prior work by Wang et al. (2016), which divides the state action value into two components: a
value stream V (s) and an advantage stream A(s, a). The major benefit is that Vθ is updated at
each training step, while Aθ is only updated for each individual machine-operation pair, allowing
Vθ to learn a richer representation and more accurate Zθ. In Wang et al. (2016) approach Vθ and Aθ
share the same input, we propose separate inputs where V (s) only receives the global embedding
hG, whereas Aθ also receives the operation-, machine-, and pair-specific embeddings (Fig. 2). This
allows Vθ to focus only on the state value, whereas Aθ can focus on each individual machine-
operation pair (Oi,j ,Mk), resulting in the following formulation:

Zθ(hOi,j , hMk
, h(Oi,j ,Mk), hG) = Vθ(hG) +

(
Aθ(hOi,j , hMk

, h(Oi,j ,Mk), hG)

− 1

|A(st)|
∑

(O′,M ′)∈A(t)

Aθ(hO′ , hM ′ , h(O′,M ′), hG)
)
, (6)

where A(st) are all the available machine-operations pairs (O′,M ′) in state st at timestep t. In
Eq. 6, we subtract the average advantage stream from the advantage of an action. This is required
since the value stream and the advantage stream are not uniquely identifiable (Wang et al., 2016).

5 EXPERIMENTS

Generated & benchmark instances. We use generated instances for training (500 instances) and
evaluation and standard benchmarks. FJSP: train on sizes {10×5, 15×10, 20×10}; each job has
⌊0.8m⌋–⌊1.2m⌋ operations; processing times are integers in [1, 99]. Evaluate on 100 instances
of sizes {10×5, 15×10, 20×10, 30×10, 40×10} and on Brandimarte (mk) (Brandimarte, 1993)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

and Hurink (edata, rdata, vdata) (Hurink et al., 1994). JSP: train 500 instances at 10×5 and 15×10
following Taillard (1993); evaluate on Taillard (Taillard, 1993) and Demirkol (Demirkol et al., 1998).
Benchmark details are in App. C.

Training dataset generation. Offline RL trains on a fixed dataset D. We collect trajectories us-
ing three kind of heuristics: (i) Priority Dispatching Rules (PDR)—for FJSP, 4 job-selection × 4
machine-selection rules (16 trajectories per instance); for JSP, 4 job rules (machines fixed). (ii) Ge-
netic Algorithms GA (Reijnen et al., 2023)—use the entire final population (typically higher qual-
ity, lower diversity than PDRs). (iii) Random—uniformly sample feasible actions. We build four
datasets: PDR (16 FJSP / 4 JSP trajectories), GA (200 trajectories per instance), PDR–GA (union),
and Random (100 trajectories per instance). These datasets matches the setup used in offline RL
work (Fu et al., 2020), where datasets with different qualities are used. From each trajectory, we ex-
tract the transitions with which CDQAC and offline RL baselines are trained. Duplicate trajectories
are removed before training; heuristic details are in App. D.

Metrics. We report the optimality gap: Gap =
Cjmax−Cub

Cub
× 100, which measures the difference

between Cjmax, the makespan found by method j, and Cub, which is the optimal or best-known
makespan for the given instance. For generated instances, we used solutions generated by OR
tools (Perron et al., 2023), with a solving time limit of 30 minutes per instance, as reported in
(Wang et al., 2023). For the benchmark instances, Taillard, Demirkol, Brandimarte, and Hurink, we
used the best known solutions noted in the literature 1.

Baselines. We benchmark CDQAC against both offline and online RL approaches and strong
heuristics. Each learning-based policy is evaluated in two modes: greedy (argmax) and sampling
(100 solutions sampled; best kept), averaging over three different evaluations seeds (1,2, 3).

(1) Offline: We compare CDQAC with Offline-LD (Remmerden et al., 2025), originally developed
for JSP, Behavioral Cloning (BC), and Implicit Q-Learning (IQL) (Kostrikov et al., 2021). All base-
lines are adapted to FJSP by using DAN (Wang et al., 2023) as the encoder. For Offline-LD, we im-
plement both variants—maskable QRDQN (mQRDQN) and discrete maskable SAC (d-mSAC)—as
introduced in (Remmerden et al., 2025). Each method is trained separately on the four training
datasets (PDR, GA, PDR-GA, Random) and three instance sizes (10 × 5, 15 × 10, 20 × 10), as
relative offline RL performance can vary substantially across datasets. Full implementation details
are provided in App. E.

(2) Online RL: For FJSP, we compare with FJSP-DRL (Song et al., 2023) and DANIEL (Wang
et al., 2023), both using PPO and trained on 1,000 instances with 20 runs each, relying on the results
reported in their papers. We also include Residual (Ho et al., 2024), which uses REINFORCE with
a custom baseline. We retrain Residual under the same protocol as FJSP-DRL and DANIEL (1,000
generated instances, 20 runs each) for sizes 10× 5, 15× 10, and 20× 10. All three online baselines
use generated instances from the same distribution as CDQAC and share the same validation set. We
also compare against a Genetic Algorithm (GA), the two best-performing dispatching rules (MOR-
SPT, MOR-EST), and CP (30-minute limit) on the benchmark instances. For JSP, we compare with
L2D (Zhang et al., 2020) trained on 10,000 instances (4 runs), Offline-LD (Remmerden et al., 2025)
trained on 100 noisy-expert solutions, as well as DANIEL and Residual. We include DANIEL and
Residual because our focus is on RL methods applicable to both JSP and FJSP. The JSP results
for DANIEL come from Reijnen et al. (2023), and we retrain Residual. CDQAC, DANIEL, and
Residual are all trained on JSP instances of size 10 × 5. Both DANIEL and Residual use online
training on 1,000 instances with 20 runs each. For JSP, we also include MOR and MWKR, both
dispatching rules, as well as MIP and CP, exact solvers with a 30 minute time limit.

Training Setup. We evaluate the stability of CDQAC by running all experiments with four dif-
ferent seeds (1, 2, 3, 4). Although this is standard practice in offline RL (Fu et al., 2020), online
RL methods for FJSP (Song et al., 2023; Wang et al., 2023) typically report results from a single
seed. Consequently, we present mean and standard deviation for our offline RL comparisons, but

1The best known solutions for both Taillard and Demirkol can be found at https://optimizizer.
com/jobshop.php and for Hurink (edata, rdata, vdata) and Brandimarte at https://scheduleopt.
github.io/benchmarks/fjsplib

6

https://optimizizer.com/jobshop.php
https://optimizizer.com/jobshop.php
https://scheduleopt.github.io/benchmarks/fjsplib
https://scheduleopt.github.io/benchmarks/fjsplib


324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Average gap (%) on all FJSP evaluation sets. πβ best performance of heuristics that gener-
ated dataset. Bold is best result of the method (row) for each training dataset (column).

PDR GA PDR-GA Random

G
re

ed
y

BC 29.13 ± 3.2 13.91 ± 0.6 22.37 ± 2.24 21.85 ± 2.51
Offline-LD (mQRDQN) 22.26 ± 2.43 30.85 ± 3.57 21.80 ± 3.64 21.49 ± 2.62
Offline-LD (d-mSAC) 23.28 ± 3.06 21.02 ± 2.13 25.94 ± 2.29 16.91 ± 1.89
IQL 19.93 ± 1.83 20.66 ± 2.18 19.24 ± 2.34 21.34 ± 3.54
CDQAC (Ours) 12.34 ± 1.72 13.06 ± 2.10 11.31 ± 1.33 10.68 ± 0.51

Sa
m

pl
in

g

BC 10.71 ± 0.99 8.3 ± 0.15 9.49 ± 0.56 13.15 ± 0.09
Offline-LD (mQRDQN) 13.64 ± 0.20 14.26 ± 0.26 13.68 ± 0.17 13.63 ± 0.23
Offline-LD (d-mSAC) 11.61 ± 1.32 8.83 ± 0.69 11.69 ± 1.23 7.79 ± 0.86
IQL 10.01 ± 0.58 9.19 ± 0.56 9.48 ± 0.59 10.79 ± 0.74
CDQAC (Ours) 6.57 ± 0.76 6.43 ± 0.87 5.87 ± 0.51 5.86 ± 0.30
πβ 14.13 6.74 6.74 28.16

only single seed results (seed 1) when comparing with online methods. We conducted experiments
on servers equipped with a NVIDIA A100 GPU, Intel Xeon CPU, and 360GB of RAM. Detailed
descriptions of the hyperparameters and the network architecture can be found in App. F.

5.1 COMPARISON WITH OFFLINE RL

We first compare CDQAC with the offline RL baselines Offline-LD, Implicit Q-learning (IQL) and
Behavioral Cloning (BC), all implemented with a DAN network (Wang et al., 2023). This allows us
to evaluate whether novel aspects of CDQAC, such as the delayed policy and the dueling quantile
critic, contributed to the performance compared to offline baselines2. All methods are trained across
all datasets, as each dataset serves as a distinct benchmark in offline RL; prior work has shown
that the relative performance between methods trained on the same dataset can vary significantly
between different qualities of the dataset (Figueiredo Prudencio et al., 2024). Table 1 shows that
CDQAC outperforms both versions of Offline-LD by a significant margin. Furthermore, CDQAC
consistently outperforms all heuristics that generated the datasets (denoted with πβ). In contrast, the
other offline RL baselines, Offline-LD and IQL, never outperformed GA, or even the PDR heuristics
with greedy evaluation. The second highest performance was achieved with BC, when trained on
GA (Greedy: 13.91 ± 0.6, Sampling: 8.3 ± 0.15); however, BC still performed significantly worse
than CDQAC, even when trained on the same GA dataset (Greedy: 13.06 ± 2.1, Sampling: 6.43 ±
0.87), on which CDQAC performed the worst. Additional results of our offline RL comparison are
in App. H.2.

Both Offline-LD (d-mSAC) and CDQAC achieve the best performance when trained on the Random
dataset. Offline-LD (d-mSAC) achieves gaps of 16.91%±1.89%, 7.79%±0.86%, while CDQAC
achieves even better performance with gaps of 10.68%±0.51%, 5.86%±0.30% for greedy and sam-
pling, respectively. These results contradict prior offline RL work (Schweighofer et al., 2022; Kumar
et al., 2022) where noisy-expert datasets typically outperform random datasets. Both CDQAC and
Offline-LD only learn the state-action value in a dataset, we hypothesize that for such approaches a
diverse suboptimal dataset is preferred, over a high-quality, but less diverse dataset with offline RL
in FJSP.

Table 2: The State-Action Coverage
(SACo) of the FJSP training datasets of
each instance size. PDR is the reference
dataset, and a higher SACo is better.

Instance Size PDR GA PDR-GA Random

10× 5 1 ± 0 3.13 ± 0.38 4.13 ± 0.38 8.46 ± 0.71
15× 10 1 ± 0 2.59 ± 0.46 3.59 ± 0.46 6.93 ± 0.29
20× 10 1 ± 0 3.16 ± 0.4 4.16 ± 0.4 7.7 ± 0.18
Average 1 ± 0 2.96 ± 0.49 3.96 ± 0.49 7.7 ± 0.77

Why random solutions outperform expert data? To
empirically evaluate the diversity of a dataset, we use
State-Action Coverage (SACo) (Schweighofer et al.,
2022), defined as SACo(D) =

us,a(D)
us,a(Dref)

where
us,a(D) denotes the number of unique state–action pairs
observed in dataset D. We take PDR as the refer-
ence dataset, that is, Dref = PDR, so by definition
SACo(PDR) = 1.

Table 2 shows that Random has substantially higher
state–action coverage. This ranking largely mirrors the
main results in Table 1. Previous theoretical work on of-
fline RL (Jin et al., 2021; Kumar et al., 2022) shows that

2A full ablation study of each component can be found in App H.1.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Results FJSP benchmarks sets. CDQAC trained on Random dataset; all models on 10×5
or 15×10 instances. Bold indicates best performance.

