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ABSTRACT

Photosensitive Epilepsy (PE) is a neurological disorder characterized by seizures
triggered by harmful visual stimuli, such as flashing lights and high-contrast pat-
terns. The mechanisms underlying PE remain poorly understood, and to date,
no computational model has captured the phenomena associated with this con-
dition. Biologically detailed spiking networks trained for efficient prediction of
natural scenes have been shown to capture V1-like characteristics. Here, we
show that these models display seizure-like activity in response to harmful stimuli
while retaining healthy responses to non-provocative stimuli when post-synaptic
inhibitory connections are weakened. Notably, our adapted model resembles the
motion tuning and contrast gain responses of excitatory V1 neurons in mice with
optogenetically reduced inhibitory activity. We offer testable predictions under-
lying the pathophysiology of PE by exploring how reduced inhibition leads to
seizure-like activity. Finally, we show that artificially injecting pulsating input
current into the model units prevents seizure-like activity and restores baseline
function. In summary, we present a model of PE that offers new insights to under-
stand and treat this condition.

1 INTRODUCTION

In 1997, a Pokemon episode featuring rapid explosion scenes triggered seizures in over 600 children
with Photosensitive Epilepsy (PE) (Hermes et al., 2017). PE is characterised by abnormal sensory
processing in the primary visual cortex (V1) in response to specific visual stimuli, such as flickering
lights and high-contrast features (Fisher et al., 2022; Seshia & Carmant, 2005) (Fig. 1a). This
results in seizure-like activity, defined as excessive neuronal firing (Fig. 1b). Extensive research
suggests that one of the main causes underlying seizures is weakened GABA-mediated transmission
at inhibitory synapses (Staley, 2015; Prince & Wilder, 1967; McCormick & Contreras, 2001) (Fig.
1c), as supported by the efficacy of numerous anti-epileptic drugs that enhance GABAergic function
(Shao et al., 2019). However, the exact mechanisms underlying PE remain unclear, partly due to
the lack of an accurate animal or computational model that accurately captures the human condition
(Hermes et al., 2017; Cossart et al., 2005).

Most existing computational work in epilepsy has focused on identifying seizure-like activity
(Kuhlmann et al., 2018) and seizure onset zones for surgical resection (Saggio & Jirsa, 2024). The
few investigations that model seizure-like activity have fixated on emulating general seizure dynam-
ics in non-visual areas like the hippocampus and widespread cortical areas (Jirsa et al., 2014; Liou
et al., 2020) instead of capturing seizures induced by photic stimulation in the visual cortex. There
are several models of seizure dynamics using dynamic systems theory (Da Silva et al., 2003; Du
et al., 2019). However, these models do not emulate underlying biophysical processes, making it
difficult to link abstract model variables to biological mechanisms (Liou et al., 2020). An alternative
model (Liou et al., 2020) was proposed which does incorporate key biophysical elements (such as
recurrent projections), however, it lacks other biological characteristics, such as spontaneous seizure
initiation, relying instead on focal excitatory inputs to initiate seizure-like activity. To date, no bio-
logically realistic model captures the response properties of PE.
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Figure 1: The photosensitive seizure model. a. Schematic of the primary visual cortex (V1) in
the occipital lobe, the brain region modelled in this study, and the seizure onset zone in PE. b.
Neuronal spike raster of patient recordings from the occipital cortex, adapted from (Truccolo et al.,
2011). c. Illustration comparing synaptic connections in the control model to the weakened synaptic
connections in the seizure model. d. Schematic of the V1 seizure model adapted from (Taylor et al.,
2024b). The model converts a sequence of movie frames into an input current, fed into a single
hidden layer of recurrently connected spiking Leaky Integrate-and-Fire (LIF) units with weakened
inhibitory connections. The spike output linearly constructs a prediction of the input stimulus of the
future.

A recent modelling study (Taylor et al., 2024b) developed a recurrently connected spiking network
of excitatory and inhibitory units, trained for efficient temporal prediction of natural movie clips
(Fig. 1d). This model captures simple and complex cell-like tuning characteristics and highlights
differences between excitatory and inhibitory V1 neurons. Given the model’s resemblance to V1,
and the weakened inhibitory transmission theory underlying epilepsy, we aimed to explore the fol-
lowing question: Do weakened inhibitory connections in the V1 spiking temporal-prediction
model result in response characteristics similar to those found in photosensitive epilepsy? Our
contributions are summarized as follows:

• To the best of our knowledge, we establish the first computational model of PE. We demon-
strate how the spiking temporal-prediction model (Taylor et al., 2024b), with weakened
inhibitory synapses, captures seizure-like activity in response to known seizure-inducing
stimuli, while retaining normal V1-like activity to non-provocative stimuli.

• We found our seizure model to capture V1-like spike statistics during non-seizure periods,
with the model’s tuning properties and contrast responses resembling those of V1 neurons
with weakened inhibitory input.

