
Under review as a conference paper at ICLR 2024

LIGHTWEIGHT GRAPH NEURAL NETWORK SEARCH
WITH GRAPH SPARSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Architecture Search (GNAS) has achieved superior performance
on various graph-structured tasks. However, existing GNAS studies overlook
the applications of GNAS in resource-constraint scenarios. This paper proposes
to design a joint graph data and architecture mechanism, which identifies im-
portant sub-architectures via the valuable graph data. To search for optimal
lightweight Graph Neural Networks (GNNs), we propose Lightweight Graph
Neural Architecture Search with Graph SparsIfication and Network Pruning
(GASSIP). In particular, GASSIP comprises an operation-pruned architecture
search module to enable efficient lightweight GNN search. Meanwhile, we design
a novel curriculum graph data sparsification module with an architecture-aware
edge-removing difficulty measurement to help select optimal sub-architectures.
With the aid of two differentiable masks, we iteratively optimize these two mod-
ules to efficiently search for the optimal lightweight architecture. Extensive exper-
iments on five benchmarks demonstrate the effectiveness of GASSIP. Particularly,
our method achieves on-par or even higher node classification performance with
half or fewer model parameters of searched GNNs and a sparser graph.

1 INTRODUCTION

Graph data is ubiquitous in our daily life ranging from social networks (Zhang et al., 2022b) and
protein interactions (Szklarczyk et al., 2018) to transportation (Wang et al., 2020) and transaction
networks (Minakawa et al., 2022). Graph Neural Networks (GNNs) are effective for their ability to
model graphs in various downstream tasks such as node classification, link prediction, graph clus-
tering, and graph classification. In order to utilize the graph structure, many GNNs like GCN (Kipf
& Welling, 2017), GAT (Veličković et al., 2018), and GraphSAGE (Hamilton et al., 2017) build the
neural architecture following the message-passing paradigm (Gilmer et al., 2017): nodes receive
and aggregate messages from neighbors and then update their own representations. However, facing
diverse graph data and downstream tasks, the manual design of GNNs is laborious. Graph Neural
Architecture Search (GNAS) (Gao et al., 2019; Li et al., 2021b; Qin et al., 2021; Guan et al., 2022)
tackles this problem and bears fruit for automating the design of high-performance GNNs.

Compared to traditional GNAS, lightweight GNAS offers a wider range of application scenarios
by reducing computing resource requirements. However, existing studies have overlooked the sig-
nificance of this problem. Despite concerns about the accuracy of lightweight models, the lottery
ticket hypothesis (Frankle & Carbin, 2018; Chen et al., 2021a) suggests that sub-networks, which
remove unimportant parts of the neural network, can achieve comparable performance to the full
network. Therefore, the core objective of lightweight GNAS is to efficiently search for the effec-
tive sub-architecture corresponding to the high-performance sub-networks. As a result, to achieve
the objective of lightweight GNAS, we need to address the two challenges: (1) How to effectively
search for optimal GNN sub-architectures? (2) How to efficiently conduct lightweight GNAS?

Regarding the issue of effectiveness, graph neural sub-architectures remain black-box due to neural
network complexity, while significant progress has been made in understanding graph data (Zhao
et al., 2021; Kang et al., 2020; Rong et al., 2020; Qin et al., 2021). Here, we propose applying
graph sparsification to enhance lightweight GNAS, based on the following reason: the underlying
assumption of graph sparsification is the existence of a sparse graph that can preserve the accuracy
of the full graph for given tasks (Chen et al., 2021a; Rong et al., 2020; Luo et al., 2021; Zheng

1

Under review as a conference paper at ICLR 2024

𝑾 𝑾⊙𝑴𝑾

𝐷𝑎

𝐷𝑛

𝒢 = 𝐀, 𝐗

𝒢 = (𝐀⊙𝑴𝑮, 𝐗)

𝐷 = 𝐷𝑎 + λ𝐷𝑛

Figure 1: The iterative training framework of GASSIP. The graph data and architecture parameters are
iteratively optimized. For the operation-pruned architecture search, it first receives the current learned graph
structure, then interactively perform supernet training and operation pruning. For the curriculum graph data
sparsification, it estimates edge-removing difficulty from node- and architecture-view and updates the graph
structure via architecture sampling and sample reweighting.

et al., 2020). Therefore, it is reasonable to infer that the effective sub-architecture plays a crucial
role in processing the informative sparse graph. By leveraging the information provided by the
sparse graph, we can identify the corresponding sub-architectures. Regarding the issue of efficiency,
a straightforward way to realize the lightweight GNAS goal is the first-search-then-prune pipeline,
which suffers an efficiency problem since it needs two GNN training sessions. However, there is no
existing work discussing how to deal with GNAS and pruning at the same time.

In this paper, we propose Lightweight Graph Neural Architecture Search with Graph SparsIfication
and Network Pruning (GASSIP). As shown in Figure 1, GASSIP performs iterative data and archi-
tecture optimization through two components: operation-pruned architecture search and curriculum
graph data sparsification. The former component helps to construct lightweight GNNs with fewer
parameters and the later one helps to search for more effective lightweight GNNs. In particular,
we conduct operation pruning with a differentiable operation weight mask to enable identifying
important parts of the architecture in the operation-pruned architecture search. Meanwhile, in the
curriculum graph data sparsification, we use a differentiable graph structure mask to identify useful
edges in graphs and further help search for optimal sub-architectures. To conduct a proper judgment
of useful/redundant graph data information, we exploit curriculum learning with an edge-removing
difficulty estimator and sample(nodes) reweighting to learn graph structure better.

Meanwhile, our designed joint search and pruning mechanism has comparable accuracy and is far
more efficient compared with the first-search-then-pruning pipeline, as shown in experiments. The
graph data and operation-pruned architectures are iteratively optimized. Finally, GASSIP generates
the optimal sub-architecture and a sparsified graph.

Our contributions are summarized as follows:

• We propose an operation-pruned efficient architecture search method for lightweight GNNs.
• To recognize the redundant parts of graph data and further help identify effective sub-

architectures, we design a novel curriculum graph data sparsification algorithm by an architecture-
aware edge-removing difficulty measurement.

• We propose an iterative optimization strategy for operation-pruned architecture search and cur-
riculum graph data sparsification, while the graph data sparsification process assists the sub-
architecture searching.

• Extensive experiments on five datasets show that our method outperforms vanilla GNNs and
GNAS baselines with half or even fewer parameters. For Cora dataset, we improve vanilla GNNs
by 2.42% and improve GNAS baselines by 2.11%; the search cost is reduced from 16 minutes for
the first-search-then-prune pipeline to within one minute.

2 RELATED WORK

However, these works are all manually-designed and are unable to consider graph data and network
architecture at the same time.

