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Abstract

This paper proposes the divergence triangle as a frame-

work for joint training of a generator model, energy-based

model and inference model. The divergence triangle is

a compact and symmetric (anti-symmetric) objective func-

tion that seamlessly integrates variational learning, adver-

sarial learning, wake-sleep algorithm, and contrastive di-

vergence in a unified probabilistic formulation. This uni-

fication makes the processes of sampling, inference, and

energy evaluation readily available without the need for

costly Markov chain Monte Carlo methods. Our experi-

ments demonstrate that the divergence triangle is capable

of learning (1) an energy-based model with well-formed en-

ergy landscape, (2) direct sampling in the form of a gener-

ator network, and (3) feed-forward inference that faithfully

reconstructs observed as well as synthesized data.

1. Introduction

1.1. Integrating Three Models

Deep probabilistic generative models are a powerful

framework for representing complex data distributions.

They have been widely used in unsupervised learning prob-

lems to learn from unlabeled data. The goal of generative

learning is to build rich and flexible models to fit com-

plex, multi-modal data distributions as well as to be able

to generate samples with high realism. The family of gen-

erative models may be roughly divided into two classes:

The first class is the energy-based model (a.k.a undirected

graphical model) and the second class is the latent vari-

able model (a.k.a directed graphical model) which usually

includes generator model for the generation and inference

model for inference or reconstruction.

These models have their advantages and limitations. An

energy-based model defines an explicit likelihood of the ob-

served data up to a normalizing constant. However, sam-

∗Equal contributions.

pling from such a model usually requires expensive Markov

chain Monte Carlo (MCMC). A generator model defines di-

rect sampling of the data. However, it does not have an ex-

plicit likelihood. The inference of the latent variables also

requires MCMC sampling from the posterior distribution.

The inference model defines an explicit approximation to

the posterior distribution of the latent variables.

Combining the energy-based model, the generator

model, and the inference model to get the best of each

model is an attractive goal. On the other hand, challenges

may accumulate when the models are trained together since

different models need to effectively compete or cooperate

together to achieve their highest performances. In this work,

we propose the divergence triangle for joint training of

energy-based model, generator model and inference model.

The learning of three models can then be seamlessly inte-

grated in a principled probabilistic framework. The energy-

based model is learned based on the samples supplied by the

generator model. With the help of the inference model, the

generator model is trained by both the observed data and the

energy-based model. The inference model is learned from

both the real data fitted by the generator model as well as

the synthesized data generated by the generator model.

Our experiments demonstrate that the divergence trian-

gle is capable of learning an energy-based model with a

well-behaved energy landscape, a generator model with

highly realistic samples, and an inference model with faith-

ful reconstruction ability.

1.2. Prior Art

The maximum likelihood learning of the energy-based

model requires expectation with respect to the current

model, while the maximum likelihood learning of the gen-

erator model requires expectation with respect to the pos-

terior distribution of the latent variables. Both expec-

tations can be approximated by MCMC, such as Gibbs

sampling [11], Langevin dynamics, or Hamiltonian Monte

Carlo (HMC) [34]. [31, 48] used Langevin dynamics for

learning the energy-based models, and [13] used Langevin

dynamics for learning the generator model. In both cases,
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MCMC sampling introduces an inner loop in the training

procedure, posing a computational expense.

An early version of the energy-based model is the

FRAME (Filters, Random field, And Maximum Entropy)

model [53, 45]. [52] used gradient-based method such as

Langevin dynamics to sample from the model. [51] called

the energy-based models as descriptive models. [31, 48]

generalized the model to deep variants.

Contrastive divergence (CD) [15] initializes finite step

MCMC from the observed data to reduce the computational

cost of sampling when learning an energy-based model

[28]. The resulting learning algorithm follows the gradi-

ent of the difference between two Kullback-Leibler diver-

gences, thus the name contrastive divergence. In this pa-

per, we shall use the term “contrastive divergence” in a

more general sense than [15]. Persistent contrastive diver-

gence [42] initializes MCMC sampling from the samples of

the previous learning iteration.