Method mk edata rdata vdata

Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s)

G
re

ed
y
1
0
×

5

FJSP-DRL 28.52 1.26 15.53 1.4 11.15 1.4 4.25 1.37
Residual 25.53 0.68 15.97 0.5 11.78 0.63 2.8 0.8
DANIEL 13.58 1.29 16.33 1.37 11.42 1.37 3.28 1.37
CDQAC (Ours) 13.04 1.1 13.86 1.18 10.10 1.18 2.75 1.18

1
5
×

1
0

FJSP-DRL 26.77 1.25 15 1.4 11.14 1.4 4.02 1.37
Residual 25.22 0.68 16.99 0.5 11.19 0.62 4.04 0.79
DANIEL 12.97 1.3 14.41 1.38 12.07 1.36 3.75 1.37
CDQAC (Ours) 12.64 1.08 14.74 1.15 10.47 1.14 3.13 1.14

Sa
m

pl
in

g 1
0
×

5
FJSP-DRL 18.56 4.13 8.17 4.91 5.57 4.81 1.32 4.71
Residual 21.65 65.01 13.61 49.84 7.42 60.75 1.76 80.37
DANIEL 9.53 4.12 9.08 4.71 4.95 4.73 0.69 4.77
CDQAC (Ours) 8.96 3.36 9.4 3.82 5.59 3.84 0.65 3.84

1
5
×

1
0

FJSP-DRL 19 4.13 8.69 4.87 5.95 4.82 1.34 4.72
Residual 19.91 66.09 11.94 50.61 8.25 61.52 1.58 77.59
DANIEL 8.95 4.08 8.72 4.7 5.49 4.73 0.72 4.75
CDQAC (Ours) 7.94 3.22 7.77 3.66 5.08 3.68 0.69 3.72

MOR-SPT 25.67 0.1 17.75 0.11 14.38 0.1 6.06 0.11
MOR-EST 29.59 0.1 17.59 0.11 14.3 0.1 5.59 0.11
GA 14.29 232.95 4.55 237.06 4.43 243.91 0.67 283.97

CP 1.5 1447 0 900 0.11 1397 0 639

diverse datasets can be more optimal than narrow expert datasets, given that the RL problem has a
horizon of H ≥ 40, while FJSP has a minimum horizon of H = 50 for 10× 5, and increasing with
larger instance sizes. A larger H means that Random has enough transitions to ”stitch” together an
optimal policy, since it increases the likelihood of them occurring in the training dataset. Jin et al.
(2021) highlights this explanation with intrinsic uncertainty, referring to how uncertain an offline
RL method is depending on the absence of state–action pairs from the optimal policy in dataset D.
This means that a higher SACo increases the probability that state-action pairs, done by an optimal
policy, are present in the dataset. For example, GA and PDR alone have an intrinsic uncertainty
greater than that of the union of them, PDR-GA, and Random. Moreover, a wider coverage, both in
state action pairs and in solution quality, enables CDQAC to confirm pessimism, the CQL regression,
resulting in more accurate learning of the returns (Jin et al., 2021; Kumar et al., 2022).

5.2 COMPARISON WITH ONLINE RL ON FJSP BENCHMARKS

In this set of experiments, we examined the performance difference between CDQAC and online
RL approaches for FJSP. Table 3 shows that CDQAC outperforms both the online RL approaches
FJSP-DRL (Song et al., 2023), Residual (Ho et al., 2024), and DANIEL (Wang et al., 2023), on
all benchmark sets, except for the sampling evaluation of Hurink rdata, where DANIEL marginally
outperforms CDQAC (Gaps 4.95% vs 5.08%). Moreover, Table 3 indicates that CDQAC mitigates
distributional shift, since the benchmark instances have a different distribution than the instances on
which CDQAC is trained.

For generated instances, Table 4 shows that CDQAC performs similarly to DANIEL (Wang et al.,
2023) on 10 × 5, and outperforms DANIEL on 15 × 10. This suggests that CDQAC achieves
similar performance to online RL approaches on evaluation sets that mirror the online RL’s training
distribution, to which online RL methods often become highly specialized or overfit during training.
CDQAC achieves these results with only 500 instances, compared to FJSP-DRL (Song et al., 2023)
and DANIEL (Wang et al., 2023) 1000 instances. Furthermore, Table 5 shows that CDQAC is able
to generalize better to larger instances than DANIEL. With CDQAC’s greedy evaluation matching
30× 10 and outperforming 40× 10 DANIEL’s sampling evaluation.

Interestingly, CDQAC, trained with the Random dataset, can outperform online RL approaches,
contrast the conclusions of prior work on offline RL (Fu et al., 2020; Fujimoto et al., 2019; Kumar
et al., 2023), where online RL typically dominates. Although Remmerden et al. (2025) showed that
Offline-LD outperformed its online counterpart L2D (Zhang et al., 2020), this was only achieved
through an expert dataset generated with CP. In comparison, CDQAC can outperform other base-
lines through training on a random dataset. We attribute the performance of CDQAC to two factors:
(1) the ability of CDQAC to learn an accurate representationZθ of the state action values in the train-
ing dataset. (2) CDQAC is an off-policy Q-learning-based method, non-standard for JSP or FJSP.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Results generated FJSP evaluation instances.
CDQAC trained on Random dataset; training in-
stances size is same as evaluation instance size. Bold
indicates best performance per evaluation mode.

Method 10× 5 15× 10 20× 10

Gap(%) Time(s) Gap(%) Time(s) Gap(%) Time(s)

G
re

ed
y

FJSP-DRL 16.03 0.45 16.33 1.43 10.15 1.91
Residual 15.23 0.27 15.93 0.85 10.01 1.28
DANIEL 10.87 0.45 12.42 1.35 1.31 1.85
CDQAC (Ours) 11.56 0.39 11.1 1.16 4.34 1.56

Sa
m

pl
in

g FJSP-DRL 9.66 1.11 12.13 3.98 9.64 6.23
Residual 9.85 27.04 12.38 77.5 9.81 116.41
DANIEL 5.57 0.74 6.79 3.89 -1.03 6.35
CDQAC (Ours) 5.98 0.64 5.85 3.06 1.79 4.83

MOR-SPT 19.67 0.03 17.89 0.1 11.25 0.15
MOR-EST 19.66 0.03 19.98 0.1 12.08 0.14
GA 6.0 71.65 10.42 266.15 6.78 348.87

Table 5: Generalization to large FJSP
instances. CDQAC trained on Random
dataset; training size 10×5. Bold indicates
best performance per evaluation mode.

Method 30× 10 40× 10

Gap(%) Time(s) Gap(%) Time(s)

G
re

ed
y

1
0
×

5

FJSP-DRL 14.61 2.86 14.21 3.82
Residual 13.16 2.11 12.82 3.1
DANIEL 5.1 2.78 3.65 3.77
CDQAC (Ours) 4.43 2.32 3.17 3.19

Sa
m

pl
in

g
1
0
×

5

FJSP-DRL 12.36 12.79 12.26 24.54
Residual 12.94 213.89 12.85 319.69
DANIEL 4.43 12.37 3.77 22.58
CDQAC (Ours) 3.11 9.57 2.21 16.01

MOR-SPT 14.99 0.23 14.57 0.33
MOR-EST 15.88 0.22 15.17 0.32
GA 11.26 521.19 11.26 736.36

Table 6: Results JSP benchmarks. Average gap (%) is reported. CDQAC trained on Random dataset
for 10× 5. For DANIEL Wang et al. (2023), only Tailard was reported. Bold indicates best result.

Greedy Sampling Exact

Instance Size MWR MOR L2D Offline-LD DANIEL Residual CDQAC (Ours) DANIEL Residual CDQAC (Ours) MIP CP

Ta
ill

ar
d

15× 15 18.9 21.4 28.1 25.8 19.0 17.6 15.0 13.2 13.3 10.4 0.1 0.1
20× 15 23.0 23.6 32.7 30.2 22.1 21.2 17.7 17.4 16.1 13.2 3.2 0.2
20× 20 21.6 21.7 31.8 28.9 18.0 18.0 17.6 13.3 15.8 12.9 2.9 0.7
30× 15 24.3 23.2 30.2 29.2 21.7 20.1 19.1 17.2 18.0 14.9 10.7 2.1
30× 20 24.8 25.0 35.2 33.1 23.2 22.3 21.2 19.0 19.7 17.9 13.2 2.8
50× 15 16.5 17.3 21.0 20.6 14.8 15.6 13.0 12.7 13.2 9.9 12.2 3.0
50× 20 18.1 17.9 26.1 24.3 16.0 14.4 12.8 13.1 14.1 11.0 13.6 2.8
100× 20 8.3 9.1 13.3 12.7 7.3 6.5 5.3 5.9 6.5 3.6 11.0 3.9

Mean 19.4 19.9 27.3 25.6 18.2 17.0 15.2 14.4 14.6 11.7 8.4 2.0

D
em

ir
ko

l

20× 15 27.8 30.3 36.3 35.8 – 26.1 22.9 – 22.6 18.4 5.3 1.8
20× 20 26.8 26.9 34.4 32.8 – 21.5 20.3 – 18.9 16.5 4.7 1.9
30× 15 31.9 36.4 37.8 38.8 – 27.6 27.1 – 29.4 23.1 14.2 2.5
30× 20 31.9 33.7 38.0 36.0 – 29.9 27.9 – 28.3 23.4 16.7 4.4
40× 15 26.5 35.5 34.6 35.5 – 26.2 25.5 – 28.4 20.2 16.3 4.1
40× 20 32.0 35.9 39.2 38.5 – 27.7 27.9 – 30.9 24.1 22.5 4.6
50× 15 27.3 34.8 33.2 34.1 – 27.4 25.0 – 29.5 21.7 14.9 3.8
50× 20 29.9 36.5 37.7 38.9 – 30.0 28.6 – 32.8 25.1 22.5 4.8

Mean 29.2 33.7 36.4 36.3 – 27.0 25.7 – 27.6 21.6 14.6 3.5

Since CDQAC is an off-policy method, it allows CDQAC to reuse all training examples, whereas
PPO and REINFORCE will only use the most recent examples. Therefore, DANIEL, Residual and
FJSP-DRL will focus more on exploiting the training distribution, while CDQAC is able to gener-
alize better to different distributions, as seen in Tables 3 and 5, where CDQAC trained on 10 × 5
outperforms DANIEL, when also trained on 10 × 5, although DANIEL outperforms CDQAC on
the same distribution instances 10× 5 (Table 4). We have included a convergence analysis between
DANIEL and CDQAC in App I.

Although direct training on large FJSP instances such as 20× 10 presents additional challenges due
to the size of the action space, with the action space growing to at most 200 actions. App. G shows
this is related to training, since CDQAC is able to converge stabile for both 10 × 5 and 15 × 10 in
all training datasets, but not for 20 × 10. Yet, this limitation does not affect the ability of CDQAC
to generalize. In fact, when trained on smaller instances, CDQAC outperforms DANIEL on larger
unseen instances (e.g. 30 × 10 and 40 × 10 in Table 5), suggesting that CDQAC is better able to
generalize to larger unseen instances than DANIEL, and that CDQAC mitigates distributional shift
to larger, unseen instance sizes. Moreover, these promising results highlight future research direction
for addressing training challenges in large action spaces, such as factorized action spaces (Beeson
et al., 2024) or stochastic Q-learning (Fourati et al., 2024).

5.3 COMPARISON ON JSP INSTANCES

In the JSP evaluation, we assess whether CDQAC attains performance on JSP comparable to its
results on FJSP. To this end, we benchmark CDQAC against online RL methods that operate on
both JSP and FJSP, namely, Residual (Ho et al., 2024) and DANIEL (Wang et al., 2023), with both

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

methods retrained on JSP. We additionally include Offline-LD (Remmerden et al., 2025), an offline
RL baseline for JSP, as well as L2D (Zhang et al., 2020), which was part of the comparison in
Remmerden et al. (2025). An extended set of JSP results is provided in App. H.5, where we also
compare against JSP-specific learning-based approaches that do not function on FJSP.

Table 6 shows that CDQAC, trained solely on the Random dataset, surpasses all online RL base-
lines (Residual, DANIEL, and L2D) as well as the offline RL method Offline-LD. The gap relative
to Offline-LD is particularly striking: despite Offline-LD being trained on expert demonstrations
generated by CP, CDQAC, trained only on random data, achieves substantially better performance,
highlighting the strength of CDQAC.

CDQAC also consistently outperforms both Residual and DANIEL. On the Taillard instances,
CDQAC achieves gaps of 15.2% (greedy) and 11.7% (sampling), compared to 18.2% and 14.4%
for DANIEL and 17.0% and 14.6% for Residual. On the Demirkol benchmark, CDQAC (25.7%
greedy, 21.6% sampling) similarly improves over Residual (27.0% greedy, 27.6% sampling). These
findings indicate that CDQAC is more effective for JSP than both online RL baselines.

Finally, Table 6 shows that CDQAC demonstrates favorable scaling on large Taillard instances. Its
sampling evaluation outperforms MIP on 50 × 15 and 50 × 20, and exceeds both MIP and CP on
100× 20. This suggests that CDQAC scales to larger JSP problem sizes more effectively than exact
solvers.

5.4 PERFORMANCE WITH REDUCED TRAINING DATA

Figure 3: Results of reducing the
number of instances in the Random
dataset, evaluated on FJSP bench-
marks Hurink and Brandimarte.

To test the sample efficiency of CDQAC, we evaluated
CDQAC by reducing the number of instances in the Ran-
dom training dataset. Fig. 3 shows that increasing the size
of the dataset has only a marginal positive effect on per-
formance. We noticed the greatest performance difference
for 10 × 5 between 5 instances (greedy 11.8%) and 10
instances (greedy 10.5%), whereas other results show no
significant difference. Importantly, even a small number
of Random trajectories maintains high state–action diver-
sity (Table 2). Furthermore, as an off-policy, bootstrapped
method, CDQAC continually refines the target for each
transition through the dueling quantile critic. Thus, each re-
played transition provides a progressively more informative
learning signal, enabling CDQAC to extract significantly
more value from limited data. In conclusion, we see that
CDQAC needs only a fraction of the original dataset (1%
to 5%) to achieve performance similar to the full dataset, and significantly less than online RL ap-
proaches (Song et al., 2023; Wang et al., 2023), requiring up to a 1000 instances. We have included
extended results in App. H.4.

6 CONCLUSION

This paper introduced Conservative Discrete Quantile Actor-Critic, a novel offline RL algorithm
for JSP and FJSP. To our knowledge, CDQAC is the first offline RL for both JSP and FJSP that trains
fully on suboptimal data, while being able to outperform strong online RL baselines, contradicting
prior work in offline RL. CDQAC achieves this by learning an accurate representation of the returns
of a possible scheduling action from a static dataset, enabling CDQAC to ”stitch” together high-
quality partial solutions to learn a new policy. CDQAC also generalized well from small to larger
instance sizes.

