
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS EFFECTIVE UPDATING OF PRETRAINED SYM-
BOLIC MUSIC MODELS FOR FINE-GRAINED BAR-
LEVEL CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Automatically generating symbolic music scores tailored to specific user needs
offers significant benefits for musicians and enthusiasts alike. Pretrained symbolic
music autoregressive models have demonstrated promising results, thanks to large
datasets and advanced transformer architectures. However, in practice, the control
provided by such models is often limited, particularly when fine-grained controls
are needed at the level of individual bars. While fine-tuning the model with
newly introduced control tokens may seem like a straightforward solution, our
research reveals challenges in this approach, as the model frequently struggles
to respond effectively to these precise bar-level control signals. To overcome
this issue, we propose two novel strategies. First, we introduce a pre-training
task that explicitly links control signals with their corresponding musical tokens,
enabling a more effective initialization for fine-tuning. Second, we develop a
unique counterfactual loss function that enhances alignment between the generated
music and the specified control prompts. These combined methods substantially
improve bar-level control, yielding a 13.06% improvement over the fine-tuning
baseline. Importantly, subjective evaluations confirm that this increased control
does not compromise the musical quality produced by the original pretrained
model.

1 INTRODUCTION

Symbolic music generation, which focuses on the automatic creation of music scores, has gained
significant attention in recent years due to its intuitive readability and excellent editability (Zhang
et al., 2020; Wu & Sun, 2022). Autoregressive models using transformer architectures, such as Music
Transformer (Anna et al., 2018), Museformer (Yu et al., 2022), and MuseCoco (Lu et al., 2023),
have demonstrated promising results due to its impressive generation quality and scalability with
large-scale datasets. Conditional music generation models, which allow for music to be generated
based on user-defined attributes like style or rhythm, can also be integrated into autoregressive
transformer frameworks (Wu & Sun, 2022; OpenAI, 2023; Lu et al., 2023). However, due to the
many ways music generation can be controlled, it is challenging to account for all potential conditions
during the training phase for large models. This raises the question of how a model can be quickly
updated with new control conditions after it has already been trained on a large dataset.

In particular, granular control over music generation is highly desirable but remains lacking in
existing pretrained autoregressive music models, such as (Lu et al., 2023). These models have
predominantly focused on generating music based on broad, high-level descriptions, offering limited
control over elements like tempo and style within individual sections of a composition. This lack
of fine-grained control at the bar level 1 restricts users from making detailed adjustments to specific
musical elements. Introducing bar-level control would provide users with greater creative flexibility
and enhance applications in automatic composition. For example, attributes from a particular bar
could be extracted and applied to generate new pieces, enabling style imitation. This level of control
would also improve the alignment between lyrics and melody, ensuring the music conveys the desired

1While this paper focuses on “bar-level” control, the method can naturally be extended to other time units,
such as “beat-level” control.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

emotional cues. Moreover, identifying and utilizing attributes from favored music pieces to generate
new compositions through bar-level manipulation would enable more customized and personalized
music creation.

When a pretrained music generation model is available, a straightforward approach to incorporating
bar-level control is to fine-tune the model with newly introduced control signals. Ideally, this fine-
tuning should be performed using a relatively small dataset compared to the volume of the original
training data for the foundation model, thereby avoiding the need for complete retraining. Specifically,
we can utilize bar-level music attributes extracted from the training set’s music scores as prefix control
prompts to train an autoregressive model, with the objective of optimizing the likelihood of the
training samples. However, we’ve found that models trained in this manner often fail to adhere to the
guidance of the bar-level attributes. Our analysis suggests that the model struggles with interpreting
the meanings of these new control prompts, leading to music that does not accurately align with these
prompts. Furthermore, when the training data is limited, the model is prone to overfitting, focusing
more on minimizing loss rather than effectively using the control prompt to steer music generation.

To address this limitation, we propose two strategies to improve bar-level controllability. The first
strategy involves pretraining the control prompt and fine-tuning the model on an auxiliary task
designed to promote accurate alignment between the control prompts and the generated music tokens.
The second strategy introduces a counterfactual loss that penalizes the model for neglecting the
bar-level guidance. By implementing these two techniques together, we significantly enhance the
accuracy of bar-level control without compromising the quality of the music produced.

In sum, the key contributions of this work are outlined as follows:

• We conducted the first study in achieving fine-grained control of symbolic music generation based
on the existing foundation model.

• We propose two innovative strategies, auxiliary task pre-training and counterfactual loss, to improve
bar-level control in the foundation model.

2 RELATED WORK

2.1 TEXT-DRIVEN MUSIC GENERATION

Text-driven music generation, aimed at creating high-quality music from textual descriptions, has
attracted considerable attention from researchers due to its user-friendly editing capabilities. However,
the scarcity of paired text-music data presents a major challenge. To address this, some studies
have employed diffusion-based methods (Zhu et al., 2023; Schneider et al., 2023) with self-collected
text-audio datasets to facilitate text-audio music generation. MuLan (Huang et al., 2022) tackles
the issue of data scarcity. They use techniques similar to those in CLIP (Radford et al., 2021) to
contrastively embed two modalities: music pieces and their textual annotations. Building on this,
MusicLM (Agostinelli et al., 2023) generates audio from MuLan’s embeddings (Huang et al., 2022),
enabling text-to-music conversion without the need for paired data. However, MusicLM’s process
of sampling to acquire fine-grained acoustic tokens is computationally intensive. Other efforts, like
MeLoDy (Lam et al., 2024), seek to simplify music generation by efficiently translating conditioning
tokens into sound waves. Furthermore, MusicGen (Copet et al., 2024) introduces a single-stage
transformer LM framework that models multiple streams of acoustic tokens in parallel. Despite
significant advancements in text-driven music generation, the methods are still relatively crude,
limiting users’ ability to edit musical elements within the generated audio. The controllability and
editability of the outputs remain constrained.