2

Under review as a conference paper at ICLR 2024

2.1 GRAPH NEURAL ARCHITECTURE SEARCH

The research of Graph Neural Architecture Search (GNAS) has flourished in recent years for au-
tomating the GNN architecture design (Zhang et al., 2022a; Xu et al., 2023). We refer the readers to
the GNAS survey (Zhang et al., 2021) for details. GraphNAS (Gao et al., 2019) is the first attempt to
build the GNN search space and utilizes reinforcement learning to find the optimal architecture. For
a more efficient search, many works (Li et al., 2021a; ZHAO et al., 2021; Cai et al., 2021b) adopt
the differentiable architecture search algorithm. On a continuous relaxation of the search space, all
candidate operations are mixed via architecture parameters, which are updated with operation pa-
rameters. Considering the certain noises in graph data, GASSO (Qin et al., 2021) conducts a joint
optimization for architecture and graph structure. All previous works only focus on searching for
high-performance architectures but overlook searching for a lightweight GNN. As far as we know,
the most related work to ours is ALGNN (Cai et al., 2021a). ALGNN searches for lightweight
GNNs with multi-objective optimization, but it neglects the vital role of the graph structure, which
is important not only for graph representation learning but also for guiding the graph neural architec-
ture search. Aside from the GNAS literature, Yan et al. (2019) also proposed HM-NAS to improve
the architecture search performance by loosening the hand-designed heuristics constraint with three
hierarchical masks on operations, edges, and network weights. In contrast, our focus is different
from HM-NAS as we aim to search for a lightweight GNN considering co-optimizing the graph
structure. To achieve goal, we design a novel lightweight graph neural architecture search algorithm
that exploits graph data to select optimal lightweight GNNs with a mask on network weights.

2.2 GRAPH DATA SPARSIFICATION

Graph data sparsification is to sparsify the graph structure which removes several edges, maintains
the information needed for downstream tasks, and allows efficient computations (Zhang et al., 2023;
Liu et al., 2023). Some methods rebuild the graph structure through similarity-related kernels based
on node embeddings. For example, GNN-Guard (Zhang & Zitnik, 2020) exploits cosine similarity to
measure edge weights. Additionally, some algorithms (Zheng et al., 2020; Luo et al., 2021) leverage
neural networks to produce intermediate graph structures and then use discrete sampling to refine
the graph structure. Furthermore, the direct learning algorithm (Ying et al., 2019; Chen et al., 2021a;
Qin et al., 2021) takes the edge weights as parameters by learning a structure mask and removing
lower-weight edges. In this paper, we perform graph data sparsification through graph structure
learning using the tools from curriculum learning and jointly conduct the architecture search.

3 PRELIMINARIES

Let G = (A,X) denotes one graph with N nodes V = {VL,VU}, where VL is the labeled node set
and VU is the unlabeled node set, A ∈ RN×N represents the adjacency matrix (the graph structure)
and X ∈ RN×D0 represents the input node features. E is the edge set in G.

For a node classification task with C classes, given a GNN f , it upgrades the node representations
through feature transformation, message propagation, and message aggregation, and outputs node
predictions Z ∈ RN×C :

Z = f(A,X;W), (1)

where W denotes network weights. The objective function of the semi-supervised node classifica-
tion task is the cross-entropy loss between predictions and ground truth labels, denoted as Lclf .

3.1 DIFFERENTIABLE GRAPH NEURAL ARCHITECTURE SEARCH

The goal of GNAS could be formulated as a bi-level optimization problem (Liu et al., 2018):

α∗ = argmin
α

Lval(W
∗(α), α)

s. t. W∗(α) = argmin
W

Ltrain(W, α),
(2)

where α is the architecture parameter indicating the GNN architecture, and W is the learnable
weight parameters for all candidate operations. W∗(α) is the best weight for current architecture

3

Under review as a conference paper at ICLR 2024

α based on the training set and α∗ is the best architecture according to validation set. Here, we
resort to the Differentiable Neural Architecture Search (DARTS) (Liu et al., 2018) algorithm to con-
duct an efficient search. Considering the discrete nature of architectures, DARTS adopts continuous
relaxation of the architecture representation and enables an efficient search process. In particular,
DARTS builds the search space with the directed acyclic graph (DAG) (shown as supernet in Fig-
ure 1) and each directed edge (i, j) is related to a mixed operation based on the continuous relaxation

ō(i,j)(xi) =
∑

o∈O
exp (α(i,j)

o)∑
o′∈O exp (α

(i,j)

o′)
o(i,j)(xi), where xi is the input of node i in DAG,O stands for

the candidate operation set (e.g., message-passing layers), and α is the learnable architecture param-
eter. In the searching phase, weight and architecture parameters are iteratively optimized based on
the gradient descent algorithm. In the evaluation phase, the best GNN architecture is induced from
mixed operations for each edge in DAG, and the optimal GNN is trained for final evaluation.

Nonetheless, the problem Eq.2 does not produce lightweight GNNs. Next, we introduce the
lightweight graph neural architecture search problem and our proposed method.

4 LIGHTWEIGHT GNAS

In this section, we introduce our lightweight GNAS algorithm, GASSIP, in detail. First, we for-
mulate the corresponding problem in Sec. 4.1. Then, we describe the curriculum graph data spar-
sification algorithm in Sec. 4.3. Finally, we introduce the iterative optimization algorithm of the
curriculum graph data sparsification and operation-pruned architecture search in Sec. 4.4.

4.1 PROBLEM FORMULATION

Here, we introduce two learnable differentiable masks MG,MW for the graph structure A and op-
eration weights W in the supernet. The value of the operation weight mask indicates the importance
level of operation weights in the architecture and therefore helps to select important parts in GNN
architectures. The trained graph structure mask could identify useful edges and remove redundant
ones and thus helps to select important architectures while searching.

The goal of GASSIP could be formulated as the following optimization problem:
α∗ = argmin

α
Lval(A⊙M∗

G,W
∗ ⊙M∗

W , α)

s. t. W∗,M∗
W = argmin

W,MW

Ltrain(A⊙M∗
G,W ⊙MW , α),

M∗
G = argmin

MG

Lstruct(A⊙MG,W ⊙MW , α),

(3)

where ⊙ denotes the element-wise product operation, M∗
G indicates the best structure mask based

on the current supernet and the structure loss function Lstruct, W∗ and M∗
W are optimal for α and

current input graph structure A⊙M∗
G. The target of GASSIP is to find the best discrete architecture

according to the architecture parameters α, obtain the sparsified graph based on the structure mask
MG and get the pruned network from the weight mask MW . In practice, we use sparse matrix-based
implementation, which means that MG is a |E|-dimensional vector.

