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ABSTRACT

Imbalanced regression, where the training data has an uneven distribution on
its range, is widely encountered in the real world, e.g., age estimation (uni-
dimensional regression) and pose estimation (multi-dimensional regression).
Compared to imbalanced and long-tailed classification, imbalanced regression has
its unique challenges as the regression label space can be continuous, boundless,
and high-dimensional. In this work, we present a principled framework, Bayesian
Posterior Debiasing (Bayesian-PD), for re-balancing the regression among fre-
quent and rare observations. Our key insight is that a balanced posterior can be
obtained by debiasing the conditional probability with a regression label space
prior. Importantly, through a normalization reparameterization technique, we de-
rive a general debiasing function between the empirical posterior and the bal-
anced posterior without relying on task-specific assumptions. We show that the
Bayesian-PD framework has multiple instantiations in both training and testing
time, with either closed-form or numerical implementations. We further uncover
that several existing methods in imbalanced classification/regression serve as spe-
cial cases of our Bayesian-PD framework. Extensive experiments on both uni-
and multi-dimensional regression benchmarks demonstrate the effectiveness of
the Bayesian-PD framework on various real-world tasks. Notably, Bayesian-PD
exhibits strong robustness to different skewness of the training distributions.

1 INTRODUCTION

Imbalanced regression is widely encountered in the real world. For example, in pose estimation,
most of the poses in the training set center around a mean pose, while extreme poses like hand-
stand have few training samples (Rong et al., 2020). Nonetheless, in pursuit of generalizability
and fairness, the evaluation of algorithms often bases on a balanced metric or a balanced test set
in practice. The train-test label distribution mismatch often leads to inferior performance on less
observed labels (Buda et al., 2018; Liu et al., 2019; Gupta et al., 2019). Unlike imbalanced and
long-tailed classification that has been widely discussed (Kang et al., 2020; Zhou et al., 2020; Wang
et al., 2021b), imbalanced regression has been under-explored. Compared with imbalanced classi-
fication, imbalanced regression has several unique challenges: its label space could be continuous,
boundless, and high-dimensional. Recent research (Yang et al., 2021; Steininger et al., 2021) makes
progress on estimating the underlying training distributions by employing kernel density estimation
(KDE). Yet, we lack an effective approach to leverage the estimated label distribution.

In this work, we present a principled framework, Bayesian Posterior Debiasing (Bayesian-PD),
to debias the imbalanced regression among frequent and rare observations. Our key insight is that
a balanced posterior can be obtained by debiasing the conditional probability with a label space
prior, through a normalization reparameterization technique. Essentially, we leverage the following
Bayesian relation to translate between the balanced posterior pbal(y|x) and the training set posterior
ptrain(y|x) with the regression space label prior ptrain(y):

pbal(y|x) =
ptrain(y|x) · ptrain(y)−1

Ey′∼ptrain(y|x)[ptrain(y′)−1]
; ptrain(y|x) =

pbal(y|x) · ptrain(y)

Ey′∼pbal(y|x)[ptrain(y′)]
. (1.1)

Eq. 1.1 includes a bi-directional relation: the first part of Eq. 1.1 allows us to first fit a train-set
posterior, and then convert to a balanced posterior in a post-processing fashion; the second part of
Eq. 1.1 enables us to parameterize the train-set posterior with a balanced posterior, so that we can
directly obtain a balanced posterior via empirical risk minimization on the training set.
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Figure 1: Comparison of Bayesian-PD and existing methods on a 1-D imbalanced linear regression
synthetic benchmark. Different label distribution types (Normal & Exponential) and extents of
distribution skewness are studied. We show the visualization of the regression results on the left and
the marginal label distribution on a balanced test set on the right. Although reweighting (in green) is
closer to the oracle (in blue) compared with least square (in yellow), it suffers larger error when the
label distribution gets more skewed. In comparison, our method (in red), Bayesian-PD, makes the
estimation closest to the oracle and has a uniform marginal label distribution on the test set. Most
importantly, Bayesian-PD’s performance is invariant to the skewness of the training distribution.

Bayesian-PD shows clear advantages over existing methods both theoretically and practically. As
a motivating example, we compare Bayesian-PD with reweighting, a technique employed by state-
of-the-art works (Yang et al., 2021; Steininger et al., 2021), in an 1-D linear regression synthetic
benchmark shown in Fig. 1. Regressors trained with Bayesian-PD show a consistent performance
that is invariant to the skewness of the training label distribution. On the contrary, reweighting
shows limited effectiveness in debiasing and results in a significantly larger prediction error when the
training label distribution gets more skewed. We show that the advantage of Bayesian-PD extends
to nonlinear cases (Fig. 4) and high-dimensional cases (Fig. 3) as well.

We further demonstrate Bayesian-PD’s empirical success on existing real-world benchmarks (Yang
et al., 2021), including age estimation and depth estimation. Existing imbalanced regression bench-
marks only include uni-dimensional label space. In this work, we propose a new multi-dimensional
imbalanced regression benchmark on Imbalanced Human Mesh Recovery (IHMR) accompanied by
a balanced evaluation metric. We show that Bayesian-PD delivers strong empirical results on both
uni- and multi-dimensional benchmarks.