Offline RL remains underexplored in scheduling and, more broadly, in combinatorial optimization
problems. In this work, we demonstrate that offline RL can be highly competitive in learning ef-
fective heuristics for complex scheduling tasks. In future work, we plan to extend our approach
to other combinatorial optimization problems. Future research could extend CDQAC to real-world
scheduling, for which building a simulated environment is infeasible but has suboptimal training
data generated by heuristics.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All experimental settings, datasets, and evaluation are specified in the main text and in the appen-
dices. We detail instance generation and benchmark details for FJSP and JSP (sizes, processing time
ranges, and evaluation sets) in Sect. 5 and App. C–D, including how PDR/GA/Random datasets are
generated. We note all the seeds used in our experiments in Sect. 5. Complete hyperparameters
for CDQAC and baselines (optimizer, learning rates, quantile bins, CQL coefficient, policy update
frequency, network sizes, batch size, and training steps) are given in App. F, Table 8. Hardware
details (NVIDIA A100 GPU, Intel Xeon CPU, 360 GB RAM) and evaluation modes (greedy vs.
sampling with 100 samples) are also specified. We will release our code for CDQAC (training
and evaluation), datasets, and dataset generators for PDR/GA/Random on Github upon acceptance;
hyperparameter and seed configurations match those in App. F. This should allow researchers to
replicate our experiments and results.

REFERENCES

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline re-
inforcement learning with diversified q-ensemble. In Neural Information Processing Systems,
2021.

Alex Beeson, David Ireland, and Giovanni Montana. An investigation of offline reinforcement
learning in factorisable action spaces. Transactions on Machine Learning Research, 2024. ISSN
2835-8856. URL https://openreview.net/forum?id=STwxyUfpNV.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In Proceedings of the 34th International Conference on Machine Learning - Volume 70,
ICML’17, pp. 449–458. JMLR.org, 2017.

Nisha Bhatt and Nathi Ram Chauhan. Genetic algorithm applications on job shop scheduling prob-
lem: A review. In 2015 International Conference on Soft Computing Techniques and Implemen-
tations (ICSCTI), pp. 7–14, 2015. doi: 10.1109/ICSCTI.2015.7489556.

Paolo Brandimarte. Routing and scheduling in a flexible job shop by tabu search. Ann. Oper. Res.,
41(1–4):157–183, May 1993. ISSN 0254-5330.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
(eds.), Advances in Neural Information Processing Systems, volume 34, pp. 15084–15097. Cur-
ran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/
paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf.

Petros Christodoulou. Soft actor-critic for discrete action settings. CoRR, abs/1910.07207, 2019.
URL http://arxiv.org/abs/1910.07207.

Andrea Corsini, Angelo Porrello, Simone Calderara, and Mauro Dell’Amico. Self-labeling the
job shop scheduling problem. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=buqvMT3B4k.

Giacomo Da Col and Erich C. Teppan. Industrial-size job shop scheduling with constraint program-
ming. Operations Research Perspectives, 9:100249, 2022. ISSN 2214-7160.

Will Dabney, Mark Rowland, Marc G. Bellemare, and Rémi Munos. Distributional reinforce-
ment learning with quantile regression. In Proceedings of the Thirty-Second AAAI Confer-
ence on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence
Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence,
AAAI’18/IAAI’18/EAAI’18. AAAI Press, 2018. ISBN 978-1-57735-800-8.

Ebru Demirkol, Sanjay Mehta, and Reha Uzsoy. Benchmarks for shop scheduling problems.
European Journal of Operational Research, 109(1):137–141, 1998. ISSN 0377-2217. doi:
https://doi.org/10.1016/S0377-2217(97)00019-2. URL https://www.sciencedirect.
com/science/article/pii/S0377221797000192.

11

https://openreview.net/forum?id=STwxyUfpNV
https://proceedings.neurips.cc/paper_files/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/7f489f642a0ddb10272b5c31057f0663-Paper.pdf
http://arxiv.org/abs/1910.07207
https://openreview.net/forum?id=buqvMT3B4k
https://www.sciencedirect.com/science/article/pii/S0377221797000192
https://www.sciencedirect.com/science/article/pii/S0377221797000192


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco: bisim-
ulation quotienting for efficient neural combinatorial optimization. In Proceedings of the 37th
International Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY,
USA, 2023. Curran Associates Inc.

Huali Fan and Rong Su. Mathematical modelling and heuristic approaches to job-shop
scheduling problem with conveyor-based continuous flow transporters. Computers & Op-
erations Research, 148:105998, 2022. ISSN 0305-0548. doi: https://doi.org/10.1016/j.cor.
2022.105998. URL https://www.sciencedirect.com/science/article/pii/
S0305054822002313.

Rafael Figueiredo Prudencio, Marcos R. O. A. Maximo, and Esther Luna Colombini. A survey on
offline reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on
Neural Networks and Learning Systems, 35(8):10237–10257, 2024. doi: 10.1109/TNNLS.2023.
3250269.

Fares Fourati, Vaneet Aggarwal, and Mohamed-Slim Alouini. Stochastic q-learning for large dis-
crete action spaces. In Proceedings of the 41st International Conference on Machine Learning,
ICML’24. JMLR.org, 2024.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2020.

Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approximation error in
actor-critic methods. In International Conference on Machine Learning, 2018. URL https:
//api.semanticscholar.org/CorpusID:3544558.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062, 2019.

Kuo-Hao Ho, Jui-Yu Cheng, Ji-Han Wu, Fan Chiang, Yen-Chi Chen, Yuan-Yu Wu, and I-Chen
Wu. Residual scheduling: A new reinforcement learning approach to solving job shop scheduling
problem. IEEE Access, 12:14703–14718, 2024. doi: 10.1109/ACCESS.2024.3357969.

Johann Hurink, Bernd Jurisch, and Monika Thole. Tabu search for the job-shop scheduling problem
with multi-purpose machines. Operations-Research-Spektrum, 15(4):205–215, Dec 1994. ISSN
1436-6304. doi: 10.1007/BF01719451. URL https://doi.org/10.1007/BF01719451.

Zangir Iklassov, Dmitrii Medvedev, Ruben Solozabal Ochoa De Retana, and Martin Takac. On the
study of curriculum learning for inferring dispatching policies on the job shop scheduling. In
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI
’23, 2023. ISBN 978-1-956792-03-4. doi: 10.24963/ijcai.2023/594. URL https://doi.
org/10.24963/ijcai.2023/594.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, volume 34, pp. 1273–1286.
Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_
files/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International conference on machine learning, pp. 5084–5096. PMLR, 2021.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. CoRR, abs/2110.06169, 2021. URL https://arxiv.org/abs/2110.06169.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Proceedings of the 34th International Conference on Neural Informa-
tion Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

12

https://www.sciencedirect.com/science/article/pii/S0305054822002313
https://www.sciencedirect.com/science/article/pii/S0305054822002313
https://api.semanticscholar.org/CorpusID:3544558
https://api.semanticscholar.org/CorpusID:3544558
https://doi.org/10.1007/BF01719451
https://doi.org/10.24963/ijcai.2023/594
https://doi.org/10.24963/ijcai.2023/594
https://proceedings.neurips.cc/paper_files/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf
https://arxiv.org/abs/2110.06169


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Aviral Kumar, Joey Hong, Anikait Singh, and Sergey Levine. Should i run offline reinforcement
learning or behavioral cloning? In International Conference on Learning Representations, 2022.
URL https://openreview.net/forum?id=AP1MKT37rJ.

Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey Levine. Offline q-
learning on diverse multi-task data both scales and generalizes. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=4-k7kUavAj.

Je-Hun Lee and Hyun-Jung Kim. Graph-based imitation learning for real-time job shop dispatcher.
IEEE Transactions on Automation Science and Engineering, 22:8593–8606, 2025. doi: 10.1109/
TASE.2024.3486919.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. CoRR, abs/2005.01643, 2020. URL
https://arxiv.org/abs/2005.01643.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
with heavy decoder: toward large scale generalization. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2023.
Curran Associates Inc.

Vincent Mai, Kaustubh Mani, and Liam Paull. Sample efficient deep reinforcement learning via
uncertainty estimation. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=vrW3tvDfOJQ.

Junyoung Park, Sanjar Bakhtiyar, and Jinkyoo Park. Schedulenet: Learn to solve multi-agent
scheduling problems with reinforcement learning. arXiv preprint arXiv:2106.03051, 2021.

Laurent Perron, Frédéric Didier, and Steven Gay. The cp-sat-lp solver. In Roland H. C. Yap
(ed.), 29th International Conference on Principles and Practice of Constraint Programming (CP
2023), volume 280 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 3:1–3:2,
Dagstuhl, Germany, 2023. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-
3-95977-300-3. doi: 10.4230/LIPIcs.CP.2023.3. URL https://drops.dagstuhl.de/
opus/volltexte/2023/19040.

Jonathan Pirnay and Dominik G. Grimm. Self-improvement for neural combinatorial optimization:
Sample without replacement, but improvement. Transactions on Machine Learning Research,
2024. ISSN 2835-8856. URL https://openreview.net/forum?id=agT8ojoH0X.
Featured Certification.

Robbert Reijnen, Kjell van Straaten, Zaharah Bukhsh, and Yingqian Zhang. Job shop scheduling
benchmark: Environments and instances for learning and non-learning methods. arXiv preprint
arXiv:2308.12794, 2023.

Jesse van Remmerden, Zaharah Bukhsh, and Yingqian Zhang. Offline reinforcement learning for
learning to dispatch for job shop scheduling. Machine Learning, 114(8):191, 2025. doi: 10.1007/
s10994-025-06826-w. URL https://doi.org/10.1007/s10994-025-06826-w.

Kajetan Schweighofer, Marius-constantin Dinu, Andreas Radler, Markus Hofmarcher, Vi-
hang Prakash Patil, Angela Bitto-Nemling, Hamid Eghbal-zadeh, and Sepp Hochreiter. A dataset
perspective on offline reinforcement learning. In Conference on Lifelong Learning Agents, pp.
470–517. PMLR, 2022.

Igor G. Smit, Jianan Zhou, Robbert Reijnen, Yaoxin Wu, Jian Chen, Cong Zhang, Zaharah Bukhsh,
Yingqian Zhang, and Wim Nuijten. Graph neural networks for job shop scheduling problems:
A survey. Comput. Oper. Res., 176(C), April 2025. ISSN 0305-0548. doi: 10.1016/j.cor.2024.
106914. URL https://doi.org/10.1016/j.cor.2024.106914.

Wen Song, Xinyang Chen, Qiqiang Li, and Zhiguang Cao. Flexible job-shop scheduling via graph
neural network and deep reinforcement learning. IEEE Transactions on Industrial Informatics,
19(2):1600–1610, 2023. doi: 10.1109/TII.2022.3189725.

13

https://openreview.net/forum?id=AP1MKT37rJ
https://openreview.net/forum?id=4-k7kUavAj
https://openreview.net/forum?id=4-k7kUavAj
https://arxiv.org/abs/2005.01643
https://openreview.net/forum?id=vrW3tvDfOJQ
https://drops.dagstuhl.de/opus/volltexte/2023/19040
https://drops.dagstuhl.de/opus/volltexte/2023/19040
https://openreview.net/forum?id=agT8ojoH0X
https://doi.org/10.1007/s10994-025-06826-w
https://doi.org/10.1016/j.cor.2024.106914


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

E. Taillard. Benchmarks for basic scheduling problems. European Journal of Operational Re-
search, 64(2):278–285, 1993. ISSN 0377-2217. doi: https://doi.org/10.1016/0377-2217(93)
90182-M. URL https://www.sciencedirect.com/science/article/pii/
037722179390182M. Project Management anf Scheduling.

Pierre Tassel, Martin Gebser, and Konstantin Schekotihin. An end-to-end reinforcement learning
approach for job-shop scheduling problems based on constraint programming. In Proceedings
of the Thirty-Third International Conference on Automated Planning and Scheduling, ICAPS
’23. AAAI Press, 2023. ISBN 1-57735-881-3. doi: 10.1609/icaps.v33i1.27243. URL https:
//doi.org/10.1609/icaps.v33i1.27243.

Nele Gheysen Veronique Sels and Mario Vanhoucke. A comparison of priority rules for the job
shop scheduling problem under different flow time- and tardiness-related objective functions.
International Journal of Production Research, 50(15):4255–4270, 2012.

Runqing Wang, Gang Wang, Jian Sun, Fang Deng, and Jie Chen. Flexible job shop scheduling via
dual attention network-based reinforcement learning. IEEE Transactions on Neural Networks and
Learning Systems, pp. 1–12, 2023. doi: 10.1109/TNNLS.2023.3306421.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas.
Dueling network architectures for deep reinforcement learning. In Proceedings of the 33rd Inter-
national Conference on International Conference on Machine Learning - Volume 48, ICML’16,
pp. 1995–2003. JMLR.org, 2016.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Chi Xu. Learning to dispatch
for job shop scheduling via deep reinforcement learning. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020.
Curran Associates Inc. ISBN 9781713829546.

Cong Zhang, Zhiguang Cao, Wen Song, Yaoxin Wu, and Jie Zhang. Deep reinforcement learning
guided improvement heuristic for job shop scheduling. In The Twelfth International Conference
on Learning Representations, 2024a.

