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ABSTRACT

Wasserstein distributionally robust optimization (WDRO) optimizes against
worst-case distributional shifts within a specified uncertainty set, leading to en-
hanced generalization on unseen adversarial examples, compared to standard ad-
versarial training which focuses on pointwise adversarial perturbations. However,
WDRO still suffers fundamentally from the robust overfitting problem, as it does
not consider statistical error. We address this gap by proposing a novel robust
optimization framework under a new uncertainty set for both adversarial noise
(Wasserstein distance) and statistical error (Kullback-Leibler divergence). Our
theoretical analysis establishes that out-of-distribution adversarial performance is
at least as good as the in-distribution robust performance with high probability.
Furthermore, we derive conditions under which Stackelberg and Nash equilibria
exist between the learner and the adversary. Finally, through extensive experi-
ments, we demonstrate that our method significantly mitigates robust overfitting
and enhances robustness within the framework of WDRO.

1 INTRODUCTION

Optimization in machine learning is often challenged by data ambiguity caused by natural noise, ad-
versarial attacks (Goodfellow et al., 2014), or other distributional shifts (Malinin et al., 2021; 2022).
To develop robust models against data ambiguity, Wasserstein Distributionally Robust Optimization
(WDRO) (Kuhn et al., 2019) has emerged as a powerful modeling framework, which has attracted
significant attention recently attributed to its connections to generalization and robustness (Lee &
Raginsky, 2018; An & Gao, 2021; Mohajerin Esfahani & Kuhn, 2018).

Specifically, WDRO optimizes performance under the most adversarial distribution within a certain
Wasserstein distance from the observed empirical distribution Dn, as shown below.

inf
θ∈Θ

sup
D′:D′∈U(Dn)

ED′ [L(θ, z)]. (1)

Here U(Dn) = {D′ : Wp(Dn,D′) ≤ ε} is the ambiguity set consisting of all possible distributions
of interest, and L(·, ·) is the loss function. From both intuitive and theoretical perspectives, WDRO
can be considered as a more comprehensive framework that subsumes and extends adversarial train-
ing (Staib & Jegelka, 2017; Sinha et al., 2017; Bui et al., 2022; Phan et al., 2023). In contrast to
standard adversarial training (Madry et al., 2017), WDRO operates on a broader scale by perturb-
ing the entire data distribution rather than pointwise adversarial samples. This approach inherently
promotes generalization to unseen adversarial examples.

However, we find that WDRO still suffers fundamentally from the same robust overfitting phe-
nomenon as standard adversarial training (Rice et al., 2020). This phenomenon observed in our
experiment manifests as a degradation in adversarial robustness on test data after a certain point in
the training process, typically occurring shortly after the first learning rate decay (refer to Figure 2).

A primary factor contributing to overfitting behavior is the inherent statistical error arising from finite
sampling of train data (Van Parys et al., 2021; Bennouna & Van Parys, 2022). This error, defined
as the discrepancy between the empirical distribution of the training data and the true underlying
data distribution, manifests as a gap between empirical and population risk. Consequently, models
optimized via traditional empirical risk minimization (ERM) may perform well on training data but
generalize poorly to unseen samples. Although the recent literature (Lam, 2019; Van Parys et al.,
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2021; Bennouna & Van Parys, 2022) has acknowledged the significance of statistic error in robust
optimization frameworks, its incorporation into WDRO remains an unexplored avenue.

To address these issues, we propose a novel ambiguity set obtained by combining Kullback-Leibler
divergence and Wasserstein distance, which is called statistically robust WDRO (SR-WDRO). We
prove that the statistically robust WDRO formulation guarantee an upper bound on the adversarial
test loss for any desired robustness and any loss function. Furthermore, We formalize the statistically
robust WDRO as a zero-sum game between the learner (decision maker), who chooses a model
parameter θ ∈ Θ, and the adversary who chooses a distribution from an ambiguity set, and we
derive conditions under which Stackelberg and Nash equilibria exist between the learner and the
adversary.

Finally, building upon our theoretical framework, we introduce a novel and practical statistically
robust loss training algorithm for neural networks, which incurs negligible additional computational
burden compared to standard adversarial training or distributionally robust training. We conduct
extensive experiments on benchmark datasets, which show that our proposed approach demonstrates
superior efficacy in mitigating overfitting compared to existing training methodologies, in that our
approach maintains performance on in-distribution data while substantially improving robustness to
out-of-distribution samples, thus mitigating the critical challenge in generalization.

The theoretical and practical contributions of this paper are summarized as follows:

• We propose statistically robust WDRO based on our novel ambiguity set to mitigate robust
overfitting in WDRO.

• Theoretically, we prove that the adversarial test loss can be upper bounded by the statisti-
cally robust training loss with high probability. We also establish the conditions necessary
for the existence of Stackelberg and Nash equilibria between the learner and the adversary.

• We introduce a practical adversarial training algorithm based on statistically robust WDRO
which maintains computational efficiency.

• We conduct extensive evaluations on benchmark datasets and our results show that the sta-
tistically robust WDRO approach effectively mitigates robust overfitting and outperforms
other existing robust methods in terms of adversarial robustness.

2 RELATED WORKS

Robust Overfitting. The phenomenon of robust overfitting has been a focal point in the field of
adversarial machine learning. The seminal work by Rice et al. (2020) brought this issue to the
forefront, demonstrating that after a certain point in standard adversarial training, i.e., shortly af-
ter the first learning rate decay, the robust performance on test data will continue to degrade with
further training. Notably, conventional overfitting remedies such as explicit regularization and data
augmentation do not improve performance beyond early stopping. Schmidt et al. (2018) attributed
robust overfitting to sample complexity theory and suggested that more training data are required
for adversarial robust generalization. This assertion is supported by empirical results in subsequent
studies (Schmidt et al., 2018; Zhai et al., 2019). Recent works also proposed various strategies to
mitigate robust overfitting without relying on additional training data by sample re-weighting (Zhang
et al., 2020; Wang et al., 2019), adversarial weight perturbation (Wu et al., 2020), weight smoothing
(Chen et al., 2020), favoring large loss data (Yu et al., 2022), and considering the memorization ef-
fect (Dong et al., 2022; Wang et al., 2024). In our work, we will introduce the statistically robustness
into WDRO to mitigate overfitting theoretically and practically.

WDRO. WDRO has recently received significant attention in the context of adversarial training
(Staib & Jegelka, 2017; Wong et al., 2019; Sinha et al., 2017; Bui et al., 2022; Phan et al., 2023).
Unlike standard adversarial training (Madry et al., 2017), which defends against attacks by bounding
the perturbation to each individual data point, WDRO provides protection by imposing a bound on
the average perturbation constrained by Wasserstein distance applied on the entire data distribution.
This distinction positions WDRO as a more holistic approach to handling adversarial perturbations
and generalizes better than adversarial training on unseen data samples (Bui et al., 2022). How-
ever, despite this advantage, WDRO remains vulnerable to the same robust overfitting phenomenon
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Figure 1: Illustration of our SR-WDRO. The adversarial perturbations are quantified using Wasser-
stein distance between Dn and D̂. The adversarial distribution is then compared with the test distri-
bution Dtest using Kullback-Leibler divergence, which accounts for the statistical error.

observed in standard adversarial training, primarily due to its lack of consideration for statistical
error.

Recently, Bennouna & Van Parys (2022); Bennouna et al. (2023) proposed a DRO formulation
using an ambiguity set combining Kullback-Leibler divergence and Levy-Prokhorov metric in an
attempt to protect against corruption and statistical errors. In the absence of data poisoning, their
framework effectively reduces to improving standard adversarial training with statistical robustness.
However, our approach diverges significantly. We leverage the inherent advantages of WDRO as
our foundation and then augment it with statistical robustness to mitigate robust overfitting, which
enables our framework to achieve superior performance against adversarial perturbations.

3 PRELIMINARIES

Notations. Let Z ⊂ Rm be a compact nonempty set equipped with metric d(· , ·) and diam(Z) =
sup{d(z, z′) : z, z′ ∈ Z} the diameter of Z which is finite. The class of Borel probability measures
onZ is denoted byP(Z). For simplicity, we denote Eµ[f(z)] as the expectation of f(z) with z ∼ µ.

Definition 1 (p-th Wasserstein metric). For p ≥ 1, the p-th Wasserstein metric between µ, ν ∈ P(Z)
is

Wp(µ, ν) := inf
π∈Π(µ,ν)

{
E(z,z′)∼π [d

p(z, z′)]
} 1

p

where the infimum is taken over all coupling of µ and ν, i.e. probability measure π on the product
space Z × Z with given marginals µ and ν.

Definition 2 (KL divergence). Kullback-Leibler (KL) divergence between µ, ν ∈ P(Z) is

KL(µ, ν) :=

∫
Z
p(z) log

p(z)

q(z)
dz

where p(z), q(z) are probability density functions of µ, ν, respectively.