• We investigated mechanisms that trigger and sustain seizure-like activity in our model,
finding the weakened inhibitory synapses to increase response gain. As a result, the model
was more susceptible to abnormally high firing rates in response to high-contrast stimuli,
with seizure-like activity sustained by an imbalance in excitatory and inhibitory currents.

• Notably, we managed to prevent seizure-like activity by inputting pulsating currents into
model units, akin to the responsive neurostimulation (RNS) technique used in the treatment
of epilepsy (Krauss et al., 2021). Our findings may be clinically relevant to optimizing
neural stimulation protocols, and be a suitable in silico candidate for further exploring
seizure mechanisms and clinical therapies.

2 METHODS

The V1 spiking temporal-prediction model with weakened inhibitory synapses We imple-
mented the spiking V1 seizure model using the pre-trained spiking V1 temporal-prediction model
(Taylor et al., 2024b) with weakened inhibitory connections to reflect hypothesized GABAergic ab-
normalities in PE networks (see Appendix 5.1 for details). We used this model as it incorporates
important biological properties (spikes and Dale’s law); is trained using a biologically plausible
(Keller & Mrsic-Flogel, 2018) and unsupervised normative objective of efficient future-frame pre-
diction of natural movies (as also explored in other works (Singer et al., 2023; Taylor et al., 2024c));
and captures V1-like spike statistics, motion tuning and various key differences between excitatory
and inhibitory neurons. In comparison, other models omit spikes (Echeveste et al., 2020); hard-code
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connectivity (Hennequin et al., 2018); operate in the spatial domain (Zylberberg & DeWeese, 2013);
or explore predictive objectives in non-visual brain regions like the hippocampus (Levenstein et al.,
2024). We report all results using the model with 80% weakened inhibitory connections. How-
ever, we found a range (50-100%) of inhibitory weight decreases to result in seizure-like activity in
response to provocative stimuli (Appendix Fig. 1).

Datasets We used three different visual datasets for model validation. 1. We collected a dataset of
various ∼ 10 second long movie scenes (Pokemon Shock clip, Kanye West’s All of the Lights music
video, a Citroen advert, the Incredibles 2 movie and The Weeknd’s Take My Breath music video)
which have been reported to induce seizures in patients with PE ((Concepcion, 2013; Sweney, 2012;
Svachula, 2018; Aswad, 2021)) to assess if our model also exhibits seizure-like activity; 2. We used
segments of the Star Wars movies (8000 patches of ∼ 2 second duration) for comparing model spike
responses to previously published monkey V1 data (Rasch et al., 2011); 3. We used a natural stimu-
lus dataset (2000 patches of ∼ 10 second duration) (Taylor, 2023) containing various natural scenes,
which we used to analyse model contrast tuning and excitatory-inhibitory (EI) balance. To match
the model’s training data (Taylor et al., 2024b), all validation stimuli were grayscaled; sampled at
(or sampled to) 120Hz, and bandpass filtered to emulate the retinal and thalamic transformations;
normalized; and clamped to range [−3.5, 3.5].

Seizure identification in the model and classifying stimuli Seizures are usually identified
through clinical observation (e.g. loss of consciousness or jerking movements). Patients with pho-
tosensitive epilepsy (PE) are diagnosed with electroencephalogram (EEG) to identify abnormally
elevated activity in response to photic stimuli (Fisher et al., 2005). These diagnostic measures
are not directly possible in our model and hence we used the model’s spiking activity to identify
seizure-like activity. Prior works define seizure activity as an abnormally large increase in popula-
tion activity (Schevon et al., 2012). We confirmed if the model’s activity was abnormally high on
our collected dataset of known provocative movie stimuli (Appendix Fig. 1) and was not elevated
to non-provocative stimuli. We found a small portion of clips to evoke abnormally high population
activity to the natural stimulus dataset in the seizure model (and not in the control model) and we
classified these clips as provocative if the model’s mean population firing rate surpassed a threshold
of 84Hz (Appendix Fig. 2). Note, due to ethical reasons we could not confirm if these clips induced
seizures in PE patients. As additional comparisons, we calculated spectrograms from the local
field potential (LFP) approximations of the model’s mean population spiking responses (Barbieri
et al., 2014; Mazzoni et al., 2008), which represent the same biophysical process as EEG recordings
(Buzsáki et al., 2012). Furthermore, we also calculated the synchronicity of the model’s spiking
activity, where increased neural synchrony has been noted as a characteristic of seizures (Schevon
et al., 2012) (although this remains controversial (Truccolo et al., 2011)).