Note that similar Bayesian relations to Bayesian-PD has been discussed under the context of clas-
sifier readjustment in earlier literatures (Richard & Lippmann, 1991; Latinne et al., 2001). Recent
works (Ren et al., 2020; Tian et al., 2020; Menon et al., 2021) further developed on it and verified
its empirical effectiveness on the modern deep learning based classification. However, prior dis-
cussions are closely coupled with the pre-assumption on a discrete label space, and hence hard to
generalize to the imbalanced regression. In this work, we use a normalization reparameterization
trick to present the Bayesian relation in a more general form as Bayesian-PD. Classifier readjustment
methods can be viewed as special cases of Bayesian-PD on discrete labels.

In summary, our contributions are three-fold: 1) We propose a principled framework, Bayesian-
PD, for debiasing the imbalanced regression. 2) We show that Bayesian-PD has multiple instanti-
ations in both training and testing time, with either closed-form or numerical implementations. 3)
Bayesian-PD achieves state-of-the-art results on uni- and multi-dimensional real-world benchmarks.
We further demonstrate Bayesian-PD’s robustness to different skewness of training distributions.
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2 METHODOLOGY

2.1 PRELIMEARIES

We consider an observation space X = {x1, x2, ..., xn} and a label space Y , Y is either discrete
{y1, y2, ..., yk} or contiuous Rm.

Here, we follow the classic probablistic interpretation (McCullagh & Nelder, 1989) for categorical
classification and continuous regression. Multi-class classification uses the Softmax function to
convert the model output η into probability estimation: p(y = i|x) = exp(ηi)/

∑K
j=1 exp(ηj),

where K is the number of classes. Continuous value regression uses the Identity function to convert
the model output ypred to a Gaussian probability estimation:

p(y|x) = N (y; ypred, σ
2
predI), (2.1)

where σpred is the scale of an i.i.d. error term ε ∼ N (0, σ2
predI). Note that the negative log likelihood

− log p(y|x) is the standard Mean Square Error, where σpred is ignored for being a constant.

Under the imbalanced learning setting, the training set and test set have different label distributions.
On the training set, labels are drawn from an imbalanced distribution y ∼ ptrain(y). On the balanced
test set, labels are drawn from a uniform distribution, y ∼ pbal(y). Note that a balanced metric on an
imbalanced test set can be effectively equivalent to a balanced test set (Menon et al., 2021). Invariant
generative probability p(x|y) is assumed. One may obtain an imbalanced posterior ptrain(y|x) by
fitting on the training set. We are interested in knowing a balanced posterior pbal(y|x) that gives an
unbiased estimate on the test set.

2.2 BAYESIAN POSTERIOR DEBIASING (BAYESIAN-PD)

By Bayes’ Rule, we have

ptrain(y|x) =
p(x|y) · ptrain(y)

ptrain(x)
; pbal(y|x) =

p(x|y) · pbal(y)

pbal(x)
. (2.2)

By change of variables,

pbal(y|x) = ptrain(y|x) · pbal(y)

ptrain(y)
· ptrain(x)

pbal(x)
. (2.3)

Eq. 2.3 is a well-known formula. Although the evidence ratio ptrain(x)/pbal(x) is unknown, Eq. 2.3
is sufficient for posterior calibration on the categorical classification. By leveraging the fact that
exp(ηi) ∝ p(y|x) and pbal(y|x) ∝ ptrain(y|x) · pbal(y)/ptrain(y), one may freely re-calibrate the
posterior by manipulating with the Softmax logits exp(η), as detaily described in recent works (Ren
et al., 2020; Tian et al., 2020; Menon et al., 2021). However, the aforementioned posterior calibration
techniques on classification are not transferable to regression for being coupled with Softmax.

To bypass the unknown evidence ratio ptrain(x)/pbal(x) and avoid coupling with at task-specific as-
sumptions, we use a normalization reparameterization technique. Firstly, we normalize the posterior
by its expected value of one:

pbal(y|x) =
pbal(y|x)

Ey′∼pbal(y|x)[1]
; ptrain(y|x) =

ptrain(y|x)

Ey′∼ptrain(y|x)[1]
(2.4)

Then we re-parameterize the posterior using Eq. 2.3, and have:

pbal(y|x) =
ptrain(y|x) · pbal(y)

ptrain(y)

Ey′∼ptrain(y|x)[
pbal(y′)
ptrain(y′)

]
; ptrain(y|x) =

pbal(y|x) · ptrain(y)
pbal(y)

Ey′∼pbal(y|x)[
ptrain(y′)
pbal(y′)

]
(2.5)

Detailed derivations can be found in Sect. A.1. We name the Bayesian relation described in Eq. 2.5
as Bayesian Posterior Debiasing (Bayesian-PD). Bayesian-PD is a principled framework that trans-
lates between an empirical posterior and a balanced posterior without relying on any task-specific
assumptions. One may substitute pbal(y) with arbitrary test label distributions and Eq. 2.5 still holds.
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Figure 2: Graphical model illustration for train-time and test-time debiasing, respectively. x, y are
from train set and x̃, ỹ are from test set. φ and φ̃ are parameters of generative distributions that
generate x and x̃ respectively. θ is a learnable regressor. In the imbalanced regression setting,
the label distribution p(y|φ) and p(ỹ|φ̃) are different and known. For train-time debiasing, the
generative parameters are taken into account when estimating regressor θ. For test-time debiasing,
the generative paramters are considered when predicting ỹ.