Wasserstein metric is a function defined between two probability distributions, which represents the
cost of an optimal mass transportation plan. Kullback-Leibler divergence measures the difference
between two probability distributions, quantifying how one distribution diverges from a reference
distribution. We additionally consider the Levy-Prokhorov (LP) metric and the total variation metric
(TV). The Levy-Prokhorov metric is theoretically important because weak convergence of probabil-
ity distribution is equivalent to the convergence in the Levy-Prokhorov metric. In Appendix A.1, we
establish the relationship among these probability discrepancies.

4 STATISTICALLY ROBUST WDRO

In Section 4.1, we first present the definition and game-theoretic description of SR-WDRO. Sub-
sequently, in Section 4.2, we demonstrate that models trained with statistically robust loss achieve
asymptotic out-of-distribution generalization while guarding against statistical error and adversarial
noise. Finally, in Section 4.3 we examine the existence of Stackelberg and Nash equilibria under
some assumptions.
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4.1 STATISTICALLY ROBUST WDRO AND GAME DESCRIPTION

We perform stochastic optimization with respect to an unknown data distribution D, given access
only to an empirical distribution Dn, where n is the observed finite sample size. The goal of distri-
butionally robust optimization is to learn a robust model from Dn that will perform well on unseen
test distribution Dtest, which may either be the true data distribution D or more likely distributions
shifted from D in practice. Our work focuses primarily on distribution shifts caused by adversarial
attacks.

The WDRO constructs an ambiguity set based on the empirical distribution Dn, and optimizes per-
formance under the most adversarial distribution within a certain Wasserstein distance from Dn as
shown in Eq (1). However, previous WDRO methods still suffer fundamentally from the robust
overfitting phenomenon. To mitigate this issue, we incorporate the Kullback-Leibler (KL) diver-
gence in WDRO, specifically aiming to reduce statistical error caused by training on finite samples,
a brief illustration is shown in Figure 1.

Our SR-WDRO can be interpreted as a novel combination of Kullback-Leibler divergence and
Wasserstein distributional robust optimizations. We consider the ambiguity set:

U(Dn) := {D′ ∈ P(Z) : ∃D′′ ∈ P(Z) s.t. Wp(Dn,D′′) ≤ ε, KL(D′′,D′) ≤ γ} (2)

where the desired protection against adversarial noise is controlled by the adversarial budget ε and
statistical error is accounted by the statistical budget γ(γ > 0).

Now we can formulate this robust optimization problem as a zero-sum game between the learner
who chooses a decision model θ ∈ Θ and an adversary who chooses a distribution D′ from the
ambiguity set U(Dn). Let L(θ, z) be the loss function (e.g. cross-entropy loss). Our game model is
as follows:

• The adversary chooses a distribution D′ ∈ U(Dn), aiming to maximize the loss
ED′ [L(θ, z)].

• The learner selects a decision model θ ∈ Θ, aiming to minimize the loss ED′ [L(θ, z)].

We introduce the statistically robust WDRO (SR-WDRO) problem:

inf
θ∈Θ

sup
D′∈U(Dn)

ED′ [L(θ, z)] (3)

and denote the statistically robust loss as:

Lε,γ(θ,Dn) := sup
D′∈U(Dn)

ED′ [L(θ, z)]. (4)

4.2 CERTIFIED GENERALIZATION

In this subsection, we will show that the model trained with statistically robust loss Lε,r(θ,Dn) en-
joys the asymptotic out of distribution generalization guarantee and safeguards against the statistical
error and adversarial noises simultaneously. Proofs are provided in Appendix A.2.

Theorem 3 (Generalization certificate). LetD be the true data distribution, andDn be the observed
empirical distribution sampled i.i.d. from D. Then for all ε > 0, let δ = ( ε

diam(Z)+1 )
p, we have

P
(
∀θ ∈ Θ,ED[L(θ, z)] ≤ Lε,γ(θ,Dn)

)
≥ 1− e−γn

(
4

δ

)m(Z,δ)

(5)

where m(Z, δ) := min{k ≥ 0 : ∃ξ1, · · · , ξk ∈ Z, s.t. ∪ki=1 B(ξi, δ) ⊇ Z} is the internal covering
number of the support set Z .

In the proof of Theorem 3, we in fact prove that the true distribution D can be in the ambiguity set
U(Dn) with high probability. Compared to the results in (Bennouna & Van Parys, 2022), the bound
we derived elucidates the dependency on parameters ε and γ, and the internal covering number is
directly related to ε. Unlike classical statistical learning, our bounds do not depend on the dimension
of the parameter space Θ but rather on the internal covering number of the sample space Z . The
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result is uniform in that the probability approaches 1 for any θ when the sample size n is sufficiently
large.

We extend our analysis to consider adversarial robustness, wherein the test distribution D is subject
to adversarial perturbations. We formalize this scenario by introducing an adversarial transformation
M, defined as:

M : z → argmax
z′∈B(z;ϵ)

L(θ, z′)

where B(z; ϵ) := {z′ ∈ Z|d(z, z′) ≤ ε}, denotes the ϵ-ball around z under metric d. This trans-
formation maps each test input to its worst-case adversarial example within the ϵ-neighborhood.
LetM#D denote the pushforward measure of D underM, representing the distribution of adver-
sarial examples generated from D. And the expected loss under this adversarial distribution can
be expressed as: EM#DL(θ, z) = ED[maxz′∈B(z;ϵ) L(θ, z

′)]. Our main result establishes a high-
probability bound on the test adversarial loss:
Theorem 4 (Robustness certificate). Let D be the true data distribution, Dn the empirical distribu-
tion sampled i.i.d. from D, and δ = ( σ

diam(Z)+1 )
p for any σ > 0. Then

P
(
∀θ ∈ Θ,ED[ max

z′∈B(z;ϵ)
L(θ, z′)] ≤ Lε+σ,γ(θ,Dn)

)
≥ 1− e−nγ

(
4

δ

)m(Z,δ)

(6)

where m(Z, δ) := min{k ≥ 0 : ∃ξ1, · · · , ξk ∈ Z, s.t. ∪ki=1 B(ξi, δ) ⊇ Z} denote the internal
covering number of the support set Z .

From Theorem 4, we observe that ensuring ε-robustness on the test set typically needs a larger attack
budget ε+σ during training. However, according to Theorem 3, an excessively large training budget
may impede generalization for benign data. These findings align with previous experimental results
on adversarial training (Tsipras et al., 2018; Andriushchenko & Flammarion, 2020).
Remark 5 (Comparison with Standard WDRO). From a theoretical perspective, our framework
differs from standard WDRO in both the assumptions required and the form of the generalization
bounds. Specifically, the generalization bounds in (Azizian et al., 2024) rely on additional assump-
tions about the loss function, such as Lipschitz continuity and boundedness, which are not required
in our framework. Furthermore, the form of the generalization bounds in our framework is fun-
damentally different from those of WDRO. Our bound provides a stronger guarantee, where the
probability of failure (i.e., the complement of the confidence level) decays exponentially with the
sample size n. Importantly, this rate of decay is directly influenced by the γ.

WDRO’s bound (Theorem 3.1 in (Azizian et al., 2024)):

P{ED[L(θ, z)] ≤ Lε,0(θ,Dn)} ≥ 1− δ,

where ε msut satisfy O(
√

1+log 1/δ
n ) ≤ ε ≤ εc

2 − O(
√

1+log 1/δ
n ), and εc is a constant depending

only on loss function and D (computing needs the dual form of WDRO).
Remark 6 (Intrinsic Dimensionality and Cover Number). To ensure the bound on the right-hand
side is meaningful, the condition γ > m(Z, δ) · log(4/δ)/n must hold. While this condition may
seem strong due to the exponential dependency on the dimensionality of the sample space Z , the
cover number is not excessively large in practice because the intrinsic dimensionality of the sample
space is often much lower than its ambient dimension. For instance, the intrinsic dimensionality of
MNIST is around 13, CIFAR-10 approximately 26, and ImageNet between 26 and 43 (Facco et al.,
2017; Pope et al., 2021). Our theory can leverage this intrinsic dimensionality instead of the ambient
dimension, making the condition more practical.

4.3 NASH EQUILIBRIUM AND STACKELBERG EQUILIBRIUM

As mentioned in Section 4.1, the statistically robust WDRO problem (3) constitutes a zero-sum
game. In this subsection, we show that Stackelberg equilibrium exists under natural assumptions and
Nash equilibrium exists under more assumptions. The detailed definitions of the game equilibrium,
along with the proofs for this section, are provided in the Appendix A.4.