2.2 SYMBOLIC MUSIC GENERATION

Compared to text-driven music generation, symbolic music provides easier editing capabilities, al-
lowing users to manipulate specific musical elements more effectively. The development of solutions
for this task has evolved significantly, from grammar rules-based methods (Collins, 2009; Gar-
cía Salas et al., 2011; Fernández & Vico, 2013) to probabilistic models and evolutionary computation
(Yanchenko & Mukherjee, 2017; Liu & Ting, 2016), and more recently to neural networks and deep
learning (Ycart et al., 2017; Briot et al., 2017; Dong et al., 2018). The advent of transformer-based

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

models, known for their successes in text generation (Li et al., 2022; Ren & Liu, 2023), has also
influenced music generation. The Music Transformer (Anna et al., 2018) utilizes transformers with
relative attention, proving highly effective for generating symbolic music. Museformer (Yu et al.,
2022) addresses challenges in long-sequence and music structure modelling by capturing music
structure-related correlations, thus enhancing music generation efficiency. The recently introduced
MuseCoco (Lu et al., 2023) offers precise control over symbolic music generation through specific
attributes, using these attributes as a bridge to transition from text-to-music to attribute-to-music
generation. MuseCoco enables the adjustment of various musical attributes, offering a level of control
akin to the compositional process. However, this control is limited to entire compositions, diverging
from a composer’s typical approach, which often involves more granular control, such as bar-level
manipulation. Recent studies have explored the application of diffusion models to symbolic music
generation, inspired by their success in the image and audio domains. Lv et al. (2023) introduced
a framework called GETMusic, which includes a novel music representation, “GETScore,” and a
diffusion model, “GETDiff.” The diffusion model is trained to predict masked target tokens condi-
tioned on the source tracks. Similarly, Min et al. (2023) proposed a diffusion model, Polyffusion,
for generating polyphonic music scores by treating music as an image-like piano roll representation.
Their method enables controllable music generation, allowing users to pre-define parts of the music
and apply external controls, such as chords or other musical features. Wang et al. (2024) explored
the training of a cascaded diffusion model to capture hierarchical language structures, enabling
whole-song hierarchical generation. While diffusion models offer a promising direction for symbolic
music generation, the currently available pretrained models remain autoregressive. This paper will
thus focus on updating autoregressive models with newly introduced control signals.

3 PRELIMINARIES

C: G: A:m E:m F:

Pachelbel’s

Canon

The Underlying

Chord

“Far Away”

“Absolute

Obsession”

Figure 1: An example of three pop songs sharing the same chord progression. The top row displays
five-column chords, while the bottom three rows represent the pop songs "Canon" by Pachelbel, "Far
Away" by Jay Chou, and "Absolute Obsession" by Sam Lee.

We begin by examining the MuseCoco model (Lu et al., 2023), which serves as the foundation for
our method. MuseCoco is a text-to-music generative model that initially converts text instructions
into a set of music attributes and then generates music tokens based on these attributes. Our approach
builds upon this attribute-to-music generation model.

In this model, a series of prefix tokens x = [x1, x2, ..., xm] encodes the music attributes. Subse-
quently, the model generates a sequence of music tokens y = [y1, y2, ..., yn]. For additional details
on the tokenization design, we refer to (Lu et al., 2023). The model is trained to maximize the
log-likelihood of the ground-truth music sequences, as in the standard autoregressive model, namely:

L = −
n∑

i=1

log p(yi|y<i, x1:m), (1)

where y<i indicates historic tokens before i.

One limitation of the MuseCoco model (Lu et al., 2023) is its focus solely on global music attributes,
which describe the overall composition without supporting finer control, such as at the bar level.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Fine-grained control is particularly valuable to both musicians and amateurs as it enables users to
define specific properties for smaller segments of music. For instance, users can specify the chords2

in each bar and provide a chord progression, and then explore various musical outputs based on that
progression. Figure 1 illustrates how different music pieces can share the same chord progression.
Beyond its utility for human users, fine-grained bar-level control is also advantageous for automated
composition. For example, bar-level music attributes from one piece could be used to conditionally
regenerate another piece, facilitating style mimicry. Additionally, this level of control can help
achieve a closer alignment between the emotional content of lyrics and the corresponding melody,
such as matching an intensification of emotion in the lyrics with an ascending melody line.

4 METHOD

To attain precise control, we present ControlMuse. This model overcomes the constraints of existing
music score generation models that largely produce music based on broad and vague descriptions.
Our method consists of three components: (1) we refine the control prompt in MuseCoco (Lu
et al., 2023) to facilitate bar-level control instead of global control. (2) we incorporate an auxiliary
task to pre-condition the model and the newly implemented control prompts. (3) we introduce a
counterfactual loss to enhance the adherence of the generated music to the bar-level control prompts.

4.1 CONTROL PROMPT AUGMENTATION

MuseCoco (Lu et al., 2023) only incorporates global musical attributes that define the overall
character of the music, which cannot achieve fine-grained bar-level control of music generation. To
facilitate the latter, we first introduce a scheme to specify the bar-level music attribute. Specifically,
ControlMuse processes a sequence of music attribute tokens X = Xg, X1, X2, ...Xb as input, where
Xg = xg,1, xg,2, ...xg,|Xg| comprises |Xg| tokens representing global attributes, and b denotes the
number of music bars. Each ith bar Xi = xi,1, xi,2, ..., xi,|Xi| contains |Xi| tokens representing the
attributes at the bar level. For instance, token 24 in the chord attribute may indicate that the current
bar’s chord is “Eb: ”, while token 0 in the rhythm intensity attribute could denote a “serene” rhythm
(see Table 6 in Appendix). Those attributes can be extracted from the training music scores, i.e., from
y1, y2, ..., yn. For example, there are existing algorithms 3 to extract the chord implies in a given bar
based on the distribution of the note pitches in the bar, whereas rhythm intensity is determined by
the note density within the bar. Position embeddings are added to the bar-level tokens within this
sequence X1, X2, ...Xb, distinguishing each bar’s tokens shown in Figure 2. Tokens corresponding
to the same bar are assigned identical position embeddings. Conversely, position embeddings are not
used for the global tokens Xg . As a result, the input sequence in our method is encoded as follows:

Xg, X1, X2, ..., Xb, [SEP], y1, y2, ..., yn. (2)

A straightforward approach involves fine-tuning the MuseCoco model by optimizing the likelihood of
the ground-truth music sequence given the bar-level attributes derived from that same sequence, say:

LBFT = −
n∑

i=1

log p(yi|y<i, X), (3)

where LBFT denotes the Bar-level Fine-Tuning loss. In practice, this process can be easily imple-
mented via efficient parameter fine-tuning, such as LoRA (Hu et al., 2021). However, as detailed in
the experimental section (see Table 1), this method proves to be less effective. We find that the model
tends to overlook the newly introduced control prompts in its efforts to maximize the likelihood.
Consequently, although the loss decreases, the controllability of the new prompts does not improve.
We hypothesize that this issue arises because the new control prompts are randomly initialized and

2Chords are groups of notes played together that act as the foundation of music. They generate harmony
and shape the emotional atmosphere of a piece. A sequence of changing chords, known as a chord progression,
provides music with its rhythm and supports the melody. Often in music, especially in piano compositions,
chords manifest not through simultaneous notes but through sequentially played notes, typically with the left
hand, known as a broken chord. The specific chords used in a piece can be identified by analyzing the notes that
appear throughout the composition.