Spike statistics and motion tuning To be comparable to (Rasch et al., 2011), we calculated all
spike statistics using a time window of 2s with a step size of 0.2s in response to the Star Wars movies.
As done in (Taylor et al., 2024b), we quantified the correlation between different units’ activity by
calculating the average correlation coefficient between the spike trains (binned at 25ms) of 400
randomly sampled unit pairs for varying temporal lag. We calculated the orientation selectivity
index OSI = (Rorient

pref −Rorient
orth )/(Rorient

pref +Rorient
orth ) and the direction selectivity index DSI = (Rdir

pref −
Rdir

non-pref)/(R
dir
pref +Rdir

non-pref) (Niell & Stryker, 2008; Rochefort et al., 2011), where Rorient
pref = Rdir

pref is
a unit’s mean response to a stimulus in its preferred orientation and direction, and Rorient

orth and Rdir
non-pref

are the mean responses in the orthogonal orientation and opposite direction to the preferred direction,
respectively. Both measures range between zero and one, where one corresponds to maximum
selectivity. We generated various drifting full-field sinusoidal gratings to assess tuning responses (as
implemented in (Taylor et al., 2024b)).

Contrast tuning and receptive fields We increased stimulus contrast by multiplying each pixel
by scalar c and clamping all values to range [−3.5, 3.5] (the pixel range of the model’s training
data). We used scalar c ∈ [1, 2, 3, 4] to increase contrast in the natural stimulus dataset and used
c logarithmically spaced between 0.75 and 4.0 for the unit contrast tuning analysis (to be more
comparable to the work of (Atallah et al., 2012)). Model receptive fields (RFs) were estimated using
a spike-triggered average to white-noise clips (Dayan & Abbott, 2005).
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Figure 2: Capturing seizure-like activity to provocative stimuli and normal V1-like activity to
non-provocative visual input. a. Mean population firing activity of the seizure model (pink) and
control model (black) in response to the Pokemon Shock episode (provocative frame highlighted in
red). Spectrograms plot the frequency-time power representation of the model activity, with the
highest and lowest power denoted in red and blue respectively. b. Corresponding results in response
to non-provocative natural stimuli.

Excitatory and inhibitory currents We quantified the global (i.e. how equal) and precise (i.e.
how coupled) EI balance of the model units (Vogels et al., 2011; Taylor et al., 2024b). A unit’s global
EI balance was measured as the ratio


t Ex[t]/|In[t]| between its excitatory (Ex) and inhibitory (In)

currents over time; and a unit’s precise EI balance was quantified as the correlation between its
(negative) inhibitory and (positive) excitatory currents. Before calculating the precise EI balance,
we convolved each current time series using a Gaussian kernel (σ = 72ms) (Dayan & Abbott, 2005).
We smoothed the current time series to emulate synaptic conductance (Gerstner et al., 2014), as done
in (Taylor et al., 2024b) (see Appendix Fig. 4 for EI correlations calculated using different Gaussian
kernel σ).

RNS-like stimulation in the model We replicated neural stimulation techniques for treating drug-
resistant epilepsy by inputting pulsating current into the model units. Current stimulation in our
model resembles RNS, where electrodes are implanted near the epileptic focus in the cortex or hip-
pocampus (Krauss et al., 2021), unlike deep brain stimulation, which targets the thalamus (Foutz
& Wong, 2022). RNS stimulation parameters range between 1-3mA with a pulsation frequency
up to 200Hz (Bigelow & Kouzani, 2019). We explored the space of stimulation frequencies loga-
rithmically spaced between 0-120Hz and amplitudes logarithmically spaced between 0-1.28a.u. to
determine the optimal values for reducing seizure-like activity in response to the natural stimulus
dataset.

3 RESULTS

3.1 CAPTURING SEIZURE-LIKE ACTIVITY TO PROVOCATIVE STIMULI

We examined the control and seizure model’s firing rate to different stimulus inputs and found
their responses to qualitatively differ from provocative stimuli, whilst appearing similar to non-
provocative stimuli. Here, we used a known seizure-inducing movie clip as provocative stimuli and
a natural movie recording containing no high-contrast and flashing visual features as (presumed)
non-provocative stimuli. We report additional results to other known seizure-inducing movie clips
in Appendix Fig. 3, including Kanye West’s All of The Lights music video, a Citroen advert, Disney’s
Incredibles 2 movie and The Weeknd’s Take My Breath music video - all reported to induce seizures
in viewers (Concepcion, 2013; Sweney, 2012; Svachula, 2018; Aswad, 2021).

The seizure model exhibited a high (88Hz) and non-decaying population firing rate in response to
the infamous seizure-inducing Pokemon scene from 1997 (Hermes et al., 2017). In contrast, the
control model displayed a lower (10Hz) and temporally-varying population firing rate, resembling
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Figure 3: V1-like spike statistics and tuning characteristics in the seizure model. a. Firing rate
distribution and b. cross-correlograms (measuring the correlation coefficient between the activity
of randomly sampled units) for provocative (dashed black) and non-provocative stimuli (black) in
the control model, and provocative (dashed pink) and non-provocative (pink) stimuli in the seizure
model, and experimental data from monkey V1 neurons (blue) (Rasch et al., 2011). c. Simple cell-
like and d. complex cell-like firing patterns in response to optimal gratings (inset) in the seizure
(pink) and control model (black). e. Mean firing rate of every unit in response to its optimal grating
in the seizure (y-axis) and control model (x-axis). f. Orientation selectivity index (OSI) and direction
selectivity index (DSI) of the excitatory (red) and inhibitory (blue) units in the seizure and control
model, where bars represent median selectivity.

normal V1 activity to natural stimuli (Rasch et al., 2011) (Fig. 2a). However, both models responded
similarly to the non-provocative stimulus clip, with a population firing rate of ∼ 6− 7Hz (Fig. 2b).