We need the following assumptions on the loss function.
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Assumption 7 (Loss function).

i) For any θ ∈ Θ, the loss function L(θ, z) is non-negative and upper semi-continuous in z.

ii) For any z ∈ Z , the loss function L(θ, z) is lower semi-continuous in θ.

iii) For any θ ∈ Θ, there exist c > 0, ẑ0 ∈ Z and k ∈ (0, p) such that L(θ, z) ≤ c[1 + dk(z, ẑ0)]
for all z ∈ Z .

Assumptions (i) and (ii) regarding the continuity of the loss function are common and are satisfied
by neural network models, and assumption (iii) is necessary for the existence of the maximum in
(4). The following proposition establishes that the inner maximization problem is solvable, which is
the key gradient required to prove the existence of Stackelberg and Nash equilibrium.

Proposition 8. The ambiguity set U(Dn) := {D′ ∈ P(Z) : ∃D′′ ∈ P(Z) s.t. Wp(Dn,D′′) ≤
ε, KL(D′′,D′) ≤ γ} is compact inP(Z) with respect to weak topology. If Assumption 7 is satisfied,
then the supremum in (4) is finite and can be attained for any θ ∈ Θ.

Stackelberg game: We also consider a threat model in which the adversary has full knowledge of
the learner’s actions before determining its own strategy. We can model our SR-WDRO problem (3)
as a zero-sum Stackelberg game between the leader (decision-maker) who chooses a decision model
θ ∈ Θ at first, and the follower (adversary) who chooses a distribution D′ from the ambiguity set
U(Dn) after observing the leader’s action. As a corollary of Proposition 8, we can give the existence
of Stackelberg equilibrium.

Theorem 9 (Stackelberg Equilibrium). If Assumption 7 holds and Θ is compact, then the game
exists a Stackelberg equilibrium. i.e. there exists (θ∗,D′∗(θ∗)) such that

θ∗ ∈ argmin
θ∈Θ

max
D′∈U(Dn)

ED′ [L(θ, z)], D′∗(θ∗) ∈ argmax
D′∈U(Dn)

ED′ [L(θ∗, z)].

In addition with the convexity of L(θ, z) in θ, we can prove the existence of Nash equilibrium.

Theorem 10 (Minimax Theorem). If Assumption 7 holds, Θ is convex, and L(θ, z) is convex in θ
for any z ∈ Z , then

min
θ∈Θ

max
D′∈U(Dn)

ED′ [L(θ, z)] = max
D′∈U(Dn)

min
θ∈Θ

ED′ [L(θ, z)]. (7)

We thus have established the existence for the Stackelberg and Nash equilibria of the SR-WDRO
problem (3), viewed as a zero-sum game between the learner and the adversary. And the existence
of Stackelberg equilibrium is first considered in this paper. It can be observed that the Stackelberg
equilibrium requires weaker conditions to exist than the Nash equilibrium and gives the smallest
statistically robust loss among all decision models. Our result significantly extends the scope of
WDRO theory and tackles a substantially more complex and general formulation compared with
previous work (Shafieezadeh-Abadeh et al., 2023).

5 COMPUTATIONALLY TRACTABLE REFORMULATION OF SR-WDRO

Having established the robustness certificate and equilibrium existence of SR-WDRO, we now turn
our attention to practical methods for solving the optimization problem defined in Equation (3). We
first show that the inner maximization problem (4) can be simplified to a minimization problem.
Next, we apply our previous results to classification tasks and provide an approximate algorithm to
solve the robust loss statistic effectively.

Proposition 11 (Strong duality). Lε,γ(θ,Dn) in (4) admits the dual formulation for all γ > 0:

Lε,γ(θ,Dn) = inf
λ,β≥0

η≥max
z∈Z

L(θ,z)

{λεp + EDn
[φ(λ, β, η, z)]} (8)

where φ(λ, β, η, z) = sup
ξ∈Z
{β log β

η−L(θ,ξ) + (γ − 1)β + η − λdp(z, ξ)}.

6
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Algorithm 1 Statistically Robust WDRO Training
Input: Training set Sn, number of iterations T , batch size N , learning rate ηθ, ηλ, adversary pa-
rameters: attack budget ε, steps K, step size η.
Output: Robust model θ.

1: for t = 1 to T do
2: Sample a mini-batch {(xi, yi)}Ni=1 ∈ Sn
3: Find UDR adversarial examples {xa

i }Ni=1:
4: (1) x0

i = xi + δ where δ ∼ Uniform(−ε, ε)
5: (2) for k = 1 to K:
6: (a) xinter

i = xk−1
i + ηsign(∇xL(θ,

(
xk−1
i , yi

)
))

7: (b) xk
i = xinter

i − ηλ∇xd̂(x
inter
i , xi)

8: (3) Clip to valid range: xa
i = clip(xK

i , 0, 1)

9: Update parameter λ: λ← λ− ηλ

(
ε− 1

N

∑N
i=1 d̂X (xa

i , xi)
)

10: Compute optimal weights {pi}Ni=1 in problem (9)
11: Update model parameter: θ ← θ − ηθ∇θLε,r (θ; {(xi, yi)}ni=1)
12: end for

In contrast, the dual reformulation for classical WDRO only involves λ and takes the expectation of
the implicit function supξ∈Z{L(θ, ξ)−λdp(z, ξ)} with respect toDn. The additional variables β, η
are introduced to account for the KL divergence.

However, directly solving the statistically robust loss through either (4) or (8) is intractable in prac-
tice. In the remainder of this section, we will primarily focus on applying results to classification
tasks and provide a finite reformulation to solve the statistically robust loss approximately.

In classification tasks, it is often intuitive to restrict adversarial perturbations solely to input samples
(feature vectors). We present an adaptation of existing results to such scenarios. Let Z = (X,Y ) ∈
X × R, where X ∈ X ⊂ R(m−1) represents input data, and Y ∈ R+ denotes a label. In the
classification settings, Y ∈ {1, ...,K}. We consider an adversary capable of perturbing only the
input samples X . This constraint can be elegantly incorporated into our robust formulation by
defining the Wasserstein cost function d : Z×Z → R+ as follows. For z = (x, y) and z′ = (x′, y′),
we introduce the sample-shift cost function:

d(z, z′) = dX (x, x′) +M · 1{y ̸= y′}

where dX is the distance (like Lp norm) on X and we assume that M is a very large positive number
to prevent label conversion.

Now we revisit the statistically robust loss:

Lε,γ(θ,Dn) = sup
D′∈U(Dn)

ED′ [L(θ, z)]

= sup {sup {ED′ [L(θ, z)] : D′,KL (Q,D′) ≤ γ} : Q,Wp(Dn,Q) ≤ ε} .

Intuitively, we start with the empirical distribution Dn and identify the most adversarial sample
distribution that satisfies the Wasserstein distance constraint. Then, within the KL divergence con-
straint, similar to (Bennouna et al., 2023), we adjust the sample weights to find the sample distribu-
tion that maximizes the final loss. To identify the most adversarial sample distribution, we employ
the UDR method (Bui et al., 2022), which leverages the dual formulation of WDRO. In order to
match this method, we set p = 1 in our framework. This approach constructs a new Wasserstein
cost function to search for adversarial samples that incorporate both local and global information, in
contrast to Adversarial Training that considers only local information for each sample.

7
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For any given training data (sub)set {zi = (xi, yi)}ni=1, we can compute the statistically robust loss
Lε,γ(θ) approximately as

Lε,γ(θ, {(xi, yi)}ni=1) =



max
∑n

i=1 piL (θ, (x′
i, yi))

s.t.

x′
i ∈ argmaxx′

i
L(θ, (x′

i, yi))− λd̂X (x′
i, xi)

p ∈ Rn
+,
∑n

i=1 pi = 1,
q ∈ Rn

+, qi =
1
n ∀i = 1, · · · , n,

KL(q||p) =
∑n

i=1 qi log
(

qi
pi

)
≤ γ.

(9)

The λ comes from the dual formulation of WDRO and is a learnable parameter in UDR, and

d̂X (x, x′) := 1 {dX (x, x′) < ε} dX (x, x′) + 1 {dX (x, x′) ≥ ε}
(
ε+

dX (x, x′)− ε

τ

)
where τ > 0 is the temperature to control the growing rate of the cost function when x′ goes out of
the perturbation ball.

The statistically robust loss is therefore in essence simply a re-weighting of adversarial loss. De-
termining the statistically robust loss exactly requires evaluating the adversarial loss L(θ, z′) where
the adversarial example is computed through the WDRO method (Bui et al., 2022), subsequently
solving the exponential cone problem with n variables and constraints. This optimization can be
efficiently executed using standard solvers. The more details are shown in Algorithm 1.

6 EXPERIMENTS

In this section, we investigate the efficacy of our SR-WDRO training through extensive experiments
on the CIFAR-10 and CIFAR-100 datasets. We will show that our approach largely circumvents
the robust overfitting phenomenon experienced by WDRO and achieves better adversarial robust-
ness than other robust methods. Our codes are available at the following anonymous repository:
https://anonymous.4open.science/r/SR-WDRO-3F78.