3We use the algorithm provided by https://github.com/Rainbow-Dreamer/musicpy.

4

https://github.com/Rainbow-Dreamer/musicpy

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Transformer

[Start] 𝑋! 𝑋" 𝑋# … 𝑋$ [SEP] 𝑦" 𝑦# 𝑦%…

Bar-level tokens Music sequenceGlobal tokens

𝑦" 𝑦# 𝑦& [END]
…

0Token + Position
Embedding

b
+

1
+ +

b+1
+

b+2
+

b-1
+

b+n
+

Figure 2: Control prompt augmentation.

Transformer

[Start] 𝑋! 𝑋" 𝑋# … 𝑋$ [SEP] 𝑦" 𝑦# 𝑦%…

…
𝑠" 𝑠# 𝑠$
0/1 0/1 0/1

Bar-level tokens Music sequenceGlobal tokens

corresponding tokens

Figure 3: Pre-adapt the bar-level control.

they have not been supported by the foundation. As a result, the MuseCoco model struggles to
adequately translate these controls into the music generation process. Furthermore, the model can
more readily maximize likelihood by overfitting the data, such as by memorizing the training pieces,
thereby diminishing any incentive for the network to adhere to the control signals.

To address this issue, this paper proposes two strategies to improve the controllability of the network.

4.2 CONTROL PROMPTS PRE-ADAPTATION VIA AN AUXILIARY TASK (PA)

The first strategy is to utilize an auxiliary task to pre-adapt the bar-level control mechanism of the
MuseCoco model. In this context, "pre-adapt" refers to modifying the embeddings of the control
prompts and the LoRA parameters. The auxiliary task is framed to meet two key criteria: firstly, it
must be closely related to the task of bar-level controlled generation, ensuring that the parameters
refined during the auxiliary task can be effectively transferred to the main generation task. Secondly,
the model can only accomplish the auxiliary task by genuinely utilizing the interactions between the
control prompts and the corresponding music tokens. Specifically, to achieve bar-level controlled
generation, it is essential for the model to comprehend which music tokens and specific attributes of
those tokens are governed by a bar-level prompt. Accordingly, we propose a recognition task: the
model is presented with a sequence of bar-level control prompts alongside a sequence of music tokens,
and it must determine whether the music sequence conforms to the guidelines set by the bar-level
control prompts. For this purpose, we develop new linear projection heads that are trained on the
output embeddings of the bar-level control prompts. These projections perform a binary classification
task to assess whether the specified bar-level control, as indicated by the control prompt, has been
adhered to in the music sequence. This setup is depicted in Figure 3. Successfully completing this
task hinges on the accurate correlation between the control prompts and the music tokens, a skill that
is directly transferable to controlled music generation.

In our implementation, we randomly select the number of t bars, denoted as M and |M| = t, and
modify the corresponding bar-level tokens in the input to reflect that the attributes of these bars do
not match the expected values. Then we create a sequence of ground-truth prediction labels {si},
with si = 1 for unmodified bar and si = 0 for modified bars (“1” indicates “match” and “0” indicates
“unmatch”). The training loss for this step is expressed as follows:

LPA = −
∑
i∈M

log(1− p(si|y, X ′))−
∑
j ̸∈M

log(p(sj |y, X ′)), (4)

where X ′ represents the set of all bar-level attribute tokens, with modifications made to some bars,
such as changing the chord from C: to A:m or changing the rhythm intensity from serene to moderate.

4.3 IMPROVING CONTROLLABILITY VIA COUNTERFACTUAL LOSS (CF)

The second strategy incorporates the use of a counterfactual loss to verify that the generated to-
kens are genuinely influenced by the bar-level control prompts. Our rationale is that if the music
tokens of a particular bar are truly driven by its associated bar-level control prompt, then alter-
ing the control prompt should result in a substantial decrease in the likelihood of those specific
music tokens. Specifically, we randomly replace the bar-level attributes Xi ∈ {X1, X2, ..., Xb}
with a different value within the attribute, denoted as Xi. We then measure the change of the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

negative log-likelihood of the ith bar’s token, represented by the difference J2 − J1, where
J1 = − 1

|bari|
∑

i∈bari
log p(yi|y<i, Xg, X1, ..., Xi, ..., Xb) is the negative log-likelihood before

the change in this bar, and J2 = − 1
|bari|

∑
i∈bari

log p(yi|y<i, Xg, X1, ..., Xi, ..., Xb) indicates the
negative log-likelihood after the change in this bar. Xi represents a randomly selected attribute token.
In our implementation, to enhance the model’s recognition of the governance range of bar-level
attributes, we assign Xi the same value as Xi−1 whenever Xi ̸= Xi−1.

This approach is designed to reinforce the model’s awareness of the influence exerted by bar-level
attributes. The counterfactual loss is thus defined as:

LCF = max{0, η − (J2 − J1)}, (5)

where the counterfactual loss LCF is designed to promote a significant decrease in the log-likelihood
when the alignment between the control prompt and the music tokens is disrupted after modifying
Xi. η is a margin parameter specifying the desired log-likelihood change.

Overall, our method first pre-adapts the model with the training task described in Section 4.2 and
then apply the counterfactual loss together with the bar-level fine-tuning loss:

L = LBFT + λLCF , (6)

where λ is the trade-off hyperparameter.

