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ABSTRACT

Learning heterogeneous treatment effects from observational data is central to
applications such as precision medicine and policy evaluation. A fundamental
challenge arises when treatment assignment is unobserved and must instead be
inferred from noisy proxies, inducing severe measurement error. We propose the
Latent Causal Forest, a forest-based framework for estimating conditional aver-
age treatment effects (CATE) under a hidden treatment. The method combines
the flexibility of forest models in capturing treatment effect heterogeneity with
semiparametric efficiency guarantees via efficient influence functions. We estab-
lish consistency and asymptotic normality of the estimator and develop a two-step
doubly robust learner tailored to the hidden-treatment setting. Simulation studies
and empirical applications demonstrate that our approach outperforms existing
alternatives. To our knowledge, this is the first framework that enables CATE
estimation with a hidden binary treatment.

1 INTRODUCTION

Estimating conditional average treatment effects (CATE) has received increasing attention due to
its central role in data-driven decision-making. In precision medicine, for instance, CATE estima-
tion allows clinicians to recommend the right treatment to the right patient. A rich literature has
developed machine learning methods for this task, including forests (Athey et al., |2019), boost-
ing (Powers et al., 2017)), meta-learners (Kiinzel et al.,|2019), the R-learner (Nie & Wager, |[2020),
and the DR-learner (Kennedy), 2023)), among others.

A key requirement of this literature is the correct specification of the treatment variable. In practice,
however, treatment assignment is often not directly observed. This may arise due to misreporting
or misallocation in assignment (Hu & Lewbel, 2012)), or because the treatment itself is inherently
latent (Porsteinsson et al., [2021). For example, in biomedical sciences and health economics, treat-
ment status is frequently self-reported, but patients may misstate their treatment, leading to biased
effect estimates and ultimately suboptimal decisions.

Although there exists a substantial body of work on causal inference under measurement error, most
methods focus on continuous treatments and marginal treatment effects (Schennachl 2016). By
contrast, estimation of average or heterogeneous treatment effects under hidden binary treatments
has received little attention, in part due to the non-additive nature of measurement error in this
setting. Yet, uncovering heterogeneity is essential: it reveals how treatment effects vary across
individuals and enables the design of optimal personalized treatment rules.

In this paper, we address this gap by developing methods for CATE estimation under hidden treat-
ment. We introduce the LatenT Causal Forest (LTCF), a forest-based framework that extends
generalized random forests (Athey et al., 2019) to settings where the true treatment is unobserved
but surrogate and proxy variables are available. Our approach leverages adaptive forest weights to
capture treatment effect heterogeneity while incorporating semiparametric efficiency guarantees via
influence-function adjustments. The method is multiply robust: the true heterogeneous treatment
effect can be consistently recovered provided that at least one of several nuisance components is
correctly specified. We establish consistency and asymptotic normality of the estimator, and further
propose a two-step doubly robust learner tailored to the hidden-treatment setting.
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By combining the flexibility of forests with the efficiency of semiparametric methods, our framework
provides a robust and practical solution for CATE estimation when the treatment is latent. Empirical
results on both synthetic and real-world data demonstrate that LTCF delivers substantial gains under
hidden treatment.

1.1 RELATED WORK

Measurement error with continuous treatment. Much of the measurement error literature has fo-
cused on continuous treatments, typically under the assumption of additive error (Schennach,|[2016).
In this setting, the observed treatment is modeled as A = A* + A A, where A* is the true treatment
and A A is an additive error. When the treatment—outcome relationship is linear, standard instru-
mental variables can correct for endogeneity (Amemiya, | 1985). For nonlinear models, identification
requires additional assumptions, such as known error distributions (Schennach| 2004)), validation
data (Hu & Ridder; [2010), or auxiliary variables (Hausman et al.,|1991).

