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Abstract— Model predictive control (MPC) has a proven
track record for delivering robust performance in many chal-
lenging control tasks, however non-linear system dynamics
and non-convex costs can make these problems challenging to
solve. By taking a probabilistic view and using approximate
inference to solve the optimal control problem, we can improve
the exploration of the search space. We use a non-parametric
approximate inference method that finds diverse solutions using
a kernel function. We propose Task-space Kernels which define
similarity between solutions in task-relevant spaces and better
capture spatio-temporal information. This helps us generate
smooth, diverse, and low-cost trajectories for complex robotic
problems. We demonstrate this strategy empirically on two
multi-modal manipulation tasks with a 7DoF robot where our
state, and end-effector space kernels achieve lower average costs
and steps over the baselines.

I. INTRODUCTION

Trajectory optimization and optimal control are
widespread tools for synthesizing robot behaviors [1]–
[3]. Many realistic systems exhibit non-linear dynamics
and costs, such as those for avoiding complex obstacle
geometries, typically leading to non-convex objectives. As
a result, the performance of many optimization methods
is highly dependent on initialization; a poor initialization
can result in trajectories that collide with obstacles in the
environment, or make poor progress toward the goal.

Recently, Stein Variational Model Predictive Control (SV-
MPC) was proposed [4], which uses a variational inference
view of optimal control to propose an algorithm that itera-
tively optimizes a distribution over low-cost controls while
maximizing their diversity. This improves exploration of
search space to give greater robustness to local-minima.

SV-MPC promotes diversity by using a kernel function
that defines the similarity between different solutions and
scales the particles to optimality. The gradient of the kernel
is directly responsible for pushing the control particles apart.
However, SV-MPC only uses variants of the Radial-basis
function kernel which relies on an L2 difference between
solutions. In this paper, we propose using more informative
kernel functions that define diversity in more task-relevant
space to improve control performance.

II. RELATED WORK

Early work framing planning as inference by Attias devel-
oped a message-passing algorithm for planning in discrete
state and action spaces [5]. Since then, methods based on
message-passing have been proposed for solving planning
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Fig. 1: An Episode of Pick and Place task. As depicted, our
method is able to generate diverse collision-free paths, avoiding
the infeasible local-minima, to pick the red target cube.

and control problems [6]–[9]. These methods use linearized
Gaussian messages in cases when exact inference is not
tractable, such as when the dynamics are non-linear.

Another popular class of methods are sample-based meth-
ods such as Model-predictive Path Integral (MPPI) [10]
and the Cross-Entropy Method (CEM) [11]. Sample-based
methods can result in non-smooth control actions; Watson
and Peters propose using a Gaussian Process as the control
sampling distribution [12], and Pinneri et al. proposed using
colored noise [13], both in order to sample smoother control
sequences.

Recently, Variational Inference (VI) has been used for
planning and control as inference [4], [14]–[16]. These
methods approximate a target distribution over trajectories
with a simpler, parameterized distribution which minimizes
the Kullback-Leibler divergence between the approximation
and the target [17]. The performance is very dependent on the
choice of parameterized distribution. Okada and Taniguchi
use a Gaussian mixture [15]. Other recent work has learned a
parameterization from data [18], [19]. Lambert et al. propose
SV-MPC, which uses a particle representation [4]. This
method uses Stein Variational Gradient Descent (SVGD)
[20], which performs gradient descent on the particles to
maximize their likelihood under the target distribution while
also ensuring particle diversity, where diversity is determined
by the choice of an appropriate kernel function. Methods
using SVGD have also been applied to dual control and
parameter identification [16] and constrained trajectory op-
timization [21]. Recent work, developed concurrently with
our approach, has proposed kernels that are specific to
trajectories [22] using path signatures. One key difference
is that our method aims to use Kernels that define diversity
in a different space to the parameter search space.