Here, we adopt the balanced pbal(y) setting and treat pbal(y) as a constant. Eq. 2.5 can be thus sim-
plified to Eq. 1.1. We refer Bayesian-PD to Eq. 1.1 in the following sections for brevity. Note that
forms similar to Bayesian-PD have been discussed by earlier works (Latinne et al., 2001) under the
context of classifier recalibration but not sufficiently investigated. This work exploits Bayesian-PD’s
generality. We uncover that several existing posterior calibration techniques serve as special cases
of it. We further show how Bayesian-PD can shed light on imbalanced regression.

2.3 INSTANTIATION FOR IMBALANCED CLASSIFICATION

When instantiating for imbalanced classification, the expectation is written into summation, Eq. 1.1
becomes

pbal(y|x) =
ptrain(y|x)/ptrain(y)∑

y′∈Y ptrain(y′|x)/ptrain(y′)
; ptrain(y|x) =

pbal(y|x) · ptrain(y)∑
y′∈Y pbal(y′|x) · ptrain(y′)

. (2.6)

This equation can be applied after mapping the model output into a probability distribution. Alter-
natively, one may incorporate the equation into the mapping functions to simplify the computation.
When plugging Softmax into Eq. 2.6, we achieve the same form as posterior calibration techniques
described in recent research listed in Tab. 5.

2.4 INSTANTIATION FOR IMBALANCED REGRESSION

When instantiating for imbalanced regression, the expectation is written into integral, Eq. 1.1 be-
comes

pbal(y|x) =
ptrain(y|x) · ptrain(y)−1∫

Y
ptrain(y′|x) · ptrain(y′)−1dy′

; ptrain(y|x) =
pbal(y|x) · ptrain(y)∫

Y
pbal(y′|x) · ptrain(y′)dy′

, (2.7)

Similar to the classification counterpart, Eq. 2.7 allows to debias the imbalanced regression in both
training and testing time. For train-time debiasing, we train the regressor when taking the label
distribution shift into account using the second part of Eq. 2.7. For test-time debiasing, we train
the regressor normally and explicitly addressing the label distribution shift during inference using
the first part of Eq. 2.7. Graphical models illustrating train-time and test-time debiasing are shown
in Fig. 2. However, in practice, the integral in Eq. 2.7 introduce difficulty in implementation. We
discuss a few feasible implementation variants in the following sections.

2.4.1 TRAIN-TIME (CLOSED-FORM)

In this section, we aim to find a closed-form expression for the integral
∫
Y
pbal(y|x) ·ptrain(y)dy. The

main challenge is how to express ptrain(y) to make the integral tractable. Here, we discuss a viable
option, which is to express ptrain(y) as a Gaussian Mixture Model (GMM).

GMM-based Analytical Integration (GAI). Recall that the posterior is modeled as Gaussian in
regression as aforementioned in Sect. 2.1: p(y|x) = N (y; ypred, σ

2
predI). The advantage of employing

GMM is the fact that the product of two Gaussians is an unnormalized Gaussian. Concretely, let us
have ptrain(y) expressed by a Gaussian Mixture:

ptrain(y) =

K∑
i=1

φiN (µi,Σi), (2.8)
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where K is the number of Gaussian components, φ, µ,Σ are the weights, means and covariances of
the GMM. Since the product of two Gaussians is an unnormalized Gaussian, we have:∫

Y

K∑
i=1

φiN (µi,Σi) · N (ypred, σ
2
predI)dy =

K∑
i=1

φiSi

∫
Y

N (µ̃i, Σ̃i)dy. (2.9)

where Si, µ̃i, Σ̃i are the norm, mean, covariance of the new Gaussian. Now, the integral can be
trivially solved. We leave the detailed derivation in Sect. A.2. The final loss form is:

L = − logN (ytarget; ypred, σ
2
predI) + log

K∑
i=1

φi · N (ypred;µi,Σi + σ2
predI). (2.10)

2.4.2 TRAIN-TIME (NUMERICAL)

The closed-form solution above imposes a constraint on the modeling of ptrain(y). However, in
modern deep learning tasks, ptrain(y) could be very high-dimensional and has a complex underlying
distribution. With the constraint on the distribution modeling, analytically expressing ptrain(y) could
be challenging. Therefore, we discuss a few numerical approaches, which could be more generally
applicable to all types of label data but could bear a larger variance in optimization. In essence, we
use Monte Carlo Method (MCM) to approximate p(y):∫

Y

pbal(y|x) · ptrain(y)dy = Ey′∼ptrain(y)[pbal(y
′|x)] ≈ 1

N

N∑
i=1

pbal(y = y′(i)|x). (2.11)

Batch-based Monte-Carlo (BMC). This variant requires no prior knowledge on ptrain(y). It
treats all samples in a training batch as random samples from ptrain(y). For a training batch
{y(1), y(2), ...y(N)}, the debiased loss will be:

L = − logN (ytarget; ypred, σ
2
predI) + log

N∑
i=1

N (y(i); ypred, σ
2
predI). (2.12)

This variant takes minimal implementation efforts. One may also consider increasing the MCM
sample number by using a dedicated sampler for MCM. Furthermore, the loss function in Eq. 2.12
can also be rewritten in a temperature-like way:

L = − log
exp(−‖ypred − ytarget‖22 /τ)∑N
i=1 exp(−

∥∥ypred − y(i)
∥∥2
2
/τ)

, (2.13)

where τ = 2σ2
pred is a temperature coefficient. Eq. 2.13 shows interesting similarity to Softmax with

temperature.