Cong Zhang, Zhiguang Cao, Yaoxin Wu, Wen Song, and Jing Sun. Learning topological represen-
tations with bidirectional graph attention network for solving job shop scheduling problem. In
Proceedings of the Fortieth Conference on Uncertainty in Artificial Intelligence, 2024b.

Haibin Zhou, Tong Wei, Zichuan Lin, Junyou Li, Junliang Xing, Yuanchun Shi, Li Shen, Chao Yu,
and Deheng Ye. Revisiting discrete soft actor-critic. Transactions on Machine Learning Research,
2024. ISSN 2835-8856. URL https://openreview.net/forum?id=EUF2R6VBeU.

14

https://www.sciencedirect.com/science/article/pii/037722179390182M
https://www.sciencedirect.com/science/article/pii/037722179390182M
https://doi.org/10.1609/icaps.v33i1.27243
https://doi.org/10.1609/icaps.v33i1.27243
https://openreview.net/forum?id=EUF2R6VBeU


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A PSEUDOCODE

Algorithm 1 Training Procedure of CDQAC

Require: Dataset D, batch size B, policy update frequency η, total training steps T , CQL coeffi-
cient αCQL, entropy coefficient λ, target update rate ρ, learning rates ℓψ, ℓθ

Ensure: Initialized policy network ψ, critic network θ, target network θ̂ ← θ
1: for t = 1 to T do
2: Sample mini-batch {(si, ai, ri, s′i)}Bi=1 ∼ D
3: Compute target quantiles: T Zi ← ri + γZθ̂(s

′
i, a

′
i) where a′i ∼ πψ(· | s′i)

4: Compute TD loss: LTD(θ)← 1
B

∑B
i=1

∑N
j=1 ρ

H
τj (T Zi − Zθ(si, ai))

5: Compute conservative critic loss:

LZ(θ)←
1

B

B∑
i=1

log ∑
a′∈A(si)

exp(QZθ (si, a
′))−QZθ (si, ai)

+ LTD(θ)

6: Update critic: θ ← θ + ℓθ∇θLZ(θ)
7: if t mod η = 0 then
8: Compute policy loss:

Lπ(ψ)←
1

B

B∑
i=1

 ∑
a∈A(si)

−QZθ (si, a)πψ(a | si) + λH[πψ(· | si)]


9: Update policy: ψ ← ψ + ℓψ∇ψLπ(ψ)

10: end if
11: Update target network: θ̂ ← (1− ρ)θ̂ + ρθ
12: end for

Algorithm 1 shows the training process of CDQAC. In it, we train CDQAC using a static dataset
D = (s, a, r, s′) of scheduling transitions. At each training step, we sample a mini-batch of B
transitions from D. For each transition, we compute the target T Z = r + γZθ̂(s

′, a′) using the
target network θ̂ and next actions a′ ∼ πψ(· | s′) drawn from the current policy. The critic is
optimized through a conservative quantile-based objective, combining the temporal difference (TD)
loss LTD (Eq. 3) with a CQL penalty that discourages overestimation of out-of-distribution actions
(Eq. 4). The critic parameters θ are updated via gradient descent on the combined loss LZ .

To stabilize training, we employ a delayed policy update strategy: the actor πψ is updated every η
steps by minimizing the Q-learning objective (Eq. 5), with the entropy bonus H[πψ(· | s)]. The
policy update relies on the scalarized quantile values QZθ (s, a) = E[Zθ(s, a)], where Zθ is the
minimum of two dueling quantile networks. Finally, the target network is updated using Polyak
averaging: θ̂ ← (1− ρ)θ̂ + ρθ.

B NETWORK ARCHITECTURE

The dual attention network (Wang et al., 2023) (DAN) is an attention-based network architecture
for JSP and FJSP that encodes the operation features h(L)Oi,j

, and machine features h(L)Mk
, where L

presents the current layer input, so L = 1 is the input features. DAN is able to learn the complex
relation between each operation Oi,j and each compatible machine Mk, through separate operation
attention blocks and machine attention blocks as seen in Fig. 2 in Sect. 4.1. In this section, we
provide an overview of each attention block, and their interaction. Afterwards, we state the features
used for the operations, machines and machine-operation pairs.

Operation Attention Block. To capture the sequential nature of operations within jobs, the op-
eration attention blocks attend each operation Oi,j in the context of its predecessor Oi,j−1 and

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

successor Oi,j+1, if they exist. An attention coefficient is calculated between these operations:

ai,j,p = Softmax
(

LeakyReLU
(
VT

[(
Wh

(L)
Oi,j
∥Wh

(L)
Oi,p

)]))
, (7)

where W, and V are learned projections. The attention coefficient ai,j,p, calculated in Eq. 7, is used
to calculate the output of the operation attention block as follows:

h
(L+1)
Oi,j

= σ

 j+1∑
p=j−1

ai,j,pWh
(L)
Oi,p

 , (8)

where σ is an activation function. The operation blocks in DAN (Wang et al., 2023) function similar
to a GNN, in that information, one by one, is propagated through the operations.

Machine Attention Block. The machine attention block considers the relationship between two
machines My ∈ Mt and Mz ∈ Mt in relation to the set of unscheduled operations Ôy,z that can
be processed by either My or Mz . The embedding of the pooled operation is calculated as h(L)

Ôy,z
=

1

|Ôy,z|
∑
Oi,j∈Ôy,z∩Oc h

(L)
Oi,j

, where Oc represents the current operations available to schedule. The

attention in this block is calculated through:

uy,z = Softmax
(

LeakyReLU
(
X

[
(Yh

(L)
My

) ∥ (Yh(L)Mz
) ∥ (Zh(L)

Ôy,z
)
]))

(9)

where X, Y, and Z are linear projections. Whenever two machines My and Mz do not share any
operations in the current candidate set Ôy,z ∩ Jc = ∅, we set the attention uy,z to zero. The output
of the machine operation block is calculated as:

h
(L+1)
Mk

= σ

 ∑
q∈Nk

uk,qYh
(L)
Mq

 , (10)

where Nk is the set of machines, for which Mk shares operations, including Mk itself.

Lastly, DAN (Wang et al., 2023) uses a multihead attention approach, whereby each operation atten-
tion and machine attention block consist ofH heads. The results of theH heads can be concatenated
or averaged. Following the prior work of Wang et al. (2023), we concatenate the heads for each layer,
except the last layer, which was averaged over the H heads. We use ELU as our activation function
for both operation and machine attention blocks.

B.1 FEATURES

Table 7 shows the features used in our paper, based on the prior work of Wang et al. (2023). Both the
machine features Mk and the operation features Oi,j are embedded using the DAN network. These
embeddings, with the machine-operation pair (Oi,j ,Mk) features are used as input for the quantile
critic and actor networks. In Table 7, we introduce the notation Ok, which represents all operations
Oi,j ∈ Ok that Mk can process.

C BENCHMARK INSTANCE SETS

As described in Sect.5, we evaluate our approach on generated instance sets as well as four es-
tablished benchmark sets. For FJSP, we use the generated evaluation instances, the Brandimarte
(mk) benchmark (Brandimarte, 1993) and the Hurink benchmark (Hurink et al., 1994), which in-
cludes the edata, rdata, and vdata subsets. For JSP, we evaluate on the Taillard (Taillard, 1993) and
Demirkol (Demirkol et al., 1998) benchmarks. For each benchmark, we report the range of process-
ing times, number of jobs, number of machines, and, specifically for FJSP, the number of machines
available per operation.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: Features used by CDQAC, separated by operation Oi,j , machine Mk, and machine-
operation pair (Oi,j ,Mk).

Feature Description

Operation Features Oi,j

Min. proc. time minMk∈Mi,j
pki,j

Mean proc. time 1
|Mi,j |

∑
Mk∈Mi,j

pki,j
Span proc. time maxMk∈Mi,j

pki,j −minMk∈Mi,j
pki,j

Compatibility ratio |Mi,j |
|M|

Scheduled 1 if scheduled, 0 otherwise
Estimated LB Estimated lower bound completion time C(Oi,j)
Remaining ops Ji Number of unscheduled operations in Ji
Remaining proc. time Ji Total proc. time of unscheduled operations in Ji
Waiting time Time since Oi,j became available
Remaining proc. time Remaining processing time (0 if not started)

Machine Features Mk

Min. proc. time minOi,j∈Ok p
k
i,j

Mean proc. time 1
|Ok|

∑
Oi,j∈Ok p

k
i,j

Total unscheduled ops |Ok|
Schedulable ops at t # of ops schedulable at timestep t
Free time Time until Mk becomes available
Waiting time 0 if Mk is working
Working status 1 if working, 0 otherwise
Remaining proc. time Time left on current task (0 if idle)

Machine-Operation Pair (Oi,j ,Mk)

Processing time pki,j

Ratio to max of Oi,j
pki,j

maxMk p
k
i,j

Ratio to max schedulable on Mk
pki,j

max pki,j∈Ok(t)

Ratio to global max
pki,j

max pki,j∈O

Ratio to Mk’s unscheduled max
pki,j

max pki,j∈Ok

Ratio to compatible max
pki,j

max pki,j∈Mi,j

Ratio to Ji workload
pki,j∑
pi,j∈Ji

Joint waiting time Sum of Oi,j and Mk waiting times

C.1 FJSP

Generated Evaluation Instances. We generated 100 instances for each of the following sizes:
10× 5, 15× 10, 20× 10, 30× 10, 40× 10, using the same generation procedure as for the training
data (Sect. 5). Each operation is assigned between 1 and |M| available machines, selected uniformly
at random.

Brandimarte (mk) Benchmark. The Brandimarte benchmark (Brandimarte, 1993) comprises 10
instances, each with 10 to 20 jobs and 4 to 15 machines. Processing times range from 1 to 19.
The average number of machines available per operation ranges from 1.4 to 4.1, depending on the
instance.

Hurink Benchmark. The Hurink benchmark (Hurink et al., 1994) consists of three subsets, edata,
rdata, and vdata, each containing 40 instances. These subsets vary in degree of flexibility, with edata
providing the lowest and vdata the highest average number of machines per operation. All instances
include between 7 and 30 jobs and between 4 and 15 machines, with processing times between 5
and 99. The average number of machines available per operation is as follows:

• edata: Between 1.13 and 1.2.

• rdata: Between 1.88 and 2.06.

• vdata: Between 2.38 and 6.7.

C.2 JSP

Taillard Benchmark. The Taillard benchmark (Taillard, 1993) contains 80 instances, ranging
from 15 × 15 to 100 × 20. Processing times range between 1 and 99. These instances are simi-
lar to those used to train CDQAC.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Demirkol Benchmark. The Demirkol benchmark (Demirkol et al., 1998) includes 80 instances,
with instance sizes ranging from 20 × 15 to 80 × 20. Processing times range from 1 to 200, twice
the maximum value found in Taillard and CDQAC’s training data.

D DETAILS OF DATASET GENERATION HEURISTICS

Our experimental setup in Sect. 5 stated that we used three types of heuristics to generate our training
datasets, namely, priority dispatching rules (PDR), genetic algorithms (GA) and a random policy.
We will now give a detailed explanation of each heuristic, and, in the case of GA, the hyperparame-
ters.

D.1 PRIORITY DISPATCHING RULES (PDR)

For the priority dispatching rules (PDR), we have separate rules for the selection of jobs and ma-
chines for FJSP. In our setup, first, a job Ji ∈ J is selected by the job selection rule. This job
selection rule selects a job based on a specific rule, in which it is checked if there are still operations
in Ji to be scheduled. The machine selection rule selects the machine Mk ∈ Mi,j for operation
Oi,j ∈ Ji, where Oi,j is the current operation in Ji that needs to be scheduled. For JSP, we only
considered the job selection rules, since only one machine is ever available per operation. Further-
more, both the job and machine selection rules follow the MDP formulation, stated in Sect. 3, by
which operation Oi,j can only be scheduled on Mk, if it is free at timestep t. In the following, we
give an overview of the job selection rules and the machine selection rules.

Job selection rules. We utilized four different job selection rules, namely, Most Operations Re-
maining (MOR), Least Operations Remaining (LOR), Most Work Remaining (MWR), and Least
Work Remaining (LWR). Both MOR and LOR decide on the basis of the number of unscheduled
operations in a job Ji. MOR selects the job with the most operations and LOR selects the job with
the least operations to be scheduled. MWR and LWR focus on the remaining total processing times,
a.k.a. the summation of processing times in a Ji, whereby we average the processing times of the
available machines Mk ∈ Mi,j . MWR selects the job with the highest total remaining processing
times, whereas LWR selects the job with the least.

Machine selection rules. We considered four different machine selection rules, namely, Shortest
Processing Time (SPT), Longest Processing Time (LPT), Earliest Start Time (EST), and Latest Start
Time (LST). Both SPT and LPT select a machine Mk ∈ Mi,j for operation Oi,j based on the
processing time, with SPT selecting the machine with the shortest and LPT with the longest. EST
and LST consider how long a machine Mk is already free, with EST selecting the machine that is
free the shortest, and LST the longest.

D.2 GENETIC ALGORITHMS (GA)

For our genetic algorithm (GA), we used the implementation of Reijnen et al. (2023), whereby we
introduced the constraint that Oi,j can only be scheduled if machine Mk is free at that time. This
results in a more tight solution, with no gaps. Furthermore, we used a population size of 200, and ran
the GA for 100 generations. The crossover probability was set at 0.7, and the mutation probability
at 0.2.