4.2 OPERATION-PRUNED ARCHITECTURE SEARCH

We leverage network pruning, which reduces the number of trained parameters, to build lightweight
GNNs. In contrast with directly building smaller GNNs with fewer hidden channels, building GNNs
with reasonable hidden channels and then performing pruning could realize the lightweight goal
without compromising accuracy. In GASSIP, we prune the operation in the supernet while searching
and name it the operation-pruned architecture search. Specifically, we co-optimize candidate opera-
tion weights W and their learnable weight mask MW = σ(SW) in the searching phase, where SW

is a trainable parameter and σ is a sigmoid function which restricts the mask score between 0 and 1.
The differentiable operation weight mask helps to identify important weights in operations.

4.3 CURRICULUM GRAPH DATA SPARSIFICATION

Effective sub-architectures could better utilize useful graph information to compete with full archi-
tectures. Useful graph data could help to select the most important parts of the GNN architecture

4

Under review as a conference paper at ICLR 2024

while unsuitable removal of the graph data may mislead the sub-architecture searching process.
Here, we exploit graph structure learning to help search for optimal sub-architectures. Besides, we
conduct a further graph sparsification step which removes redundant edges after the whole training
procedure. The calculation of message-passing layers includes the edge-level message propagation,
in which all nodes receive information from their neighbors with |E| complexity. A sparser graph,
compared to a dense graph, has less inference cost because of the decrease in edge-wise message
propagation. Hence, eliminating several edges in graph data helps to reduce the model complexity
and boosts the model inference efficiency.

In this section, we answer the first question in the Sec. 1 and propose our curriculum graph data
sparsification algorithm to guide the lightweight graph neural architecture search in a positive way.
A successful graph sparsification could recognize and remove redundant edges in the graph structure.
For GNNs, it is natural to identify structure redundancy as edges with low mask scores. However,
for GNAS, plenty of architectures are contained in one supernet while different architectures have
their own views of redundant information, which is illustrated by observation in Appendix B.

Structure Redundancy Estimation. In order to estimate the graph structure redundancy, we exploit
structure learning and formulate the graph structure mask MG with the sigmoid function σ:

MG = σ(SG − γ), (4)

where SG ∈ RN×N is a learnable mask score parameter and γ is a learnable mask threshold param-
eter which helps to control the graph data sparsity. The number of non-zero elements in SG equals
|E|. The sigmoid function restricts the graph structure mask score into (0, 1). Smaller structure
mask scores indicate that corresponding edges are more likely to be redundant. The structure mask
is differentiable and updated through the calculated gradient of the loss function Lstruct.

Intuitively, if an edge is redundant, it would be regarded as a redundant one no matter what the
architecture is. If the updated gradients are consistent under several architectures, we have more
confidence to update the structure mask score. Considering the Observation, we propose to leverage
backward gradients on different architectures to formulate the structure mask update confidence. In
particular, we first sample top-K architectures {a1, a2, ..., aK} from the supernet according to the
product of the candidate operation probability in each layer:

a ∼ PK(O, α). (5)

We calculate the backward gradient ∇ai

SG
= ∇SG

Lstruct

(
fai(A ⊙MG,X)

)
for each sampled

architecture {ai, i = 1, 2, ...,K}. Then, we exploit the standard deviation of ∇ai

SG
to construct the

structure mask update confidence std(∇a
SG

). The final update for the structure mask is formulated
as:

∇SG
=

∑K
i=1∇

ai

SG

K std(∇a
SG

)
, SG ← SG − η∇SG

, (6)

∇γ =

∑K
i=1∇ai

γ

K
, γ ← γ − η∇γ . (7)

Curriculum Design. Some redundant edges are easier to recognize than others. For example, if
several architectures have different judgments of one edge’s redundancy, it is hard to decide whether
this edge should be removed or not. For GNAS, false structure removal in the early stage of searching
may misguide the search process. As a result, we introduce curriculum learning into the graph
sparsification process based on the architecture-aware edge-removing difficulty measurement and
the sample re-weighting strategy. Our method belongs to a more general definition of curriculum
learning in which we schedule the training process by softly reweighting and selecting sample nodes
rather than directly controlling the node difficulty (Wang et al., 2021).

Specifically, we evaluate the architecture-aware edge-removing difficulty from two views: the archi-
tecture view and the node view. From the architecture view, if several architectures have disparate
judgments of mask update, the corresponding edge moving should be more difficult. For edge eij
between node i and node j, the edge-removing difficulty under the architecture-view is defined as

Da(eij) = std(∇a
SG,ij

), (8)

5

Under review as a conference paper at ICLR 2024

where std indicates the standard deviation. It is worth mentioning that Da(eij) has already been
calculated in the structure redundancy estimation step, which could be saved in memory without
repeating the calculation.

From the node view, edges that link similar nodes are harder to remove and nodes with a lower
information-to-noise ratio have more difficult edges. Here, we measure the information-to-noise
ratio with label divergence. Therefore, the node-view edge-removing difficulty is evaluated as:

Dn(eij) = fcos(zi, zj) + λ1

∑
j∈Ni

I(ȳj ̸= ȳi)

|Ni|
, (9)

where λ1 is a hyper-parameter balancing the node-view difficulty, Ni denotes neighbors of node i.
I() is the 0-1 indicator function and fcos represents the cosine similarity function. zi stands for the
final representation of node i calculated in the architecture parameter training phase. ŷi represents
the predicted label and ȳi is the pseudo-label assigned based on predictions for the output zi:

ȳi =

{
ŷi, i ∈ VU
yi, i ∈ VL.

(10)

Considering the inseparable nature of edges and the ease of usage of nodes in the loss function,
we build the node difficulty based on the architecture-aware edge-removing difficulty. We use the
sample reweighting strategy during the structure mask training based on the node difficulty.

D(eij) = Da(eij) + λ2Dn(eij) (11)

D(i) =
∑

j∈Ni
D(eij)

|Ni|
, (12)

where λ2 is a hyper-parameter. In this way, the node difficulty is defined as the average edge-
removing difficulty for all its neighbors.

Following the idea of Hard Example Mining (Shrivastava et al., 2016), we regard difficult edges are
more informative and need to be weighted more in training. We assign nodes with higher node/edge-
removing difficulty higher sample weights. The node weight is calculated as

θi = softmax(D(i)), i ∈ V (13)

Based on node weights v, the loss function of graph sparsification for sampled architecture a is

Lstruct =
∑
i∈VL

θi
(
Lclf (fa(A⊙MG,X), ȳi) + βLent(MG)

)
, (14)

where Lclf is the classification loss based on the assigned pseudo-labels. Lent is the mean entropy
of each non-zero element in MG, which forces the mask score to be close to 0 or 1. β is a hyper-
parameter balancing the classification and entropy loss.

The overall curriculum graph data sparsification algorithm is summarized in Algorithm 1. In line
1, pseudo-labels are assigned based on the supernet predictions. Then the node weights in Lstruct

are updated via edge-removing difficulty calculation in Line 2. In Lines 3-7, K architectures are
sampled from the supernet, structural gradients are calculated and the structure mask is updated.