Bin-based Numerical Integration (BNI). Although the ”bin” based idea mainly applies to uni-
variate label space, it allows us to leverage recent progress on estimating label densities using
KDE (Yang et al., 2021; Steininger et al., 2021). These prior works first divide the label space
into evenly distributed bins, then use KDE to estimate the ptrain(y) at the bin centers. We may di-
rectly use their results to make a numerical integration. For B bin centers {y(1), y(2), ..., y(B)}, the
loss is:

L = − logN (ytarget; ypred, σ
2
predI) + log

B∑
i=1

ptrain(y = y(i)) · N (y(i); ypred, σ
2
predI). (2.14)

2.4.3 FINDING OPTIMAL NOISE SCALE

Unlike the standard MSE loss, the noise scale σpred makes a difference in our proposed method.
Locating an optimal noise scale is thus important. In fact, σpred can be jointly optimized with ypred
during model training when using the aforementioned losses. That is, we can obtain near-optimal
σpred by simply setting σpred as a learnable parameter and no additional hyper-parameter tuning is
required. A comparison between using the ground truth noise scale and using the jointly learned
σpred is shown in Tab. 1. We adopt the joint optimization paradigm in all empirical analyses unless
specified. Note that a hyper-parameter search will also be affordable given that σpred is defined in
R+ and bounded by train-time and test-time MSEs.
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Figure 3: Comparison of marginal label distributions on 2D linear regression. Least square and
reweighting show visible bias towards the high-frequency area around the center. In comparison,
Bayesian-PD achieves the closest marginal label distribution to the uniform test distribution.

𝑦 = tan	(𝑥) 𝑦 = 𝑥! 𝑦 = 𝑒" 𝑦 = log	(𝑥)

Figure 4: Qualitative comparison for nonlinear regression. Four nonlinear functions are studied.
Bayesian-PD (in red) gives the closest estimation to the oracle (in blue).

2.4.4 TEST-TIME

The advantage of test-time debiasing is that it does not require retraining the model. Therefore, the
post-hoc classifier re-calibration method has received wide discussion in imbalanced classification
research (Richard & Lippmann, 1991; Latinne et al., 2001; Guo et al., 2017; Buda et al., 2018).

Test-Time Adjustment (TTA). Here, we describe a test-time adjustment method for the imbalanced
regression. We uniformly select N probes in the label space, {y(1), y(2), ..., y(N)}. Then we select
the probe with the highest balanced posterior probability:

ypred = y(i∗); i∗ = argmax1≤i≤Nptrain(y = y(i)|x)/ptrain(y = y(i)). (2.15)

where ptrain(y) can be approximated by GMM or KDE as mentioned above. Note that, unlike train-
time σpred optimization, the optimal σpred in test-time debiasing has to be tuned as a hyper-parameter
since models have an imperfect estimation of ptrain(y|x) in practice. Detailed discussions can be
found in classifier re-calibration literatures (Tian et al., 2020; Menon et al., 2021). Moreover, the
number of probes grows exponentially with the number of dimensions, which makes the computa-
tional cost prohibitive for high-dimensional label spaces.

3 EXPERIMENTS

3.1 SYNTHETIC BENCHMARKS

We construct a simple one-dimensional linear imbalanced regression dataset, with the training label
distribution being normal or exponential and skewed to various extents. We train a one-layer linear
regressor on the imbalanced training set and test on a uniform test set with no additive noise. We
compare three types of regressors: a least-square estimator, a linear regressor inversely reweighted
by the true p(y) as described in (Yang et al., 2021), and Bayesian-PD’s closed-form variant GAI
with true noise scale. We show the visualized results on Fig. 1. We observe that the reweighted
regressor shows increasingly larger error when the training distribution becomes more skewed. In
comparison, Bayesian-PD gives an unbiased estimation that is robust to different levels of skewness.

We further compare the three methods on a two-dimensional regression. The training label distri-
bution is set as a Multivariate Normal (MVN) distribution. We visualize the marginal label dis-
tributions in Fig. 3, where Bayesian-PD achieves a marginal label distribution closest to uniform.
For nonlinear regressions, Bayesian-PD achieves a consistent debiasing effectiveness as well, as
shown in Fig. 4. We provide another experiment on random seeds in Appendix C to demonstrate
Bayesian-PD’s robustness to noise.

Despite recent works (Yang et al., 2021; Steininger et al., 2021) focusing on estimating the training
label distribution, our synthetic benchmark shows that the bottleneck for existing techniques is with
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Table 1: Quantitative results for the case study. †: True noise scale used. For each type of distribu-
tion, we evaluate three extents of skewness: Low, Moderate, and High. Best results are bolded.