III. BACKGROUND

We consider the problem of Finite-horizon Stochastic
Optimal Control with states x ∈ Rdx & control u ∈ Rdu. The
trajectories of horizon H are represented as τ = (X,U), with
X = {x1, · · ·xH} and U = {u0, · · ·uH−1}. The controls
U are parameterized by θ, this could be in the form of
a feedback policy ut ∼ πθ(ut|xt), however in this paper
we optimize a parameterization of the open loop controls
ut ∼ πθ(ut|t). Then, for a start state x0, goal state xG

and an arbitrary cost function J , our objective is to find an
optimal θ that minimizes the expected cost Ep(X|U) [J (τ)],
with a known state transition probability p (xt+1 | xt, ut)
corresponding to stochastic dynamics xt+1 ∼ f (xt, ut) +
ϵ , ϵ ∼ N (0, R).

A. Variational Inference for Optimal Control

We formulate SOC as an inference problem, as in [7],
[14], [15], [23], by introducing a binary random variable
O ∈ {0, 1} representing optimality of a trajectory τ such
that p (O = 1 | τ) = exp (−J(τ)). This recasts cost mini-
mization as likelihood maximization. Rather than finding a
single θ that maximizes this likelihood, we aim to compute
the posterior p (θ | O = 1) ∝

∫
p (O = 1 | τ) pθ (τ) p(θ)dτ ,

where

pθ (τ) =

T−1∏
t=0

p(xt+1|xt, ut)πθ(ut|t) (1)

is the distribution over trajectories with parameters θ and
p (θ) is a prior over parameters.

In general, for systems with non-linear f and π, computing
this posterior in closed form is intractable. Instead, we use
Variational Inference to approximate p(θ|O = 1) with a
simpler distribution q∗(θ) chosen from a class of distributions
Q. We find q∗(θ) by minimizing the Kullback-Leibler (KL)
divergence,

q∗(θ) = argmin
q∈Q

DKL (q(θ)∥p (θ|O = 1)) . (2)

We can rewrite the above minimization as

F(q) = −Eq(θ) [log p(θ|O = 1)]−DKL (q(θ)∥p (θ)) (3)
= Epθ(τ)q(θ) [J(τ)]− Eq(θ)[log p(θ)]−H (q(θ)) ,

(4)

which is the variational free energy. We can interpret the first
term in F(q) as promoting low-cost trajectories, the second
term encourages consistency with the prior, and the third
adding entropy to prevent the posterior from collapsing to a
maximum a posteriori (MAP) solution.

B. Stein Variational Model Predictive Control

Choosing the distribution family Q of the candidate dis-
tribution q(θ) is often a difficult task, as we would like
to combine flexibility with tractability. SV-MPC [4] is an
algorithm for performing the minimization in equation (2)
which uses a non-parametric representation for q(θ) using
a variational inference technique called Stein Variational
Gradient Descent (SVGD) [20]. SVGD uses non-parametric

variational posterior q(θ) = 1
N

∑M
i δ(θ − θi), where δ is

the Dirac delta function and M is the number of particles.
In the context of MPC, SVGD updates the set of particles
iteratively via

θk+1
i = θki + ϵϕ∗(θi), (5)

ϕ∗(θi) =
1

n

n∑
j=1

K (θi, θj)∇θj log p (θj |O = 1)+

∇θjK (θi, θj) ,

(6)

where K(·, ·) → R is a positive definite Kernel function, and
ϵ is a step-size parameter. We can understand this update
intuitively as the first term being responsible for maximizing
the log probability of all the particles, and the second term
pushing the particles away from one another to prevent them
from collapsing to the local MAP estimate.

Common choices for the kernel function K(·, ·) are
translation-invariant kernels such as the Radial Basis Func-
tion kernel or the Matérn kernel. Several recent studies
have shown how SVGD is prone to variance collapse and
vanishing repulsive forces during high-dimensional inference
tasks [24]. Thus, choosing a suitable kernel K becomes
important for high dimensional trajectory inference.

IV. METHOD

Our method builds upon the SV-MPC algorithm that
optimizes diverse sets of low-cost solutions to the SOC
problem. However, SV-MPC uses kernel functions to pro-
mote diversity that do not consider the inherent sequential
nature of trajectories, nor the actual task state space X .
In addition, kernels operating on high dimensional inputs,
such as open loop control sequences, are often prone to
diminishing repulsive force between particles. In this paper,
we will illustrate how our approach of working with Task-
space kernels improves VI-MPC performance with trajectory
diversity and offers better, competitive control performance
in manipulation tasks with a 7DoF robot.