Algorithm 1 Curriculum Graph Data Sparsification.
Input: The graph data G(A,X), candidate operations O, architecture parameters α

1 ; Output: The structure mask MG.
2 Assign pseudo-labels ȳ as shown in Eq. 10;
3 Update edge difficulty and assign node weight v in Eq. 13;
4 Sample K architectures {a1, a2, ..., aK} from the supernet according to Eq. 5;
5 for i in {1, 2, ...,K} do
6 Obtain∇ai

SG
;

7 Calculate structure mask update confidence std(∇a
SG

);
8 Update the structure mask MG based on Eq. 6 and Eq. 7;
9 Return the structure mask MG.

6

Under review as a conference paper at ICLR 2024

4.4 AN ITERATIVE OPTIMIZATION APPROACH

In this section, we introduce the solution to the second question in the introduction and solve the
optimization problem in Eq. 3 in an iterative manner.

Since the informative continuous graph structure helps to select proper operations from the search
space while redundant graph data (e.g., noise edges) will deteriorate the architecture search result,
we iteratively perform graph sparsification and architecture search optimization. Using the valuable
graph data, we pinpoint key components of the GNN for both operations and weights. Furthermore,
the introduction of two trainable masks in Eq. 3 enables us to efficiently select useful graph struc-
tures and essential parts of the architecture. Fully differentiable parameters, according to DARTS
algorithms, can cut the search time of lightweight GNNs from several hours (Cai et al., 2021a) to
minutes (shown in Sec. 5.3).

Algorithm 2 The Detailed Algorithm of GASSIP.
Input: The graph data G(A,X), candidate operation setO, training epoch number T , warm up epoch number

r
Output: The sparsified graph Gsp(A⊙ M̄G,X), optimal lightweight architecture fa(Gsp;W ⊙ M̄W).

1 for t← 1 to T do
2 Update candidate operation weights W and their masks MW ;
3 if t < r then
4 continue;
5 Training graph structure mask MG following Algorithm 1;
6 Update architecture parameters α;
7 Get the binarized structure mask M̄G and the binarized weight mask M̄w;
8 Induce the optimal GNN architecture a;
9 Return the sparsified graph Gsp(A⊙ M̄G,X) and the optimal lightweight architecture fa(Gsp;W ⊙ M̄W).

Training Procedure. We summarize the whole training procedure in Algorithm 2. Line 1-6 pro-
vides the detailed training process of GASSIP. For the first r warm-up epochs, only candidate oper-
ation weights and their masks are updated. Then, the operation weights/masks, structure masks, and
architecture parameters are iteratively optimized by calculating the gradient descending of objec-
tives in Eq. 3. In practice, the pruning mask becomes quite sparse after several iterations. Therefore,
the pruning is mostly sparse matrix multiplication, which is more efficient compared with dense
matrix multiplication.

After finishing training, the continuous graph structure mask and operation weight mask are bina-
rized to perform graph sparsification and operation pruning in Line 7. In detail, we initialize bina-
rized structure mask M̄G = MG and remove edges that have mask values lower than the threshold
γ: M̄G,ij = 0, if MG,ij < γ. Meanwhile, to formulate the binarized weight mask M̄W , we force
the operation weight mask values that have non-positive values to zero and weights that have positive
mask scores to one. The zero elements will not be trained during the evaluation phase.

At last, the final evaluation is conducted based on the sparsified graph Gsp and the induced pruned
architectures fa(Gsp;W ⊙ M̄W).

5 EXPERIMENTS

In this section, we conduct experiments to demonstrate the effectiveness and efficiency of the pro-
posed algorithm, GASSIP. We also display ablation studies of different components in GASSIP. In
addition, the experimental settings, sensitivity analysis for hyper-parameters and the comparison of
GASSIP with other graph learning and lightweight GNN methods are deferred in the Appendix.

5.1 EXPERIMENTAL RESULTS

Analysis of Model Accuracy. We compared GASSIP with vanilla GNNs and automated baselines
on the node classification task on five datasets in Table 1. The test accuracy (mean±std) is reported
over 100 runs under different random seeds. We find that our proposed algorithm outperforms other
baselines in all five datasets. Meanwhile, we can observe that the stds are relatively small, there-
fore the searched result is not sensitive to the choice of random seed. Among all baselines, only

7

Under review as a conference paper at ICLR 2024

Table 1: Experimental results for node classification. The test accuracy is averaged for 100 runs (mean±std)
using different seeds. OOM means out-of-memory. The best results are in bold.

Method Cora CiteSeer PubMed Physics Ogbn-Arxiv

Vanilla GNNs
GCN (Kipf & Welling, 2017) 80.93±0.67 70.39±0.66 79.37±0.39 97.43±0.12 70.57±0.41
GAT (Veličković et al., 2018) 80.78±0.93 67.40±1.26 78.46±0.31 97.76±0.11 69.40±0.35
ARMA (Bianchi et al., 2021) 81.18±0.62 69.31±0.70 78.51±0.38 96.34±0.08 70.79±0.36

Graph Sparsification
DropEdge (Rong et al., 2020) 82.42±0.65 70.45±0.73 77.51±0.74 96.67±0.19 69.33±0.36
NeuralSparse (Zheng et al., 2020) 81.14±0.70 70.64±0.42 78.12±0.31 97.86±0.45 OOM
PTDNet (Luo et al., 2021) 82.42±0.65 70.45±0.73 77.51±0.74 96.47±0.38 OOM

GNAS
DARTS (Liu et al., 2018) 81.65±0.48 70.00±0.94 79.42±0.36 98.28±0.07 70.58±0.25
GraphNAS (Gao et al., 2019) 81.33±0.84 70.92±0.61 78.87±0.61 97.45±0.06 OOM
GASSO (Qin et al., 2021) 81.09±0.91 68.20±1.09 78.15±0.59 98.06±0.11 70.52±0.31
GUASS (Guan et al., 2022) 82.05±0.21 70.80±0.41 79.48±0.16 96.76±0.08 71.85±0.41

Ours GASSIP 83.20±0.42 71.41±0.57 79.50±0.30 98.46±0.06 71.30±0.23

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Params (M)

80.5

81.0

81.5

82.0

82.5

83.0

Te
st

 A
cc

ur
ac

y
(%

)

GASSIP(ours)*

GCN

DropEdge*

GAT

ARMA

DARTS

IMP

GraphNAS

UGS*

(a) Cora

0 1 2 3 4
Params (M)

69.0

69.5

70.0

70.5

71.0

71.5

Te
st

 A
cc

ur
ac

y
(%

)

GASSIP(ours)*

GCN

DropEdge*

GAT

ARMA

DARTS

IMP
UGS*

GraphNAS

(b) CiteSeer

1 2 3 4
Params (M)

96.5

97.0

97.5

98.0

98.5

Te
st

 A
cc

ur
ac

y
(%

)

GASSIP(ours)*

GCN

DropEdge*

GAT

ARMA

DARTS

GraphNAS

(c) Physics
Figure 2: Scatter plots showing the relationship between the total number of model parameters and node clas-
sification performance on (a) Cora, (b) CiteSeer, and (c) Physics. Methods with ∗ are able to perform graph
sparsification. Scatters in the upper left show higher classification performance with lower parameter counts.