Normal Exponential MVN

Method High Mod. Low High Mod. Low High Mod. Low

MSE 5.521 3.275 1.936 18.61 13.14 6.038 5.522 3.809 2.570
Reweight 1.399 0.336 0.092 4.676 1.336 0.128 3.310 1.758 1.001

Ours (GAI)† 0.031 0.001 0.001 0.001 0.002 0.004 0.122 0.031 0.011
Ours (BMC)† 0.043 0.004 0.000 0.002 0.000 0.000 0.126 0.033 0.011
Ours (GAI) 0.089 0.008 0.005 0.130 0.082 0.023 0.184 0.021 0.006
Ours (BMC) 0.141 0.060 0.030 0.122 0.104 0.034 0.142 0.025 0.011

Table 2: Comparison with SOTAs on IMDB-WIKI-DIR. †: MAE metric reported in Yang et al.
(2021). Best results are bolded.

bMAE↓ MAE↓
Method All Many Med. Few All Many Med. Few

Vanilla† 13.92 7.32 15.93 32.78 8.06 7.23 15.12 26.33

RRT† 13.12 7.27 14.03 30.48 7.81 7.07 14.06 25.13
RRT+LDS† 13.09 7.30 14.05 30.26 7.79 7.08 13.76 24.64

Ours (TTA) 13.17 7.63 13.25 30.26 8.13 7.56 12.63 23.79
Ours (BMC) 12.69 7.59 12.90 28.28 8.08 7.52 12.47 23.29
Ours (GAI) 12.66 7.65 12.68 28.14 8.12 7.58 12.27 23.05

reweighting. Even given the true label distribution, reweighting fails to eliminate the bias in all
settings. In comparison, our proposed Bayesian-PD is robust to different skewness of the training
distribution and noise, meanwhile applicable to nonlinear and multi-dimensional regressions.

We provide quantitative results for the above described synthetic benchmark in Tab. 1, where we
compare different implementation variants and choices of noise scale as well. Tab. 1 shows that the
numerical variant achieves comparable results with the closed-form version. Moreover, the jointly-
optimized noise scale achieves near-optimal results in most cases.

3.2 REAL-WORLD BENCHMARKS

3.2.1 DATASETS & SETTINGS

Age & Depth Estimation. We select two representative tasks from Yang et al. (2021)’s DIR
benchmark. We estimate ages from face images on the IMDB-WIKI-DIR dataset and estimate
depth maps from images of indoor scenes on the NYUD2-DIR dataset.

Imbalanced Human Mesh Recovery (IHMR). IHMR is a new, multi-dimensional imbalanced
regression benchmark. We estimate human meshes from images, where the mesh is represented
by a parametric human model known as SMPL (Loper et al., 2015). Typically, SMPL model has
two parameters: θ ∈ R24×3 represents the rotation of 23 body joints and 1 global orientation and
β ∈ R10 represents the 10 PCA components for body shape. Therefore, the label space of IHMR is
multi-dimensional. Aligned with recent works (Rong et al., 2020), we observe that the distribution
of human meshes is long-tailed. We show a visualization of training distribution in Fig. 8. Following
Kolotouros et al. (2019), we train on a combination of 3D and 2D human datasets and test on an
in-the-wild 3D dataset. Detailed settings can be found in Appendix B.

3.2.2 EVALUATION METRICS

Yang et al. (2021) uses primarily overall metric, e.g., Mean Absolute Error (MAE) to report the
performance on the benchmark. This is on the assumption that the test dataset is perfectly balanced.
However, we observe visible tails in IMDB-WIKI-DIR test sets as shown in Fig. 7. To avoid over-
looking the performance on the tail classes, we follow the idea of balanced metrics (Brodersen et al.,
2010), and divide the label space into a finite number of even sub-regions, compute the average in-
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Table 3: Comparison with SOTAs on NYUD2-DIR. †: reported in Yang et al. (2021).
RMSE↓ δ1 ↑

Method All Many Med. Few All Many Med. Few

Vanilla† 1.477 0.591 0.952 2.123 0.677 0.777 0.693 0.570
Vanilla + LDS† 1.387 0.671 0.913 1.954 0.672 0.701 0.706 0.630

Ours (TTA) 1.267 0.737 1.069 1.688 0.698 0.661 0.693 0.736
Ours (BNI) 1.283 0.787 0.870 1.736 0.694 0.622 0.806 0.723
Ours (GAI) 1.251 0.692 0.959 1.703 0.702 0.676 0.734 0.715

Table 4: Effectiveness on Imbalanced Human Mesh Recovery. †: reported in Rong et al. (2020).
SPIN-RT: keep the SPIN’s feature extractor fixed and retrain the last linear regression layers.

bMPVPE↓ bMPJPE↓ bPA-MPJPE↓
Method All 10% 5% All 10% 5% All 10% 5%

SPIN† - 130.0 130.6 - - - - - -
PM-Net† - 124.9 126.4 - - - - - -
SPIN-RT 116.1 127.0 130.5 99.58 113.5 114.5 66.53 77.71 76.66

Ours (BMC) 113.9 128.6 129.6 97.87 113.7 113.0 65.90 77.73 76.35
Ours (GAI) 112.7 122.9 128.1 96.70 108.8 111.9 64.69 74.04 74.35

side the sub-regions, and take the mean overall sub-regions. We name it ”balanced-” (”b-”) metric,
e.g., bMAE.

Age & Depth Estimation. We primarily report bMAE on IMDB-WIKI-DIR. NYUD2-DIR’s test
set is balanced, we follow Yang et al. (2021) and report RMSE.