Measurement error with binary treatment. By contrast, research on binary treatments has been
more limited, as misclassification errors are inherently nonadditive (Bollinger, [1996). Early ap-
proaches relied on validation datasets (Chen et al., 2005) or derived sharp bounds for the average
treatment effect under nondifferential error assumptions (Imai & Yamamoto, 2010). Instrumental-
variable methods have also been developed to address misclassification in regression models (Ma-
hajan, 2006; DiTraglia & Garcia-Jimenol 2019). Most recently,|[Zhou & Tchetgen Tchetgen| (2024
advanced this line of research by introducing the hidden treatment framework, which establishes
identification and semiparametric estimation of the average treatment effect (ATE) when treatments
are misclassified. Their approach leverages surrogate variables (error-prone measurements of the
treatment) and proxy variables (exogenous sources of variation related to the true treatment), pro-
viding the first general methodology for ATE estimation under hidden binary treatment.

Heterogeneous treatment effect. Parallel to this work, a large literature has developed methods for
conditional average treatment effect (CATE) estimation. Many approaches adopt two-step proce-
dures that combine nuisance estimation with pseudo-outcome regression, such as the R-learner (Nie
& Wager, [2020), DR-learner (Kennedyl 2023), and mDR-learner (Pryce et al.| |2024). Our work
instead builds on generalized random forests (GRF) (Athey et al.,2019), which view forests as adap-
tive locally weighted estimators capable of targeting general moment conditions. This framework
ensures asymptotic consistency and normality while flexibly capturing treatment effect heterogene-
ity, and has been extended to survival analysis (Liu & Li, 2021} |Cui et al., 2023) and to reduce
sensitivity to nuisance estimation error (Oprescu et al.,2019).

2 PROBLEM STATEMENT

2.1 SETUP

We adopt the potential outcomes framework and assume the existence of potential outcomes Y;(1)
and Y;(0), corresponding to the hidden binary treatment assignment A} € {0,1}. Let X; € X
denote a vector of pre-treatment covariates. The outcome variable Y; may be binary, count-based, or
continuous. Our objective is to estimate the conditional average treatment effect (CATE), defined as

(@) = EYi(1) = Yi(0) | X; = al,
where 7(z) characterizes the treatment effect conditional on covariates X; = .

2.2 CAUSAL EFFECTS WITH OBSERVED TREATMENT

We first illustrate CATE estimation with the observed treatment A* under the framework of Causal

Forests (Athey et al., 2019). Identification of 7(x) requires the following standard causal assump-
tions:

Assumption 2.1 (Consistency) Y; = Y;(1)A* + Y;(0)(1 — A*) almost surely.

Assumption 2.2 (Overlap) 0 < Pr(Af =a | X; = z) < 1 for a* = 0,1 almost surely.
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Figure 1: Illustration of causal graphs for different scenarios: (a) no unmeasured confounders, (b)
with unobserved confounder U, and (c) with latent treatment A*. Dark nodes indicate unobservabil-

ity.

Assumption 2.3 (Ignorability) {Y;(1),Y;(0)} L A | X,.

Under these assumptions, we can construct an efficient influence function (EIF)-based score
to identify heterogeneous treatment effects in a nonparametric model. Denote e,«(z) =
Pr(Af =a* | X; = x), me(z) = E(Y; | Af = a*, X; = z). The score function is given by:

(Ko Yo A7 ) =t (3= (X)) ()
) (1)
2820 45, — a9} - mo(X:) - 7(0).

This score function satisfies the doubly robust property: if either e, (x) or mg«(x) is correctly
specified, then E |1,z (X, ¥i, Af3 €0r, ma-)

parameter of interest is E[I(Y;(1) = y) — I(Y;(0) = y) | X; = =] where y is a given level. Its score
function can be obtained by replacing Y with I(Y = y) in equation

X, = x} = 0. For categorical outcomes Y, the

This framework also provides a convenient way to estimate the average treatment effect (ATE):
7 =E[E[Y:(1) — Y;(0) | X;]]. We can first estimate the nuisance components e, (z) and mg» (x)
using machine learning methods, and then solve the following score equation to obtain a doubly
robust estimator of the ATE:

Zz/;T (Xi,Y;, AL; éqe,1hq-) = 0. (2)

Our objective, however, is not limited to estimating a constant effect 7, but to capture treatment het-
erogeneity as a function of covariates. To this end, we employ random forests to construct a weighted
averaging estimator. For a test point x, the weights a; (2:)—defined in |Athey et al|(2019)—capture
the frequency with which the ¢-th training observation falls into the same terminal leaf as x:

I{X;
o BZ { |,/\be )}’ 3)

b

where B is the total number of trees, A (x) is the terminal node containing x in the b-th tree, and
| - | denotes cardinality.