Generalizing [43], [21] developed an introspective learn-

ing method where the energy function is discriminatively

learned, and the energy-based model is both a generative

model and a discriminative model.

For learning the generator model, the variational auto-

encoder (VAE) [25, 38, 33] approximates the posterior dis-

tribution of the latent variables by an explicit inference

model. In VAE, the inference model is learned jointly with

the generator model from the observed data. A precursor

of VAE is the wake-sleep algorithm [17], where the infer-

ence model is learned from the dream data generated by the

generator model in the sleep phase.

The generator model can also be learned jointly with

a discriminator model, as in the generative adversar-

ial networks (GAN) [12], as well as deep convolutional

GAN (DCGAN) [37], energy-based GAN (EB-GAN) [50],

Wasserstein GAN (WGAN) [2]. GAN does not involve an

inference model.

The generator model can also be learned jointly with an

energy-based model [23, 6]. We can interpret the learning

scheme as an adversarial version of contrastive divergence.

In GAN, the discriminator model eventually becomes con-

fused between real and fake images, while in the joint learn-

ing of the generator model and the energy-based model, the

learned energy-based model becomes a well-defined prob-

ability distribution on the observed data. The joint learning

bears some similarity to WGAN, but unlike WGAN, the

learning framework involves two complementary probabil-

ity distributions.

The cooperative learning method of [47] bridges the

gap between the energy-based model and generator model

by initializing finite-step MCMC sampling of the energy-

based model from images synthesized by the generator

model. Such finite-step MCMC produces revised samples

that closer to the modes of the energy-based model, and the

generator model can learn from the MCMC revisions of its

initial samples.

Adversarially learned inference (ALI) [10, 9] combines

the learning of the generator model and inference model

in an adversarial framework. ALI can be improved by

adding conditional entropy regularization, resulting in the

ALICE [29] model. The recently proposed method [4]

shares the same spirit. They lack an energy-based model

on observed data.

1.3. Our Contributions

Our proposed formulation, which we call the divergence

triangle, re-interprets and integrates the following elements

in unsupervised generative learning: (1) maximum likeli-

hood learning, (2) variational learning, (3) adversarial learn-

ing, (4) contrastive divergence, (5) wake-sleep algorithm.

The learning is seamlessly integrated into a probabilistic

framework based on KL divergence.

2. Learning Deep Probabilistic Models

In this section, we shall review the two probabilistic

models, namely the generator model and the energy-based

model, both of which are parametrized by convolutional

neural networks [27, 26]. Then, we shall present the max-

imum likelihood learning algorithms for training these two

models, respectively. Our presentation of the two maximum

likelihood learning algorithms is unconventional. We seek

to derive both algorithms based on the Kullback-Leibler di-

vergence using the same scheme. This will set the stage for

the divergence triangle.

2.1. Generator Model and Energy­based Model

The generator model [12, 37, 25, 38, 33] is a generaliza-

tion of the factor analysis model [39],

z ∼ N(0, Id), x = gθ(z) + ǫ, (1)

where gθ is a top-down mapping parametrized by a deep

network with parameters θ. It maps the d-dimensional latent

vector z to the D-dimensional signal x. ǫ ∼ N(0, σ2ID)
and is independent of z. In general, the model is defined by

the prior distribution p(z) and the conditional distribution

pθ(x|z). The complete-data model pθ(z, x) = p(z)pθ(x|z).
The observed-data model is pθ(x) =

∫

pθ(z, x)dz. The

posterior distribution is pθ(z|x) = pθ(z, x)/pθ(x). See the

diagram (a) below.