D.3 RANDOM POLICY

The random policy adheres to the MDP introduced in Sect. 3. This means that the random policy
selects a random machine-operation pair based on those available at the time step t. The random
policy can only select a machine-operation pair, if it can be scheduled at timestep t.

E DETAILS OF OFFLINE REINFORCEMENT LEARNING BASELINES

For our comparison of CDQAC to Offline-LD (Remmerden et al., 2025) in Sect. 5.1, we adapted
both versions of it, namely, Offline-LD with a maskable Quantile Regression DQN (mQRDQN) and

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

with a discrete maskable Soft Actor-Critic (d-mSAC), using a dual attention network (Wang et al.,
2023), such that both versions of Offline-LD used the same encoding as our introduced CDQAC
approach. We provide a brief explanation of our implementations of each method, in which we state
the hyperparameters used for each. If a hyperparameter is not stated, it is the same as CDQAC, as
stated in App. F.

Offline-LD (mQRDQN). The mQRDQN version of Offline-LD is implemented identically as
described by Remmerden et al. (2025). The hyperparameters are identical to CDQAC, whereby we
set ℓθ = 2× 10−4. In the original implemented of Offline-LD (mQRDQN) was not able to sample
actions; therefore, for the sampling evaluation, we use Boltzmann sampling.

Offline-LD (d-mSAC). For d-mSAC version of Offline-LD, we implemented both the policy net-
work and the Q network with a separate dual attention network (Wang et al., 2023) for each. We
used the hyperparameters as with CDQAC, except for αCQL, which we set to αCQL = 0.1, and the
target entropy of d-mSAC, which we set to 0.3. During initial testing, we found that this increased
stability and performance with d-mSAC.

Implicit Q-learning. The main difference between Implicit Q-learning (IQL) (Kostrikov et al.,
2021) and Offline-LD and CDQAC is that IQL constrains training by not using OOD actions,
whereas Offline-LD and CDQAC regularize the Q-values of OOD actions during training to pre-
vent overestimation. IQL consists of three networks, a policy, a value, and a Q network. Two
hyperparameters of IQL are important to mention, namely βIQL and τIQL. Firstly, βIQL controls how
much the policy should learn to ”exploit” the learned Q-values, or if it should stay close to the be-
havior found in the dataset, with βIQL = 0, being equal to behavioral cloning. We decided, due to
the suboptimality of our training datasets, to set βIQL = 15. τIQL controls how much IQL should
focus on positive examples, whereby τIQL = 0.5 is equal to a SARSA update. Kostrikov et al. (2021)
reported settings between 0.7 and 0.9 for τIQL. We therefore tested 0.7, 0.8 and 0.9 to identify the
ideal value and found that τIQL = 0.7 result in the most stable updates. We set all learning rates
at 2 × 10−4, by which we also tested 2 × 10−5; however, we found that this did not produce good
results.

Behavioral Cloning Behavioral Cloning (BC) learns to imitate the behavioral policy πβ , which
generated the training dataset. The BC loss is the cross-entropy loss between the predicted action
for each state and the action found in the dataset. BC only trains a policy network and does not use
a critic. All hyperparameters are the same as CDQAC (Table 8).

F HYPERPARAMETERS

In Table 8, we state the hyperparameters used in all our experiments. Furthermore, we used two
layers of the DAN network, whereby we concatenated the output of each head for the first layer and
averaged the heads for the second layer. Both the value stream Vθ and the advantage stream Aθ,
consist of three layers, each having 64 neurons. For each seed, we train for 200, 000 steps, with
a batch size of 256. We normalize all features in the training dataset. We used ADAM (Kingma,
2014) optimizer.

G TRAINING PLOTS

Fig. 4, Fig. 5, and Fig 6 show the training plots for all the methods used in our FJSP evaluations
(Tables 1, 10, 11, and 12). In the figure, we note that CDQAC converges in significantly fewer steps
than the 200,000 training steps used. For example, for 10× 5 CDQAC requires around 10,000 steps
according to Fig. 4, and around 25,000 training steps for 15× 10 as seen in Fig. 5.

Based on the training plots, we can determine that CDQAC achieves the most stable training with
the highest average Makespan in each evaluation step. The only exception is with the Random
dataset for 20 × 10 (Fig. 6d), where both Offline-LD (d-mSAC) and IQL are more stable and have
a higher evaluation at the last training step. However, CDQAC for all other datasets and training
datasets. For example, Offline-LD (d-mSAC) cannot learn a policy with the PDR-GA dataset for

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 8: Hyperparameter settings CDQAC.

Hyperparameter Value

Policy Frequency Update η 4
CQL Strength αCQL 0.05
Number of quantile fractions N 64
Learning rate quantile critic ℓθ 2× 10−4

Learning rate policy ℓψ 2× 10−5

Target Update Frequency ρ 0.005
Entropy Coefficient λ 0.005
Batch Size 256
Training Steps 200,000

Network Parameters

Layers DAN network 2
Output Dimension DAN (32, 8)
Number of Heads H 4
Hidden Dimension Quantile Critic Zθ 64
Hidden Layers Quantile Critic Zθ 2
Hidden Dimension Policy πψ 64
Hidden Layers Policy πψ 2

(a) (b)

(c) (d)

Figure 4: The training plots when trained of FJSP instances of size 10×5 for BC, CDQAC, IQL and
Offline-LD, both mQRDQN and d-mSAC. Fig. 4a shows the training plots when trained on the PDR
dataset, Fig. 4b with the GA dataset, Fig. 4c with the PDR-GA dataset, and Fig. 4d the Random
dataset. The line is average makespan over four different seeds and the shaded area is minimal and
maximal makespan of these seeds. We evaluate each method at every 1,000 steps of offline training.

20× 10 (Fig. 6c), and IQL with the PDR dataset for all training sizes. (Figs 4a, 5a and 6a). Lastly,
we can notice for all training plots that CDQAC converges significantly faster than the other offline
RL methods.

H ADDITIONAL RESULTS

H.1 ABLATION STUDY

We conducted ablation studies to evaluate the contribution of two critical components of CDQAC:
the use of a quantile critic with a dueling network architecture, and the impact of the delayed pol-
icy update frequency η. All experiments were performed on 10 × 5 instances using the Random
dataset. We report results separately for generated instances (similar distribution as training data)
and benchmark instances (Hurink and Brandimarte) to assess generalization.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(a) (b)

(c) (d)

Figure 5: The training plots when trained of FJSP instances of size 15 × 10 for BC, CDQAC, IQL
and Offline-LD, both mQRDQN and d-mSAC. Fig. 5a shows the training plots when trained on the
PDR dataset, Fig. 5b with the GA dataset, Fig. 5c with the PDR-GA dataset, and Fig. 5d the Random
dataset. The line is average makespan over four different seeds and the shaded area is minimal and
maximal makespan of these seeds. We evaluate each method at every 1,000 steps of offline training.

(a) (b)

(c) (d)

Figure 6: The training plots when trained of FJSP instances of size 20 × 10 for BC, CDQAC, IQL
and Offline-LD, both mQRDQN and d-mSAC. Fig. 6a shows the training plots when trained on the
PDR dataset, Fig. 6b with the GA dataset, Fig. 6c with the PDR-GA dataset, and Fig. 6d the Random
dataset. The line is average makespan over four different seeds and the shaded area is minimal and
maximal makespan of these seeds. We evaluate each method at every 1,000 steps of offline training.

Critic Architecture. In our ablation study for the critic, we tested both the effect of the quantile
critic (yes or no quantile) compared to a critic that uses a standard DQN approach and our dueling
network approach (yes or no dueling). This results in four different configurations: No Quantile

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 9: Ablation study of the components of CDQAC, namely: the critic network architecture, the
effect of the policy frequency update η, CQL regression αCQL, and the number of quantiles. CDQAC
is trained on the Random dataset for instance size 10 × 5. The mean and standard deviation of the
gap (%) are reported from four different seeds, separated for generated instances 10 × 5, and FJSP
benchmarks (Brandimarte and Hurink). Bold indicates best result (lowest gap) for either the Greedy
and Sampling (100 solutions) evaluation. (baseline) indicates the setup used in all other experiments.
Avg ∆(%) lists the average percentage difference in the gap of each variant relative to the baseline
configuration.

Generated 10× 5 (Gap %) Benchmarks (Gap %) Avg ∆(%)

Greedy Sampling Greedy Sampling

Critic Network Architecture

No Quantile - No Dueling 11.87 ± 0.35 5.98 ± 0.22 10.8 ± 0.51 6.31 ± 0.17 3.90
No Quantile - Yes Dueling 11.72 ± 0.53 6.05 ± 0.11 10.5 ± 0.21 6.24 ± 0.14 2.86
Yes Quantile - No Dueling 11.59 ± 0.53 5.99 ± 0.27 10.97 ± 0.43 6.45 ± 0.30 4.30
Yes Quantile - Yes Dueling (baseline) 11.19 ± 0.35 5.87 ± 0.14 10.45 ± 0.39 6.05 ± 0.10 0.00

Policy Update Frequency η

η = 1 12.27 ± 0.49 6.30 ± 0.14 12.46 ± 1.12 6.69 ± 0.27 11.70
η = 2 12.17 ± 0.61 6.30 ± 0.34 11.10 ± 0.52 6.39 ± 0.23 6.98
η = 3 11.67 ± 0.39 6.05 ± 0.31 10.69 ± 0.24 6.39 ± 0.13 3.82
η = 4 (baseline) 11.19 ± 0.40 5.87 ± 0.14 10.45 ± 0.39 6.05 ± 0.10 0.00

CQL regression αCQL

αCQL = 0 11.49 ± 0.26 5.98 ± 0.17 10.59 ± 0.27 6.16 ± 0.14 1.93
αCQL = 0.1 11.36 ± 0.51 6.18 ± 0.42 10.81 ± 0.21 6.21 ± 0.30 3.22
αCQL = 0.05 (baseline) 11.19 ± 0.40 5.87 ± 0.14 10.45 ± 0.39 6.05 ± 0.10 0.00

Number of quantiles N

N = 4 11.37 ± 0.34 5.95 ± 0.19 10.63 ± 0.30 6.13 ± 0.13 1.50
N = 8 11.66 ± 0.46 5.87 ± 0.32 10.88 ± 0.52 6.13 ± 0.34 2.41
N = 16 11.33 ± 0.14 5.77 ± 0.18 10.60 ± 0.31 6.06 ± 0.16 0.29
N = 32 11.38 ± 0.50 5.87 ± 0.29 10.67 ± 0.53 6.16 ± 0.12 1.41
N = 64 (baseline) 11.19 ± 0.40 5.87 ± 0.14 10.45 ± 0.39 6.05 ± 0.10 0.00

- No Dueling, No Quantile - Yes Dueling, Yes Quantile - No Dueling, and Yes Quantile - Yes
Dueling, which we used in our main experiments. Table 9 shows that both the quantile approach
and our dueling architecture positively impact performance. On generated instances, introducing
the dueling architecture to the quantile critic reduced the Greedy gap from 11.59% ± 0.53% to
11.19%± 0.35%, and for benchmark instances from 10.97%± 0.43% to 10.45%± 0.39%. Similar
trends were observed with DQN-based critic. These findings confirm the benefit of our novel dueling
approach. Furthermore, comparing the dueling non-quantile approach (11.72% ± 0.35%) with the
dueling quantile critic (11.19%± 0.35%) on generated instances, we observe that the quantile critic
results in lower gaps, highlighting the advantage of approximating the full return, with the quantile
critic, over estimating only the expected return, with a DQN critic.

Policy Update Frequency η. We also varied the policy update frequency η ∈ {1, 2, 3, 4} to study
its effect. CDQAC uses η = 4 by default, which delays policy updates and allows more stable
updates for the critic, which in turn, results in more stable updates for the policy. Table 9 shows that
larger values for η consistently lead to better performance. For example, for η = 1 the Greedy gap
on benchmarks is 12.45% ± 1.12%, which decreases to 10.45% ± 0.39% when η = 4. A similar
pattern is observed for both sampling evaluation and generated instances. In addition to performance
gains, higher values of η also reduce training time, as the policy is updated less frequently. These
results indicate that less frequent policy updates contribute to more stable learning.

CQL Regression αCQL To test the importance of CQL regression in CDQAC, we evaluated both
CDQAC without CQL regression αCQL = 0 and with a stronger regression αCQL = 0.1. Table 9
indicates that both removing the regression or increasing the regression strength have a negative
effect on the performance of CDQAC. Therefore, αCQL = 0.05 achieves the best performance;
however, as noted by Kumar et al. (2020), the optimal value of αCQL might differ between problem
settings and types of datasets.

The Number of Quantiles N Lastly, we examined the sensitivy to the number of quantiles N
used by the critic of CDQAC. The results of these experiments (Table 9) indicate that CDQAC is
not sensitive to the number of quantiles used. Table 9 shows that after increasing the number of
quantiles to N = 16, the positive effect on CDQAC performance decreases.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

The most essential component of CDQAC is the policy update frequency. Table 9 shows that
without using a delayed update the performance decreases by 11.7% on average. The critic network
has the second most important effect on performance, with CQL third and the number of quantiles
last.