Forests are constructed to ensure that «; () captures local treatment effect heterogeneity. Specifi-
cally, 7(x) is estimated by solving a localized version of equation

Zal w"'(’") Xl?KaA @a*,ma*) = 0
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3 CATE ESTIMATION WITH LTCF

In principle, Equation equation 3| provides a flexible approach to estimating heterogeneous treatment
effects when treatment assignment is observed. However, when the treatment assignment is hidden,
this approach breaks down because the nuisance parameters e,«(x) = Pr(Af = o* | X; = z) and
mex(z) = E(Y; | AF = a*, X; = x) cannot be modeled directly, as A} is unobserved.

To address this challenge, we propose an approach that leverages a misclassified surrogate measure
A. We then identify causal effects using the surrogate variable A together with a proxy variable Z.

3.1 IDENTIFICATION WITH A HIDDEN TREATMENT

Suppose the true treatment status A7 is not observed, and instead we observe a misclassified surro-
gate A;. If one were to naively estimate treatment effects by substituting A; for A7, the resulting
latent outcome bias would be

/ [E(Y; | Ai =a*, X; =2) —E(Y; | A} = a*, X; = 2)|dF (),
which is generally nonzero.

To achieve correct identification of 7(x), we introduce the surrogate A, alongside a proxy variable
Z;, both related to the hidden treatment A}. Identification requires the following assumptions.

Assumption 3.1 (Relevance) Y; / AY | X;; A; L A | Xy; Z; L AF | X

Assumption 3.2 (Conditional independence) Y;, A;, and Z; are mutually independent condi-
tional on covariates and treatment assignment. Thatis Y; L A; 1 Z; | AY, X,.

Assumption 3.3 (Surrogate) At least one of the following holds for any value x of covariates:
(i) Pr(A; =0 A =1,X;=2)+Pr(A; =1 A =0,X,=2) < 1.
(i) Pr(Ay =0 A;=1,X;, =2)+Pr(A*=1]|4,=0,X;,=2) < 1.
(iii) Pr(Af =1 A, =1,X,=2) >Pr(A; =0 4, =1, X; =x).
(iV) Pr(Af =04, =0,X;,=2)>Pr(Af =1]| A4, =0,X; =x).

Assumption requires that, conditional on X, the hidden treatment A} is associated with the
surrogate A; and the proxy Z;. Assumption [3.2]requires that, conditional on A and covariates, the
surrogate and proxy are independent of the outcome Y;. Assumption [3.3]ensures that A; contains
sufficient information to recover A;.

Figure[I] (c) illustrates the identification setting for causal effects with an unobserved binary treat-
ment. This framework thus requires the presence of both the surrogate variable A; and the proxy
variable Z;, together with structural assumptions about their relationships. The figure also compares
this case to scenarios with (a) no unmeasured confounders, (b) unmeasured confounders U'.

Lemma 3.4 (Identification) Under Assumptions the heterogeneous treatment effects T(x)
can be uniquely identified.