Top-down mapping Bottom-up mapping

hidden vector z energy −fα(x)
⇓ ⇑

signal x ≈ gθ(z) signal x
(a) Generator model (b) Energy-based model

A complementary model is the energy-based model [35,

5, 31, 48], where −fα(x) defines the energy of x, and a
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low energy x is assigned a high probability. Specifically,

we have the following probability model

πα(x) =
1

Z(α)
exp [fα(x)] , (2)

where fα(x) is parametrized by a bottom-up deep network

with parameters α, and Z(α) is the normalizing constant. If

fα(x) is linear in α, the model becomes the familiar expo-

nential family model in statistics or the Gibbs distribution in

statistical physics. We may consider πα an evaluator, where

fα assigns the value to x, and πα evaluates x by a normal-

ized probability distribution. See the diagram (b) above.

The energy-based model πα defines explicit log-

likelihood via fα(x), even though Z(α) is intractable.

However, it is difficult to sample from πα. The genera-

tor model pθ can generate x directly by first generating

z ∼ p(z), and then transforming z to x by gθ(z). But it

does not define an explicit log-likelihood of x.

In the context of inverse reinforcement learning [54, 1]

or inverse optimal control, x is action and −fα(x) defines

the cost function or fα(x) defines the value function or the

objective function.

2.2. Maximum Likelihood Learning

Let qdata(x) be the true distribution that generates the

training data. Both the generator pθ and the energy-based

model πα can be learned by maximum likelihood. For large

sample, the maximum likelihood amounts to minimizing

the Kullback-Leibler divergence KL(qdata‖pθ) over θ, and

minimizing KL(qdata‖πα) over α, respectively. The expec-

tation Eqdata
can be approximated by sample average.

2.2.1 EM-type Learning of Generator Model

To learn the generator model pθ, we seek to minimize

KL(qdata(x)‖pθ(x)) over θ. Suppose in an iterative algo-

rithm, the current θ is θt. We can fix θt at any place we

want, and vary θ around θt.
We can write

KL(qdata(x)pθt(z|x)‖pθ(z, x)) =

KL(qdata(x)‖pθ(x)) + KL(pθt(z|x)‖pθ(z|x)). (3)

In the EM algorithm [7], the left hand side is the surrogate

objective function. This surrogate function is more tractable

than the true objective function KL(qdata(x)‖pθ(x)) be-

cause qdata(x)pθt(z|x) is a distribution of the complete

data, and pθ(z, x) is the complete-data model.

We can write (3) as

S(θ) = K(θ) + K̃(θ). (4)

The geometric picture is that the surrogate objective func-

tion S(θ) is above the true objective function K(θ), i.e., S

majorizes (upper bounds) K, and they touch each other at

θt, so that S(θt) = K(θt) and S′(θt) = K ′(θt). The reason

is that K̃(θt) = 0 and K̃ ′(θt) = 0. See Figure 1.

Figure 1. The surrogate S majorizes (upper bounds) K, and they

touch each other at θt with the same tangent.

qdata(x)pθt(z|x) gives us the complete data. Each step

of EM fits the complete-data model pθ(z, x) by minimizing

the surrogate S(θ),

θt+1 = argmin
θ

KL(qdata(x)pθt(z|x)‖pθ(z, x)), (5)

which amounts to maximizing the complete-data log-

likelihood. By minimizing S, we will reduce S(θ) relative

to θt, and we will reduce K(θ) even more, relative to θt,
because of the majorization picture.

We can also use gradient descent to update θ. Because

S′(θt) = K ′(θt), and we can place θt anywhere, we have

−
∂

∂θ
KL(qdata(x)‖pθ(x))

= Eqdata(x)pθ(z|x)

[

∂

∂θ
log pθ(z, x)

]

. (6)

To implement the above updates, we need to compute

the expectation with respect to the posterior distribution

pθ(z|x). It can be approximated by MCMC such as

Langevin dynamics or HMC [34]. Both require gradient

computations that can be efficiently accomplished by back-

propagation. We have learned the generator using such

learning method [13].