H.2 RESULTS OFFLINE RL

Table 10: Results of FJSP offline RL comparison 10× 5, for all training datasets (PDR, GA, PDR-
GA, and Random). The columns show the evaluation benchmarks sets and the rows the methods.
The mean and standard deviation of the gap (%) are reported from four different seeds. Bold indi-
cates best result (lowest gap) for either the Greedy and Sampling (100 solutions) evaluation, for a
given training dataset.

Generated 10× 5 Brandimarte (mk) Hurink edata Hurink rdata Hurink vdata

Greedy Sampling Greedy Sampling Greedy Sampling Greedy Sampling Greedy Sampling

PDR

BC 31.79±1.96 10.45±0.84 72.5±5.36 33.7±1.42 31.03±2.02 13.93±0.89 30.04±3.18 12.58±1.12 14.97±2.2 4.16±0.84
Offline-LD (mQRDQN) 15.4±1.2 14.39±0.12 22.81±3.76 25.07±0.27 25.54±2.4 12.38±0.06 18.74±2.55 10.24±0.09 11.77±1.11 3.37±0.05
Offline-LD (d-mSAC) 15.26±0.85 8.16±0.11 43.74±5.43 23.18±3.39 22.17±2.1 10.18±0.8 21.93±3.5 9.34±2.36 7.55±0.76 1.3±0.2
IQL 15.58±0.47 8.13±0.17 41.75±3.87 21.89±1.15 22.87±1.84 11.25±0.98 21.36±3.56 8.12±1.0 7.32±0.89 1.43±0.4
CDQAC 11.49±0.38 5.64±0.08 12.43±1.45 8.3±0.14 15.11±1.06 9.68±0.57 10.81±0.22 5.54±0.12 3.69±0.25 0.78±0.02

GA

BC 14.63±0.7 8.91±0.3 16.03±1.81 15.03±0.46 15.27±0.58 8.79±0.31 11.36±0.59 6.69±0.17 4.48±0.23 1.43±0.07
Offline-LD (mQRDQN) 17.28±3.88 14.52±0.08 33.45±8.26 26.62±0.62 29.64±3.0 12.55±0.07 22.84±1.78 10.47±0.2 14.13±1.99 3.51±0.06
Offline-LD (d-mSAC) 11.38±0.64 5.29±0.1 23.47±3.33 12.05±1.37 21.55±3.24 9.23±1.23 16.32±2.16 5.99±0.47 11.37±1.92 2.89±1.02
IQL 13.02±0.86 7.32±0.18 26.71±1.01 14.57±0.71 25.67±2.1 10.72±0.58 17.37±1.81 6.75±0.31 10.69±1.76 2.14±0.62
CDQAC 11.62±0.35 6.09±0.22 15.51±1.0 9.58±0.76 14.87±0.25 9.45±0.54 10.44±0.4 5.39±0.2 3.24±0.3 0.65±0.01

PDR-GA

BC 16.79±1.13 8.86±0.08 57.26±4.68 27.0±1.77 24.37±1.15 11.17±0.3 28.38±1.03 10.99±1.29 15.72±1.5 3.18±1.17
Offline-LD (mQRDQN) 14.7±0.99 14.33±0.04 21.77±1.22 25.27±0.45 25.53±2.79 12.25±0.11 19.34±2.61 10.33±0.06 11.94±2.17 3.45±0.05
Offline-LD (d-mSAC) 12.1±0.65 5.9±0.48 19.49±2.67 11.17±0.68 19.04±1.61 8.82±0.61 13.27±0.84 5.58±0.31 7.59±1.86 1.32±0.32
IQL 12.4±0.24 7.22±0.09 33.13±4.61 19.43±2.27 26.44±3.42 11.69±1.26 21.42±3.37 7.83±0.67 11.24±1.83 2.06±0.3
CDQAC 11.16±0.43 5.88±0.37 14.24±1.23 8.79±0.74 15.3±0.57 9.84±0.38 10.96±0.56 5.51±0.16 3.59±0.31 0.72±0.03

Random

BC 25.59±2.86 14.91±0.05 31.74±2.78 26.95±0.2 22.12±1.46 12.26±0.06 17.16±2.35 10.48±0.17 7.98±2.22 3.46±0.08
Offline-LD (mQRDQN) 14.41±0.87 14.17±0.14 21.42±1.44 25.0±1.03 19.05±1.5 11.93±0.11 14.85±1.64 9.98±0.15 7.91±1.68 3.22±0.15
Offline-LD (d-mSAC) 13.29±0.45 6.26±0.27 16.62±0.6 9.49±0.37 16.12±1.43 8.24±0.32 12.13±0.99 5.67±0.23 4.14±0.74 0.87±0.08
IQL 15.64±1.2 8.98±0.15 33.11±5.9 18.73±1.42 26.91±4.2 11.5±1.29 17.65±3.0 7.5±0.87 12.85±5.68 2.75±1.45
CDQAC 11.19±0.35 5.87±0.14 13.78±0.78 8.67±0.21 14.53±0.41 9.54±0.39 10.4±0.36 5.3±0.22 3.1±0.22 0.68±0.03

In this section, we provide a comprehensive overview of the results discussed in Sect.5.1 and Ta-
ble1, where we compare our proposed method, CDQAC, to Offline-LD (Remmerden et al., 2025).
Table 1 presents the average performance across all evaluation instance sets—both generated and
benchmark—for each training size (10 × 5, 15 × 10, and 20 × 10). The detailed results for each
evaluation set are reported in Table 10 (training size 10 × 5), Table 11 (15 × 10), and Table 12
(20× 10).

As shown in Tables 10, 11, and 12, CDQAC consistently outperforms both versions of Offline-
LD in nearly all evaluations. There are only a few exceptions: in Table 10, Offline-LD (d-mSAC)
marginally exceeds CDQAC in the generated instances and Hurink edata using the sampling evalua-
tion when trained on the GA dataset, as well as on Hurink edata with the sampling evaluation when
both methods are trained on the Random dataset. Nevertheless, CDQAC shows better performance
on the remaining evaluation sets for both the GA and Random training sets. Furthermore, with larger
training sizes, 15×10 (Table 11) and 20×10 (Table 12), CDQAC consistently outperforms Offline-
LD, and the performance margins widen as the instance size increases. These findings indicate that
CDQAC scales more efficiently to larger instance sizes, and is generally an improvement over the
offline RL baseline, Offline-LD.

Analyzing CDQAC’s performance across different instance sizes and training datasets, we observe
that for both 10 × 5 (Table 10) and 15 × 10 (Table 11), CDQAC achieves the worst performance
when trained on the GA dataset across all evaluation sets. In contrast, for 20× 10, CDQAC trained
on the GA dataset achieves the best performance on generated instances (Greedy: 5.01%±0.28%),
while training on PDR yields the worst results (Greedy: 9.38%±6.1%), accompanied by a high
standard deviation. This higher standard deviation with PDR suggests instability during training,
as one of the four runs did not train effectively. Additionally, we find that, when trained on GA,

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 11: Results of FJSP offline RL comparison 15× 10, for all training datasets (PDR, GA, PDR-
GA, and Random). The columns show the evaluation benchmarks sets and the rows the methods.
The mean and standard deviation of the gap (%) are reported from four different seeds. Bold indi-
cates best result (lowest gap) for either the Greedy and Sampling (100 solutions) evaluation, for a
given training dataset.

Generated 15× 10 Brandimarte (mk) Hurink edata Hurink rdata Hurink vdata

Greedy Sampling Greedy Sampling Greedy Sampling Greedy Sampling Greedy Sampling

PDR

BC 36.31±3.88 13.58±0.88 58.23±13.17 30.47±3.21 28.66±6.05 12.13±1.48 23.93±2.1 8.57±1.13 10.38±1.4 2.04±0.49
Offline-LD (mQRDQN) 17.36±1.17 20.28±0.09 22.89±1.89 24.88±0.22 30.32±1.54 12.51±0.17 19.93±1.61 10.2±0.15 10.01±2.47 3.33±0.07
Offline-LD (d-mSAC) 16.37±0.5 10.54±0.16 39.55±6.46 23.6±2.54 23.63±6.52 11.85±3.21 14.93±2.03 6.43±0.16 5.82±0.95 1.26±0.22
IQL 16.35±0.53 10.51±0.22 30.95±2.93 19.75±0.77 20.5±0.29 9.98±0.19 14.08±1.57 6.38±0.08 5.54±0.34 1.04±0.06
CDQAC 12.21±0.37 6.48±0.15 14.6±0.78 9.6±0.1 17.67±1.49 10.77±0.35 11.67±0.6 5.76±0.08 3.94±0.43 0.87±0.16

GA

BC 17.21±0.31 13.41±0.09 28.88±1.67 18.13±0.21 17.73±0.78 9.22±0.12 14.43±0.44 6.97±0.05 11.03±0.61 1.8±0.07
Offline-LD (mQRDQN) 24.67±2.98 20.47±0.07 45.24±4.87 27.03±0.38 34.83±1.61 12.9±0.11 28.1±1.6 10.72±0.07 19.63±1.82 3.78±0.06
Offline-LD (d-mSAC) 16.11±0.71 8.74±0.1 29.23±1.9 14.89±0.51 31.93±2.12 13.69±0.86 22.88±1.09 8.39±0.13 16.12±2.14 4.71±0.56
IQL 15.54±0.84 11.08±0.2 26.69±3.37 16.28±0.79 26.84±3.04 11.78±0.84 20.41±2.1 7.72±0.47 14.15±2.5 3.26±1.04
CDQAC 12.3±0.45 6.19±0.24 19.6±4.61 10.22±1.76 23.53±6.23 11.8±2.82 14.37±3.46 6.13±0.83 7.46±3.69 1.63±0.96

PDR-GA

BC 23.94±4.08 13.35±0.76 57.21±3.94 26.53±0.61 27.61±1.06 11.73±0.68 22.35±2.5 8.37±0.79 12.78±1.97 2.67±0.31
Offline-LD (mQRDQN) 18.15±1.12 20.34±0.04 23.98±3.91 25.53±0.44 27.62±2.08 12.52±0.23 21.92±1.47 10.42±0.14 12.19±2.4 3.5±0.1
Offline-LD (d-mSAC) 17.42±0.65 9.36±0.36 35.9±4.16 17.54±1.75 34.09±3.15 14.81±1.36 21.91±1.3 8.75±0.29 14.99±1.35 4.62±0.22
IQL 15.33±0.52 10.5±0.13 28.15±1.59 19.1±0.66 25.06±2.39 11.43±0.43 16.4±2.51 6.69±0.24 6.56±2.62 1.22±0.26
CDQAC 12.28±0.26 6.15±0.47 14.75±1.53 8.72±0.59 18.02±4.44 9.55±1.42 11.44±0.88 5.44±0.28 3.51±0.91 0.78±0.15

Random

BC 30.41±3.73 20.87±0.09 36.61±4.36 26.66±0.33 25.66±2.26 12.33±0.09 22.56±3.89 10.5±0.12 10.92±3.12 3.58±0.03
Offline-LD (mQRDQN) 16.95±0.54 20.21±0.07 29.14±4.62 25.6±0.39 29.07±3.02 12.58±0.24 20.17±2.17 10.24±0.12 12.83±1.86 3.41±0.07
Offline-LD (d-mSAC) 15.02±0.43 8.17±0.31 20.44±1.58 11.27±0.49 30.92±3.15 14.52±1.5 18.06±1.22 7.46±0.33 9.97±1.41 2.32±0.45
IQL 15.58±1.64 13.75±0.28 24.5±2.93 18.12±0.42 24.63±4.43 11.54±0.78 19.69±2.85 8.81±0.53 12.43±3.42 3.75±0.86
CDQAC 12.04±0.59 6.7±0.62 13.58±0.66 8.73±0.73 14.56±0.55 8.51±0.52 10.77±0.36 5.22±0.12 3.16±0.1 0.67±0.02

Table 12: Results of FJSP offline RL comparison 20× 10, for all training datasets (PDR, GA, PDR-
GA, and Random). The columns show the evaluation benchmarks sets and the rows the methods.
The mean and standard deviation of the gap (%) are reported from four different seeds. Bold indi-
cates best result (lowest gap) for either the Greedy and Sampling (100 solutions) evaluation, for a
given training dataset.