A. Parameterization of Smooth Controls

In order to ensure that the control sequences we generate
are smooth, we parameterize them through a set of support
points {θti , ti}Ni=0, with N < H , the horizon. We then
interpolate these support points using an RBF kernel defined
on time. Let KN be the RN×N kernel matrix computed
between all waypoint times {ti}Ni=1, and KNt be the RN

vector with i-th row given by K(ti, t). Then we compute the
control at time t as

ut = hθ(t) = KT
NtK−1

N θN , (7)

where θN is the RN×du matrix of waypoints. The control
sampling distribution ut ∼ πθ(u|t) is given by ut ∼ hθ(t)+
ω, ω ∼ N (0,Σ).



B. Distance Metrics and Task-space Kernels
One of the most commonly used kernels used in SVGD

is the RBF Kernel

K(θj , θ) = exp(− 1

h
∥θj − θ∥2)

where for an optimization step with M particles, h is the
kernel bandwidth. We follow prior work and use the median
heuristic to choose the kernel bandwidth [25]

h =
med(∥θj − θ∥2)
2 logM + 1

a) Factorized kernels: As previously mentioned, the
gradient of the kernel which provides the repulsive forces
can be very small during high-dimensional inference tasks.
Lambert et al. [4] factorizes θ and consider a kernel that is
the sum of kernels on the factors. We take a similar approach
with a sliding window of size W

Kfact(θi, θj) =
1

N −W

N−W∑
k

K(θk:k+W
i , θk:k+W

j ) (8)

b) Task-space kernels: Rather than use the L-2 norm
in θ, we propose using a generalization of the RBF kernel
as follows

K(g(θj), g(θ)) = exp(− 1

h
d(g(θj), g(θ)))

where g(θ) is a differentiable, deterministic function, and
d is a distance metric. g maps θ into a different space in
which we calculate the distance. We propose mapping θ to
the sequence of states X in order to calculate distance, as this
more explicitly encourages exploration of the state space. To
make the mapping deterministic, we use the deterministic
parts of the dynamics and control parameterization, f and
h. By appropriately composing f and h we can compute
X = g(θ). This is because part of our stochastic state
transition function that gives xt+1 = f(xt, θt) + ϵ. With
such a formulation, we can work directly with deterministic
X as a function of parameters θ [26] to have a generalized
task-space kernel as

K(Xi, Xj) = exp(− 1

h
d(Xi, Xj)))

If the state space x consists of a robot configuration we use
forward kinematics to map to a task-space pose (p,R). In
addition to mapping θ to the state-space, we can additionally
map θ to other tasks relevant spaces.

c) Metrics for SE(3).: When defining a kernel on poses
we must define a distance metric for SE(3). Consider two
rotations (Ri,Rj ∈ SO(3)) and the end-effector position
(pi, pj ∈ R3). For pi, pj , we use L-2 distance. However,
for our 3D rotations (Ri,Rj), we use the following distance
function from [27] that respects both the axioms of a valid
metric and the inherent topology of SO(3):

ϕ : SO(3)× SO(3) → R
[
0, 2

√
2
]

ϕ(R1,R2) = ∥I−R1R2
T ∥F

To calculate an overall pose distance we combine the
position and rotation distances via

dpose(pi,Ri, pj ,Rj) = αϕ(Ri,Rj)
2 + β||pi − pj ||22, (9)

where α, β ∈ R.
d) Fréchet Metric: In order to compute more informa-

tive distances between two paths in state or pose space, we
use the Fréchet distance, a popular approach for measuring
similarity between finite curved paths [28]. It measures the
gap between the two most distant points for a pair of paths
given the best alignment of points along the path with their
pairs. This idea of working with the most distant point in
an optimal path alignment makes this metric extract features
that are both spatial and temporally relevant. It has also been
applied successfully in a wide range of trajectory analysis,
classification, and optimization problems [29], [30].