2.2.2 Self-critic Learning of Energy-based Model

To learn the energy-based model πα, we seek to minimize

KL(qdata(x)‖πα(x)) over α. Suppose in an iterative algo-

rithm, the current α is αt. We can fix αt at any place we

want, and vary α around αt.

Consider the following contrastive divergence

KL(qdata(x)‖πα(x))−KL(παt
(x)‖πα(x)). (7)

We can use the above as surrogate function, which is more

tractable than the true objective function, since the logZ(α)
term is canceled out. Specifically, we can write (7) as

S(α) = K(α)− K̃(α) (8)

= −(Eqdata [fα(x)]− Eπαt
[fα(x)]) + const.(9)
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The geometric picture is that the surrogate function S(α)
is below the true objective function K(α), i.e., S minorizes

(lower bounds) K, and they touch each other at αt, so that

S(αt) = K(αt), and S′(αt) = K ′(αt). The reason is that

K̃(αt) = 0 and K̃ ′(αt) = 0. See Figure 2.

Figure 2. The surrogate S minorizes (lower bounds) K, and they

touch each other at αt with the same tangent.

Because S minorizes K, we do not have a EM-like up-

date. However, we can still use gradient descent to update

α, where the derivative is

K ′(αt) = S′(αt) = −(Eqdata
[f ′

αt
(x)]− Eπαt

[f ′
αt
(x)]), (10)

where

f ′
αt
(x) =

∂

∂α
fα(x)

∣

∣

∣

αt

. (11)

Since we can place αt anywhere, we have

−
∂

∂α
KL(qdata(x)‖πα(x))

= Eqdata

[

∂

∂α
fα(x)

]

− Eπα

[

∂

∂α
fα(x)

]

. (12)

To implement the above update, we need to compute the

expectation with respect to the current model παt
. It can

be approximated by MCMC such as Langevin dynamics or

HMC that samples from παt
. It can be efficiently imple-

mented by gradient computation via back-propagation. We

have trained the energy-based model using such learning

method [31, 48].

The above learning algorithm has an adversarial inter-

pretation. Updating αt to αt+1 by following the gradient

of S(α) = KL(qdata(x)‖πα(x)) − KL(παt
(x)‖πα(x)) =

−(Eqdata
[fα(x)] − Eπαt

[fα(x)]) + const, we seek to de-

crease the first KL-divergence, while we will increase the

second KL-divergence, or we seek to shift the value func-

tion fα(x) toward the observed data and away from the syn-

thesized data generated from the current model. That is, the

model πα criticizes its current version παt
, i.e., the model

is its own adversary or its own critic.

2.2.3 Similarity and Difference

In both models, at θt or αt, we have S = K, S′ = K ′,

because K̃ = 0 and K̃ ′ = 0.

The difference is that in the generator model, S = K +
K̃, whereas in energy-based model, S = K − K̃.

In the generator model, if we replace the intractable

pθt(z|x) by the inference model qφ(z|x), we get VAE.

In energy-based model, if we replace the intractable

παt
(x) by the generator pθ(x), we get adversarial con-

trastive divergence (ACD). The negative sign in front of K̃
is the root of the adversarial learning.

3. Divergence Triangle: Integrating Adversar-

ial and Variational Learning

In this section, we shall first present the divergence

triangle, emphasizing its compact symmetric and anti-

symmetric form. Then, we shall show that it is an re-

interpretation and integration of existing methods, in par-

ticular, VAE [25, 38, 33] and ACD [23, 6].

3.1. Loss Function

Suppose we observe training examples

{x(i) ∼ qdata(x)}
n
i=1 where qdata(x) is the unknown

data distribution. πα(x) ∝ exp[fα(x)] with energy func-

tion −fα denotes the energy-based model with parameters

α. The generator model p(z)pθ(x|z) has parameters θ and

latent vector z. It is trivial to sample the latent distribution

p(z) and the generative process is defined as z ∼ p(z),
x ∼ pθ(x|z).