The proof of Lemma [3.4]is provided in Appendix [Bl Based on this result, 7(z) can be identified
via the following EIF-based score function, motivated by semiparametric theory under hidden treat-
ments and mapping from the oracle tangent space where A7 is observed (Zhou & Tchetgen Tchet-
gen, 2024). Let g, (z) = E(A4; | Af = a*, X; = 2),ho-(2) = E(Z; | AF = a*, X; = z), and
define the score function:
w'r(x) (Xu Yi, Ais Zis gar s hax s €axs ma*)
_ Ai — go(XZ) Zz — hQ(X,) 1
91(X3) = go(Xi) hi(Xi) — ho(X;) e1(Xi)
A a(Xa) Zi — h1(X;) 1
9o(Xi) — g1(Xi) ho(Xi) — ha(X;) eo(Xi)

{Yi = ma(Xi)} + ma(Xs) — mo(X5)
€]

{Yi = mo(Xi)} = 7(2).
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This EIF-based estimator enjoys a triply robust property:
E [’l/)‘r(w) (X17 )/’iv Ai7 ZH Ja*, ha* )y €axy m(l*)|Xi = ‘T] = 07

if any of the following conditions hold: (i) g,-(z) and m,- (x) are correctly specified; (ii) hq+ ()
and m~ (x) are correctly specified; (iii) gq= (), hox (z) and ey« (x) are correctly specified.

3.2 ESTIMATING CATE UNDER CAUSAL FOREST

The preceding theory provides a practical strategy for estimating the ATE under a hidden treatment.
Identification of the ATE relies on the nuisance components gq« (), hqs (), €q+ (), and mg« ().
To capture heterogeneous effects, we develop a triply robust estimator for the conditional average
treatment effect (CATE) using causal forests. Specifically, we employ causal forests to learn the
weights and estimate %( ) via the moment equation:

Zaz 1/}7' (z) XwY—uAunga* ;La*7éa*ama*) =0, 5)

where 1z () is deﬁned in Equation equation

We now outline the forest-growing procedure. Following |Athey et al. (2019), we adopt the A-
criterion as the splitting rule. The goal is to partition a parent node R into two child nodes R, and
‘R r within the subsample 7, so as to maximize the accuracy of 7-estimates. This is formalized by
minimizing the mean squared error (MSE). For node R, the MSE of a split into Ry, and R is

MSE (R, Rp) = ( > (@) —FRL)+ Y (@) - %(RR»?) :

iI€ERL 1€RR

where 7(R) is the solution to equationusing the score function equation within node R. Since
7(z) is unobserved, the MSE is infeasible. Instead, we rely on an abstract target criterion. Denote
ng =|{i € J: X; € R}| and ng,,nr, as the sample sizes of the parent and child nodes. Then,

A(Rr, Rr) = % (#(R1) — #(RR))*.

Assuming ng, ,nR,, > 7~ 2 for parent node radius r > 0, we have

E[MSE(R., Rr)] = K(R) —E[A(RL, Rr)] +o0(r?),
where K (R) is a constant reflecting the purity of the parent node, and o(r?) captures sampling
variation. Direct computation of 7(R ) and 7(R ) for all candidate splits is computationally inten-
sive and complex. To address this, an equivalent estimator is used to reduce computational burden

without compromising accuracy:
ARLRRr) = —( ) tim)’ +7 > Yhw)
ReL i€ERL Rr i€ERR

with 1/);(72) = Ve (X4, Yi, Aiy Zi; Gar B, €qx, Mex). Since A(RL, RRr) is equivalent to
A(RL,Rr) (by Proposition 1 of |Athey et al. (2019)), splits are chosen to maximize E(R L, RR).

3.3 LEARNING NUISANCE COMPONENTS

A key element of LTCF is estimating the nuisance functions go« (), hax (), €4+ (), and mg= ().
This is challenging because the true treatment A} is unobserved. Building on [Tatiana Benaglia &
Hunter] (2009)), one strategy uses an Expectation-Maximization (EM)-based method for estimating
“posterior” probabilities of latent components.

We adopt the kernel regression estimator of |[Zhou & Tchetgen Tchetgen| (2024), which extends this
approach by constructing “posterior” probabilities for unobserved A} rather than mixture compo-
nents, and introduces Gaussian kernel regression estimators for gq« (), hqx (2), €qx (), and mg« ().
To further enhance robustness and mitigate overfitting, we incorporate cross-fitting (Schickl |1986a)),
whereby nuisance functions are trained on one fold and then applied to construct score functions for
another, ensuring valid CATE estimation.
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3.4 THEORETICAL ANALYSIS

In this section, we establish the theoretical properties of the proposed LTCF estimator. Let 7(x)
denote the oracle estimator of 7(z), and let 7(x) denote the LTCF estimator obtained by replacing
the nuisance components g, (), ha= (), €4+ (), Mg+ () with their estimated counterparts.