4.4 INFERENCE

During the inference stage, music sequences are generated on a bar-by-bar basis. Within each
bar, up to K sampling attempts are allowed. If a sample accurately reflects the intended bar-level
attributes, the generation continues from the subsequent bar. Conversely, if K samples all fail to
exhibit the correct attributes, the token with the highest probability is chosen to continue the sequence
prediction. When K = 1, this process simplifies to a typical auto-regressive model sampling
procedure. Generally, a larger K enhances controllability at the expense of reduced sampling
efficiency. It is noteworthy that in many cases, the model may produce valid music on the first attempt,
implying that the actual number of sampling operations may increase sublinearly with K.

5 EXPERIMENTS

In this section, we assess our method through two case studies focused on bar-level chord control
and rhythm intensity control. In other words, the bar-level attribute corresponds to the chord and
rhythm intensity for each bar, respectively. Bar-level chord control is useful as in music composition,
particularly in pop music, it is customary to first establish a chord progression pattern before
composing the music. Similarly, bar-level rhythm intensity control is beneficial for piano learners,
particularly beginners, as it allows for the adjustment of note density to modify the difficulty of
the generated music. It’s important to note that the objective of our experiment is to evaluate the
effectiveness of the proposed methods in enhancing control based on a pre-trained music model.
We are not aiming to optimize performance specifically for chord-controlled and rhythm-intensity-
controlled generation.

5.1 EXPERIMENTAL SETTING

5.1.1 DATASETS

In our study, we use the POP909 dataset (Wang et al., 2020) to train and evaluate the proposed method.
This dataset comprises multiple renditions of the piano arrangements for 909 popular songs, totalling
approximately 60 hours of music. These arrangements are meticulously crafted by professional
musicians and are provided in MIDI format. On average, each song consists of 270 bars. It is
important to note that, in comparison to the training data used for MuseCoco, POP909 represents
only a small subset. We chose this dataset for two reasons: (1) Pop music typically features distinct
chord progression patterns, making it ideal for this study. (2) Pop piano music is more accessible for
general audiences to evaluate its quality. Following (Lu et al., 2023), we randomly selected three
16-bar clips from each MIDI file. From these clips, global attributes are extracted from the entire clip,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

while bar-level attributes—chords and rhythm intensity are extracted from each individual bar within
the 16-bar length clip. The specific predefined musical attribute values, including global attributes
sourced from the MuseCoco project (Lu et al., 2023) and chord and rhythm intensity attributes derived
from MIDI files, are displayed in Appendix A.1. Details regarding the distribution of chords within
this dataset are provided in Appendix A.3. To convert the MIDI files into token sequences, we employ
a REMI-like representation method (Huang & Yang, 2020). For training, validation, and testing
purposes, we partition the songs into three sets, with a split ratio of 8:1:1 for training, validation, and
testing, respectively.

5.1.2 IMPLEMENTATION DETAILS

We employ the Linear Transformer architecture as our backbone model (Katharopoulos et al., 2020),
configured with a causal attention mechanism spanning 24 layers and utilizing 24 attention heads.
The hidden size is set to 2048, while the feedforward network (FFN) hidden size is 8192. During
the training phase, we began by initializing the MuseCoco-base weights (Lu et al., 2023) with
fp16 precision and subsequently applied a fine-tuning approach. Within the attention layers, LoRA
Adapters (Hu et al., 2021) was incorporated, with a rank size of r = 8. The maximum sequence
length was set to 5120. We use validation performance to set the margin η to 0.05. To execute the
fine-tuning process, we utilized 4 40GB-A100 GPUs, conducting 50 epochs for the first strategy (PA),
and 40 epochs for the second strategy (BFT and CF). We utilize a batch size of 4 and employ the
Adam optimizer (Kingma & Ba, 2014) with a learning rate of 2×10−4, incorporating a warm-up step
of 16,000 and an invert-square-root decay schedule. For inference, we consider the top 15 highest
probabilities as potential prediction hypotheses and perform sampling K = 15 times.

5.1.3 COMPARED MODELS

In this investigation, we conduct a comparative analysis between our proposed method and MuseC-
oco (Lu et al., 2023) for symbolic music generation. Since MuseCoco is only fed with global musical
attributes, we examine MuseCoco with Bar-level Fine-Tuning, represented as BFT which builds
upon the MuseCoco model by incorporating bar-level training techniques. This approach involves
aligning the music attributes with each bar chord or rhythm intensity in the input.

We also conduct a comparative analysis between our proposed method and other Transformer-based
conditional models, specifically FIGARO (von Rütte et al., 2023), as well as the diffusion-based
model Polyffusion (Min et al., 2023). FIGARO employs a description-to-sequence learning approach,
reconstructing the original sequence from fine-grained control signals such as chords and instrument
information. Polyffusion, on the other hand, treats music as image-like piano roll representations and
utilizes external control signals, such as chords, to achieve controllable music generation.

5.1.4 OBJECTIVE EVALUATION

• Bar-level Attribute Accuracy: We employ chord accuracy and rhythm intensity accuracy to assess
the alignment between the prompted chords and rhythm intensity, and those generated during the
symbolic music generation process. This evaluation offers insight into the bar-level controllability
achieved by the proposed method.

• Global Attribute Accuracy: We use global attribute accuracy to evaluate the alignment between
prompted global musical attributes and those generated during the inference process. This metric
offers insight into the sample-level controllability of our method.

5.1.5 SUBJECTIVE EVALUATION

• Musicality: measures the extent to which generated music resembles music created by humans.

We randomly selected 20 pieces of music generated by MuseCoco performed with piano and our
model and created a survey (see Figure 9 in Appendix). We then enlisted 16 piano teachers to evaluate
which pieces resembled human-created music more closely. The survey options were ‘Music 1’,
‘Music 2’, or ‘Similar’, where Music 1 and Music 2 were randomly assigned to either the MuseCoco
generation or ours 4. The degree of musicality was gauged based on the percentage of votes received
for each option.

4We have included the 20 pieces in the Supplementary Material and converted the MIDI files to MP3 format.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Comparative analysis (%) of objective and subjective evaluations among MuseCoco, BFT,
and ControlMuse.

Method Musicality Chord Acc. Rhythm Intensity Acc. Avg. Global Attribute Acc.