EEG recordings are one technique routinely used to identify seizures in patients with epilepsy
(Fisher et al., 2005). We approximated these recordings using spectrogram representations of the
model’s spiking activity (see Methods). The seizure model’s spectrogram differed from the control
model in response to provocative stimulus, with a higher power in the frequency range 0 − 20Hz
(Fig.2a). This qualitatively resembles the spectrogram properties of LFP recordings from occipital
and middle temporal cortices during seizures in humans with focal epilepsy (Truccolo et al., 2011).
There was no difference between the seizure and control model spectrograms for the non-provocative
stimulus (Fig.2b).

3.2 EMERGENCE OF V1-LIKE SPIKE STATISTICS AND TUNING PROPERTIES

We examined the seizure model’s spike statistics and tuning properties, and found several V1-like
characteristics to emerge. We analyzed the model’s spike activity in response to Star Wars movie
clips (Rasch et al., 2011), classifying clips as provocative if they triggered seizure-like activity, or
non-provocative, if they did not (see Methods). The seizure model displayed a firing rate distribu-
tion with an exponential fall-off (Fig. 3a) to the non-provocative stimuli as similarly found in the
control model (Taylor et al., 2024b) and V1 data (Rasch et al., 2011; Baddeley et al., 1997). Quanti-
fying the correlation statistics using spike train cross-correlograms (Rasch et al., 2011), revealed the
correlation between different unit spike trains to exhibit a low peak correlation that symmetrically
decays for increasing lag (Fig. 3b). This resembles the correlation statistics of the control model
and of anesthetized monkey V1 (Rasch et al., 2011). However, the seizure model’s spike statistics
substantially changed in response to the provocative stimuli. The firing rate distribution peaked at
∼ 100Hz (Fig. 3a) and the peak correlation increased from 0.04 to 0.55 CC (Fig. 3b), reminiscent
of seizure-like activity (Schevon et al., 2012). In comparison, the control model’s spike statistics
remained largely unaltered.

We assessed unit tuning statistics using responses from full-field drifting sinusoidal gratings. As
reported in the control model (Taylor et al., 2024b), the seizure model units also exhibited response
properties resembling the two prominent cell classes in V1, namely simple (Fig. 3c) and complex
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Figure 4: Seizure onset induced by high-contrast stimuli. a. Example stimulus frames of increas-
ing contrast. b. Change in firing rate and c. percentage of clips inducing seizure-like activity in the
seizure (pink) and control (black) models for increasing stimulus contrast. d. Top: contrast tuning
curve of a single unit of the seizure (pink) and control model (black). Error bars are the SEM. Bot-
tom: Firing rates of the excitatory seizure model (y-axis) versus the control model (x-axis). Circles
plot individual unit responses at different contrasts. Gray lines plot the linear fit for each unit and the
pink line plots the average linear fit. e. Same as in d., but for excitatory V1 neuron responses (black)
plotted against excitatory V1 neuron responses with inhibitory neurons optogenetically suppressed
(blue) (Atallah et al., 2012). f. Example spatial receptive fields (RFs) from the control and seizure
models (red = excitatory and blue = inhibitory). g. RF power (largest mean squared values of a
spatial RF in time) of the seizure (y-axis) and control model (x-axis) units.

cells (Fig. 3d). Both cell responses oscillate in response to their preferred grating, with more
pronounced response fluctuations in simple cells (Movshon et al., 1978a) compared to complex
cells, whose responses are less influenced by grating phase (Movshon et al., 1978b). In comparison
to the control model, we observed the seizure model’s responses to be more elevated, with the units
having a higher firing rate to their preferred grating (Fig. 3e).

The orientation and direction selectivity remained similar between the seizure and control model
(Fig. 3f; albeit statstically different, see Appendix Table 1 for p-values). Orientation and direc-
tion selectivity were quantified using the orientation selectivity index (OSI) and direction selectivity
index (DSI), respectively (Niell & Stryker, 2008; Rochefort et al., 2011) (see Methods). The in-
hibitory seizure model’s units were more broadly tuned than the excitatory units and both neuron
classes displayed little direction selectivity, as has similarly been reported in mouse V1 (Niell &
Stryker, 2008).

The seizure model’s increased response amplitude and modestly altered motion tuning properties
mirror biological observations (Atallah et al., 2012; Katzner et al., 2011). These phenomena emerge
in the seizure model due to weakened inhibitory connections, which reduce the inhibitory popula-
tion’s influence on their excitatory counterpart. Similarly, V1 response gain increases with minor
variation in tuning properties when inhibitory neuronal activity is optogenetically (Atallah et al.,
2012) or pharmacologically (Katzner et al., 2011) reduced, as reported in mouse and cat V1, respec-
tively.