The maximum likelihood learning algorithms for both

the generator and energy-based model require MCMC sam-

pling. We modify the maximum likelihood KL-divergences

by proposing a divergence triangle criterion, so that the two

models can be learned jointly without MCMC. In addition

to the generator pθ and energy-based model πα, we also in-

clude an inference model qφ(z|x) in the learning scheme.

Such an inference model is a key component in the vari-

ational auto-encoder [25, 38, 33]. The inference model

qφ(z|x) with parameters φ maps from the data space to la-

tent space. In the context of EM, qφ(z|x) can be considered

an imputor that imputes the missing data z to get the com-

plete data (z, x).
The three models above define joint distributions over z

and x from different perspectives. The two marginals, i.e.,

empirical data distribution qdata(x) and latent prior distri-

bution p(z), are known to us. The goal is to harmonize the

three joint distributions so that the competition and cooper-

ation between different loss terms improves learning.

The divergence triangle involves the following three joint

distributions on (z, x):

1. Q-distribution: Q(z, x) = qdata(x)qφ(z|x).

2. P -distribution: P (z, x) = p(z)pθ(x|z).

3. Π-distribution: Π(z, x) = πα(x)qφ(z|x).

We propose to learn the three models pθ, πα, qφ by the
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Figure 3. Divergence triangle is based on the Kullback-Leibler di-

vergences between three joint distributions of (z, x). The blue

arrow indicates the “running toward” behavior and the red arrow

indicates the “running away” behavior.

following divergence triangle loss functional D

max
α

min
θ

min
φ
D(α, θ, φ),

D = KL(Q‖P ) + KL(P‖Π)−KL(Q‖Π). (13)

See Figure 3 for illustration. The divergence triangle

is based on the three KL-divergences between the three

joint distributions on (z, x). It has a symmetric and anti-

symmetric form, where the anti-symmetry is due to the neg-

ative sign in front of the last KL-divergence and the maxi-

mization over α. The divergence triangle leads to the fol-

lowing dynamics between the three models: (1) Q and P
seek to get close to each other. (2) P seeks to get close

to Π. (3) π seeks to get close to qdata, but it seeks to get

away from P , as indicated by the red arrow. Note that

KL(Q‖Π) = KL(qdata‖πα), because qφ(z|x) is canceled

out. The effect of (2) and (3) is that π gets close to qdata,

while inducing P to get close to qdata as well, or in other

words, P chases πα toward qdata.

3.2. Unpacking the Loss Function

The divergence triangle integrates variational and adver-

sarial learning methods, which are modifications of maxi-

mum likelihood.

3.2.1 Variational Learning

Figure 4. Variational auto-encoder (VAE) as joint minimization

by alternating projection. Left: Interaction between the models.

Right: Alternating projection. The two models run toward each

other.

First, minθ minφ KL(Q‖P ) captures the variational

auto-encoder (VAE).

KL(Q‖P ) = KL(qdata(x)‖pθ(x))

+ KL(qφ(z|x)‖pθ(z|x)), (14)

Recall S = K + K̃ in (4), if we replace the intractable

pθt(z|x) in (4) by the explicit qφ(z|x), we get (14), so that

we avoid MCMC for sampling pθt(z|x).
We may interpret VAE as alternating projection between

Q and P . See Figure 4 for illustration. If qφ(z|x) =
pθ(z|x), the algorithm reduces to the EM algorithm. The

wake-sleep algorithm [17] is similar to VAE, except that it

updates φ by minφ KL(P‖Q) instead of minφ KL(Q‖P ),
so that the wake-sleep algorithm does not have a single ob-

jective function.

The VAE minθ minφ KL(Q‖P ) defines a cooperative

game, with the dynamics that qφ and pθ run toward each

other.