Assumption 3.5 (Consistency of nuisance components) For a* € {0,1},

B |sup 6 (0) o (0| = o) [ sup v () = e (0] = o),

B | sup i (2) ~ 0 (0] = o(aE)E |sup ()~ e (0| = 02,

Under Assumption [3.5] we obtain the following intermediate result, which bounds the difference
between the estimated and oracle CATE.

Lemma 3.6 If Assumption[3.3]holds, then for any x € X,

7A—(J;) - 7:(37) = Op(max(mngna mnhna Mp€n, gnhn))~

The proof of Lemma [3.6]is provided in Appendix [C] Following |Athey et al|(2019), our forest con-
struction assumes honesty and standard regularity conditions: at each internal node, the probability
of splitting on any feature is at least ¢ > 0, and each split allocates at least a fraction w > 0 of ob-
servations to both child nodes. Trees are grown on subsamples of size s = n® with S, < 8 < 1,

where
Bmin :=1— (1 4+t (log (w_l))/ (log ((1 — w)_l))71 , (6)

 is the minimum probability that the tree splits on any feature, and covariates X € [0, 1]? follow a
density bounded away from zero and infinity.

Assumption 3.7 (Lipschitz continuity) The treatment effect 7(x) and nuisance functions
9o (X)), b+ (), eqx (), max (x) are Lipschitz continuous in x.

Combining Lemma[3.6] with the results of [Athey et al|(2019), we establish the following asymptotic
normality result.

Theorem 3.8 Suppose Assumptions and hold, and s scales as in equa-
tion @ If op(max(mygn, Muhn, Myen, gnhy)) converges to zero at a rate faster than
polylog(n/s)~/2(s/n)'/2, then for any x € X,

[7(x) = 7(x)]/on(x) — N(0,1),

where o2 (z) = polylog(n/s)~t - (s/n) is bounded away from zero and grows at most polynomially

in log(n/s).
The proof of Theoremis given in Appendix@ To estimate the asymptotic variance of 7(x), we

adopt the “bootstrap of little bags” approach (Sexton & Laakel| 2009; |Athey et al.l[2019). Specifi-
cally, we use

(z) =7(z) + Z ai(x)’l/);i'(x)7
i=1
which is asymptotically equivalent to 7(z) under Theorem Consequently,
> ai(x)z/}i(w)] :
i=1

We estimate o2 () using the bootstrap of little bags, which accounts for within- and between-tree
correlations and provides a computationally efficient approximation to the full bootstrap variance.

o2 (z) = Var [f*(x)] = Var

n
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3.5 DR-LEARNER WITH HIDDEN TREATMENT

We now present an alternative strategy for CATE estimation under latent treatment, adapting the DR-
learner framework of [Kennedy| (2023)). The DR-learner separates nuisance estimation from CATE
estimation in two stages: (i) estimating nuisance components to construct pseudo-outcomes, and (ii)
modeling treatment effects using flexible learners. Cross-validation is employed for model selection
and tuning, and finite-sample error bounds are available relative to an oracle benchmark. Related
extensions include the P-learner (Sverdrup & Cuil 2023), which adapts this strategy to proximal
causal inference.

Building on these ideas, we propose a two-stage triply robust DR-learner specifically tailored for a
hidden treatment, under Assumptions For the average treatment effect (ATE), E[Y (1) —
Y'(0)], we define the following triply robust score, motivated by semiparametric efficiency theory
(Zhou & Tchetgen Tchetgenl 2024):

A —go(Xh)  Zi = ho(Xa) 1 e
b= X — 00X I (X)) — ho(X,) e () s —ma(Xo)}
Ai—g(Xy)  Zi—m(X) 1 R o
- gO(Xi) - g1(Xi) hS(XZ) — hl(Xz) eO(Xi) {Y; O(Xz)}

+ ml(Xz) — mo(Xi).