3.3 HIGH-CONTRAST STIMULI TRIGGER SEIZURE ONSET

High-contrast stimuli are believed to trigger photic seizures (Hermes et al., 2017). To test if this is
also the case in our model, we increased the contrast levels of the natural stimulus dataset (Fig. 4a)
(see Methods) and quantified the percentage of clips that resulted in seizure-like activity. Although
the firing rates increased in both the control and seizure models for increasing stimulus contrast (Fig.
4b), only the seizure model exhibited seizure-like activity (Fig. 4c). The occurrence of seizure-
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Figure 5: Seizure propagation sustained by recurrent dynamics with an imbalance in excitatory
and inhibitory currents. a. Population firing rates of the seizure model to full clip (pink) and
masked clip (purple), with input frames masked to zero after seizure onset. b. Percentage of clips
where seizure-like activity persists after masking the input clips. c. Excitatory (red) and inhibitory
(blue) currents to a unit in the control (top) and seizure model (bottom). d. EI ratio in the control
and seizure model in response to the provocative and non-provocative stimuli. e. Corresponding
EI correlation coefficients. Bars in d. and e. plot the median and bootstrapped standard error, with
statistical significance assessed using the Mann-Whitney U test (***p< 0.001).

like activity grew with increasing stimulus contrast, aligning with the observations of high-contrast
stimuli triggering seizure onset (Hermes et al., 2017).

V1 neurons exhibit a growing response curve shaped like the hyperbolic ratio equation (Albrecht
& Hamilton, 1982), in response to visual gratings of increasing contrast. Excitatory V1 neuron
contrast-response curves are reported to rise in amplitude as the influence of V1 inhibitory neurons
is optogenetically (Atallah et al., 2012) and pharmacologically (Katzner et al., 2011) reduced. The
contrast-response curves of the control and seizure model units appeared to be well-fitted by the
hyperbolic ratio equation on visual inspection (Fig. 4d). Consistent with biology, the seizure model
with weakened inhibitory synapses exhibited higher contrast responses than the control model (p =
8.28× 10−126, t-test), across the population of excitatory units (Fig. 4d and e).

To understand how weakened inhibitory synapses in the seizure model led to increased responsive-
ness to high-contrast visual input, we inspected each model’s receptive fields (RFs). The seizure
model’s RF shapes were unaltered compared to the control model (CC = 0.99), and resembled the
RFs of V1 simple cells (Hubel & Wiesel, 1959; 1968) (Fig. 4f), with varying numbers of excitatory
and inhibitory subfields tuned for a particular spatial frequency and orientation (Jones & Palmer,
1987; Ringach, 2002). However, the seizure model’s RF exhibited higher power compared to the
control model (Fig 4g), where RF power quantifies the response sensitivity of a unit’s RF to visual
input (Taylor et al., 2024b). This indicates that the weakened inhibitory synapses in the seizure
model enhance the response gain of the units, rendering the model more susceptible to heightened
activity.

3.4 EXCITATION-INHIBITION IMBALANCE SUSTAIN SEIZURE-LIKE ACTIVITY

We explored whether the seizure model’s prolonged seizure-like activity was primarily sustained by
the provocative input stimulus, or rather by an imbalance in recurrent dynamics. We investigated
this by masking the provocative input stimuli following the onset of seizure-like activity (Fig. 5a).
The fraction of provocative clips only marginally reduced from 11.8% to 9.7% (Fig. 5b), implying
the seizure-like activity to be driven by an imbalance in recurrent dynamics.

The balance of excitatory and inhibitory (EI) synaptic currents received by cortical neurons (Okun
& Lampl, 2008; Wehr & Zador, 2003; Anderson et al., 2000; Monier et al., 2003; Xue et al., 2014)
is thought to be critical for maintaining stable neural activity (Sadeh & Clopath, 2021). We qualita-
tively observed the excitatory input currents to be more elevated in the seizure model compared to
the control model in response to provocative stimuli (Fig. 5c). The EI balance can be quantified us-
ing the EI ratio and correlation (see Methods), which, respectively, measure how equal and coupled
excitatory and inhibitory currents are over time (Vogels et al., 2011; Taylor et al., 2024b).
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Figure 6: Preventing seizure-like activity with pulsating input currents. a. Adapted schematic
from (Baud et al., 2018) showing an RNS system delivering current to the seizure onset zone in the
occipital lobe. b. The schematic illustrates the current injection into each unit in the seizure model,
with the stimulation parameters shown in the green box. c. Raster plots comparing neural responses
in the control model (black), unstimulated seizure model (pink), and seizure model with stimulation
(green). MSE values quantify the difference between predicted and target frames. d. Heatmap of
seizure prevalence as a function of stimulation frequency (x-axis) and current amplitude (y-axis). e.
Corresponding heatmap of average firing rates (Hz). f. Corresponding heatmap of the log-scaled
difference in prediction error between the stimulated seizure and control model. Red crosses mark
the optimal frequency and amplitude for each measurement.