3.2.2 Adversarial Learning

Figure 5. Adversarial contrastive divergence (ACD). Left: Inter-

action between the models. Red arrow indicates a chasing game,

where the generator model chases the energy-based model, which

runs toward the data distribution. Right: Contrastive divergence.

Next, consider the learning of the energy-based model

model [23, 6]. Recall S = K − K̃ in (8), if we replace the

intractable παt
(x) in (8) by pθ(x), we get

min
α

max
θ

[KL(qdata(x)‖πα(x))−KL(pθ(x)‖πα(x))], (15)

or equivalently

max
α

min
θ

[KL(pθ(x)‖πα(x))−KL(qdata(x)‖πα(x))], (16)

so that we avoid MCMC for sampling παt
(x), and the gra-

dient for updating α becomes

∂

∂α
[Eqdata(fα(x))− Epθ

(fα(x))]. (17)

Because of the negative sign in front of the second KL-

divergence in (15), we need maxθ in (15) or minθ in (16),

so that the learning becomes adversarial. See Figure 5 for

illustration. Inspired by [16], we call (15) the adversarial

contrastive divergence (ACD). It underlies [23, 6].

The adversarial form (15) or (16) defines a chasing game

with the following dynamics: the generator pθ chases the

energy-based model πα in minθ KL(pθ‖πα), the energy-

based model πα seeks to get closer to qdata and get away

from pθ. The red arrow in Figure 5 illustrates this chas-

ing game. The result is that πα lures pθ toward qdata.
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Figure 6. Generated samples. Left: generated samples on CIFAR-

10 dataset. Right: generated samples on CelebA dataset.

Figure 7. Generated samples. Left: 32 × 32 ImageNet. Right:

64× 64 LSUN (bedroom).

In the idealized case, pθ always catches up with πα, then

πα will converge to the maximum likelihood estimate

minα KL(qdata‖πα), and pθ converges to πα.

The updating of α by (17) bears similarity to Wasser-

stein GAN (WGAN) [2], but unlike WGAN, fα defines a

probability distribution πα, and the learning of θ is based

on minθ KL(pθ(x)‖πα(x)), which is a variational approx-

imation to πα. This variational approximation only re-

quires knowing fα(x), without knowing Z(α). How-

ever, unlike qφ(z|x), pθ(x) is still intractable, in particu-

lar, its entropy does not have a closed form. Thus, we can

again use variational approximation, by changing the prob-

lem to minθ minφKL(p(z)pθ(x|z)‖πα(x)qφ(z|x)), i.e.,

minθ minφ KL(P‖Π), which is analytically tractable and

which underlies [6]. In fact,

KL(P‖Π) = KL(pθ(x)‖πα(x)) + KL(pθ(z|x)‖qφ(z|x)). (18)

Thus, we can modify (16) into

maxα minθ minφ[KL(P‖Π) − KL(Q‖Π)], because

again KL(Q‖Π) = KL(qdata‖πα).

Fitting the above together, we have the divergence tri-

angle (13), which has a compact symmetric and anti-

symmetric form.

3.3. Training Algorithm

The three models are parameterized by convolutional

neural networks. Algorithm 1 outlines joint learning under

the divergence triangle. In practice we use stochastic gradi-

ent descent and the expectations are replaced by the sample

averages.

Algorithm 1 Joint Training for Divergence Triangle Model

Require:

training images {x(i)}
n
i=1,

number of learning iterations T ,

α, θ, φ← initialized network parameters.

Ensure:

estimated parameters {α, θ, φ},
generated samples {x̃(i)}

ñ
i=1.

1: Let t← 0.

2: repeat

3: {z(i) ∼ p(z)}M̃i=1.

4: {x̃(i) ∼ pθ(x|z(i))}
M̃
i=1.

5: {x(i) ∼ qdata(x)}
M
i=1.

6: {z̃(i) ∼ qφ(z|x(i))}
M
i=1.