MuseCoco 40.63 - - 78.14
BFT - 65.27 76.37 81.54

ControlMuse 43.75 78.33 85.52 82.55

Table 2: Comparative analysis of chord accuracy and rhythm intensity accuracy among FIGARO,
Polyffusion and ControlMuse.

Method Chord Accuracy (%) Rhythm Intensity Accuracy (%)

FIGARO (von Rütte et al., 2023) 70.06 80.33
Polyffusion (Min et al., 2023) 36.38 -

ControlMuse 78.33 85.52

5.2 COMPARED WITH MUSECOCO

Table 1 presents the results of both objective and subjective evaluations. Chord accuracy and average
global attribute accuracy are calculated over K = 15 sampling iterations, whereas rhythm intensity
accuracy is evaluated based on K = 1 sampling iteration. The findings are as follows: 1) In terms
of musicality, ControlMuse achieves performance comparable to MuseCoco, with scores of 43.75%
versus 40.63% respectively (the full survey statistic is shown in Figure 4.). This equivalence in scores
demonstrates that ControlMuse preserves the musicality inherent in MuseCoco. 2) Regarding chord
accuracy and rhythm intensity accuracy, MuseCoco lacks the capability to generate specific chords
and rhythm intensity aligned with each bar. Compared to BFT, ControlMuse significantly improves
chord accuracy and rhythm intensity accuracy by 13.06% and 9.15%, underscoring its enhanced
controllability at the bar level. 3) Concerning average global attribute accuracy, ControlMuse
outperforms BFT by a slight margin of 1.01%, and both show a substantial improvement over
MuseCoco. The data indicates that aligning music attributes with each bar in the input significantly
enhances global attribute accuracy. This improvement suggests that the effective generation of
bar-level attributes can positively influence global attribute generation.

5.3 COMPARED WITH OTHER TRANSFORMER-BASED CONDITIONAL MODELS AND
DIFFUSION MODELS

In this section, we compare the proposed method with the Transformer-based model FIGARO and
the diffusion-based model Polyffusion, both of which utilize chord or rhythm intensity as fine-grained
control signals. The comparative results are presented in Table 2. The proposed method achieves
the highest accuracy in both chord and rhythm intensity, underscoring its efficacy in accurately
responding to fine-grained bar-level control signals. This result further indicates the method’s
capability to effectively integrate additional control through fine-tuning the pre-trained music model,
enabling it to respond proficiently to newly introduced, precise control signals.

5.4 ABLATION STUDY

5.4.1 COMPONENT-WISE ANALYSIS

In this section, we conduct ablation studies to evaluate the impact of each component within our
method. The findings are detailed in Table 3. From the table, it can be seen that employing BFT
alone only yields a chord accuracy of 65.27% and rhythm intensity accuracy of 76.37% during
the inference stage. Notably, the inclusion of PA or CF significantly enhances performance, with
improvements of 6.95% and 5.88% in chords, and 3.68% and 4.25% in rhythm intensity, respectively.
This highlights the critical roles that PA and CF play in improving chord recognition and rhythm
intensity and enhancing bar-level control. Furthermore, the simultaneous use of PA and CF leads
to the best performance, achieving a substantial increase in chord accuracy from 72.22% to 78.33%

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Analyzing the impact of proposed components on chord accuracy and rhythm intensity
accuracy: chord accuracy evaluated over K = 15 sampling iterations and rhythm intensity accuracy
over K = 1 sampling iteration.

BFT PA CF Chord Accuracy (%) Rhythm Intensity Accuracy (%)

✓ × × 65.27 76.37
✓ ✓ × 72.22 80.05
✓ × ✓ 71.15 80.62
✓ ✓ ✓ 78.33 85.52

Figure 4: The vote percentages of music
generated by MuseCoco and our method, as
judged by 16 piano teachers for similarity to
human creation.

Figure 5: Chord accuracy of BFT and our
method with respect to varying K values
ranging from 1 to 15.

with PA and from 71.15% to 78.33% with CF, Similarly, rhythm intensity accuracy improves from
80.05% to 85.52% with PA, and 80.62% to 85.52% with CF. These components enhance chord
accuracy and rhythm intensity accuracy from distinct perspectives: PA aligns bar-level attributes
and musical sequences as input, helping the model to effectively capture the relationships between
bar-level attributes and corresponding music sequences; CF is designed to ensure the model correctly
responds to the prefix bar-level prompts and avoids the trivial solution of generating the next tokens
solely based on previous tokens.

5.4.2 IMPACT OF K —THE NUMBER OF SAMPLING IN INFERENCE

In our method, during the inference phase, we select music sequences bar-by-bar from the K
sampling attempts. This section explores the impact of the value of K. Figure 5 displays the
accuracy achieved with different K values. The results indicate that as K, the number of sampling
attempts, increases, chord accuracy rises significantly. Additionally, compared to BFT, ControlMuse
consistently delivers superior performance across various K values, with the performance gap
between BFT and ControlMuse widening as K increases.

5.4.3 IMPACT OF THE PARAMETER λ

To assess the impact of the parameter λ, we conducted experiments using varying values of λ. Table 4
presents the chord accuracy corresponding to five different settings of λ. As observed, when λ is set
to 0, the approach defaults to PA+BFT. As λ increases from 0 to 1e3, there is a gradual improvement
in chord accuracy, reaching a peak of 78.33% when λ is approximately 1e3. Beyond this point, the
performance begins to decline slightly.

5.5 COMPLEXITY ANALYSIS

Assuming the length of the music sequence is n and the number of sampling attempts per bar is
K, the time complexity of the inference step in MuseCoco is O(n), whereas in our method it is
O(Kn). Although the time complexity scales with the number of sampling attempts K, the actual
sampling often terminates earlier if the model successfully matches the bar-level attributes early on.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Chord accuracy (%) of the proposed
method with different λ.

λ Chord Accuracy

0 72.22
1e1 73.79
1e2 76.42
1e3 78.33
1e4 76.64

Table 5: The average inference time on MuseC-
oco and our method per sample. K = 5 and
K = 15 denote the number of samples in in-
ference. The inference times were measured
on an NVIDIA RTX 4090 GPU.