The seizure and control models had similar EI ratios (median ∼ 0.6− 0.7) over the non-provocative
stimulus input (Fig. 5d), resembling the EI ratios of V1 neurons in mice (Xue et al., 2014; Banerjee
et al., 2016; Adesnik, 2018). The seizure model’s EI ratio significantly increased over the provoca-
tive stimulus inputs (median 6.85). In contrast, the control model’s EI ratio increased only slightly
(median 1.23). Similarly, we found the EI currents to be notably correlated over time across the
units in the seizure (median 0.65) and control (median 0.72) models to the non-provocative stimulus
input (Fig. 5e). The EI correlation significantly dropped in the seizure model over the provocative
stimulus input (median 0.39), while the control model’s EI correlation remained largely unchanged
(median 0.73).

3.5 MINIMIZING SEIZURE OCCURRENCE THROUGH PULSATING INPUT CURRENTS

One treatment option for patients unresponsive to anti-epileptic drugs are neuronal stimulation tech-
niques such as RNS (Baud et al., 2018). Here, a multielectrode array is implanted in close proximity
to the seizure onset zone (Fig. 6a) (Baud et al., 2018). The electrode emits a pulsating stimulatory
current to prevent or terminate seizure-like activity. We explored if the seizure model’s seizure-like
activity could be reduced by inputting pulsating input current into the units (Fig. 6b).

Surprisingly, we were able to prevent seizure-like activity in response to the provocative seizure-
inducing Pokemon segment (Hermes et al., 2017) by inputting particular stimulatory currents (Fig.
6c). The spike raster of the stimulated seizure model resembled that of the control model with a
firing rate of ∼ 10Hz, significantly lower than the unstimulated seizure model’s firing rate of 88Hz.
Additionally, the stimulated seizure model’s predicted future frames qualitatively matched those
of the control model and did not contain the noisy artifacts seen in the unstimulated model. The
prediction accuracy of the stimulated seizure model was similar to the control model (∼ 0.63 MSE),
marking a significant improvement over the unstimulated seizure model (∼ 0.92 MSE).

We explored the space of stimulation frequencies (logarithmically spaced between 0 and 120Hz)
and amplitudes (logarithmically spaced between 0 and −1.28 a.u.) to determine the optimal values
for reducing seizure-like activity in response to the natural stimulus dataset. The percentage of
clips triggering seizure-like activity declined as a function of increasing stimulation amplitude and
frequency (Fig. 6d). For the largest tested frequency and amplitude values, we found seizure-like
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activity completely disappeared. However, this is undesirable as activity was completely silenced
(Fig. 6e).

As an additional evaluation metric, we compared the future frame prediction accuracy of the stim-
ulated seizure model to that of the control model (Fig. 6f). The future-frame prediction accuracies
became more similar as a function of increasing stimulation amplitude and frequency. However, the
prediction accuracies diverged when the stimulation parameters became too large, due to the units
becoming more quiescent. We found the prediction accuracies to be most similar (1.7% difference)
when stimulating with an amplitude of −0.02 a.u at a frequency of ∼ 64 − 120Hz. The param-
eters reduced seizure-like activity occurrence from 7.8% to 1.5%, indicating their effectiveness in
restoring baseline model activity and function.

4 DISCUSSION

Mechanism We investigated the theory that PE results from abnormal GABAergic function by
weakening inhibitory synapses in a spiking network model of V1. This led to abnormally elevated
firing rates, particularly in response to high-contrast stimuli (Fig. 4b), with persistent activity even
after stimulus removal (Fig. 5a). Thus, our findings support the notion of inhibition stabilizing net-
work activity and preventing runaway excitation (Sadeh & Clopath, 2021; Adesnik, 2017). Notably,
while the gain response is higher in the seizure model, tuning characteristics remain similar to the
control model (Fig. 3), reflecting findings in biology (Atallah et al., 2012; Katzner et al., 2011).
This may explain how altered excitatory and inhibitory dynamics in PE patients result in seizures,
but visual processing remains normal during interictal periods.

Translation High-frequency current stimulation in the seizure model restored baseline firing ac-
tivity and function as measured by the model’s prediction MSE (Fig. 6c). These results align with
high-frequency RNS treatment in patients which effectively reduces seizures (Alcala-Zermeno et al.,
2023). High-frequency stimulation is proposed to inhibit targeted structures, yet its exact mecha-
nisms remain unknown (Bikson et al., 2001; Foutz & Wong, 2022). Interestingly, the most effective
neural stimulation frequency range (64-120Hz) used in our model overlaps with gamma oscillations
(30-70Hz) in human V1, which are implicated in seizures resulting from high-contrast gratings (Her-
mes et al., 2017). Thus, high-frequency stimulation may be disrupting these synchronous gamma
oscillations (Sadeh & Clopath, 2021) and preventing seizure onset. Our seizure model also extends
to computational theories of cortical function and dysfunction. Predictive processing is hypothesized
to be fundamental to healthy V1 functioning (Keller & Mrsic-Flogel, 2018). We computationally
showed inhibitory synapses to be crucial for maintaining healthy predictive function in the spiking
model, where seizure-like activity impaired the model’s predictive performance (Fig. 6c). These
findings may extend to biological theories linking prediction errors to pathology (Horga et al., 2014;
Van de Cruys et al., 2014).