Imbalanced Human Mesh Recovery. We propose to use balanced metrics on HMR. We evenly
divide the label space into 100 sub-regions according to their vertex-based distances to the mean
parameter, and compute balanced metrics as described above. Following Rong et al. (2020), we
primarily report balanced mean per-vertex position error (bMPVPE). We also report balanced mean
per-joint position error (bMPJPE) and balanced Procrustes-aligned mean per joint position error
(bPA-MPJPE). We include the ”tail 5%” metric and the ”tail 10%” metric to show performance on
extreme poses as well.

3.2.3 COMPARISON RESULTS

Tab. 2 shows a comparison with state-of-the-art (SOTA) methods on age estimation. Regressor Re-
Training (RRT) (Yang et al., 2021) first trains the feature extractor normally and retrain the last linear
layer using inverse re-weighting. RRT+LDS is an improved version of RRT, where training label
distribution is estimated using Label Distribution Smoothing (Yang et al., 2021). We do not include
Feature Distribution Smoothing (FDS) in the comparison since it improves the feature learning and
should be complementary to our method. Without FDS, RRT and RRT+LDS are the best perform-
ing methods on IMDB-WIKI-DIR in Yang et al. (2021)’s benchmark. Our training-time variants
substantially outperform the previous method. Notably, the BMC variant outperforms SOTAs with
a large margin without relying on the pre-processed training label distribution. The test-time im-
plementation also achieves comparable results to SOTA with a rough hyper-parameter tuning. We
further analyze the bMAE gain in Fig. 5 and observe an effective trade-off between frequent labels
and rare labels towards a balanced estimation.

Tab. 3 shows comparison with SOTA on depth estimation. Note that depth map has an inter-pixel
dependency, the pixel-wise error σpred can be under-estimated and the BMC can give an inaccurate
estimation to ptrain(y). We set a fixed σpred to 1, and use BNI for numerical variant evaluation. Com-
pared with the SOTA, both train-time and test-time implementation achieve clear improvements.

Tab. 4 shows a comparison between Bayesian-PD and existing HMR methods. Bayesian-PD out-
performs the baseline by a large margin on the main metric bMPVPE (-3.4). We show qualitative
comparison in Appendix F. PM-Net (Rong et al., 2020) achieves better results on tail-5% bMPVPE,
by designing prototypes and adaptively selecting them as the initialization for SMPL regression.
PM-Net improves the regression initialization and should be complementary to our method.
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Figure 5: Bayesian-PD’s bMAE gain over the baseline. The light blue area in the background shows
the training label histogram of IMDB-WIKI-DIR. Bayesian-PD improves the performance on tail
labels (age < 20 and > 70) substantially.

Table 5: Summary of variants of posterior calibration in imbalanced classification. τ is a scaling
factor to address imperfect model learning (Tian et al., 2020; Menon et al., 2021), which equals one
ideally. Listed methods serve as special cases of Bayesian-PD.

Method Form Reference

Train-time ptrain(y|x) =
exp(ηi) · ptrain(y)∑

y′∈Y exp(ηj) · ptrain(y)

Balanced Softmax (Ren et al., 2020)
LA Loss (Menon et al., 2021)

Seesaw Loss (Wang et al., 2021a)

Test-time pbal(y|x) =
exp(ηi)/ptrain(y)τ∑

y′∈Y exp(ηj)/ptrain(y′)τ
UNO-IC (Tian et al., 2020)

LA Post-hoc (Menon et al., 2021)

4 RELATED WORKS

Imbalanced & Long-Tailed Classification. Many techniques have been explored for imbalanced
& long-tailed classification, for example, resampling (Chawla et al., 2002; He & Garcia, 2009; Kim
et al., 2020; Chu et al., 2020) and reweighting (Huang et al., 2016; Cui et al., 2019; Jamal et al.,
2020; Cao et al., 2019). Here, we focus on the posterior calibration techniques, which are the most
relevant to this work. Recent works (Ren et al., 2020; Tian et al., 2020; Menon et al., 2021) show that
modifying the logits in the mapping function, e.g., Softmax or Sigmoid, by an offset proportional to
log ptrain(y) gives the Bayes-optimal estimation of the posterior. The posterior calibration techniques
can work as either a train-time loss function or a test-time adjustment. Wang et al. (2021a) further
develops an online version that accumulates the statistics of label distribution during training instead
of requiring statistics of all training labels ahead of time. We summarize different variants of the
label posterior calibration in Tab. 5. In Sect. 2.3, we show that posterior calibration techniques can
be viewed as special cases of our proposed Bayesian-PD framework.

Imbalanced Regression. Imbalanced regression is relatively under-explored. Earlier works (Torgo
et al., 2013; Branco et al., 2017) focus on resampling and synthesizing new samples for rare labels.
Further work (Branco et al., 2018) ensembles regressors trained under different resampling policies.
Extending their method towards high-dimensional observations like images is non-trivial. Recent
research (Yang et al., 2021; Steininger et al., 2021) proposes to estimate the empirical training dis-
tribution with KDE and then apply the standard reweighting technique. Yang et al. (2021) proposes
a feature level smoothing as well, which is complementary to this work.