DropEdge and GASSO are able to conduct graph sparsification/graph structure learning. DropE-
dge surpasses the automated baselines in some scenarios, which proves the possible performance
improvements of removing edge. In comparison, GASSIP selects removing edges with curriculum
sparsification jointly with architecture search rather than random sampling. Compared with GASSO,
on the one hand, GASSO directly uses the supernet performance as the classification results without
inducing an optimal architecture, which hinders its application in memory-limited scenarios. On the
other hand, our method further conducts an edge deleting step after the graph structure learning and
is able to perform operation pruning, which makes the searched GNNs more lightweight. Mean-
while, GASSIP achieves better performance than GUASS on smaller graphs, but GUASS could
handle graphs with more nodes and edges (Ogbn-Arxiv) as it is specially developed for large-scale
datasets. However, our trained model is more lightweight and therefore can be applied in scenarios
where computational resources are limited, which is not applicable to GUASS.

Analysis of Model Parameters. We further visualized the relationship between model parameter
counts and classification test accuracy in scatter plots shown in Figure 2. Except for manually-
designed GNNs (GCN, GAT, DropEdge) and GNAS methods (DARTS, GraphNAS), we also com-
pare with an iteratively magnitude-based pruning (IMP) method on GCN (Chen et al., 2021a) and
the unified GNN sparsification (UGS) framework (Chen et al., 2021a). IMP iteratively removes p1%
(we set p1 = 20%) weights and retrains GCN from rewinding weights. UGS simultaneously prunes
the graph structure and the model weights also in an iteratively magnitude-based pruning way. We
set the iterative edge removing probability p2 = 5%. We report the best test performance of IMP
and UGS based on the validation performance. The hidden size of various baselines is kept the same
for each dataset to make a fair comparison.

As shown in Figure 2, GASSIP achieves higher performance with fewer parameter counts. For
the Cora dataset, GASSIP reserves only 50% parameters compared with GCN and 13% compared
with GAT. For CiteSeer, our method has 8% parameter counts compared with GAT and 15% com-
pared with ARMA. For Physics, the proposed method keeps only 6% parameters compared to GAT.
Among all baselines, only DropEdge, UGS, and GASSIP (with ∗ in Figure 2) could generate spar-
sified graph. DropEdge needs to load the whole graph in memory to perform edge sampling in each
GNN layer. As a result, only UGS and GASSIP have the potential to reduce the inference cost from
the edge-level message propagation calculation.

5.2 ABLATION STUDY

To get a better understanding of the functional components in GASSIP, we further conduct abla-
tion studies on operation pruning and the curriculum graph sparsification parts. Figure 3 shows
bar plots of the test accuracy on Cora and Physics. We evaluate the performance under the same
search/training hyper-parameters and report the average accuracy over 100 runs. We compare our
method with three variants: w/o op prn means to search without pruning operations and only per-
form curriculum graph data sparsification, w/o sp stands for searching architectures without the

8

Under review as a conference paper at ICLR 2024

curriculum graph data sparsification and only conduct operation pruning, w/o cur indicates search
architectures with the graph data sparsification part but without the curriculum scheduler.

By comparing GASSIP with its w/o sp variant in light green, we could find that GASSIP gains
performance improvement from the curriculum graph sparsification part largely. This phenomenon
shows that the graph sparsification component leads the operation-pruned architecture search in a
positive way and further substantiates the effectiveness of leveraging data to search optimal sub-
architectures. Within the curriculum graph sparsification part, performing graph sparsification
(graph structure learning) with the curriculum scheduler (w/o op prn) behaves better than with-
out it (w/o cur). Therefore, the curriculum scheduler helps to learn the graph structure mask better.
Besides, the iterative optimization of graph data and operation-pruned architecture works well in
gaining performance improvement.

To further illustrate the effectiveness of graph sparsification in our method, we add a new ablation
study to substitute our graph sparsification algorithm with DropEdge (Rong et al., 2020), which
conducts random edge dropping in the differentiable architecture search process. The classification
accuracy on Cora is 79.42±0.63 (DARTS 81.65±0.48, ours 83.20±0.42). This result shows that
poorly designed edge removal may be harmful to architecture search.

74

76

78

80

82

84

Te
st

 A
cc

ur
ac

y
(%

)

GASSIP
w/o op prn
w/o sp
w/o cur

(a) Cora

97.6

97.8

98.0

98.2

98.4

98.6

Te
st

 A
cc

ur
ac

y
(%

)

GASSIP
w/o op prn
w/o sp
w/o cur

(b) Physics
Figure 3: Ablation study for GASSIP under scenarios of without operation pruning (w/o op prn), without graph
data sparsification (w/o sp), without curriculum scheduler (w/o cur).

5.3 SEARCH EFFICIENCY

We compare the search efficiency of GNAS methods in Table 2 and provide the training time cost of
searched GNNs in the Appendix. Based on the differentiable architecture search algorithm, GAS-
SIP is more efficient than GraphNAS, which searches architectures with reinforcement learning.
The DARTS+UGS baseline represents the first-search-then-prune method which first searches ar-
chitectures and then conducts network pruning and graph data sparsification. It is loaded with heavy
searching, pruning, and retraining costs, which is far less efficient than GASSIP.

Table 2: Searching time cost for GNAS methods.

Methods DARTS DART+UGS GASSO GraphNAS GASSIP
Search Time (min) 0.55 15.79 0.62 223.80 0.98

6 CONCLUSION AND LIMITATIONS

In this paper, we propose an efficient lightweight graph neural architecture search algorithm, GAS-
SIP. It iteratively optimizes graph data and architecture through curriculum graph sparsification and
operation-pruned architecture search. Our method can reduce the inference cost of searched GNNs
at the architecture level by reducing the model parameter counts, and at the data level by eliminating
redundant edges. To the best of our knowledge, this is the first work to search for lightweight GNN
considering both data and architecture.

Limitations. The main purpose of this paper is to search for a lightweight GNN (i.e., lightweight
GNN design) that offers a wider range of application scenarios (e.g., edge computing) by limited
computational resource requirements. Therefore, the current implementation of GASSIP has diffi-
culty to be integrated with graphs with billions of nodes, This difficulty of scalability commonly hin-
ders both graph sparsification and current GNAS research in applications with contained resources
without a specifically designed sampling strategy.