Limitations Defining seizure-like activity in our model is challenging due to the broad definition
of seizures in humans (Truccolo et al., 2011) and the lack of a validated seizure-inducing dataset.
We therefore validated our model using various clips reported to induce seizures. Another limitation
is the validation of results against animal studies (mice and monkeys). Animal models have been
extremely valuable to understand epilepsy dynamics (Grone & Baraban, 2015). However, it is un-
known to what extent the findings we compare to animal models (Fig. 3a and Fig. 4d, e) translate to
human patients.

Impact and Ethics Adolescents, who are already at a higher risk of developing PE (Fisher et al.,
2005), face increased seizure risks with the surge of video consumption on platforms like TikTok.
As testing harmful content on patients with PE is unethical, our model could screen social media
content for provocative stimuli. Current warning systems screen for features such as ’high-contrast
stimuli’ and ’pulsating light stimulation’ (Fisher et al., 2022), and therefore may miss certain stimuli
or overly restrict content. Our model is not trained to identify particular stimuli and may be better
suited to identify harmful features that do not fall into these categories. However, it is important to
note that while our model offers a framework to test the underlying pathophysiology of PE, it does
not fully replicate the complexity of human physiology.
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5 APPENDIX / SUPPLEMENTAL MATERIAL

5.1 SPIKING TEMPORAL PREDICTION MODEL

The spiking temporal prediction model was implemented as a population of N = 600 recurrently-
connected excitatory and inhibitory spiking units, defined by the following equations (Taylor et al.,
2024b):

Ii[t] = bin
i +

TE

t′=1

H

h=1

W

w=1

W in
it′hwxhw[t− t′ + 1]

  
Feedforward current

+

N

j=1,j ∕=i

W rec
ij Sj [t− 1]

  
Recurrent current

(1)

Vi[t] =

βiVi[t− 1] + (1− βi)Ii[t]


1− Si[t]


(2)

Si[t] =


1 if Vi[t] > 1

0 otherwise
(3)

ŷhw[t] = bout +

N

i=1

TD

t′=1

W out
it′hwSi[t− t′ + 1] (4)

W rec
ij =


−α|W̃ rec

ij | if j < NI

|W̃ rec
ij | otherwise

(5)

Input current The input current Ii[t] ∈ R (Eq. 1) to unit i at time step t is calculated from the
input stimulus x ∈ RT×H×W (of T = 42 frames, and spatial height H = 20px and spatial width
W = 20px); model output spikes S[t−1] ∈ RN from the previous time step; and a bias term bin

i ∈ R.
The feedforward connectivity W in ∈ RN×TE×H×W (of TE = 15 temporal frame span) maps the
input stimulus into a feedforward current contribution and the recurrent connectivity W rec ∈ RN×N

maps previous output spikes into a recurrent current contribution. The first 5 spatial frames of the
feedforward connectivity were zero-masked to emulate the transduction and transmission latency to
V1 (Land et al., 2013; Kirchberger et al., 2023) and Gaussian noise p ∼ N (0, 0.22) was added to
the input stimulus to emulate the noisy photoreceptors in the retina (Baylor et al., 1980). 15% of
the model unit population were assigned to be inhibitory (NI = 90 inhibitory units and NE = 510
excitatory units) to mimic the biology (Sillito, 1975; Fitzpatrick et al., 1987; Hofer et al., 2011).
All outward connection weights from unit j are either positive (i.e. excitatory) or negative (i.e.
inhibitory), which were enforced by taking the absolute value of every weight in the unconstrained
recurrent weight matrix W̃ rec , and appropriately negating connection weights from unit j to i (Eq.
5). In this work, we introduced parameter α which we used to weaken the inhibitory connections in
the model by multiplying their value by α (where α = 1 is a 100% weight decrease to zero).

Spiking dynamics and predicted output All spiking units implement the normalized and dis-
cretized leaky integrate-and-fire (LIF) model (Taylor et al., 2024a), which decays the membrane
potential Vi[t] ∈ R of unit i at time step t by learnt factor βi (Eq. 2). The membrane was also
multiplicatively perturbed using Gaussian sampled noise g ∼ N (0, 0.62) to emulate the synap-
tic noise of V1 neurons (Rusakov et al., 2020). In the event of a spike occurring in the preceding
time step (which happens when the membrane potential reaches the firing threshold equal to one),
the membrane potential resets to zero (Eq. 3). A prediction of the future spatial movie frame
ŷ[t] ∈ RH×W was generated (with ŷhw[t] ∈ R denoting the predicted pixel value) at every time
step t, by mapping a span of TD = 2 temporal frames of proceeding spike activity using weights
W out ∈ RN×TD×H×W , plus a bias bout ∈ R (Eq. 4).