Generated 20× 10 Brandimarte (mk) Hurink edata Hurink rdata Hurink vdata

Greedy Sampling Greedy Sampling Greedy Sampling Greedy Sampling Greedy Sampling

PDR

BC 33.37±2.71 9.29±0.78 65.13±6.3 34.94±2.12 27.47±3.56 12.91±2.18 24.42±4.57 9.11±0.96 9.03±2.55 1.27±0.04
Offline-LD (mQRDQN) 27.6±5.91 14.82±0.12 33.83±2.4 26.54±1.25 31.03±2.1 12.61±0.23 28.02±3.74 10.55±0.11 18.73±2.71 3.56±0.09
Offline-LD (d-mSAC) 15.43±3.82 8.38±1.08 55.97±4.05 33.3±1.67 33.17±4.2 15.66±2.26 23.86±1.87 8.91±0.87 9.9±2.93 2.11±0.9
IQL 10.43±1.11 6.77±0.33 45.31±3.96 24.95±1.83 25.31±4.42 11.8±1.26 16.59±1.26 7.19±0.26 5.06±0.41 1.06±0.06
CDQAC 9.38±6.1 4.38±3.47 16.65±0.5 9.7±0.7 21.5±5.18 11.23±1.97 15.53±3.05 6.98±1.29 8.47±4.0 2.94±2.31

GA

BC 11.73±0.59 8.4±0.09 24.69±1.69 18.36±0.44 17.76±0.06 9.69±0.16 13.51±0.4 7.12±0.11 8.08±1.44 1.85±0.04
Offline-LD (mQRDQN) 41.47±6.36 15.55±0.46 59.54±3.52 27.8±0.81 35.95±2.51 13.18±0.42 32.75±4.96 10.9±0.3 23.3±4.49 3.93±0.2
Offline-LD (d-mSAC) 20.78±5.21 6.75±1.63 28.37±0.97 14.84±0.77 29.33±1.33 12.93±0.52 21.76±2.85 7.76±0.64 14.73±2.45 4.35±0.52
IQL 21.12±4.65 7.59±0.57 28.71±2.85 16.24±0.43 26.89±2.31 11.63±0.56 22.18±2.55 7.64±0.4 13.96±1.01 3.14±0.82
CDQAC 5.22±0.63 2.19±0.62 16.76±2.09 9.3±0.36 22.62±6.05 11.05±3.2 13.48±0.97 5.92±0.37 4.91±1.07 0.97±0.2

PDR-GA

BC 26.02±2.15 8.21±0.17 53.55±6.26 28.02±2.45 23.61±1.62 10.91±0.87 16.26±3.61 7.15±0.4 5.89±2.1 1.08±0.09
Offline-LD (mQRDQN) 27.62±9.83 15.0±0.21 29.47±8.62 25.59±0.29 30.82±5.5 12.62±0.29 24.68±4.86 10.51±0.12 17.36±5.16 3.6±0.14
Offline-LD (d-mSAC) 43.5±3.7 21.72±5.92 55.46±4.38 24.48±1.64 38.71±1.75 19.46±1.27 32.65±3.36 13.12±1.35 22.98±2.97 8.78±2.03
IQL 11.42±2.36 6.89±0.25 33.97±4.27 19.32±1.4 24.65±2.62 10.79±0.56 16.03±1.22 6.91±0.25 6.44±1.63 1.19±0.17
CDQAC 5.01±0.28 2.31±0.36 15.34±1.11 8.9±0.59 17.79±5.04 9.17±1.49 12.3±1.61 5.57±0.43 4.07±0.91 0.83±0.24

Random

BC 19.65±1.43 15.33±0.08 35.81±9.72 27.02±0.37 23.84±2.46 12.29±0.1 20.23±0.37 10.47±0.1 11.38±0.95 3.51±0.12
Offline-LD (mQRDQN) 21.73±9.18 14.9±0.19 40.78±4.11 26.36±0.46 33.87±1.93 12.81±0.25 24.68±1.19 10.52±0.1 15.62±3.59 3.59±0.08
Offline-LD (d-mSAC) 11.59±3.69 4.79±1.46 22.09±3.25 11.7±1.28 28.51±2.45 13.37±1.85 21.7±3.27 9.18±1.85 13.07±3.76 3.7±2.14
IQL 14.0±4.05 10.08±0.93 32.8±4.58 20.08±0.72 31.66±2.55 13.17±0.61 24.87±3.32 9.63±0.39 13.81±3.39 3.53±0.5
CDQAC 5.2±0.66 2.87±0.73 16.52±0.3 9.73±0.43 16.53±1.59 9.02±0.28 11.63±0.52 5.66±0.17 3.25±0.2 0.76±0.05

CDQAC struggles to generalize to unseen evaluation instances compared to when trained on more
diverse datasets, such as Random and PDR-GA. This further supports the conclusion that training
on a diverse set of examples is critical for strong generalization performance in offline RL for FJSP.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

H.3 ADDITIONAL RESULTS JSP

Table 13: Results on JSP benchmarks for CDQAC 10× 5, for all training datasets (PDR, GA, PDR-
GA and Random). The mean and standard deviation of the gap (%) are reported from four different
seeds. Bold indicates best result (lowest gap) for either the Greedy and Sampling (100 solutions)
evaluation.

Greedy Sampling

Instance Size PDR GA PDR-GA Random PDR GA PDR-GA Random

Ta
ill

ar
d

15× 15 16.26 ± 0.67 16.12 ± 0.69 16.33 ± 0.95 15.9 ± 0.7 11.5 ± 0.51 11.27 ± 0.86 11.23 ± 0.48 10.8 ± 0.55
20× 15 20.55 ± 0.95 19.7 ± 1.05 19.6 ± 1.91 19.98 ± 1.91 14.8 ± 0.37 14.23 ± 0.75 14.64 ± 0.58 14.12 ± 0.77
20× 20 18.65 ± 0.73 18.89 ± 1.27 17.45 ± 0.7 17.19 ± 1.38 13.29 ± 0.68 14.1 ± 0.72 13.88 ± 0.35 13.39 ± 0.84
30× 15 20.4 ± 0.65 21.32 ± 2.78 20.44 ± 1.13 19.56 ± 0.49 15.83 ± 0.34 16.04 ± 0.91 16.0 ± 0.31 15.3 ± 1.13
30× 20 22.05 ± 1.64 22.58 ± 2.72 21.6 ± 2.04 22.28 ± 1.01 17.89 ± 0.92 18.6 ± 1.3 18.6 ± 0.4 18.27 ± 0.82
50× 15 14.26 ± 1.1 14.48 ± 1.63 13.53 ± 1.41 13.06 ± 1.47 10.86 ± 0.66 10.21 ± 0.75 10.47 ± 1.18 10.46 ± 1.22
50× 20 14.46 ± 0.95 15.21 ± 3.36 13.83 ± 1.18 13.9 ± 1.3 11.6 ± 0.35 12.07 ± 1.21 11.62 ± 0.47 11.37 ± 0.52
100× 20 6.43 ± 0.12 8.1 ± 4.73 6.18 ± 0.82 5.53 ± 1.12 4.66 ± 0.14 4.46 ± 1.33 4.56 ± 0.49 4.25 ± 0.59
Mean 16.63 ± 0.85 17.05 ± 2.28 16.12 ± 1.27 15.93 ± 1.17 12.55 ± 0.5 12.62 ± 0.98 12.62 ± 0.53 12.24 ± 0.8

D
em

ir
ko

l

20× 15 24.87 ± 1.51 24.03 ± 0.94 24.47 ± 2.11 24.49 ± 1.83 19.4 ± 0.63 19.29 ± 0.94 19.63 ± 0.81 18.82 ± 0.86
20× 20 23.3 ± 0.36 21.29 ± 1.19 22.01 ± 1.12 21.71 ± 1.47 17.66 ± 0.45 17.62 ± 1.15 18.03 ± 0.54 17.13 ± 0.71
30× 15 29.63 ± 0.69 28.22 ± 1.8 28.71 ± 2.63 28.76 ± 1.72 24.21 ± 0.61 23.22 ± 1.1 24.2 ± 1.21 23.67 ± 1.7
30× 20 28.72 ± 1.13 28.33 ± 1.0 28.53 ± 2.57 28.6 ± 2.39 23.72 ± 0.61 23.71 ± 0.5 24.15 ± 1.55 23.56 ± 1.29
40× 15 26.98 ± 1.0 25.1 ± 1.35 25.76 ± 2.78 25.51 ± 2.85 22.62 ± 0.98 20.31 ± 0.84 21.73 ± 1.63 21.15 ± 1.66
40× 20 29.42 ± 1.18 27.49 ± 1.45 28.5 ± 2.67 28.77 ± 1.74 24.88 ± 0.18 24.06 ± 1.03 25.1 ± 1.7 24.58 ± 1.49
50× 15 27.82 ± 0.94 25.03 ± 2.61 26.49 ± 3.84 25.06 ± 5.42 23.8 ± 0.85 20.83 ± 0.97 22.53 ± 2.5 22.5 ± 2.74
50× 20 30.43 ± 0.96 27.5 ± 1.63 28.71 ± 2.98 28.65 ± 2.58 26.35 ± 0.69 24.65 ± 1.28 26.1 ± 1.52 25.67 ± 1.06

Mean 27.65 ± 0.97 25.87 ± 1.5 26.65 ± 2.59 26.44 ± 2.5 22.83 ± 0.62 21.71 ± 0.98 22.68 ± 1.43 22.13 ± 1.44

Table 14: Results on JSP benchmarks for CDQAC 15 × 10, for all training datasets (PDR, GA,
PDR-GA and Random). The mean and standard deviation of the gap (%) are reported from four
different seeds. Bold indicates best result (lowest gap) for either the Greedy and Sampling (100
solutions) evaluation.

Greedy Sampling

Instance Size PDR GA PDR-GA Random PDR GA PDR-GA Random

Ta
ill

ar
d

15× 15 16.73 ± 0.6 17.23 ± 1.28 17.35 ± 1.89 16.7 ± 0.97 11.6 ± 0.48 11.26 ± 0.84 11.39 ± 0.86 11.24 ± 0.83
20× 15 21.63 ± 0.33 21.4 ± 1.92 21.57 ± 2.04 20.69 ± 1.09 15.22 ± 0.23 14.77 ± 1.13 14.87 ± 0.92 14.71 ± 0.28
20× 20 18.73 ± 0.71 18.51 ± 1.41 19.0 ± 1.11 18.14 ± 0.81 13.61 ± 0.59 13.49 ± 0.57 13.76 ± 0.52 13.53 ± 0.5
30× 15 20.6 ± 0.65 21.27 ± 1.27 21.33 ± 1.4 20.86 ± 0.88 16.01 ± 0.14 16.21 ± 0.88 16.07 ± 0.51 15.92 ± 0.3
30× 20 23.52 ± 1.14 23.17 ± 0.34 23.94 ± 0.69 23.55 ± 1.14 18.43 ± 0.6 18.15 ± 0.47 18.43 ± 0.62 18.29 ± 0.5
50× 15 14.9 ± 0.28 14.6 ± 1.09 14.05 ± 1.31 15.47 ± 2.47 11.45 ± 0.54 10.71 ± 1.06 10.8 ± 1.4 10.48 ± 0.43
50× 20 14.82 ± 0.77 16.46 ± 0.99 15.41 ± 1.03 16.47 ± 4.19 12.05 ± 0.54 11.93 ± 0.82 12.17 ± 1.13 11.57 ± 0.24
100× 20 6.44 ± 0.34 8.24 ± 2.43 6.01 ± 0.97 8.0 ± 3.19 4.88 ± 0.25 4.73 ± 0.34 4.52 ± 0.49 4.96 ± 0.75

Mean 17.17 ± 0.6 17.61 ± 1.34 17.33 ± 1.31 17.48 ± 1.84 12.91 ± 0.42 12.66 ± 0.77 12.75 ± 0.81 12.59 ± 0.48

D
em

ir
ko

l

20× 15 27.13 ± 0.74 26.03 ± 1.0 24.94 ± 1.91 26.05 ± 1.37 20.23 ± 0.8 19.4 ± 1.05 19.5 ± 1.3 19.59 ± 0.72
20× 20 24.01 ± 0.5 22.86 ± 1.19 22.73 ± 2.13 22.67 ± 1.4 17.59 ± 0.62 17.4 ± 0.62 17.6 ± 0.66 17.23 ± 0.68
30× 15 30.3 ± 1.13 29.66 ± 1.54 29.19 ± 1.49 29.15 ± 1.19 25.93 ± 1.37 24.04 ± 1.21 24.05 ± 1.9 24.25 ± 0.87
30× 20 30.43 ± 1.04 28.65 ± 1.32 28.5 ± 2.35 28.24 ± 1.57 24.92 ± 0.64 23.0 ± 0.83 23.72 ± 1.55 23.46 ± 1.07
40× 15 27.81 ± 0.97 25.68 ± 0.97 24.77 ± 2.6 25.61 ± 1.71 23.51 ± 1.04 21.03 ± 1.25 21.08 ± 2.15 21.38 ± 1.49
40× 20 30.54 ± 1.26 27.64 ± 2.05 28.47 ± 2.71 28.99 ± 0.81 25.86 ± 1.0 23.63 ± 0.98 24.48 ± 1.73 24.21 ± 1.6
50× 15 29.14 ± 0.94 23.84 ± 4.59 24.28 ± 5.27 26.16 ± 2.21 25.09 ± 1.04 20.78 ± 2.54 21.87 ± 3.35 20.65 ± 3.01
50× 20 31.56 ± 1.3 28.85 ± 1.36 28.43 ± 1.44 30.53 ± 1.94 27.19 ± 1.34 24.4 ± 0.79 24.97 ± 0.87 25.47 ± 1.48

Mean 28.87 ± 0.99 26.65 ± 1.75 26.42 ± 2.49 27.18 ± 1.52 23.79 ± 0.98 21.71 ± 1.16 22.16 ± 1.69 22.03 ± 1.36

In Sect. 5.3, we compared CDQAC on the Taillard and Demirkol instances. The results in Table 6
included only CDQAC trained on the Random dataset for 10× 5 instances. In this section, we show
the results for the other training sets for both 10× 5 (Table 13) and 15× 10 (Table 14) instances.