Future works. Our future works include evaluating GASSIP on other large-scale graphs, providing
a theoretical analysis of the convergence of our iterative optimization algorithm, and developing a
unified benchmark for lightweight GNAS.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Sergi Abadal, Akshay Jain, Robert Guirado, Jorge López-Alonso, and Eduard Alarcón. Computing
graph neural networks: A survey from algorithms to accelerators. ACM Computing Surveys
(CSUR), 54(9):1–38, 2021.

Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Graph neural networks
with convolutional arma filters. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2021.

Rongshen Cai, Qian Tao, Yufei Tang, and Min Shi. Algnn: Auto-designed lightweight graph neu-
ral network. In Pacific Rim International Conference on Artificial Intelligence, pp. 500–512.
Springer, 2021a.

Shaofei Cai, Liang Li, Jincan Deng, Beichen Zhang, Zheng-Jun Zha, Li Su, and Qingming
Huang. Rethinking graph neural architecture search from message-passing. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6657–6666,
6 2021b.

Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang. A unified lottery
ticket hypothesis for graph neural networks. In International Conference on Machine Learning,
pp. 1695–1706. PMLR, 2021a.

Xiaobing Chen, Yuke Wang, Xinfeng Xie, Xing Hu, Abanti Basak, Ling Liang, Mingyu Yan, Lei
Deng, Yufei Ding, Zidong Du, et al. Rubik: A hierarchical architecture for efficient graph neu-
ral network training. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 41(4):936–949, 2021b.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Qiang Fu, Yuede Ji, and H Howie Huang. Tlpgnn: A lightweight two-level parallelism paradigm for
graph neural network computation on gpu. In Proceedings of the 31st International Symposium
on High-Performance Parallel and Distributed Computing, pp. 122–134, 2022.

Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue Hu. Graphnas: Graph neural architecture
search with reinforcement learning. arXiv preprint arXiv:1904.09981, 2019.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. International Conference on Learning Representations,
pp. 1263–1272, 2017.

Chaoyu Guan, Xin Wang, Hong Chen, Ziwei Zhang, and Wenwu Zhu. Large-scale graph neural
architecture search. In International Conference on Machine Learning, pp. 7968–7981. PMLR,
2022.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In NIPS, 2017.

Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song, and Dacheng Tao. Amalgamating
knowledge from heterogeneous graph neural networks. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 15709–15718, 2021.

Chaitanya K Joshi, Fayao Liu, Xu Xun, Jie Lin, and Chuan Sheng Foo. On representation knowledge
distillation for graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

Zhao Kang, Haiqi Pan, Steven C. H. Hoi, and Zenglin Xu. Robust graph learning from noisy data.
IEEE Transactions on Cybernetics, 50(5):1833–1843, 2020. doi: 10.1109/TCYB.2018.2887094.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. International Conference on Learning Representations, 2017.

10

Under review as a conference paper at ICLR 2024

Yanxi Li, Zean Wen, Yunhe Wang, and Chang Xu. One-shot graph neural architecture search with
dynamic search space. In Thirty-Fifth AAAI Conference on Artificial Intelligence, pp. 8510–8517,
2021a.

Yanxi Li, Zean Wen, Yunhe Wang, and Chang Xu. One-shot graph neural architecture search with
dynamic search space. In AAAI Conference on Artificial Intelligence, 2021b.

Chuang Liu, Xueqi Ma, Yinbing Zhan, Liang Ding, Dapeng Tao, Bo Du, Wenbin Hu, and Danilo
Mandic. Comprehensive graph gradual pruning for sparse training in graph neural networks.
arXiv preprint arXiv:2207.08629, 2022.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search. arXiv
preprint arXiv:1806.09055, 2018.

Zirui Liu, Kaixiong Zhou, Zhimeng Jiang, Li Li, Rui Chen, Soo-Hyun Choi, and Xia Hu. Dspar:
An embarrassingly simple strategy for efficient gnn training and inference via degree-based spar-
sification. Transactions on Machine Learning Research, 2023.

Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong, Jingchao Ni, Haifeng Chen, and Xiang Zhang.
Learning to drop: Robust graph neural network via topological denoising. In Proceedings of the
14th ACM international conference on web search and data mining, pp. 779–787, 2021.

Naoto Minakawa, Kiyoshi Izumi, Hiroki Sakaji, and Hitomi Sano. Graph representation learning
of banking transaction network with edge weight-enhanced attention and textual information. In
Companion Proceedings of the Web Conference 2022, pp. 630–637, 2022.

Yijian Qin, Xin Wang, Zeyang Zhang, and Wenwu Zhu. Graph differentiable architecture search
with structure learning. Advances in Neural Information Processing Systems, 34:16860–16872,
2021.

Yu Rong et al. Dropedge: Towards deep graph convolutional networks on node classification. ICLR,
2020.

Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-based object detectors
with online hard example mining. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 761–769, 2016.

Damian Szklarczyk, Annika L Gable, David Lyon, Alexander Junge, Stefan Wyder, Jaime Huerta-
Cepas, Milan Simonovic, Nadezhda T Doncheva, John H Morris, Peer Bork, Lars J Jensen, and
Christian von Mering. STRING v11: protein–protein association networks with increased cov-
erage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids
Research, 2018.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, Jiliang Tang, Caiyan Jia, and Jian Yu.
Traffic flow prediction via spatial temporal graph neural network. In Proceedings of The Web
Conference 2020, pp. 1082–1092, 2020.

Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2021.

Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming Zhu. Adversarial
examples for graph data: Deep insights into attack and defense. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, pp. 4816–4823. AAAI Press, 2019.

Peng Xu, Lin Zhang, Xuanzhou Liu, Jiaqi Sun, Yue Zhao, Haiqin Yang, and Bei Yu. Do not train
it: a linear neural architecture search of graph neural networks. In International Conference on
Machine Learning, pp. 38826–38847. PMLR, 2023.

11

Under review as a conference paper at ICLR 2024

Shen Yan, Biyi Fang, Faen Zhang, Yu Zheng, Xiao Zeng, Mi Zhang, and Hui Xu. Hm-nas: Efficient
neural architecture search via hierarchical masking. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision Workshops, pp. 0–0, 2019.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer:
Generating explanations for graph neural networks. Advances in neural information processing
systems, 32, 2019.

Haoran You, Zhihan Lu, Zijian Zhou, Y. Fu, and Yingyan Lin. Early-bird gcns: Graph-network
co-optimization towards more efficient gcn training and inference via drawing early-bird lottery
tickets. In AAAI Conference on Artificial Intelligence, 2021.

Wentao Zhang, Zheyu Lin, Yu Shen, Yang Li, Zhi Yang, and Bin Cui. Deep and flexible graph
neural architecture search. In International Conference on Machine Learning, pp. 26362–26374.
PMLR, 2022a.

Xiang Zhang and Marinka Zitnik. Gnnguard: Defending graph neural networks against adversarial
attacks. Advances in neural information processing systems, 33:9263–9275, 2020.