Loss function and training The original model was trained by minimizing the loss

Ltotal = Lprediction + λLmetabolic (6)

where Lnormative is the prediction loss (how well the model predicts future movie frames) and
Lmetabolic is the metabolic loss (a biological regularization that jointly penalizes connectivity and
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activity, see (Taylor et al., 2024b) for more details) weighted by hyperparameter λ. All training
was performed using a NVIDIA GeForce RTX 3090 GPU which took approximately ∼ 30 hours.
PyTorch (Paszke et al., 2019) and DevTorch (Taylor, 2024) were used for model implementation
and training and BrainBox was used for analyzing the spike statistics, receptive fields and tuning
properties. See (Taylor et al., 2024b) for more details. We used the pre-trained model in this work
and modified the inhibitory weights post training.

Figure 1: Seizure model’s firing rate to provocative stimuli. Every column plots the maximum
population firing rate (Hz) (y-axis) over the duration of the stimulus for the V1 model with different
inhibitory weight % decreases (x-axis). 0% decrease corresponds to the control model and 100%
corresponds to the seizure model with all inhibitory connections completely ablated. Each stimulus
clip (Pokemon, All of the Lights, Citroen, Incredibles 2, Take My Breath) has been reported to induce
seizures in patients with PE (Hermes et al., 2017; Sweney, 2012; Svachula, 2018; Aswad, 2021). The
dotted vertical line marks the firing rate threshold we used to identify model activity as seizure-like
and stimulus as provocative.

0 30 60 90 120
Max pop. firing rate (Hz)

0.00

0.02

0.04

0.06
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ro

ba
bi

lit
y

Control model

0 30 60 90 120
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Seizure model

Abnormally high 
 firing rates

Figure 2: Maximum population firing rate distribution over the natural stimulus dataset. The
dotted vertical line marks the firing rate threshold we used to classify model activity as seizure-
like and stimulus as provocative. For the control model (left) we identified no seizure-like activity.
For the seizure model (right) we identified a few clips with seizure-like activity (which the chosen
threshold captures).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0

120

   
  F

iri
ng

 (H
z)

0 10
0

60

C
h.

 (H
z)

   

0

120

   
  F

iri
ng

 (H
z)

0

60

C
h.

 (H
z)

   

0

120

   
  F

iri
ng

 (H
z)

0 10

Time (s)

0

60

C
h.

 (H
z)

   

0

120

   
  F

iri
ng

 (H
z)

0

60

C
h.

 (H
z)

   

0

120

   
  F

iri
ng

 (H
z)

0 10
0

60

C
h.

 (H
z)

   

0

120

   
  F

iri
ng

 (H
z)

0

60

C
h.

 (H
z)

   

0

120

   
  F

iri
ng

 (H
z)

0 10

Time (s)

0

60

C
h.

 (H
z)

   
0

120

   
  F

iri
ng

 (H
z)

0

60

C
h.

 (H
z)

   

+

-

ba

dc

Seizure model response to provocative stimulus

Control model response to provocative stimulus

Fr = 65 Hz

Fr = 9 Hz

Control model response to provocative stimulus

Control model response to provocative stimulus Control model response to provocative stimulus

Seizure model response to provocative stimulus

Seizure model response to provocative stimulus Seizure model response to provocative stimulus

Fr = 48 Hz

Fr = 7 Hz

Fr = 64 Hz

Fr = 6 Hz

Fr = 87 Hz

Fr = 4 Hz

Figure 3: Capturing seizure-like activity to additional provocative stimuli. Mean population
firing activity of the seizure model (pink) and control model (black) in response to the a. All of
the Lights music video, b. Citroen advert, c. Incredibles 2 movie and d. Take my breath music
video. Online reports suggest these stimuli to induce seizures in patients with PE (Concepcion,
2013; Sweney, 2012; Svachula, 2018; Aswad, 2021). Spectrograms plot the frequency-time power
representation of the model activity, with the highest and lowest power denoted in red and blue
respectively.

Control model Seizure model p-value
metric Unit type

OSI Excitatory 0.82± 0.35 0.81± 0.35 0.4709 (NS)
Inhibitory 0.09± 0.19 0.13± 0.19 0.0010 (***)

DSI Excitatory 0.12± 0.13 0.15± 0.14 0.0008 (***)
Inhibitory 0.05± 0.04 0.10± 0.10 0.0002 (***)

Table 1: Tuning statistics between the control and seizure model. Statistical significance assessed
using the Mann-Whitney U test (***, **, and * denote p ¡ 0.001, p ¡ 0.01, and p ¡ 0.05, respectively).
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Figure 4: EI correlation coefficients calculated using Gaussian spike-train smoothing kernel
with different σ. Bars plot the median and bootstrapped standard error, with statistical significance
assessed using the Mann-Whitney U test (***p< 0.001).
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