In practice, we work with the discrete Fréchet distance
(DFD) [31] which is defined for trajectories X,Y ∈ RH×dx

and the set A of all of their possible alignments as

DFrechet(X,Y ) = min
A∈A

max
(i,j)∈A

d(xi, yj),

where d : Rd ×Rd → R is a distance metric between the
path vectors, typically the L-2 norm, but for paths in SO(3),
it could be also be replaced by a metric such as ϕ. The
above formulation is computed via dynamic programming
in O(H2) time. Note also the non-smoothness within this
formulation that hinders differentiability of a kernel in SVGD
that uses metric as d(·, ·). To account for this, we’ll utilize
the smooth maximum (LogSumExp) defined as LSE(x)i =
logΣj(xij) for approximating the min, max operations in
the DFD as follows, with γ as the smoothening sensitivity.

DSF(X,Y ) = −γLSE(−ϕmax

γ
),

where, ϕmax = γLSE(d(xi, yj)/γ). This is a similar
approach to the method discussed in [32]. It is also useful to
discuss ∇DFrechet as we are required to take the gradient
of the kernel ∇(·, ·) that uses this metric. The analytical
negative gradient of the DFD points us towards the furthest
point on our reference path. A step in this direction moves
our maximum deviation point on the candidate path closer
to the reference one, thus decreasing the distance.

C. Stein Variational MPC with Task-space Kernels

In this section, we will present our Task-Space Kernels that
build upon the previous Stein MPC [4] framework to improve
performance by optimizing low-cost, smooth and diverse
trajectories in high-dof, multi-modal robot manipulation
problems. We utilize the metrics discussed in the previous
section to formulate a range of trajectory kernels through
which we incorporate useful spatio-temporal information into
efficient inference for planning. We first use two kernels



(a) Reaching Task (b) Pick and Place Task

Fig. 2: End effector paths visualized with the Task-space kernels:
Left setup with KFEE and Right setup with Kq .
Reach task has three tall obstacles that the Robot has to move its
end-effector around the narrow gaps to reach the goal in the center.
Pick and place task consists of a table with a slab in the middle and
a target cube placed on one side. The objective here is to reach the
cube while avoiding obstacle contact, perform the picking maneuver
and plan again to the dropping position across the table.

defined on the state space

Kq(Xi, Xj) = exp(− 1

h
d(Xi, Xj)) (10)

KFq(Xi, Xj) = exp(− 1

h
DSF (Xi, Xj)). (11)

Kq uses the L-2 distance, whereas KFq uses the smooth
Fréchet distance. We also define two kernels in the end-
effector pose space. Consider pose trajectories Pi, Pj ∈
SE(3)

H , we have

KEE(Pi, Pj) =
1

H

H∑
k

exp(− 1

h
dpose(P

k
i , P

k
j )) (12)

KFEE(Pi, Pj) = exp(− 1

h
DSF (Pi, Pj)). (13)

KEE is a kernel on pairs of poses. KFEE uses the smooth
Fréchet distance, and inside the calculation uses the pose dis-
tance, ϕ, between pairs of poses. Now, with the kernels and
the trajectory representation discussed above, we can adapt
to the SV-MPC framework to have a kernelized sequential
update to the Bayesian MPC posterior. We consider the rela-
tive probabilistic weights of our particles as approximation of
the posterior and choose the highest weighted one (θt = θi∗)
to get the next control action ut+1.

V. RESULTS AND DISCUSSION

Here we evaluate our proposed kernels on two tasks
with a 7DoF robot manipulator. The system’s state space
is the robot’s joint configuration q ∈ R7. Controls are
the joint actions q̇ given by Euler integration as qt+1 =
qt + q̇dt and dt = 0.67. We also compare our method to
MPPI, representing the state-of-the-art sampling-based SOC
methods, and SV-MPC, the method that we build upon. All
algorithms were written in PyTorch and the GPU-accelerated
IsaacSim was used for parallel computation of rollouts and
visualization. All hyper-parameters for the controllers are
kept the same wherever possible to minimize variance of
experimental setup.