We compare our method with PGD-AT (Madry et al., 2017) and distributional robust methods:
UDR-AT (Bui et al., 2022), HR training (Bennouna et al., 2023). We train ResNet-18 (He et al.,
2016) with 200 epochs, and use SGD as the optimizer with learning rate decay by 0.1 at the epoch
100 and 150. For all methods, we implement adversarial training with {k = 10, ε = 8/255, η =
2/255} where k is the iteration number, ε is the attack budget and η is the step size. We use different
attacks to evaluate the defense methods, including: 1) PGD-10 with {k = 10, ε = 8/255, η = ε/4},
2) PGD-200 with {k = 200, ε = 8/255, η = ε/4}, 3) Auto-Attack (AA) (Croce & Hein, 2020)
with ε = 8/255, which is an ensemble method of four different attacks. The l∞-norm is used for all
measures. Unless otherwise specified, we set γ = 0.1 to its default value. The ablation study on γ
is provided in latter part. All the experiments we repeated three times for different seeds. The more
training details are provided in Appendix A.6.

Mitigating robust overfitting. First, we present the adversarial loss and adversarial accuracy on
the test set over the 200 training epochs for different methods in Figure 2. It can be observed that
the UDR method, similar to standard AT, suffers from severe robust overfitting. This is particularly
evident in the adversarial loss on the test set, which increases sharply when robust overfitting occurs.
Both HR and our SR-WDRO effectively mitigate this issue and our method demonstrates superior
robust test accuracy. Furthermore, in Table 1, we report the best robust test accuracy and the final
robust test accuracy throughout the training process for different methods. The gap between these
two metrics is the smallest in our method, indicating that our approach mitigates robust overfitting
more effectively. Additionally, our method remains consistently effective across different attack
budgets as shown in Table 3 in the Appendix A.6.

As another popular adversarial defense strategy, TRADES (Zhang et al., 2019) also exhibits over-
fitting tendencies, albeit to a lesser extent compared to PGD-AT. Our proposed approach effectively
mitigates overfitting when applied to UDR-TRADES, as illustrated in Table 4 in Appendix A.6.

Robustness for smaller ε. Theorem 4 shows that to ensure robustness on the test set, it is generally
necessary to employ a larger attack budget during training compared to testing. In this experiment,
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Figure 2: Comparison of SR-WDRO against other robust training methods on CIFAR10 (ε =
8/255). Left: Robust test accuracy. Right: Robust test loss. Our method (green) demonstrates
competitive performance in both metrics, particularly in mitigating robust overfitting and higher ro-
bust test accuracy.

Robust Methods Nat Robust Test Acc (%)

Final Best Diff

CIFAR-10

PGD-AT 84.80 ± 0.14 45.16 ± 0.19 52.91 ± 0.11 7.75 ± 0.17
UDR-AT 83.87 ± 0.26 46.60 ± 0.27 53.23 ± 0.30 6.63 ± 0.57

HR 83.95 ± 0.32 47.32 ± 0.59 51.23 ± 0.25 3.90 ± 0.47
Ours 83.34 ± 0.16 48.58 ± 0.21 51.95 ± 0.19 3.36 ± 0.06

CIFAR-100

PGD-AT 57.42 ± 0.28 21.87 ± 0.20 29.37 ± 0.20 7.50 ± 0.35
UDR-AT 56.20 ± 0.54 22.07 ± 0.12 29.35 ± 0.02 7.28 ± 0.10

HR 56.69 ± 0.43 21.15 ± 0.20 28.35 ± 0.30 7.20 ± 0.49
Ours 56.71 ± 0.08 23.09 ± 0.20 28.95 ± 0.29 5.86 ± 0.50

Table 1: Performance of different methods on CIFAR-10 and CIFAR-100 using a ResNet-18 for
l∞ with budget 8/255. We use PGD-10 as the attack to evaluate robust performance. Nat is the
natural test accuracy. The “Best” Robust Test Acc is the highest robust test accuracy achieved
during training whereas the “Final” Robust Test Acc is last epoch’s robust accuracy. Best scores are
highlighted in boldface.

we examine the robustness generalization by attacking different robust methods with smaller attack
budget than the training attack budget while keeping other parameters of PGD attack the same. The
results of this experiment are shown in Table 2. Our method consistently improves robustness for
a smaller test adversarial budget. This empirical observation corroborates the findings of Theorem
4, indicating that our approach provides superior generalization guarantees for test set robustness
when the training attack budget marginally exceeds that used during testing.

Different choice of γ. Figure 3 illustrates the effect of varying values of statistical error γ in our
framework on mitigating robust overfitting. We observe that larger γ values demonstrate reduced
overfitting tendencies, particularly evident in the loss curves. However, excessively large γ leads to
a decrease in natural test accuracy, which drops from 84.8%(γ = 0) to 80.4%(γ = 0.2). Conse-
quently, we default to γ = 0.1 as a trade-off between robust overfitting mitigation and natural test
accuracy preservation.

9
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ε 8/255 6/255 4/255

PGD-200 AA PGD-200 AA PGD-200 AA

PGD-AT 42.86± 0.27 41.62± 0.25 54.14± 0.18 53.30± 0.19 65.76± 0.03 65.18± 0.13
UDR-AT 44.59± 0.27 42.81± 0.24 55.29± 0.18 53.80± 0.06 66.04± 0.34 64.92± 0.24

HR 45.27± 0.52 41.99± 0.38 56.66± 0.30 53.70± 0.24 67.38± 0.16 65.09± 0.24
Ours 46.79 ± 0.11 44.06 ± 0.32 57.57 ± 0.53 55.09 ± 0.46 67.56 ± 0.34 65.76 ± 0.31

Table 2: Robustness evaluation on CIFAR-10 using ResNet-18 for l∞ under different attack budget
ε. The adversarial training budget is set to be 8/255 consistently. We use stronger attacks such as
PGD-200 and Auto-Attack.

Figure 3: Impact of statistical error γ on mitigating overfitting in our method. Experiments con-
ducted on CIFAR10 with ε = 8/255. Left: Robust test accuracy. Right: Robust test loss.

7 CONCLUSIONS

In this paper, we introduce SR-WDRO, a novel approach to address the challenge of robust over-
fitting in WDRO. Our method combines Kullback-Leibler divergence and Wasserstein distance to
create a new ambiguity set, providing theoretical guarantees that adversarial test loss can be upper
bounded by the statistically robust training loss with high probability and establishing conditions for
Stackelberg and Nash equilibria between the learner and adversary. We developed a practical train-
ing algorithm based on this framework, which maintains computational efficiency comparable to
standard adversarial training methods (less than 12% more time). Extensive experiments on bench-
mark datasets demonstrated that SR-WDRO effectively mitigates robust overfitting and achieves
superior adversarial robustness compared to existing approaches. Our work contributes both theo-
retical insights and practical advancements to the field of robust machine learning. The proposed
method offers a promising direction for developing more reliable and robust models in the face of
distributional shifts.

Limitations and future works. Our SR-WDRO mitigates robust overfitting and improves robust
accuracy compared to existing methods, although compromises with some natural accuracy drop
and slight computational overhead. Due to the intractability of Equations (4) and (8), a better ap-
proximation is welcome to solve the robust statistical loss to mitigate the compromise of natural
accuracy and computational cost. Furthermore, we mainly focus on supervised learning in this pa-
per, expanding SR-WDRO to broader tasks including unsupervised learning, regressive tasks is a
promising direction.
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A APPENDIX

A.1 RELATIONSHIP BETWEEN DIFFERENT DISCREPANCIES

We first introduce Levy-Prokhorov and total variation metrics. Then we will establish relationships
among the four metrics: the Wasserstein metric, Levy-Prokhorov metric, total variation metric, and
KL divergence.

Definition 12. The Levy-Prokhorov metric between µ, ν ∈ P(Z) is:

LP(µ, ν) := inf {τ > 0 | µ(A) ≤ ν(Aτ ) + τ ∀A ∈ B(Z)}

where Aτ = {z ∈ Z : infz′∈A d(z, z′) ≤ τ}.
Definition 13. The total variation distance between any µ, ν ∈ P(Z) is:

TV(µ, ν) = inf {τ > 0 | µ(A) ≤ ν(A) + τ ∀A ∈ B(Z)} .

The KL divergence (relative entropy) has some basic properties: (1) KL(µ, ν) ≥ 0, which equal to
0 if and only if µ = ν; (2) KL is not symmetric and does not satisfy the triangle inequality.

Here, we give some relationships between these discrepancies.

Proposition 14. For any µ, ν ∈ P(Z), the Wasserstein metric and Levy-Prokhorov metric satisfy:

LP(µ, ν)
p+1
p ≤Wp(µ, ν) ≤ (diam(Z) + 1)LP(µ, ν)

1
p .