Method Runtime

MuseCoco 3 mins
Ours (K = 5) 4 mins

Ours (K = 15) 6 mins

Consequently, the average number of samples taken at each bar is typically less than K. The average
inference time per sample with bar-level attributes set to chord is presented in Table 5.

5.6 COMMENTS FROM MUSICIAN AND COMPOSER

We invited musicians to provide feedback on the music created by our system and composers to
experience how our system aids the creative process. Their guidance and comments are as follows:

From Musician: “I was truly impressed by the music produced by this system; its performance is
remarkable. The quality of the music is very similar to that of human compositions, and some of the
bar chord arrangements are astonishing”.

From Composer: “This system for chord arrangement and music creation significantly reduces my
composition time. I found it to be a great source of inspiration. For instance, when I wanted to
arrange the next chord as an A:m chord, the system provided many options to choose from. However,
it uses a lot of broken chords, which composers typically don’t use as frequently in their compositions.
It would be beneficial if this aspect could be improved in the future”.

6 LIMITATION AND FUTURE WORK

This work focuses on attribute-to-music generation, directly specifying attribute values to control
the bar-level music generation process. However, this approach may not be user-friendly for those
who prefer to use text descriptions for control. Therefore, in the future, we aim to develop a more
user-friendly interface that allows bar-level music generation from text descriptions, enabling users
to create and edit bars using natural language. Also, we plan to build a system incorporating more
diverse control signals.

7 CONCLUSION

In this paper, we introduce ControlMuse, a method that allows for finer detail control at the level
of individual bars, significantly advancing the field of automated music score composition and
alignment. This innovative approach offers substantial value and potential for both musicians and
amateurs, enhancing creative efficiency and providing greater control over the composition process.
Our solution contains two innovative strategies that enhance bar-level control without compromising
the quality of the music produced. These designs enable the model to accurately adapt to the adjusted
bar-level attributes as new control prompts, thereby achieving impressive bar-level controllability.

Our research demonstrates the feasibility of bar-level editing in AI technologies. Successful results
in chord control and generation, as shown in Appendix A.2, suggest that more bar-level attributes,
such as melody trends, can be explored in the future. We hope that further inspiration for bar-level
attributes will enhance the ability to edit and control bar generation, thereby improving music creation.
It is possible to adopt ControlMuse for more bar-level attribute edits like melody trends. We hope
ControlMuse will be even more useful with additional bar-level attributes, utilizing the proposed two
training strategies.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Andrea Agostinelli, Timo I Denk, Zalán Borsos, Jesse Engel, Mauro Verzetti, Antoine Caillon,
Qingqing Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, et al. Musiclm: Generating
music from text. arXiv preprint arXiv:2301.11325, 2023.

Huang Cheng-Zhi Anna, Vaswani Ashish, Uszkoreit Jakob, Simon Ian, Hawthorne Curtis, Shazeer
Noam, M Dai Andrew, Dinculescu Monica, Eck Douglas, et al. Music transformer: Generating mu-
sic with long-term structure. Proceedings of International Conference on Learning Representations,
2018.

Jean-Pierre Briot, Gaëtan Hadjeres, and François-David Pachet. Deep learning techniques for music
generation–a survey. arXiv preprint arXiv:1709.01620, 2017.

Nick Collins. Musical form and algorithmic composition. Contemporary Music Review, 28(1):
103–114, 2009.

Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi, and
Alexandre Défossez. Simple and controllable music generation. Advances in Neural Information
Processing Systems, 36, 2024.

Hao-Wen Dong, Wen-Yi Hsiao, Li-Chia Yang, and Yi-Hsuan Yang. Musegan: Multi-track sequential
generative adversarial networks for symbolic music generation and accompaniment. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Jose D Fernández and Francisco Vico. Ai methods in algorithmic composition: A comprehensive
survey. Journal of Artificial Intelligence Research, 48:513–582, 2013.

Horacio Alberto García Salas, Alexander Gelbukh, Hiram Calvo, and Fernando Galindo Soria.
Automatic music composition with simple probabilistic generative grammars. Polibits, (44):59–65,
2011.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Qingqing Huang, Aren Jansen, Joonseok Lee, Ravi Ganti, Judith Yue Li, and Daniel PW Ellis. Mulan:
A joint embedding of music audio and natural language. arXiv preprint arXiv:2208.12415, 2022.

Yu-Siang Huang and Yi-Hsuan Yang. Pop music transformer: Beat-based modeling and generation
of expressive pop piano compositions. In Proceedings of the 28th ACM international conference
on multimedia, pp. 1180–1188, 2020.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Max WY Lam, Qiao Tian, Tang Li, Zongyu Yin, Siyuan Feng, Ming Tu, Yuliang Ji, Rui Xia, Mingbo
Ma, Xuchen Song, et al. Efficient neural music generation. Advances in Neural Information
Processing Systems, 36, 2024.

Junyi Li, Tianyi Tang, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Pretrained language models
for text generation: A survey. arXiv preprint arXiv:2201.05273, 2022.

Chien-Hung Liu and Chuan-Kang Ting. Computational intelligence in music composition: A survey.
IEEE Transactions on Emerging Topics in Computational Intelligence, 1(1):2–15, 2016.

Peiling Lu, Xin Xu, Chenfei Kang, Botao Yu, Chengyi Xing, Xu Tan, and Jiang Bian. Musecoco:
Generating symbolic music from text. arXiv preprint arXiv:2306.00110, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ang Lv, Xu Tan, Peiling Lu, Wei Ye, Shikun Zhang, Jiang Bian, and Rui Yan. Getmusic: Gen-
erating any music tracks with a unified representation and diffusion framework. arXiv preprint
arXiv:2305.10841, 2023.

Lejun Min, Junyan Jiang, Gus Xia, and Jingwei Zhao. Polyffusion: A diffusion model for polyphonic
score generation with internal and external controls. arXiv preprint arXiv:2307.10304, 2023.

R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2(5), 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Xuan Ren and Lingqiao Liu. You can generate it again: Data-to-text generation with verification and
correction prompting. arXiv preprint arXiv:2306.15933, 2023.

Flavio Schneider, Ojasv Kamal, Zhijing Jin, and Bernhard Schölkopf. Mo\ˆ usai: Text-to-music
generation with long-context latent diffusion. arXiv preprint arXiv:2301.11757, 2023.