The sample average of I'; yields a triply robust estimator of the ATE.

To estimate the CATE, we regress the pseudo-outcome I'; on X;. Specifically, the final-stage model
is given by

Far(w) =B [DD1X; = ]

where cross-fitting ensures robustness to nuisance estimation errors. This predictive problem is
highly flexible and can be addressed using nonparametric learners (e.g., random forests, neural net-
works, stacking) or simpler parametric models. The detailed algorithm is provided in Appendix [A]

While this two-stage procedure inherits desirable oracle properties (Kennedy, 2023)), valid pointwise
inference for 7(x) remains challenging when nuisance estimates are imperfect. Nevertheless, the
triply robust DR-learner offers a practical and theoretically grounded approach for CATE estimation
under hidden treatment.

4 NUMERICAL EXPERIMENTS

4.1 SYNTHETIC SCENARIOS

We generate synthetic data following the auxiliary variable mechanism of Zhou & Tchetgen Tchet-
gen| (2024), where treatment heterogeneity is incorporated through a CATE function for both binary
and continuous outcomes (a detailed setup is provided in Appendix[E). Cross-fitting (Chernozhukov
et al., 2018} [Schickl [1986b) is used to estimate the nuisance components gq», hqx, €q%, and mgx.
Since no existing methods are designed specifically for CATE estimation under hidden treatment, we
benchmark against surrogate approaches with surrogate A and proxy Z as treatments. The tuning pa-
rameters are described in Appendix[E] A test dataset, equal in size to the training set, is used to eval-
uate LTCF and surrogate causal forests. We measure the accuracy of estimated heterogeneous treat-

ment effects using Mean squared error (MSE), which is defined as ml - Yot (7(XG) — T(X:))2

Figure 2areports the simulation results. In each panel, the horizontal axis shows the true CATE and
the vertical axis the estimated CATE; hence, accuracy is indicated by closeness to the 45-degree line.
We compare our method, LTCF, with three alternatives: (i) Oracle LTCF, which uses ground-truth
nuisance parameters; (ii) Surrogate CF, which incorrectly uses the surrogate A as the treatment; and
(iii) Proxy CF, which incorrectly uses the proxy Z as the treatment. The results show that LTCF
closely aligns with the oracle benchmark, while treating A or Z as the treatment induces substantial
bias.
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Figure 2: Empirical evaluation of CATE estimation under a hidden treatment. (a) LTCF versus
benchmarks in continuous outcome settings. (b) DR-learner with regression forest and XGBoost
implementations.

Table 1: Mean and standard deviation of MSE (scaled by 100) for n = 2000, 5000, 8000 in LTCF
and surrogate causal forests. Results are averaged over 200 replications.

n Surrogate CF LTCF
2000 3.82(0.79) 1.19(0.32)
Binary 5000 3.87(0.57) 0.78(0.18)
8000 3.75(0.42) 0.70(0.14)
2000  35.42(5.88)  6.92(1.97)
Continuous 5000  34.42(3.81)  6.01(1.13)
8000  34.59(3.07)  4.45(0.63)

Tablefurther summarizes the mean squared error relative to the true CATE 7(x), averaged over 200
replications. The presence of measurement error in surrogate A; introduces severe bias in Surrogate
CF, resulting in substantially higher MSE. By contrast, LTCF achieves much lower error across all
sample sizes. Table 2] reports the coverage of 95% confidence intervals at four deterministic points,
r1 = (0.2,0.2)T, 25 = (0.4,0.4)T, 23 = (0.6,0.6)T, and 24 = (0.8,0.8)7, demonstrating reliable
coverage performance of the proposed intervals.