Proof. For any joint distribution π on random variables X,Y ,

Eπ[d
p(X,Y )] ≤ τp · P(d(X,Y ) ≤ τ) + diam(Z)p · P(d(X,Y ) > τ)

≤ τp + (diam(Z)p − τp) · P(d(X,Y ) > τ).

If LP(µ, ν) ≤ τ(τ ∈ [0, 1]), we can choose a coupling of µ and ν so that P(d(X,Y ) > τ) is upper
bounded by τ (Huber, 1981). Then we have:

Eπ[d
p(X,Y )] ≤ τp + (diam(Z)p − τp)τ ≤ τ(diam(Z)p + 1).

Take the infimum of both sides over coupling, we have:

Wp(µ, ν) = inf
π
(Eπ(d

p(X,Y ))
1
p ≤ (τ(diam(Z)p + 1))

1
p ≤ τ

1
p (diam(Z) + 1).

In order to bound Levy-Prokhorov metric by Wasserstein metric, choose τ such that Wp(µ, ν) =

τ
p+1
p , and use Markov’s inequality. We have

P(d(X,Y ) > τ) = P(dp(X,Y ) > τp) ≤ 1

τp
Eπ[d

p(X,Y )] ≤ τ

where π is any joint distribution on X × Y . Then by Strassen’s theorem (Huber, 1981, Theorem
3.7), P(d(X,Y ) > τ) ≤ τ is equivalent to µ(A) ≤ ν(Aτ ) + τ for all Borel set A ∈ B(Z), which
means LP(µ, ν) ≤ τ , thus

LP(µ, ν)
p+1
p ≤Wp(µ, ν).

Proposition 15. For any µ, ν ∈ P(Z), the Wasserstein metric, total variation metric and KL diver-
gence satisfy:

Wp(µ, ν) ≤ diam(Z) · TV(µ, ν)
1
p ≤ diam(Z) ·

(
KL(µ, ν)

2

) 1
2p

.

Proof. The total variation distance is equivalent to W1(µ, ν) with the optimal transport cost
d(z, z′) = I(z ̸= z′) by definition, where I is the indicator function. As d(z, z′) ≤ diam(Z) · I(z ̸=
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z′), we have:

Wp(µ, ν) = inf
π∈Π(µ,ν)

{
E(z,z′)∼π [d

p(z, z′)]
} 1

p

≤ inf
π∈Π(µ,ν)

{
E(z,z′)∼π [diam(Z)p · I(z ̸= z′)]

} 1
p

= diam(Z) inf
π∈Πµ,ν)

{
E(z,z′)∼π [I(z, z′)]

} 1
p

= diam(Z) · TV(µ, ν)
1
p .

And the second part is by Pinsker’s inequality that TV(µ, ν) ≤
√

1
2KL(µ, ν).

A.2 PROOFS OF THEOREMS 3 AND 4

In this subsection, we prove formally Theorem 3 and Theorem 4. The goal is to show that our
SR-WDRO training loss is an upper bound on the test loss with high probability.

Lemma 16. Let Dn be the observed empirical distribution of n independent samples with true
distribution D on a compact space Z . Then for all ε > 0, let δ = ( ε

diam(Z)+1 )
p. We have

P
(
∃D′ ∈ P(Z), Wp(Dn,D′) ≤ ε, KL(D′,D) ≤ γ

)
≥ 1− e−γn

(
4

δ

)m(Z,δ)

where m(Z, δ) := min{k ≥ 0 : ∃ξ1, · · · , ξk ∈ Z, s.t. ∪ki=1 B(ξi, δ) ⊇ Z} denote the internal
covering number of the support set Z .

Proof. We have:

P
(
∃D′ ∈ P(Z), Wp (Dn,D′) ≤ ε, KL (D′,D) ≤ γ

)
= P

(
Dn ∈

{
D̂ ∈ P(Z) : ∃D′ ∈ P(Z) s.t. Wp(D̂,D′) ≤ ε, KL(D′,D) ≤ γ

})
= 1− P (Dn ∈ A)

where A is defined as: Ac =
{
D̂ ∈ P(Z) : ∃D′ ∈ P(Z) s.t. Wp(D̂,D′) ≤ ε, KL (D′,D) ≤ γ

}
.

Let Aδ = {D′ ∈ P(Z) : LP (D′, D′′) ≤ δ,D′′ ∈ A} is the δ-inflation of the set A with respect
to the LP metric. Denote BLP (D′) = {D′′ ∈ P(Z) : LP (D′, D′′) ≤ δ} the LP ball, which is
compact as LP is continuous in the weak topology and Z is compact (Prokhorov, 1956).

Dembo (2009) have established that for any set A ⊂ P(Z) and δ > 0 we have for all n ≥ 1 the
upper bound:

P (Dn ∈ A) ≤ mLP(A, δ) exp
(
−n inf

D′∈Aδ
KL (D′,D)

)
where mLP(A, δ) = min{k ≥ 0 : ∃D1 · · · Dk ∈ A s.t.

⊔k
i=1 BLP (Di, δ) ⊃ A} is the internal

covering number of set A with LP balls of radius δ. Furthermore, we can upper bound the internal
covering number of any set A in terms of the internal covering number of the compact event Z as
mLP(A, δ) ≤ mLP(P(Z), δ) ≤ (4/δ)m(Z,δ) for all δ > 0 (Dembo, 2009). Hence, we have:

P (Dn ∈ A) ≤ (4/δ)m(Z,δ) · exp
(
−n min

D′∈Aδ
KL (D′,D)

)
.

The final inequality immediately leads to conclusion by remarking that D′ ∈ Aδ ⇒ KL (D′,D) >
γ. Otherwise, suppose that there exists D′′ ∈ Aδ with KL (D′′,D) ≤ γ. By definition of Aδ ,
there exists D′ ∈ A such that LP(D′′,D′) = LP(D′,D′′) ≤ δ. And by Proposition 14, we
have Wp (D′,D′′) ≤ (diam(Z) + 1)LP(D′,D′′)

1
p = ε, so we have both Wp (D′,D′′) ≤ ε and

KL (D′′,D) ≤ γ, which implies that D′ ∈ Ac, it is a contradiction.
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Proof of Theorem 3 We restate the theorem below. Let Dn be the observed empirical distri-
bution which may be corrupted, and D be the true data distribution. Then for all ε > 0, let
δ = ( ε

diam(Z)+1 )
p, we have

P
(
∀θ ∈ Θ,Lε,γ(θ) ≥ ED[L(θ, z)]

)
≥ 1− e−γn

(
4

δ

)m(Z,δ)

(10)

where m(Z, δ) := min{k ≥ 0 : ∃ξ1, · · · , ξk ∈ Z, s.t. ∪ki=1 B(ξi, δ) ⊇ Z} denote the internal
covering number of the support set Z .

Proof. Recall that the ambiguity set is U(Dn) := {D′ : ∃D′′ ∈ P(Z) s.t. Wp(Dn,D′′) ≤
ε, KL(D′′,D′) ≤ γ}. By Lemma 16 we can ensure the ambiguity set U(Dn) contains the true
distribution D with high probability:

P (D ∈ U(Dn)) ≥ 1− e−γn

(
4

δ

)m(Z,δ)

.

It follows that

P

(
sup

D′∈U(Dn)

ED′ [L(θ, z)] ≥ ED[L(θ, z)],∀θ ∈ Θ

)
≥ 1− e−γn

(
4

δ

)m(Z,δ)

. (11)

To facilitate our analysis on test adversarial distribution, we introduce the Levy-Prokhorov (LP)
metric given by (Bennouna et al., 2023), LPε is defined as:

LPε (D,D′) := inf

{∫
1 (d(z, z′) > ε) dπ (z, z′) : π ∈ Π(D,D′)

}
. (12)

Proof of the Theorem 4 We restate the theorem below. LetD be the true data distribution,Dn the
empirical distribution sampled i.i.d. from D, and δ = ( σ

diam(Z)+1 )
p for any σ > 0. Then

P
(
∀θ ∈ Θ,ED[ max

z′∈B(z;ϵ)
L(θ, z′)] ≤ Lε+σ,γ(θ,Dn)

)
≥ 1− e−nγ

(
4

δ

)m(Z,δ)

(13)

where m(Z, δ) := min{k ≥ 0 : ∃ξ1, · · · , ξk ∈ Z, s.t. ∪ki=1 B(ξi, δ) ⊇ Z} denote the internal
covering number of the support set Z .

Proof. We consider the adversarial test distribution M#D, where M map every input z to
argmaxz′∈B(z;ϵ) L(θ, z

′). It is clear that M#D ∈ {D′ ∈ P(Z) : LPε(D,D′) ≤ 0}. Accord-
ing to Lemma 16, we have that for δ = ( σ

diam(Z)+1 )
p:

P
(
∃D′ ∈ P(Z), Wp(Dn,D′) ≤ σ, KL(D′,D) ≤ γ

)
≥ 1− e−γn

(
4

δ

)m(Z,δ)

.