5 CONCLUSION & FUTURE WORKS

In conclusion, we propose to debias the imbalanced regression from the Bayesian perspective. We
propose a statistically principled framework for imbalanced regression, Bayesian-PD, which does
not rely on task-specific assumptions and can be well-connected to existing classification debiasing
literature. We further discuss various implementations of Bayesian-PD, including training-time and
test-time debiasing, using either closed-form expression or numerical approximation. Bayesian-PD
achieves SOTA on various uni- and multi-dimensional imbalanced regression benchmarks.

Future works may use Bayesian-PD as a bridge to introduce more approaches that are developed on
the imbalanced classification to the imbalanced regression. For example, Eq. 2.13 can be viewed
as Softmax with temperature. Margin-based methods might be introduced to adjust the pair-wise
distances as well. One may also leverage deep generative models, e.g., VAE (Kingma & Welling,
2014) and GAN (Goodfellow et al., 2014) , to better model ptrain(y).
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APPENDIX

A DERIVATION

A.1 DETAILED DERIVATION FOR BAYESIAN-PD

We show the derivation of Eq. 2.5 in detail. Fisrt, we derive the mapping from ptrain(y|x) to pbal(y|x).
We normalize pbal(y|x) by its expected value of one. Using the simple fact that Ey′∼pbal(y|x)[1] = 1,
we have:

pbal(y|x) =
pbal(y|x)

Ey′∼pbal(y|x)[1]
. (A.1)

Using the Bayesian relation descirbed in Eq. 2.3 to re-paramterize pbal(y|x), we have:

pbal(y|x) =
ptrain(y|x) · pbal(y)

ptrain(y)
· ptrain(x)
pbal(x)

E
y′∼ptrain(y|x)·

pbal(y)

ptrain(y)
· ptrain(x)

pbal(x)

[1]
(A.2)

=
ptrain(y|x) · pbal(y)

ptrain(y)
· ptrain(x)
pbal(x)

Ey′∼ptrain(y|x)[
pbal(y)
ptrain(y)

] · ptrain(x)
pbal(x)

(A.3)

=
ptrain(y|x) · pbal(y)

ptrain(y)

Ey′∼ptrain(y|x)[
pbal(y)
ptrain(y)

]
. (A.4)

Symmetrically, we may have the mapping from pbal(y|x) to ptrain(y|x) as well:

ptrain(y|x) =
pbal(y|x) · ptrain(y)

pbal(y)

Ey′∼pbal(y|x)[
ptrain(y′)
pbal(y′)

]
. (A.5)

A.2 LOSS FORM FOR THE GNI VARIANT

We continue our derivation from Eq. 2.9. Note that for a bounded label space, e.g., age, ptrain(y)
is zero when y is out of the bound. Therefore, we can safely convert

∫
Y
pbal(y|x) · ptrain(y)dy into∫

Rm pbal(y|x) · ptrain(y)dy. We may further simplify Eq. 2.9 into:

K∑
i=1

φiSi

∫
Y

N (µ̃i, Σ̃i)dy =

K∑
i=1

φiSi

∫
Rm

N (µ̃i, Σ̃i)dy =

K∑
i=1

φiSi (A.6)

With Eq. A.6, Eq. 2.7 and Eq. 2.8, we may have the debiased negative log-likelihood loss:

L = − log ptrain(y|x) = − log
pbal(y|x) · ptrain(y)∫

Y
pbal(y′|x) · ptrain(y′)dy′

(A.7)

= − logN (y; ypred, σ
2
predI)− log ptrain(y) + log

K∑
i=1

φiSi (A.8)

Recall that Si is the norm of the product of two Gaussians. Si itself is also a Gaussian:

Si = N (ypred;µi,Σi + σ2
predI) (A.9)

Plug Eq. A.9 back to the negative log likelihood loss, we have:

L = − logN (ytarget; ypred, σ
2
predI) + log

K∑
i=1

φi · N (ypred;µi,Σi + σ2
predI) (A.10)

Constants have been ignored.
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Figure 6: Synthetic benchmark on random seeds. Although the noise scale keeps the same,
reweighting’s performance varies drastically when different random seeds are used. In compari-
son, Bayesian-PD is robust to different sampled noises.

Table 6: Ablation on the choice of noise on IMDB-WIKI-DIR.
bMAE↓ MAE↓

Method All Many Med. Few All Many Med. Few

Test-time

Fix. (σ = 4) 13.24 7.26 14.10 31.08 7.85 7.17 13.41 24.49
Fix. (σ = 5) 13.17 7.63 13.25 30.26 8.13 7.56 12.63 23.79
Fix. (σ = 6) 13.42 8.60 12.45 29.07 8.97 8.56 11.89 22.83

Train-time

Fix. (σ = 6) 12.85 7.27 13.26 29.79 7.81 7.20 12.78 23.78
Fix. (σ = 7) 12.67 7.52 12.75 28.67 8.00 7.45 12.32 23.25
Fix. (σ = 8) 12.68 7.80 12.61 27.83 8.24 7.73 12.21 22.94
Joint. 12.66 7.65 12.68 28.14 8.12 7.58 12.27 23.05

B IMPLEMENTATION DETAILS

B.1 IMDB-WIKI-DIR

We follow the RRT setting in Yang et al. (2021). Concretely, we use ResNet-50 (He et al., 2016)
model as the backbone. We train the vanilla model for 90 epochs using Adam optimizer (Kingma
& Ba, 2015). We decay the learning rate from 10-3 by 0.1 at 60-th epoch and 80-th epoch. We then
freeze the backbone, re-initialize and train the last linear layer. For the retraining, we train the last
linear layer for 30 epochs with a constant learning rate at 10-4. We use a GMM with 2 components
in train time. We use a GMM with 128 components with a standard deviation fixed at 2 in test time.
σpred = 5 used for TTA.