7: α-step: Given {x̃(i)}
M̃
i=1 and {x(i)}

M
i=1,

update α← α+ ηα
∂
∂α
D with learning rate ηα.

8: φ-step: Given {(z(i), x̃(i))}
M̃
i=1 and {(z̃(i), x(i))}

M
i=1,

update φ← φ− ηφ
∂
∂φ
D, with learning rate ηφ.

9: θ-step: Given {(z(i), x̃(i))}
M̃
i=1 and {(z̃(i), x(i))}

M
i=1,

update θ ← θ − ηθ
∂
∂θ
D, with learning rate ηθ

(optional: multiple-step update).

10: Let t← t+ 1.

11: until t = T

4. Experiments

The images are resized and scaled to [−1, 1]. The

network parameters are initialized with zero-mean Gaus-

sian with standard deviation 0.02 and optimized using

Adam [24]. Network weights are decayed with rate 0.0005,

and batch normalization [20] is used. The code is available

at https://github.com/enijkamp/triangle.

4.1. Image Generation

4.1.1 Object Generation

For object categories, we test our model on two

commonly-used datasets of natural images: CIFAR-10 and

CelebA [30]. For CelebA face dataset, we randomly se-

lect 9,000 images for training and another 1,000 images for

testing in reconstruction task. The face images are resized

to 64×64 and CIFAR-10 images remain 32×32. The qual-

itative results of generated samples for objects are shown in

Figure 6. We further evaluate our model using quantitative
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Figure 8. Generated samples with 1, 024× 1, 024 resolution drawn from gθ(z) with 512-dimensional latent vector for CelebA-HQ.

Figure 9. High-resolution synthesis from the generator model gθ(z) with linear interpolation in latent space for CelebA-HQ.

Model VAE [25] DCGAN [37] WGAN [2] CoopNet [46] CEGAN [6] ALI [10] ALICE [29] Ours

CIFAR-10 (IS) 4.08 6.16 5.76 6.55 7.07 5.93 6.02 7.23

CelebA (FID) 99.09 38.39 36.36 56.57 41.89 60.29 46.14 31.92

Table 1. Sample quality evaluation. Row 1: inception scores for CIFAR-10. Row 2: FID scores for CelebA.

Model WS [17] VAE [25] ALI [10] ALICE [29] Ours

CIFAR-10 0.058 0.037 0.311 0.034 0.028

CelebA 0.152 0.039 0.519 0.046 0.030

Table 2. Test reconstruction evaluation. Row 1: MSE for CIFAR-

10 test set. Row 2: MSE for 1,000 hold out set from CelebA.

evaluations which are based on the Inception Score (IS) [41]

for CIFAR-10 and Frechet Inception Distance (FID) [32]

for CelebA faces. We generate 50,000 random samples

for the computation of the inception score and 10,000 ran-

dom samples for the computation of the FID score. Table 1

shows the IS and FID scores of our model compared with

VAE [25], DCGAN [37], WGAN [2], CoopNet [47], CE-

GAN [6], ALI [10], ALICE [29].

For the Inception Score on CIFAR-10, we borrowed the

scores from relevant papers, and for FID score on 9,000

CelebA faces, we re-implemented or used available code

with network structures similar to our model. The diver-

gence triangle achieves competitive performance compared

to recent baseline models.

4.1.2 Large-scale Dataset

We also train our model on large scale datasets includ-

ing down-sampled 32 × 32 version of ImageNet [36, 40]

(roughly 1 million images) and Large-scale Scene Under-

stand (LSUN) dataset [49]. For the LSUN dataset, we con-

sider the bedroom, tower and Church ourdoor categories

which contains roughly 3 million, 0.7 million and 0.1 mil-

lion images and were re-sized to 64 × 64. The network

structures are similar with the ones used in object genera-

tion with twice the number of channels and batch normal-

ization is used in all three models. Generated samples are

shown on Figure 7.