Xikun Zhang, Dongjin Song, and Dacheng Tao. Ricci curvature-based graph sparsification for
continual graph representation learning. IEEE Transactions on Neural Networks and Learning
Systems, 2023.

Yanfu Zhang, Shangqian Gao, Jian Pei, and Heng Huang. Improving social network embedding via
new second-order continuous graph neural networks. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 2515–2523, 2022b.

Ziwei Zhang, Xin Wang, and Wenwu Zhu. Automated machine learning on graphs: A survey. In
Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, IJCAI-21,
pp. 4704–4712, 2021.

Huan ZHAO, Quanming YAO, and Weiwei TU. Search to aggregate neighborhood for graph neural
network. In 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 552–563,
2021.

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data aug-
mentation for graph neural networks. In Proceedings of the aaai conference on artificial intelli-
gence, volume 35, pp. 11015–11023, 2021.

Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu, Haifeng Chen,
and Wei Wang. Robust graph representation learning via neural sparsification. In International
Conference on Machine Learning, pp. 11458–11468. PMLR, 2020.

Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. Robust graph convolutional networks
against adversarial attacks. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’19, pp. 1399–1407, 2019.

Daniel Zügner and Stephan Günnemann. Adversarial attacks on graph neural networks via meta
learning. In International Conference on Learning Representations (ICLR), 2019.

12

Under review as a conference paper at ICLR 2024

Appendix: Lightweight Graph Neural Architecture Search with
Joint Graph Sparsification and Network Pruning

A ADDITIONAL RELATED WORK

A.1 LIGHTWEIGHT GRAPH NEURAL NETWORKS

The key to building lightweight neural networks is reducing the model parameters and complexity,
which further enables neural networks to be deployed to mobile terminals. GNN computation ac-
celeration (Chen et al., 2021b; Abadal et al., 2021; Fu et al., 2022) poses a faster computation for
GNNs. Knowledge distillation (Jing et al., 2021; Joshi et al., 2022) follows a teacher–student learn-
ing paradigm and transfers knowledge from resource-intensive teacher models to resource-efficient
students but keeps performance. Network pruning enables more zero elements in weight matri-
ces. As a result, pruned networks have quicker forward passes for not requiring many floating-point
multiplications. For example, (Chen et al., 2021a; You et al., 2021) leverage the iterative magnitude-
based pruning and (Liu et al., 2022) uses the gradual magnitude pruning to prune model weights.

B OBSERVATION IN CURRICULUM GRAPH DATA SPARSIFICATION

Observation: Different architectures have their own views of redundant information.

(a) Sparsity=5% (b) Sparsity=40% (c) Sparsity=64%

Figure 4: Overlaps of removed edges for GCN, GAT, GIN, and Random under diffident graph data sparsifica-
tion.

We first train structure masks for three manual-designed GNNs: GCN, GAT, and GIN. Then, we
remove edges with the lowest mask scores, and the remove ratio is controlled by a sparsity param-
eter p%. We calculate the overlaps in the removed edges s(M1,M2) =

(A−M1)∩(A−M2)
p%|E| , where

M1,M2 are trained binarized structure masks under different manual-designed GNNs. The results
are shown in Figure 4. We could see that the removal edges are diverse especially when the number
of removal edges is small, which indicates the difference in architectures’ judgment for the structure
redundancy. We also add a baseline Random which randomly removes p% edges to demonstrate the
low similarities between various masks.

Dataset. We evaluate the node classification performance on 5 datasets: Cora, CiteSeer, PubMed,
Physics, and Ogbn-Arxiv. The statistics of all datasets are shown in Table 3. The first three datasets
follow a traditional semi-node classification train-valid-test split. Physics and Ogbn-Arxiv represent
large datasets where we randomly split train:valid:test=50%:25%:25% for Physics and follow the
default setting for Ogbn-Arxiv.

Baselines. We compare our method with representative hand-crafted GNNs: GCN (Kipf & Welling,
2017), GAT (Veličković et al., 2018), ARMA (Bianchi et al., 2021), and three graph sparsification
methods: DropEdge (Rong et al., 2020), PTDNet (Luo et al., 2021), and NeuralSparse (Zheng et al.,
2020). We also compare with representative GNAS baselines, including DARTS (Liu et al., 2018),
GraphNAS (Gao et al., 2019), GASSO (Qin et al., 2021), and GUASS (Guan et al., 2022). We use
GASSO as the representative of GNAS with structure learning.

13

Under review as a conference paper at ICLR 2024

Table 3: Dataset statistics.

DATASET #NODES #EDGES #FEATURES #CLASSES

CORA 2,708 10,556 1,433 7
CITESEER 3,327 9,104 3,703 6
PUBMED 19,717 88,648 500 3
PHYSICS 34,493 495,924 8,415 5
OGBN-ARXIV 169,343 1,166,243 128 40

Implementation Details. For GASSIP, we set the number of layers as 2 for CiteSeer, Cora, PubMed,
Physics, and 3 for Ogbn-Arxiv. In building search space, we adopt GCNConv (Kipf & Welling,
2017), GATConv (Veličković et al., 2018), SAGEConv (Hamilton et al., 2017), ArmaConv (Bianchi
et al., 2021), and Linear as candidate operations. Due to the memory limit, the search space is
narrowed down to GCNConv,GATConv, ArmaConv, and Linear for Physics and Ogbn-Arxiv. The
supernet is constructed as a sequence of layers, We set batch normalization (only for Physics and
Ogbn-Arxiv) and dropout before each layer and use ReLU as the activation function.

Detailed Hyper-parameters. For vanilla GNNs, we follow the hyper-parameters in the original
paper except tuning hyper-parameters like hidden channels in {16, 64, 128, 256} and dropout in
{0.5, 0.6, 0.8}. For GNAS methods, we use the Adam optimizer to learn parameters. We retrain
for 100 runs on their searched optimal architectures to make a fair comparison of the architecture
performance. For GASSIP, we fix the number of sampled architectures as K = 2, entropy loss the
coefficient in curriculum graph data sparsification as β = 0.001, and the edge-removing difficulty
hyper-parameters λ1 = 1, λ2 = 1. The supernet training epoch is fixed to 250 and the warm-up
epoch number is set as r = 10.

C SEARCHED ARCHITECTURES IN DETAIL

We follow the literature of graph NAS and construct the supernet as in GASSO and AutoAttend.
Here, we provide the searched GNN architecture by GASSIP in Table 4.

Table 4: Search Architectures by GASSIP.

Dataset Searched Architecture
Cora GCNConv∥SAGEConv
CiteSeer GCNConv∥SAGEConv
PubMed GCNConv∥ArmaConv
Physics Linear∥GCNConv
Ogbn-Arxiv GCNConv∥ArmaConv∥GATConv

D SENSITIVITY ANALYSIS

hyper-parameters λ1 and λ2. We further conduct a sensitivity analysis for curriculum learning
hyper-parameters λ1 and λ2 in Figure 5. Larger λ1 indicates that the label divergence is more im-
portant in difficulty calculation in our curriculum algorithm while larger λ2 suggests that nodes
similarity matters more. In the edge-removing difficulty measurement, with these two node diffi-
culty terms (λ1 > 0, λ2 > 0) have greater performance than without them (λ = 0), which further
illustrates the difficulty measurement in our curriculum algorithm is reasonable.