B.2 NYUD2-DIR

We follow the settings in Yang et al. (2021). We use a ResNet-50-based encoder-decoder architecture
proposed by (Hu et al., 2019). We train the model for 20 epochs using Adam optimizer with an initial
learning rate at 10-4. The learning rate decays by 0.1 every 5 epochs. Only direct supervision on
depth is used in training. We use a GMM with 16 components in training time. We use a GMM
with 128 components with a standard deviation fixed at 2 in test time. σpred = 1 for GAI, BMC, and
TTA.
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Figure 7: IMDB-WIKI-DIR test set visualization. We observe tail labels on both edges of the test
distribution. Overall metrics will not sufficiently assess a model’s performance on the senior group
(age <∼75) and the youth group (age >∼15 ).
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Figure 8: Visualization of the training label distribution of IHMR. The horizontal axis is 100 regions
uniformly divided on the pose space according to their geodesic distance to the mean pose.

B.3 IHMR

We use a pretrained SPIN (Kolotouros et al., 2019) model as the feature extractor, and re-train
the linear regressor for 20 epochs. We follow SPIN to train on the following 3D datasets: Hu-
man3.6M (Ionescu et al., 2011), MPI-INF-3DHP (Mehta et al., 2017); and following 2D datasets:
LSP (Johnson & Everingham, 2010); LSP-extended (Kolotouros et al., 2019), MPII (Andriluka
et al., 2014), COCO (Lin et al., 2014). We test on 3DPW (von Marcard et al., 2018). Static fits are
used to provide supervision on the 2D datasets. We use a constant learning rate at 10-4. We use a
GMM with 16 components.

C SYNTHETIC BENCHMARK ON NOISE

We compare least square, reweighting, and Bayesian-PD under different random seeds on the one-
dimensional linear regression. A visualization of results is shown in Fig. 6. We observe that
reweighting is sensitive to random seeds. Reweighting’s performance varies drastically when ran-
dom seed changes. This may attribute to the fact that reweighting signifies rare labels’noise and
the zero mean noise assumption no longer holds. In comparison, Bayesian-PD is robust to different
noise sampling results.

D IMDB-WIKI-DIR TEST SET VISUALIZATION

We visualize the label distribution of IMDB-WIKI-DIR’s test set in Fig. 7.

E ABLATIONS

E.1 EFFECT OF THE NOISE SCALE

We study the effect of σpred on IMDB-WIKI-DIR, by fixing σpred at different values. Both train-
time and test-time debiasing are studied. We use the GAI variant for train-time debiasing. We also
compare fixed σpred with jointly optimized σpred. Results are shown in Tab. 6. We observe that larger
σpred trades the performance towards tail labels. We also observe that the jointly optimized σpred is
effective in finding the optimal trade-off point.

E.2 EFFECT OF NUMBER OF COMPONENTS IN GMM

We study the number of components K in GMM on IMDB-WIKI-DIR using the GAI variant. Re-
sults are shown in Tab. 7. We notice that the performance reaches optimal when K is larger or equal
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Figure 9: Qualitative comparison of Bayesian-PD and the baseline, SPIN-RT. Left: SPIN-RT. Right:
Bayesian-PD. We observe that the baseline’s predictions are less stretched out. They bias towards
the mean pose, particularly for poses like raising arms and bending legs. In comparison, our method
effectively eliminates the bias and recovers rare poses.

Table 7: Ablation on the effect of the number of components K in the GMM.
bMAE↓ MAE↓

Method All Many Med. Few All Many Med. Few

K=1 12.72 7.70 12.94 28.08 8.18 7.63 12.47 23.17
K=2 12.66 7.65 12.68 28.14 8.12 7.58 12.27 23.05
K=4 12.67 7.62 12.68 28.26 8.09 7.55 12.26 23.03
K=128 12.66 7.61 12.87 28.11 8.09 7.53 12.44 23.18

to 2. This may attribute to the fact that the training label distribution of IMDB-WIKE-DIR, as shown
in Fig. 5, is relatively simple.

E.3 EFFECT OF THE SAMPLE SIZE OF BMC

Table 8: Ablation on the effect of the sample size of BMC.
Method B=256 B=16 B=8 B=4 B=2

BMC 0.043 0.001 0.074 0.941 17.18
BMC w/ positive sample 0.043 0.046 0.033 0.037 0.015

We study the effect of sample size in BMC on the one-dimensional linear regression synthetic bench-
mark. Results are shown in Tab. 8. Smaller sample size leads to a larger variance in the estimation.
Therefore, BMC’s performance drops when samples are insufficient, particularly when B is less than
16. We observe that the issue can be effectively alleviated by keeping a positive sample, i.e., ytarget,
in the MC batch. The simple tweak achieves substantial improvement when the sample size is small.

F QUALITATIVE COMPARISON ON IHMR

In Fig. 9, we show a qualitative comparison of Bayesian-PD and the baseline on the IHMR bench-
mark.
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