Tables 13 and 14 show only minor performance differences between the training datasets. Ta-
ble 14 contains the largest difference between the mean Greedy results of Demirkol between PDR
(28.87%±0.99%) and PDR-GA (26.42%±2.49%). We also notice that PDR and Random perform
better with the Taillard instances compared to GA, but GA performs better on the Demirkol in-
stances. We hypothesize that this difference comes from the differing distributions of processing
times: Demirkol instances have processing times ranging from 1 to 200 and those of Taillard only
from 1 to 100, whereby CDQAC was trained on instances similar to Taillard instances. These re-

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

sults contrast with those of FJSP in App. H.2, where GA was unable to generalize well to benchmark
instances that have a different distribution to the training instances. These results suggest that the
choice of training data has a fundamentally different impact in JSP compared to FJSP.

H.4 ADDITIONAL RESULTS DATASET SIZE

Figure 7: Effect of different dataset sizes. We evaluate the sample efficiency of CDQAC by reducing
the Random training dataset in two ways. Red: the number of instances (1%: 5 instances, 5%: 25
instances, 10%: 50 instances, 25%: 125 instances, 50%: 250 instances, 75%: 375 instances, 100%:
500 instances, with each instance having 100 random solutions). Blue: the number of random
solutions per instance (1%: 1 solution, 5%: 5 solutions, 10%: 10 solutions, 25%: 25 solutions,
50%: 50 solutions, 75%: 75 solutions, 100%: 100 solutions, for each instance, with 500 instances in
total). Performance is reported as the mean gap across four seeds, with error bars indicating standard
deviation.

In Sect. 5.4, we demonstrated that reducing the number of training in the Random training dataset
had little impact on overall performance on the FJSP benchmark sets, Brandimarte and Hurink. In
this section, we provide a more comprehensive analysis by including results on generated evaluation
instances. Additionally, we introduce a second evaluation for the reduction of the dataset, in which
we decrease the number of solutions generated per instance by the random policy. For both evalu-
ations, we considered subsets containing 1%, 5%, 10%, 25%, 50%, 75%, and 100% of the original
dataset size. Specifically, when reducing the number of instances, we used either 5, 25, 50, 125,
250, 375, or 500 instances, each with 100 random solutions. When reducing the number of random
solutions per instance, we used 500 instances, each with either 1, 5, 10, 25, 50, 75, or 100 random
solutions.

As shown in Fig. 7, decreasing the dataset, either by limiting the number of instances or by reducing
the number of random solutions per instance, does not lead to a significant loss in performance. The
results remain relatively stable, with the standard deviation mostly below 1.5%. The sole exception
occurs for 15 × 10 on the benchmark instances at 25%, when reducing the number of random so-
lutions, where the greedy evaluation shows a standard deviation of 2.63%. Notably, this increased
standard deviation is only observed for benchmark instances and not for generated instances at 25%
random solutions, as evidenced in Fig. 7. This suggests that larger datasets may improve gener-
alization to previously unseen instances. Another benefit is training stability, with larger dataset
producing a smaller standard deviation. In general, these findings reinforce our conclusion from
Sect. 5.4: CDQAC maintains competitive performance even when trained on substantially reduced
datasets, underscoring its sample efficiency.

H.5 ADDITIONAL JSP BASELINES

In Table 15, we have included an additional comparison for JSP, where we compare CDQAC to
other constructive learning-based approaches. The main distinction between the results in Table 6

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 15: Results JSP benchmarks. Average gap (%) is reported. In this additional comparison,
we compare CDQAC to constructive learning-based approaches that only function for JSP and to
approaches that function for both JSP and FJSP. The approaches that only function for JSP are:
L2D (Zhang et al., 2020), CL (Iklassov et al., 2023), Sched (Park et al., 2021), SL (Corsini et al.,
2024), GD (Pirnay & Grimm, 2024), OD (Remmerden et al., 2025), and IL (Lee & Kim, 2025).
Approaches that can do both JSP and FJSP are: DAN (Wang et al., 2023), Res (Ho et al., 2024), and
CDQAC (ours). We note the best performing overall approach with ∗, and the best approach that
can handle both JSP and FJSP in bold.

Greedy Sampling

Instance Size L2D CL Sched SL GD OD IL DAN Res CDQAC CLa SLa GDb DANc Resc CDQACc

Ta
ill

ar
d

15× 15 28.1 14.3 15.3 13.8 9.6 25.8 8.8∗ 19.0 17.6 15.0 9.0 7.2∗ 10.1 13.2 13.3 10.4
20× 15 32.7 16.5 19.4 15.0 9.9∗ 30.2 11.7 22.1 21.2 17.7 10.6 9.3∗ 9.8 17.4 16.1 13.2
20× 20 31.8 17.3 17.2 15.2 11.1∗ 28.9 13.2 18.0 18.0 17.6 10.9 10.0∗ 10.4 13.3 15.8 12.9
30× 15 30.2 18.5 18.0 17.1 9.5∗ 29.2 10.3 21.7 20.1 19.1 14.0 11.0 8.5∗ 17.2 18.0 14.9
30× 20 35.2 21.5 18.7 18.5 13.8∗ 33.1 14.7 23.2 22.3 21.2 16.1 13.4 12.3∗ 19.0 19.7 17.9
50× 15 21.0 12.2 13.8 10.1 2.7∗ 20.6 4.3 14.8 15.6 13.0 9.3 5.5 2.6∗ 12.7 13.2 9.9
50× 20 26.1 13.2 13.5 11.6 6.7∗ 24.3 9.0 16.0 14.4 12.8 9.9 8.4 7.7∗ 13.1 14.1 11.0
100× 20 13.3 5.9 6.6 5.8 1.7∗ 12.7 2.5 7.3 6.5 5.3 4.0 2.3 1.3∗ 5.9 6.5 3.6
Mean 27.3 14.9 15.4 13.4 8.1∗ 25.6 9.3 18.2 17.0 15.2 10.5 8.4 7.8∗ 14.4 14.6 11.7

D
em

ir
ko

l

20× 15 36.3 – – 18.0∗ – 35.8 – – 26.1 22.9 – 12.0∗ – – 22.6 18.4
20× 20 34.4 – – 19.4∗ – 32.8 – – 21.5 20.3 – 13.5∗ – – 18.9 16.5
30× 15 37.8 – – 21.8∗ – 38.8 – – 27.6 27.1 – 14.4∗ – – 29.4 23.1
30× 20 38.0 – – 25.7∗ – 36.0 – – 29.9 27.9 – 17.1∗ – – 28.3 23.4
40× 15 34.6 – – 17.5∗ – 35.5 – – 26.2 25.5 – 11.7∗ – – 28.4 20.2
40× 20 39.2 – – 22.2∗ – 38.5 – – 27.7 27.9 – 16.0∗ – – 30.9 24.1
50× 15 33.2 – – 15.7∗ – 34.1 – – 27.4 25.0 – 11.2∗ – – 29.5 21.7
50× 20 37.7 – – 22.4∗ – 38.9 – – 30.0 28.6 – 15.8∗ – – 32.8 25.1
Mean 36.4 – – 20.3∗ – 36.3 – – 27.0 25.7 – 14.0∗ – – 27.6 21.6

a Used 128 samples for each instance during the sampling evaluation.
b Used beam search with a width of 16.
c Used 100 samples for each instance during the sampling evaluation.

and these results is that none of the additional baselines function on FJSP and only on JSP. These
results show that CDQAC performs roughly equally to other RL baselines, such as CL (Iklassov
et al., 2023) and Sched (Park et al., 2021), whereby CL slightly outperforms CDQAC. However,
both CL and Sched require a training environment and do not work for FJSP. Similarly, we see
that SL (Corsini et al., 2024) and GD (Pirnay & Grimm, 2024) , both self-labeling approaches,
both outperform CDQAC. We need to note that both GD and SL are costly to train, with both
requiring up to seven days of training on a GPU. In comparison, CDQAC can be trained in one
or two hours, or even less, depending on the size of the training. Lastly, we note that IL (Lee &
Kim, 2025), an Imitation Learning approach for JSP, achieves a performance similar to that of self-
labeling approaches. Lee & Kim (2025) state that they used 4000 optimal solutions, found through
constraint programming, to train IL. Their results do note that performance diminishes whenever it
is trained on fewer solutions, whereby it achieves performance similar to CDQAC, if IL is trained
on only 40 solutions. Moreover, IL requires optimal or near-optimal solutions, whereas CDQAC
can be trained on any solution quality and does not require optimal solutions as training data.

H.6 SIGNIFICANCE TEST

Our comparison for FJSP (Sect. 5.2) and JSP (Sect. 5.3) showed that CDQAC outperformed
DANIEL (Wang et al., 2023) in most evaluations. To assess whether these results are significant, we
conducted a one-sided Wilcoxon signed-rank test for both JSP and FJSP.

FJSP. Although CDQAC consistently outperformed DANIEL in most FJSP evaluations, the mar-
gins were smaller than in other results. To this end, we paired all results from Tables 3, 4, and 5, in
both greedy and sampling evaluations. Furthermore, we paired the results of both 10×5 and 15×10
in Table 3, resulting in a sample size of 26 pairs. The statistical test yielded a p ≈ 0.018 rejecting the
null hypothesis of p > 0.05, indicating that CDQAC, trained solely on random data, significantly
outperforms the online RL baseline DANIEL (Wang et al., 2023) in our FJSP evaluation.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 8: Convergence comparison between CDQAC and DANIEL for 10 × 5. The x-axis shows
the number of training examples each has seen until this point. Major distinction is that CDQAC is
able to reuse all examples during training, whereas DANIEL cannot. CDQAC is the average of four
seeds, with the shaded area, being the maximal and minimal evaluations. The DANIEL results are
provided by Wang et al. (2023).

Figure 9: Convergence comparison between CDQAC and DANIEL for 15 × 10. The x-axis shows
the number of training examples each has seen until this point. Major distinction is that CDQAC is
able to reuse all examples during training, whereas DANIEL cannot. CDQAC is the average of four
seeds, with the shaded area, being the maximal and minimal evaluations. The DANIEL results are
provided by Wang et al. (2023).

JSP. To evaluate the significance of the JSP results, we again paired the results of CDQAC and
DANIEL in Table 6, whereby we paired each Taillard result, both for greedy and sampling. This
results in a sample size of 16 pairs. The Wilcoxon test resulted in p ≈ 0.00022, indicating that
CDQAC also significantly outperforms DANIEL on JSP.

I CONVERGENCE ANALYSIS

For further analysis on how CDQAC was able to outperform DANIEL (Wang et al., 2023), the
best performing online RL method, we conducted a convergence analysis between CDQAC and
DANIEL. For each evaluation step, we calculated the number of transitions each approach has seen.
For CDQAC, this is the number of training steps multiplied by the batch size. For DANIEL, this is
the number of episodes between each evaluation step, multiplied by the number of concurrent runs
for each episode, which is multiplied by the number of PPO epochs and average episode length of

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 10: Convergence comparison between CDQAC and DANIEL for 10 × 5. The x-axis shows
the number of training examples each has seen until this point. Major distinction is that CDQAC is
able to reuse all examples during training, whereas DANIEL cannot. CDQAC is the average of four
seeds, with the shaded area, being the maximal and minimal evaluations. The DANIEL results are
provided by Wang et al. (2023).

each episode. DANIEL Wang et al. (2023) evaluates every 10 episodes, performs 20 concurrently
runs each episode, and performs 4 PPO epochs, and the average episode length is |J | × |M |, where
|J | and |M | are the number of jobs and machines, respectively. An essential detail is that CDQAC
will reuse transitions found in the training dataset, whereas DANIEL does not, and only trains on the
transitions found in a single episode for 4 epochs. Therefore, the x-axis does not signify the number
of different transitions trained on.

Figs. 8 and 9 show that CDQAC and DANIEL converge to a stable policy for both 10×5 and 15×10.
Moreover, Fig. 8, in combination with the results in Table 4 indicate a stronger performance of
DANIEL on the in-distribution instance set 10× 5, while CDQAC was able to outperform DANIEL
on the out-of-distrbution instance, namely the benchmark instances (Table 1) and larger generated
instances (Table 5). This indicates that DANIEL is overtraining on 10 × 5, reducing its ability to
generalize to instances that have a different distribution. For 15× 10, we see in Fig 9 that CDQAC
and DANIEL converge to similar performance. These results match those found in Table 4, where
CDQAC was able to outperform DANIEL on 15 × 10. When comparing the results for the FJSP
benchmarks (Table 3) when both CDQAC are trained on 15 × 10, we again notice that CDQAC
outperforms DANIEL in most evaluations. This indicates that DANIEL is also overtraining for
15 × 10. Lastly, Fig. 10 shows that for 20 × 10 CDQAC is not able to converge to a stable policy,
while DANIEL does, which matches the results in Table 4.

29


	Introduction
	Related Work
	Preliminaries
	Conservative Discrete Quantile Actor-Critic for Scheduling
	Network Architecture

	Experiments
	Comparison with Offline RL
	Comparison with online RL on FJSP benchmarks
	Comparison on JSP Instances
	Performance with reduced training data

	Conclusion
	Pseudocode
	Network Architecture
	Features

	Benchmark Instance Sets
	FJSP
	JSP

	Details of Dataset Generation Heuristics
	Priority Dispatching Rules (PDR)
	Genetic Algorithms (GA)
	Random Policy

	Details of Offline Reinforcement Learning Baselines
	Hyperparameters
	Training Plots
	Additional Results
	Ablation Study
	Results Offline RL
	Additional Results JSP
	Additional Results Dataset Size
	Additional JSP baselines
	Significance Test

	Convergence Analysis