Let us denote here U ′
σ,γ,ε(Dn) := {D′

test : ∃D′,D′′ ∈ P(Z) s.t. Wp(Dn,D′) ≤ σ, KL(D′,D′′) ≤
γ, LPε(D′′,D′

test) ≤ 0}, by the definition ofM#D, we have

P
(
M#D ∈ U ′

σ,r,ε(Dn)
)
≥ 1− e−γn

(
4

δ

)m(Z,δ)

.

It follows immediately that:

P

(
sup

D′
test∈U ′

σ,γ,ε(Dn)

ED′
test

[L(θ, z)] ≥ EM#D[L(θ, z)],∀θ ∈ Θ

)
≥ 1− e−γn

(
4

δ

)m(Z,δ)

.

And we have
EM#DL(θ, z) = ED[ max

z′∈B(z;ϵ)
L(θ, z′)].
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It remains to show that supD′
test∈U ′

σ,γ,ε(Dn) ED′
test

[L(θ, z)] ≤ Lε+σ,γ(θ,Dn) for all θ. We have

sup
D′

test∈U ′
σ,γ,ε(Dn)

ED′
test

[L(θ, z)]

= sup
D′:Wp(Dn,D′)≤σ

sup{ED′
test

[L(θ, z)] : ∃D′′,D′
test s.t. KL(D′,D′′) ≤ γ, LPε(D′′,D′

test) ≤ 0}

(1)
= sup

D′:Wp(Dn,D′)≤σ

sup{ED′
test

[L(θ, z)] : ∃D′′,D′
test s.t. LPε(D′,D′′) ≤ 0, KL(D′′; ,D′

test) ≤ γ}

= sup{ED′
test

[L(θ, z)] : ∃D′,D′′ s.t. Wp(Dn,D′) ≤ σ,LPε(D′,D′′) ≤ 0, KL(D′′; ,D′
test) ≤ γ}

(2)
≤ sup{ED′

test
[L(θ, z)] : ∃D′,D′′ s.t. Wp(Dn,D′) ≤ σ,Wp(D′,D′′) ≤ ε, KL(D′′; ,D′

test) ≤ γ}
(3)
≤ sup{ED′

test
[L(θ, z)] : ∃D′ s.t. Wp(Dn,D′) ≤ ε+ σ, KL(D′,D′

test) ≤ γ}
≤ Lε+σ,γ(θ,Dn).

The first equality follows from Lemma C.3 in (Bennouna et al., 2023), the second inequality is clear
as under LPε constraint we have d(z, z′) ≤ ε for any z, z′ almost surely. The third inequality
follows from the triangle inequality.

A.3 GENERAL DISTRIBUTIONAL SHIFTS

Our framework is indeed applicable to a variety of distributional shifts, not limited to the adversarial
example distributions we focus on. This includes other shifts such as those encountered in domain
generalization. If the distance between the test distribution and the original data distribution remains
within certain bounds, we can still provide generalization guarantees. Here we assume that

Dtest ∈ {D′ ∈ P(Z) : LPε(D,D′) ≤ 0},
where ε > 0 is the adversarial budget and LPε is defined in equation 12. Here, we consider a
more general scenario where potential shifts might include corruptions or other variations, resulting
in discrepancies between test samples and true samples. This formulation allows us to address a
broader range of distributional shifts beyond just adversarial examples. Similar to Theorem 4, we
have:
Theorem 17. Let D be the true data distribution, Dn the empirical distribution sampled i.i.d. from
D, Dtest the test distribution as defined above, and δ = ( σ

diam(Z)+1 )
p for σ > 0. Then

P
(
∀θ ∈ Θ,EDtest [L(θ, z)] ≤ Lε+σ,γ(θ,Dn)

)
≥ 1− e−nγ

(
4

δ

)m(Z,δ)

(14)

where m(Z, δ) := min{k ≥ 0 : ∃ξ1, · · · , ξk ∈ Z, s.t. ∪ki=1 B(ξi, δ) ⊇ Z} denote the internal
covering number of the support set Z .

A.4 PROOFS FOR SECTION 4.3

In this subsection, we first give the definition of Nash equilibrium and Stackelberg equilibrium, then
we provide the detailed proof of the existence of two game equilibrium.

Here we consider two player zero sum game, let the strategy spaces of player 1 and player 2 be X
and Y , respectively. Their utility functions are denoted by u1(x, y) and u2(x, y), where x ∈ X is
the strategy of player 1, and y ∈ Y is the strategy of player 2. In a zero-sum game, u1(x, y) =
−u2(x, y).
Definition 18 (Nash Equilibrium). A Nash equilibrium is a pair of strategies (x∗, y∗) such that
neither player can improve their payoff by unilaterally changing their strategy, given the strategy of
the other player.

u1(x
∗, y∗) ≥ u1(x, y

∗), ∀x ∈ X; u1(x
∗, y∗) ≤ u1(x

∗, y), ∀y ∈ Y.

In a Stackelberg game, one player (the leader) moves first, and the other player (the follower) ob-
serves the leader’s action before selecting their own strategy. Let player 1 be the leader and player 2
be the follower.
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Definition 19 (Stackelberg Equilibrium). A Stackelberg equilibrium is a pair of strategies
(x∗, y∗(x∗)), where x∗ is the leader’s optimal strategy and y∗(x∗) is the follower’s best response
given the leader’s strategy.

1. Follower’s best response: y∗(x) = argmaxy∈Y u2(x, y)

2. Leader’s optimal strategy: x∗ = argmaxx∈X u1(x, y
∗(x)).

Thus, the Stackelberg equilibrium consists of the leader’s strategy x∗, which maximizes the leader’s
payoff, and the follower’s response y∗(x∗), which is the best response to x∗.

Proof of Proposition 8: (Restate) The ambiguity set U(Dn) := {D′ ∈ P(Z) : ∃D′′ ∈
P(Z) s.t. Wp(Dn,D′′) ≤ ε, KL(D′′,D′) ≤ γ} is compact in P(Z) with respect to weak topology.
And if the loss function satisfies Assumption 7, then the supremum in (4) is finite and can be attained
for any θ ∈ Θ.

Proof. Firstly, we prove U(Dn) is closed. Assume that any sequence {Di}∞i=1 ⊂ U(Dn) weakly
converges to D0. We will show that D0 ∈ U(Dn), which is equivalent to U(Dn) is closed. By
definition of U(Dn), for each i, there exists D̂i such that Wp(Dn, D̂i) ≤ ε, KL(D̂i,Di) ≤ γ. We
aim to show that such D̂0 also exist for the limit D0, preserving the Wasserstein and KL constraints.

The set {D′′ ∈ P(Z) : Wp(Dn,D′′) ≤ ε} is compact in the weak topology of P(Z), as the
Wasserstein ball is compact with respect to weak convergence. Therefore, from the sequence D̂i,
we can extract a subsequence {D̂ij}∞j=1 that converges weakly to some distribution D̂0, and by the

compactness of the Wasserstein ball, D̂0 satisfies: Wp(Dn, D̂0) ≤ ε. Here, we abuse the notation
and still denote the subsequence as {D̂i}∞i=1.

Next, we use the lower semicontinuity property of the Kullback-Leibler (KL) divergence with re-
spect to weak convergence. Since KL(D̂i,Di) ≤ γ for all i, and D̂i → D̂0 weakly and Di → D0

weakly, we apply the lower semicontinuity of the KL divergence to conclude:

KL(D̂0,D0) ≤ lim inf
i→∞

KL(D̂i,Di) ≤ γ.

Thus, the limit point D0 of the sequence {Di}∞i=1 satisfies the conditions:

∃D̂0 ∈ P(Z) s.t. Wp(Dn, D̂0) ≤ ε and KL(D̂0,D0) ≤ γ,

which implies that D0 ∈ U(Dn). Therefore, U(Dn) is closed with respect to the weak topology.

Then we prove that U(Dn) is subset of a larger Wasserstein ball, as any weak closed subset
of a weakly compact set is weakly compact, we can prove U(Dn) is weak compact. For any
D′ ∈ U(Dn), there exists D′′ ∈ P(Z) such that Wp(Dn,D′′) ≤ ε and KL(D′′,D′) ≤ γ. By
Proposition 15, we have Wp(D′′,D′) ≤ diam(Z)(γ/2)

1
2p , then we have that Wp(Dn,D′′) ≤ ε and

Wp(D′′,D′) ≤ diam(Z)(γ/2)
1
2p , thus Wp(Dn,D′) ≤ ε + diam(Z)(γ/2)

1
2p , which means that

U(Dn) ⊂ BWp

(
Dn, ε+ γ · diam(Z)(γ/2)

1
2p

)
.