The tasks in Fig 2 are configured to have natural local-
minima traps, with the deceiving optimal trajectory at the
side of the obstacles further from the robot. There is inherent
multi-modality throughout the reach task while the second

task is challenging due to its pose constraints for picking
and placing and the need for long-horizon planning with
obstacles.

We observe that in both tasks, all the kernel-based SV-
MPC methods complete the task successfully and outperform
MPPI, with lower costs although sometimes at the expense
of slightly more steps. For the reach task, as we note from
Table I, our pose kernels (KFEE ,KEE) and state kernels
(Kq,KFq) perform the reaching maneuver with lower aver-
age cost and within competent steps. We attribute this success
to their behavior of generating a diverse spread of low-cost
trajectories that converge to collision-free sets quite early.

Table II shows results when evaluating our kernel methods
on the pick and place task. Once again, we observe that our
proposed kernels outperforms MPPI. MPPI either collided
with the slab, struggled to discover the feasible mode or
timed out trying to stabilize the gripper over the target cube.

The Frechet kernel in EE-pose space KFEE had the
overall best performance in terms of lower nominal trajectory
cost and steps taken for both the sub-tasks. The EE-state
space kernel Kq completed the goal maneuver more often
than all other methods, only with slightly higher number of
steps and accumulated cost.

These were closely followed by the rest of the task-space
kernels (KFq,KEE) that were just as competent, if not better,
than the baseline SV-MPC factorized kernel. MPPI on the
other hand struggled to find the other modes and had poor
trajectories that often collapsed close to the slab, or over the
target locations.

TABLE I: Performance and comparison against baselines for the
two tasks. We report both the average and the standard deviation
of cost and steps taken to success. Table I shows results for the
reaching task while Table II below reports results for the pick and
place tasks, as shown in Fig. 2. We evaluate with 10 randomly
sampled start configurations of the robot.

Method SR Cost µ(σ) Steps µ(σ)
MPPI
Kfact

Kq

KEE

KFq

KFEE

80
100
100
100
100
100

84.9 (74.9)
30.6 (3.7)
28.7 (3.5)
30.4 (3.4)
30.7 (3.9)
28.3 (2.3)

61.8 (8.6)
84.3 (6.2)
86.8 (15.5)
82.3 (7.1)
85.2 (12.1)
77.7 (11.2)

Method SR Cost µ(σ) Steps µ(σ)
Picking Placing Picking Placing

MPPI
Kfact

Kq

KEE

KFq

KFEE

-
70
85
80
80
70

-
96.8 (12.1)
108.1 (12.3)
98.4 (9.3)
98.9 (9.1)
99 (11.4)

-
49.6 (9.1)
47.5 (11.4)
55.3 (9.5)
51.7 (23.6)
42.7 (12.4)

-
233.6 (30.1)
219.1 (27.1)
233.6 (10)
224.6 (22.8)
194.7 (34.9)

-
184.9 (21.2)
189.9 (43.8)
213.3 (24.4)
176.8 (29.6)
161.9 (28.1)

TABLE II: In both the tables, SR is Success Rate %age accross
the trials, Kfact is the factorized kernel from SV-MPC, while the
rest of the methods are our task-space kernels.

For future work, we plan to extend our task-space kernel
framework with more sophisticated methods that are topolog-
ically able to capture path diversity for planning in cluttered,
multi-modal robotic environments. Finally, we would like
to thank the members of the ARM lab for their helpful
discussions and insights.
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[28] M. M. Fréchet, “Sur quelques points du calcul fonctionnel,” Rendiconti
del Circolo Matematico di Palermo (1884-1940), vol. 22, no. 1, pp.
1–72, 1906.

[29] E. Sriraghavendra, K. Karthik, and C. Bhattacharyya, “Fréchet distance
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polygonal curves,” International Journal of Computational Geometry
& Applications, vol. 5, no. 01n02, pp. 75–91, 1995.

[32] K. Takeuchi, M. Imaizumi, S. Kanda, Y. Tabei, K. Fujii, K. Yoda,
M. Ishihata, and T. Maekawa, “Fréchet kernel for trajectory data
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