E RETRAINING EFFICIENCY

We show the (re-)training time cost (s) of searched GNNs in Table 5. For GNAS methods, we report
the retraining time of searched GNNs. For manual-designed GNNs, we directly report the training
time. For a fair comparison, we fix training epochs as 300 and report the averaged training time over

14

Under review as a conference paper at ICLR 2024

0 2 4 6 8 10

70.7

70.8

70.9

71.0

71.1

71.2

71.3

Te
st

 A
cc

ur
ac

y
(%

)

(a) λ1

0 2 4 6 8 10
71.27

71.28

71.29

71.30

71.31

Te
st

 A
cc

ur
ac

y
(%

)

(b) λ2

Figure 5: Lineplots for hyper-parameters (a) λ1 (fix λ2 = 1) and (b) λ2 (fix λ1 = 1).

100 runs. Results on three datasets illustrate that the training time model searched by GASSIP is
the least compared to all baselines, which indicates the efficiency of lightweight GNNs searched by
GASSIP.

Table 5: (Re-)training time (s) for searched GNNs averaged over 100 runs.

Methods GCN GAT ARMA DropEdge DARTS GraphNAS GASSIP

Cora 2.53 3.59 2.56 2.61 2.09 3.57 2.19
CiteSeer 2.73 3.73 3.17 2.85 3.40 3.98 2.51
Physics 11.19 70.67 79.96 13.15 10.47 64.81 5.55

hyper-parameters K. We conduct a sensitivity analysis experiment for hyper-parameter K and the
results are shown in Table 6. As the sampled architecture number K in graph structure redundancy
estimation gets larger, the classification performance first increases and then drops. A smaller K
indicates only a few architectures that are most likely to be selected by NAS are sampled to evaluate
the graph structure redundancy. When K = 1, only the top-1 architecture induced by current α
is sampled. However, it may be not enough to estimate the redundancy and leads to poor graph
sparsification. A larger K includes more architectures in the redundancy estimation, but it may
contain a lot more architectures that are unlikely to be selected in the search phase and causes poor
classification results. As a result, we choose K to be 2 in our experiment. We will add this sensitivity
analysis in our revision.

Table 6: Sensitivity analysis for sampled architecture number K.

K 1 2 4 8

Cora 81.62±0.67 83.20±0.44 82.11±0.49 81.97±0.41
CiteSeer 69.42±0.69 71.42±0.56 70.58±0.48 70.23±0.48
Physics 98.34±0.04 98.46±0.06 98.29±0.01 98.30±0.02

F COMPARISON WITH LIGHTWEIGHT GNNS

We further compare with UGS (Chen et al., 2021a), (Liu et al., 2022) and (You et al., 2021) on Cora
and CiteSeer in the following table. The results show that our proposed method outperforms these
three baselines in terms of classification accuracy with the same level of model parameters.

G DEFEND AGAINST ADVERSARIAL ATTACKS

By incorporating the graph data into the optimization process, our method can effectively handle
noisy data or data that has been manipulated by attackers. Specifically, the curriculum graph sparsi-
fication allows GASSIP to filter out edges that are either noisy or have been added maliciously by
attackers. As a result, our approach exhibits a degree of robustness in the face of such adversarial
scenarios.

15

Under review as a conference paper at ICLR 2024

Table 7: Comparison with lightweight GNNs

Method UGS (Chen et al., 2021a) (Liu et al., 2022) (You et al., 2021) GASSIP

Cora 80.30 81.88 82.83 83.20
CiteSeer 70.40 71.23 70.48 71.41

Noisy Data. We compare our methods with various baselines such as graph sparsification methods
like DropEgde (Rong et al., 2020), PTDNet (Luo et al., 2021), and NeuralSparse (Zheng et al., 2020)
on noisy Cora data by randomly adding 1k/5k edges in Table 8. This result demonstrates that when
there exist noisy edges, GASSIP could achieve the best performance compared with baselines.

Table 8: Results under noisy edges.

noisy edge GCN GAT DropEdge PTDNet NeuralSparse GraphNAS GASSO DARTS UGS GASSIP

1k 78.37±0.47 77.99±0.75 78.16±0.44 77.16±1.27 79.24±0.51 79.14±0.46 78.73±0.90 78.57±0.63 78.65±0.53 79.26±0.49
5k 69.14±0.55 67.42±0.74 68.28±0.63 66.48±1.23 68.68±0.53 71.28±0.59 70.76±0.95 71.76±0.88 69.49±0.62 73.80±0.64

Poisoning Data. To prove the defensive potential of our joint data and architecture optimization al-
gorithm in countering adversarial attacks, we conduct experiments on perturbed data including com-
parison with state-of-the-art defensive methods like GCN-Jaccard (Wu et al., 2019) and RGCN (Zhu
et al., 2019). Table 9 demonstrates that GASSIP exhibits defensive abilities against perturbed data.
However, in order to further enhance its robustness against adversaries, it is necessary to develop
special designs tailored to attack settings. Despite this, the current experiment clearly illustrates
that incorporating data into the optimization objective function has the potential to alleviate the
detrimental effects caused by adversaries.

Table 9: Denfensive performance under non-targeted attack (Mettack (Zügner & Günnemann, 2019)).

Dataset GCN GAT Arma DropEdge GCN-Jaccard RGCN GraphNAS GASSO DARTS GASSIP
Cora 66.93±1.06 68.61±2.24 65.09±1.28 68.48±1.44 69.89±1.19 67.20±1.02 70.05±1.27 66.51±2.76 61.05±1.32 73.05±0.69
CiteSeer 56.20±1.46 62.31±1.46 60.11±1.30 56.16±1.74 56.97±1.90 57.40±0.96 62.09±3.41 57.88±2.09 61.59±1.13 65.52±0.45

16

	Introduction
	Related Work
	Graph Neural Architecture Search
	Graph Data Sparsification

	Preliminaries
	Differentiable Graph Neural Architecture Search

	Lightweight GNAS
	Problem Formulation
	Operation-pruned Architecture Search
	Curriculum Graph Data Sparsification
	An Iterative Optimization Approach

	Experiments
	Experimental Results
	Ablation Study
	Search Efficiency

	Conclusion and Limitations
	Additional Related Work
	Lightweight Graph Neural Networks

	Observation in Curriculum Graph Data Sparsification
	Searched Architectures in Detail
	Sensitivity Analysis
	Retraining Efficiency
	Comparison with lightweight GNNs
	Defend against Adversarial Attacks