Next, we show the supremum in (4) is finite. As U(Dn) ⊂ BWp
(Dn, ε+ γa · dpmin(Z)), it is clear

that:
sup

D′∈U(Dn)

ED′ [L(θ, z)] ≤ sup
D′∈BWp(Dn, ε+γa·dp

min(Z))
ED′ [L(θ, z)].

The supremum on the right side of the above inequality is finite by (Yue et al., 2022, Theorem 2),
which applies Assumption 7 (iii) and Dn has a finite p-th moment. Thus the supremum have a finite
upper bound.

It remains to be shown that supremum in (4) can be attained. We know that the objective func-
tion supD′∈U(Dn) ED′ [L(θ, z)] is weak upper semi-continuous in D′ over the ambiguity set U(Dn).
This follows immediately from the proof of (Yue et al., 2022, Theorem 3), which reveals that
supD′∈U(Dn) ED′ [L(θ, z)] is weak upper semi-continuous over BWp (Dn, ε+ γa · dpmin(Z)). As
U(Dn) is weak compact, Weirestrass’s theorem the guarantees the supremum in (4) is indeed at-
tained for any θ.
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Proof of the Stackelberg Equilibrium (Theorem 9) (Restate) If the loss function satisfies As-
sumption 7 and we assume Θ is compact, the game exists a Stackelberg equilibrium. i.e. there
exists

θ∗ ∈ arg inf
θ∈Θ

sup
D′∈U(Dn)

ED′ [L(θ, z)], D′∗(θ∗) ∈ arg sup
D′∈U(Dn)

ED′ [L(θ∗, z)].

Proof. By Proposition 8, for any θ, the supremum in 4 can be attained, that is, there exists a
best response D′∗(θ) ∈ argmaxD′∈U(Dn) ED′ [L(θ∗, z)] for any θ, for simplicity we can as-
sume D′∗(θ) is unique since the supremum is unique. We consider the minimization problem:
infθ∈Θ ED′∗(θ)[L(θ, z)]. Furthermore, the expected loss objective EZ∼D′ [L(θ, z)] inherits lower-
semicontinuity in θ from the loss function L(θ, z). Specifically, lower semi-continuity holds because

lim inf
θn→θ

EZ∼D′ [L (θn, Z)] ≥ EZ∼D′ lim inf
θn→θ

[L(θ, z)] ≥ EZ∼D′ [L(θ, z)],

then we have
lim inf
θn→θ

ED′∗(θ) [L (θn, Z)] ≥ ED′∗(θ)[L(θ, z)]

and by definition of best response:

lim inf
θn→θ

ED′∗(θn) [L (θn, Z)] ≥ lim inf
θn→θ

ED′∗(θ) [L (θn, Z)] ,

thus we have
lim inf
θn→θ

ED′∗(θn) [L (θn, Z)] ≥ ED′∗(θ)[L(θ, z)],

which means the function infθ∈Θ ED′∗(θ)[L(θ, z)] is lower-semi continuous on θ. Finally, since Θ
is compact, the minimization problem infθ∈Θ ED′∗(θ)[L(θ, z)] has a solution θ∗.

Proof of the Minimax Theorem 10 (Restate) If the loss function satisfies Assumption 7 holds, Θ
is convex, and L(θ, z) is convex in θ for any z ∈ Z , then we have

min
θ∈Θ

max
D′∈U(Dn)

ED′ [L(θ, z)] = max
D′∈U(Dn)

min
θ∈Θ

ED′ [L(θ, z)]. (15)

Proof. We will verify the conditions of Sion’s minimax theorem (Sion, 1958). First, we show that
the ambiguity set U(Dn) is convex. Assume that D1,D2 ∈ U(Dn). Then there exist D̂i(i =

1, 2) ∈ P(Z) such that Wp(Dn, D̂i) ≤ ε, KL(D̂i,Di) ≤ γ. As KL-divergence is convex, for any
λ ∈ [0, 1], we have

KL(λD̂1 + (1− λ)D̂2, λD1 + (1− λ)D2) ≤ λKL(D̂1,D1) + (1− λ)KL(D̂2,D2) ≤ γ.

And for Wasserstein we have

Wp(Dn, λD̂1 + (1− λ)D̂2) ≤ λWp(Dn, D̂1) + (1− λ)Wp(Dn, D̂2) ≤ ε.

Let D′′ = λD̂1+(1−λ)D̂2, which means λD1+(1−λ)D2) ∈ U(Dn). Now we have Θ is convex
and U(Dn) is convex and weak compact by proposition 8.

Furthermore, the expected loss objective EZ∼D′ [L(θ, z)] inherits convexity and lower-
semicontinuity in θ from the loss function L(θ, z). Specifically, lower semi-continuity holds because

lim inf
θn→θ

EZ∼D′ [L (θn, Z)] ≥ EZ∼D′ lim inf
θn→θ

[L(θ, z)] ≥ EZ∼D′ [L(θ, z)].

These inequalities leverage two key properties. The first inequality follows from Fatou’s lemma for
random variables with uniformly integrable negative parts, a property guaranteed by Assumption 7
(i) that loss function is non-negative. The second inequality exploits the lower semi-continuity of
the loss function L(θ, ·) in θ, as established in Assumption 7 (ii).

Finally, it is readily verified that the objective function EZ∼D′ [L(θ, z)] is concave (in fact, linear)
and weakly upper semi-continuous inD′. This follows directly from the proof of Proposition 8. This
analysis establishes that all the conditions of Sion’s minimax theorem are satisfied. Consequently,
the infimum and supremum in Equation (7) can be interchanged.

It remains to show that both maxima in (7) are reached. However, this follows immediately from the
weak compactness of U(Dn) and the weak upper semi-continuity in D′ of both the expected loss
EZ∼D′ [L(θ, z)] and the optimal expected loss infθ∈Θ EZ∼D′ [L(θ, z)].
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A.5 PROOF OF PROPOSITION 11

In this subsection, we prove the dual formulation of the robust maximization problem. Two lemmas
are needed.

Lemma 20. (Van Parys et al., 2021) We have

sup
Q∈P(Z),

KL(D′,Q)≤γ

ED′ [L(θ, z)] = inf
β≥0,

η≥max
ξ∈Z

L(θ,ξ)

{∫
β log

(
β

η − L(θ, ξ)

)
dD′(ξ) + (γ − 1)β + η

}

for all D′ ∈ P(Z) and γ > 0.

Lemma 21. (Blanchet & Murthy, 2019) For all D′ we have:

sup
Q∈P(Z),

Wp(Q,D′)≤ε

EQ [L(θ, z)] = inf
λ≥0
{λεp + ED′ [φ(λ, z)]}

where φ(λ, z) := sup
ξ∈Z
{L(θ, ξ)− λdp(z, ξ)}.

Proof of Strong duality (Proposition 11) (Restate) Lε,r(θ,D) admits the dual formulation for all
γ > 0:

Lε,γ(θ,D) = inf
λ,β≥0

η≥max
z∈Z

L(θ,z)

{λεp + ED[φ(λ, β, η, z)]}

where φ(λ, β, η, z) = sup
ξ∈Z
{β log β

η−L(θ,ξ) + (γ − 1)β + η − λdp(z, ξ)}.

Proof.

Lε,γ (θ,D)
=: sup {ED′ [L(θ, z)] : D′,Q ∈ P(Z),Wp (D,Q) ≤ ε,KL (Q,D′) ≤ γ}
= sup {sup {ED′ [L(θ, z)] : D′ ∈ P(Z),KL (Q,D′) ≤ γ} : Q ∈ P(Z),Wp(D,Q) ≤ ε}

(1)
= sup

Q∈P(Z),
Wp(D,Q)≤ε

 inf
β≥0

η≥max
z∈Z

L(θ,z)

{∫
β · log β

η − L(θ, z)
dQ(z) + (γ − 1)β + η

}
(2)
= lim

τ→0+
sup

Q∈P(Z),
Wp(D,Q)≤ε

 inf
β≥0

η≥max
z∈Z

L(θ,z)+τ

{∫
β · log β

η − L(θ, z)
dQ(z) + (γ − 1)β + η

}
(3)
= lim

τ→0+

 inf
β≥0

η≥max
z∈Z

L(θ,z)+τ

 sup
Q∈P(Z),

Wp(D,Q)≤ε

∫
β · log β

η − L(θ, z)
dQ(z) + (γ − 1)β + η




= lim
τ→0+

 inf
β≥0

η≥max
z∈Z

L(θ,z)+τ

 sup
Q∈P(Z),

Wp(D,Q)≤ε

EQ

[
β · log β

η − L(θ, z)
+ (γ − 1)β + η

]


(4)
= lim

τ→0+

 inf
β≥0

η≥max
z∈Z

L(θ,z)+τ

{
inf
λ≥0

λεp + ED [φ(λ, β, η, z)]

}
= inf

β≥0,λ≥0
η≥max

z∈Z
L(θ,z)

λεp + ED [φ(λ, β, η, z)] .
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Here, the equality (1) follows from Lemma 20. The equality (2) follows from the fact that

inf

{∫
β log

(
β

η − L(θ, z)

)
dQ(z) + (γ − 1)β + η : β ≥ 0, η ≥ max

z∈Z
L(θ, z)

}
≤ inf

{∫
β log

(
β

η − L(θ, z)

)
dQ(z) + (γ − 1)β + η : β ≥ 0, η ≥ max

z∈Z
L(θ, z) + τ

}
≤ inf

{∫
β log

(
β

η − L(θ, z)

)
dQ(z) + (γ − 1)β + η : β ≥ 0, η ≥ max

z∈Z
L(θ, z)

}
+ τ.

for any τ > 0. The equality (3) follows from the minimax theorem of (Sion, 1958), and we refer to
(Theorem 3.4’s proof Bennouna & Van Parys (2022)) for the proof of this part. Finally, equality (4)
follows from the strong duality of Wasserstein strong duality.