4.1.3 High-resolution Synthesis

In this section, we recruit a layer-wise training scheme to

learn models on CelebA-HQ [22] with resolutions of up to

1, 024 × 1, 024 pixels. Layer-wise training dates back to

initializing deep neural networks by Restricted Boltzmann

Machines to overcome optimization hurdles [18, 3]. The

technique has been resurrected in progressive GANs [22],

albeit the order of layer transitions is reversed such that top

layers are trained first. This resembles a Laplacian Pyra-

mid [8] in which images are generated in a coarse-to-fine

fashion.

As in [22], the training starts with down-sampled images

with a spatial resolution of 4×4 while progressively increas-

ing the size of the images and number of layers. All three

models are grown in synchrony where 1 × 1 convolutions

project between RGB and feature. In contrast to [22], we

do not require mini-batch discrimination to increase vari-

ation of gθ(·) nor gradient penalty to preserve 1-Lipschitz

continuity of fα(·).

Figure 8 depicts high-fidelity synthesis in a resolution of

1, 024 × 1, 024 pixels sampled from the generator model

gθ(z) on CelebA-HQ. Figure 9 illustrates linear interpola-

tion in latent space.
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Figure 10. Test image reconstruction. Top: CIFAR-10. Bottom:

CelebA. Left: test images. Right: reconstructed images.

4.2. Test Image Reconstruction

In this experiment, we evaluate the reconstruction ability

of our model for a hold-out testing image dataset. This is a

strong indicator for the accuracy of our inference model.

Specifically, if our divergence triangle model D is well-

learned, then the inference model should match the true pos-

terior of generator model, i.e., qφ(z|x) ≈ pθ(z|x). There-

fore, given test signal xte, its reconstruction x̃te should

be close to xte, i.e., xte

qφ
−→ zte

pθ
−→ x̃te ≈ xte. Fig-

ure 10 shows the testing images and their reconstructions

on CIFAR-10 and CelebA.

For CIFAR-10 we use the 10,000 pre-defined test im-

ages, while for CelebA we use 1,000 hold-out images that

are unseen in training. The reconstruction quality is quan-

titatively measured by per-pixel mean square error (MSE).

Table 2 shows the per-pixel MSE of our model compared to

WS [17], VAE [25], ALI [10], ALICE [29].

4.3. Energy Landscape Mapping

In the following experiment, we evaluate the learned

energy-based model by mapping the macroscopic structure

of the energy landscape. A well-formed energy function

partitions the image space into meaningful Hopfield basins

of attraction [19]. In order to learn such energy-function,

in Algorithm 1, we perform multiple θ-steps such that the

samples {x̃i}
M̃
i=1 are sufficiently “close” to the local min-

ima of −fα(x). Following [14], we map the structure of

the energy function −fα. First, we identify energy minima.

Then, we sort the minima from lowest energy to highest

0 5 10 15 20 25
Minima index

9

8

7

6

5

En
er

gy
Figure 11. Disconnectivity-graph depicting the basin structure of

the energy function for Fashion-MNIST. Each column represents

basins members ordered by energy. Circle size indicates the total

number of basin members. Vertical lines encode minima depth

in terms of energy and horizontal lines depict the lowest known

barrier at which two basins merge.

energy and sequentially group images if the energy barrier

between two minima satisfies some threshold. This process

is continued until all minima have been clustered. Figure 11

depicts a mapping of −fα in the form of a disconnectivity-

graph [44] and suggests that the learned energy function not

only encodes meaningful images as minima, but also forms

meaningful macroscopic structure.

5. Conclusion

We propose a novel probabilistic framework, namely

the divergence triangle, for joint learning of the energy-

based model, the generator model, and the inference model.

The divergence triangle forms a compact learning func-

tional for three models and naturally unifies aspects of

maximum likelihood estimation [13, 47], variational auto-

encoder [25, 38, 33], adversarial learning [23, 6], con-

trastive divergence [15], and the wake-sleep algorithm [17].
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