Dimitri von Rütte, Luca Biggio, Yannic Kilcher, and Thomas Hofmann. Figaro: Controllable
music generation using learned and expert features. In The Eleventh International Conference on
Learning Representations, 2023.

Ziyu Wang, Ke Chen, Junyan Jiang, Yiyi Zhang, Maoran Xu, Shuqi Dai, Xianbin Gu, and Gus Xia.
Pop909: A pop-song dataset for music arrangement generation. arXiv preprint arXiv:2008.07142,
2020.

Ziyu Wang, Lejun Min, and Gus Xia. Whole-song hierarchical generation of symbolic music using
cascaded diffusion models. arXiv preprint arXiv:2405.09901, 2024.

Shangda Wu and Maosong Sun. Exploring the efficacy of pre-trained checkpoints in text-to-music
generation task. arXiv preprint arXiv:2211.11216, 2022.

Anna K Yanchenko and Sayan Mukherjee. Classical music composition using state space models.
arXiv preprint arXiv:1708.03822, 2017.

Adrien Ycart, Emmanouil Benetos, et al. A study on lstm networks for polyphonic music sequence
modelling. ISMIR, 2017.

Botao Yu, Peiling Lu, Rui Wang, Wei Hu, Xu Tan, Wei Ye, Shikun Zhang, Tao Qin, and Tie-Yan Liu.
Museformer: Transformer with fine-and coarse-grained attention for music generation. Advances
in Neural Information Processing Systems, 35:1376–1388, 2022.

Yixiao Zhang, Ziyu Wang, Dingsu Wang, and Gus Xia. Butter: A representation learning framework
for bi-directional music-sentence retrieval and generation. In Proceedings of the 1st workshop on
nlp for music and audio (nlp4musa), pp. 54–58, 2020.

Pengfei Zhu, Chao Pang, Yekun Chai, Lei Li, Shuohuan Wang, Yu Sun, Hao Tian, and Hua
Wu. Ernie-music: Text-to-waveform music generation with diffusion models. arXiv preprint
arXiv:2302.04456, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 PRE-DEFINED MUSICAL ATTRIBUTES

Table 6 displays the global attributes and their values, as well as the bar-level attributes and their
values.

Table 6: Global and bar-level attribute value.“NA" indicates that the attribute is not mentioned in the
text, while “N.C." denotes the absence of any chords.

Type Attribute Values

Global

Instrument piano. 0: played, 1: not played, 2:NA
Pitch Range 0-11: octaves, 12:NA
Bar 0: 1-4 bars, 1: 5-8 bars, 2: 9-12 bars, 3: 13-16 bars, 4: NA
Time Signature 0: 4/4, 1: 2/4, 2: 3/4, 3: 1/4, 4: 6/8, 5: 3/8, 6: others, 7: NA
Key 0: major, 1: minor, 2: NA

Tempo 0: slow (<=76 BPM), 1: moderato (76-120 BPM),
2: fast (>=120 BPM), 3: NA

Time 0: 0-15s, 1: 15-30s, 2: 30-45s, 3: 45-60s, 4: >60s, 5: NA

Bar-level

Chord

0: C:, 1: C:m, 2: C:+, 3: C:dim, 4: C:7, 5: C:maj7, 6: C:m7,
7: C:m7b5, 8: C#:, 9: C#:m, 10: C#:+, 11: C#:dim,
12: C#:7, 13: C#:maj7, 14: C#:m7, 15: C#:m7b5, 16: D:,
17: D:m, 18: D:+, 19: D:dim, 20: D:7, 21: D:maj7,
22: D:m7, 23: D:m7b5, 24: Eb:, 25: Eb:m, 26: Eb:+,
27: Eb:dim, 28: Eb:7, 29: Eb:maj7, 30: Eb:m7, 31: Eb:m7b5,
32: E:, 33: E:m, 34: E:+, 35: E:dim, 36: E:7, 37: E:maj7,
38: E:m7, 39: E:m7b5, 40: F:, 41: F:m, 42: F:+,
43: F:dim, 44: F:7, 45: F:maj7, 46: F:m7, 47: F:m7b5, 48: F#:,
49: F#:m, 50: F#:+, 51: F#:dim, 52: F#:7, 53: F#:maj7,
54: F#:m7, 55: F#:m7b5, 56: G:, 57: G:m, 58: G:+, 59: G:dim,
60: G:7, 61: G:maj7, 62: G:m7, 63: G:m7b5, 64: Ab:, 65: Ab:m,
66: Ab:+, 67: Ab:dim, 68: Ab:7, 69: Ab:maj7, 70: Ab:m7,
71: Ab:m7b5, 72: A:, 73: A:m, 74: A:+, 75: A:dim, 76: A:7,
77: A:maj7, 78: A:m7, 79: A:m7b5, 80: Bb:, 81: Bb:m, 82: Bb:+,
83: Bb:dim, 84: Bb:7, 85: Bb:maj7, 86: Bb:m7, 87: Bb:m7b5,
88: B:, 89: B:m, 90: B:+, 91: B:dim, 92: B:7, 93: B:maj7,
94: B:m7, 95: B:m7b5, 96: N.C.

Rhythm Intensity 0: serene, 1: moderate, 2: intense, 3: NA

C: G: A:m E:m F:

Chord

Case 1

Case 2

Figure 6: Two generated examples using “Canon chord progression” with different global attribute
controls.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Chord: F: F: F: C: C: C: C:

Chord: G: A:m A:m A:mA:m A:m A:m A:m A:m A:m

Chord: A:m A:m F:A:m A:m A:m A:m F:maj7 F:

Chord: F: F: F: F: F: F: G: G: G: E:m7

Figure 7: Some good cases of generated piano rolls, where the chords in the generated music perfectly
align with the prompts.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Chord:

Prompt:

A:m7C: A:m7A:m A:mA:mA:m A:m7C:A:m D:mA:m

A:m A:m7E:m A:mA:mA:m A:m7C: D:mA:m

Chord:

Prompt:

A:mA:m D:m7A:m F:

A:mA:m7

D:m7 D:m7

A:m D:m7 A:m D:m7 E:m7

A:m A:m7 A:m7 A:m

A:m7A:m7 E:m E:m A:m7 D:m

Chord:

Prompt:

A:mA:m E:m7D:m A:m

A:mA:m

E:m7 D:m

A:m7 A:m7 A:m D:mE:m7

A:m A:m7 G: A:m

A:m7 A:m D:m D:m

Figure 8: Examples of failure cases in generated piano rolls, where the chords in the music do not
align with the prompts, highlighted by red boxes.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 9: Screenshot of Musicality Judgment Data Collection: MuseCoco vs. Our Method.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.2 PIANO ROLLS ANALYSIS

A.2.1 CANON-STYLE CASE GENERATION

We conducted experiments using the “Canon chord progression”, as shown in Figure 1, to generate
new melodies. In addition, we applied different global attributes to generate distinct melodies while
maintaining the Canon style. The global attributes for the first case are 4 octaves, moderato tempo,
and minor key. For the second case, the attributes are 2 octaves, fast tempo, and major key. The piano
rolls for these two cases are displayed in Figure 6, and the audio can be found in the Supplementary
Material. Interestingly, we found that both cases retain the Canon style, with melodies that are
comfortable, beautiful, and distinctly Canon-like.

A.2.2 GOOD CASES

We selected some successful cases from our testing where the generated chords perfectly align with
the prompts at the bar level, as shown in Figure 7. This demonstrates the proposed method’s strong
ability to control each bar’s generation with the correct chords.

A.2.3 FAILURE CASES

We also selected some failure cases to analyze and observe how the model failed to generate the
correct chords in each bar, as shown in Figure 8. In these instances, we found that some prompt
chords, such as A:m7, were incorrectly generated as A:m, and D:m7 was incorrectly generated as F.
Additionally, the model frequently confused D:m, D:m7, and E:m7. This indicates that the model
sometimes struggles to differentiate between similar chords (e.g., A:m: A-C-E vs A:m7: A-C-E-G;
D:m7: D-F-A-C vs F: F-A-C).

A.3 CHORD PROPORTIONS.

The complete chord distribution is presented in Table 7. As shown, the common chords in the POP909
dataset include C, C:maj7, D, D:m, D:m7, E, E:m, E:m7, F, F:maj7, G, A:m, and A:m7. Some
chords, however, never appear in the dataset, such as D:+, E:+, F:+, F:m7b5, F#:+, F#:7, G:+, Ab:+,
Ab:m7b5, A:+, Bb:+, Bb:dim, Bb:m7b5, B:+, and B:maj7. Given that the selected dataset primarily
focuses on popular music, it does not encompass all possible chords. Nonetheless, to ensure the
scalability of our method, we uniformly model all chords.

A.4 HUMAN EVALUATION

Figure 9 shows the voting interface.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: Statistics of chord proportions in the POP909 dataset. blue represents the chord and its
proportion more than 1%. Since the selected dataset mainly focuses on popular music, it does not
cover all possible chords. However, to ensure the scalability of the method, we uniformly model all
chords.

Chord Proportion (%) Chord Proportion (%) Chord Proportion (%)
C: 17.11 E:m 6.97 Ab:+ 0

C:m 0.13 E:+ 0 Ab:dim 0.04
C:+ 0.08 E:dim 0.05 Ab:7 0.02

C:dim 0.01 E:7 0.21 Ab:maj7 0.06
C:7 0.17 E:maj7 0.01 Ab:m7 0.01

C:maj7 1.62 E:m7 3.24 Ab:m7b5 0
C:m7 0.05 E:m7b5 0.03 A: 0.63

C:m7b5 0.01 F: 9.94 A:m 18.31
C#: 0.38 F:m 0.57 A:+ 0

C#:m 0.02 F:+ 0 A:dim 0.01
C#:+ 0.01 F:dim 0.01 A:7 0.07

C#:dim 0.02 F:7 0.02 A:maj7 0.02
C#:7 0.01 F:maj7 2.25 A:m7 3.91

C#:maj7 0.06 F:m7 0.12 A:m7b5 0.01
C#:m7 0.02 F:m7b5 0 Bb: 0.52

C#:m7b5 0.01 F#: 0.16 Bb:m 0.23
D: 1.18 F#:m 0.09 Bb:+ 0

D:m 8.03 F#:+ 0 Bb:dim 0
D:+ 0 F#:dim 0.20 Bb:7 0.01

D:dim 0.06 F#:7 0 Bb:maj7 0.07
D:7 0.18 F#:maj7 0.04 Bb:m7 0.08

D:maj7 0.03 F#:m7 0.05 Bb:m7b5 0
D:m7 3.02 F#:m7b5 0.08 B: 0.07

D:m7b5 0.09 G: 14.13 B:m 0.21
Eb: 0.16 G:m 0.17 B:+ 0

Eb:m 0.09 G:+ 0 B:dim 0.22
Eb:+ 0.02 G:dim 0.01 B:7 0.01

Eb:dim 0.01 G:7 0.98 B:maj7 0
Eb:7 0.01 G:maj7 0.08 B:m7 0.12

Eb:maj7 0.03 G:m7 0.12 B:m7b5 0.48
Eb:m7 0.05 G:m7b5 0.01 N.C. 0.37

Eb:m7b5 0.01 Ab: 0.45
E: 1.84 Ab:m 0.01

18

	Introduction
	Related Work
	Text-Driven Music Generation
	Symbolic Music Generation

	Preliminaries
	Method
	Control Prompt Augmentation
	Control Prompts Pre-Adaptation via an Auxiliary Task (PA)
	Improving Controllability via Counterfactual Loss (CF)
	Inference

	Experiments
	Experimental Setting
	Datasets
	Implementation details
	Compared models
	Objective evaluation
	Subjective evaluation

	Compared with MuseCoco
	Compared with Other Transformer-based Conditional Models and Diffusion Models
	Ablation Study
	Component-wise analysis
	Impact of K —the number of sampling in inference
	Impact of the parameter

	Complexity Analysis
	Comments from Musician and Composer

	Limitation and Future Work
	Conclusion
	Appendix
	Pre-defined Musical Attributes
	Piano Rolls Analysis
	Canon-Style Case Generation
	Good Cases
	Failure Cases

	Chord Proportions.
	Human Evaluation