A.6 FURTHER DETAILS ON EXPERIMENTS

We use the ResNet-18 for the CIFAR-10 and CIFAR-100 dataset. We use the SGD optimizer with
momentum 0.9, weight decay 5e-4. The starting learning rate is 0.1 and reduce the learning rate
(×0.1) at epoch {100, 150}. We train with 200 epochs.

Mitigating overfitting on more attack budgets. We would like to provide further experimental
results on the CIFAR-10 dataset on more attack budgets (training and test attack budget is same)
as shown in Table 3. The gap between these final robust accuracy and best robust accuracy is the
smallest in our method, indicating that our approach most effectively mitigates overfitting even for
different attack budgets.

Robust Methods Nat Robust Test Acc (%)

Final Best Diff

ε = 6/255

PGD-AT 87.46 ± 0.17 54.33± 0.12 60.41± 0.08 6.08± 0.18
UDR-AT 86.59± 0.04 54.35± 0.55 60.85 ± 0.16 6.51± 0.41

HR 87.02± 0.12 55.23± 0.35 58.67± 0.12 3.44± 0.42
Ours 86.36± 0.23 56.52 ± 0.54 59.57 ± 0.13 3.06 ± 0.66

ε = 8/255

PGD-AT 84.80 ± 0.14 45.16 ± 0.19 52.91 ± 0.11 7.75 ± 0.17
UDR-AT 83.87 ± 0.26 46.60 ± 0.27 53.23 ± 0.30 6.63 ± 0.57

HR 83.95 ± 0.32 47.32 ± 0.59 51.23 ± 0.25 3.90 ± 0.47
Ours 83.34 ± 0.16 48.58 ± 0.21 51.95 ± 0.19 3.36 ± 0.06

ε = 10/255

PGD-AT 82.32 ± 0.33 38.51± 0.06 46.45± 0.22 7.94± 0.26
UDR-AT 81.49± 0.54 39.54± 0.64 47.33 ± 0.55 7.79± 0.27

HR 80.90± 0.40 41.78± 0.43 45.70± 0.02 3.93± 0.41
Ours 80.34± 0.97 43.52 ± 0.59 46.47± 0.13 3.11 ± 0.64

ε = 12/255

PGD-AT 79.55 ± 0.06 34.16± 0.30 41.79± 0.12 7.63± 0.41
UDR-AT 78.67± 0.61 35.93± 1.06 42.69 ± 0.10 6.76± 1.01

HR 77.86± 0.98 37.69± 0.61 41.50± 0.26 3.81± 0.76
Ours 76.33± 1.18 39.45 ± 0.58 42.24± 0.31 2.79 ± 0.53

Table 3: Robust performance of different methods on CIFAR-10 and CIFAR-100 using a ResNet-
18 for l∞ with budget 6/255, 10/255 and 12/255. We use PGD-10 as the attack to evaluate robust
performance. Nat is the natural test accuracy. The “Best” robust test acc is the highest robust test
accuracy achieved during training whereas the “Final” robust test acc is last epoch’s robust accuracy.
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Robust Methods Nat Robust Test Acc (%)

Final Best Diff

TRADES 82.69 ± 0.32 51.07 ± 0.18 53.54 ± 0.17 2.47 ± 0.21
UDR-TRADES 82.74 ± 0.59 51.16 ± 0.53 53.64 ± 0.15 2.48 ± 0.69
Ours-TRADES 81.79 ± 0.55 52.22 ± 0.42 53.58± 0.19 1.36 ± 0.62

Table 4: Robust performance of different robust methods based on TRADES on CIFAR-10 using a
ResNet-18 for l∞ with budget 8/255. We use PGD-10 as the attack to evaluate robust performance.
The “Best” robust test acc is the highest robust test accuracy achieved during training whereas the
”Final” robust test acc is last epochs’s robust accuracy.

Methods(10/255) Nat PGD-10 PGD-200 AA

PGD-AT 82.32 ± 0.33 46.98± 0.06 45.03± 0.12 43.17± 0.08
UDR-AT 81.49± 0.54 48.12± 0.41 46.45± 0.63 43.85± 0.57

HR 80.90± 0.40 50.04± 0.45 48.69± 0.41 44.05± 0.42
Ours 80.58± 0.98 50.86 ± 0.72 49.71 ± 0.88 45.86 ± 0.88

Table 5: Robustness evaluation on CIFAR-10 using ResNet-18 for l∞ under attack budget 8/255,
where models are trained with a larger attack budget 10/255.

Methods(12/255) Nat PGD-10 PGD-200 AA

PGD-AT 79.55 ± 0.06 48.99± 0.38 47.20± 0.26 44.48± 0.07
UDR-AT 78.67± 0.61 50.38± 0.63 49.10± 0.75 45.47± 0.72

HR 76.65± 0.65 51.96± 0.05 51.03± 0.12 45.45± 0.44
Ours 76.33± 1.17 52.32 ± 0.23 51.52 ± 0.26 46.87 ± 0.17

Table 6: Robustness evaluation on CIFAR-10 using ResNet-18 for l∞ under attack budget 8/255,
where models are trained with attack budget 12/255.

Mitigating overfitting on TRADES. We would like to provide further experimental results on
the CIFAR-10 dataset on TRADES and its counterpart as shown in Table 4. It can be observed that
our method also can mitigates the robust overfitting, and enhances robustness while maintaining
comparable accuracy.

Training with larger budgets. Theorem 4 shows that to ensure robustness on the test set, it is
generally necessary to employ a larger attack budget during training compared to testing. In this
experiment, we examine the robustness generalization by attacking different robust methods with
fixed attack budget 8/255 with respect to larger training budgets 10/255, 12/255 while keeping
other parameters of PGD attack the same. The results shown in Table 5 and Table 6 demonstrate
that our proposed SR-WDRO achieves the best robustness under various adversarial attacks.

Computation cost We evaluate the computational efficiency of our proposed SR-WDRO method
against baseline approaches. Table presents the average training time per epoch and total training
time for CIFAR-10 on a single NVIDIA A800 GPU. Our SR-WDRO incurs a modest increase in
per-epoch time (approximately 12.7% longer than standard adversarial training).

Time Cost (s) PGD-AT UDR-AT HR Ours
200 epoch 12614.59 14104.05 13705.56 14216.43
per epoch 63.07 70.52 68.53 71.08

Table 7: Training time per epoch and total training time for CIFAR-10 on a single NVIDIA A800
GPU.
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Results on WRN28-10. We would like to provide further experimental results on the CIFAR-10
dataset with WRN28-10 as shown in Table 8. It can be observed that our method achieves the
best performance in mitigating adversarial overfitting, as evidenced by the lowest robustness gap
(Diff). Furthermore, it achieves the highest robust accuracy, demonstrating the effectiveness of
our approach in enhancing robustness while maintaining strong performance on large models like
WideResNet28-10..

Robust Methods Nat Robust Test Acc (%)

Final Best Diff

CIFAR-10

PGD-AT 86.51 ± 0.16 48.81 ± 0.49 55.64 ± 0.07 6.83 ± 0.55
UDR-AT 85.99 ± 0.15 49.01 ± 0.13 55.82 ± 0.19 6.81 ± 0.31

HR 84.89 ± 0.16 48.45 ± 0.31 52.45 ± 0.27 4.00 ± 0.34
GLOT 86.57 ± 0.22 49.45 ± 0.32 52.26 ± 0.46 2.81 ± 0.15
Ours 84.52 ± 0.27 51.26 ± 0.42 53.87 ± 0.06 2.61 ± 0.47

Table 8: Robust performance of different robust methods using WideResNet28-10 on CIFAR-10 for
l∞ with budget 8/255.
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