We also evaluate the proposed DR-learner with hidden treatment (Section under the same
continuous-outcome setting, using regression forests (Athey et al.l 2019) and XGBoost (Chen &
Guestrin, [2016) as base learners. Tuning parameters are selected by cross-validation. As shown in

Table 2: Coverage probability (%) of the proposed 95% confidence intervals by LTCF at four deter-
ministic points. The numbers are aggregated over 200 simulation replications.

n X X2 I3 Ty
2000 95.15 95.15 9320 96.12
Binary 5000 90.03 9132 93.10 96.55
8000 95.00 97.14 95.00 93.57
2000 91.80 93.44 9344 94.26
Continuous 5000 9533 9533 91.59 89.72
8000 97.14 9286 92.86 94.29
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Figure [2b] both implementations achieve good performance, with XGBoost exhibiting noticeably
higher accuracy than regression forests, reflecting its superior learning capacity.

4.2 REAL DATA APPLICATION

We apply the proposed methods to data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI). Our focus is on the effect of Alzheimer’s disease (AD) on hippocampal volume. Diag-
noses of AD may not perfectly reflect the latent disease status due to the complexity of the condi-
tion. To address this, we use the recall subscore of the Mini-Mental State Examination (MMSE)
as a surrogate variable (A) and the orientation subscore as a proxy variable (Z), following [Zhou &
Tchetgen Tchetgen| (2024)).

We estimate the CATE of AD on hippocampal atrophy, where the hidden treatment is AD status at
Month 6 and the outcome is hippocampal volume at Month 12. Covariates X include age, years of
education, and gender. The dataset comprises 1,176 subjects with complete MMSE scores at Month
6 and hippocampal volume measurements at Month 12. To examine heterogeneity, we estimate
subgroup effects by gender.

Our results indicate that AD reduces hippocampal volume by 897.7-2150.1 mm? in men (average
effect: 1533.4 mm?), and by 503.3 -1763.7 mm? in women (average effect: 1253.3 mm?). These
findings suggest that women experience greater overall hippocampal atrophy due to AD compared to
men, consistent with prior evidence of accelerated atrophy in female patients. To further validate our
results, we assess performance using the Targeting Operator Characteristic (TOC); details are pro-
vided in Appendix [F This result indicates the presence of heterogeneity in response to the right AD
status. For example, as shown in Figure 3] patients in the lowest 20th quartile of estimated CATEs
have hippocampal volumes that are, on average, 400 mm?> lower than those of the overall population
when in AD status. This indicates a significantly more detrimental effect on brain composition for
this subgroup compared to whole population

500
|

300
|

0 100
|

0.2 0.4 0.6 0.8 1.0

Figure 3: The TOC curve for all observations estimated by LTCF.

5 DISCUSSION

A central approach to assessing treatment effect heterogeneity is the estimation of CATE. In many
applications, however, the treatment variable is not directly observed. We proposed a new framework
for CATE estimation with unobserved treatments, based on pseudo-outcome splitting and forest-
based weighting, which achieves consistency and asymptotic normality under reasonably accurate
nuisance estimation. We also extended the DR-learner (Kennedyl 2023) to the hidden treatment
setting, demonstrating its viability in practice.

A natural extension is to estimate CATEs conditional on both A; and Z;, defined as 7(x,z) =
E[Y;(1) - Y;(0) | X; =x,Z; = z] and 7(z,a) = E[Y;(1) — Y;(0) | X; = =, A; = a]. Moreover,
identification in our hidden treatment framework relies on the ignorability of the latent treatment
A*. An important direction for future research is to develop identification strategies that remain
valid when this ignorability assumption is violated.
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A ALGORITHMS OF THE DR-LEARNER

Algorithm 1 DR-learner under Hidden Treatment

Step 1: Split the data ¢ = 1,...,n into C evenly sized folds. Estimate go« (), hox (), €q= (),
and m~ () using cross-fitting over the C folds.

Step 2: Form the scores equation |7 I using cross-fitted plug-in estimates g, (), 1, <" (x),
6,29 (z), and 1. C(Z)( ), where ¢(-) maps each sample to its fold, and —c(7) indicates predictions
obtained w1th0ut using the fold containing the i-th sample.

Estimate treatment effects by minimizing the empirical loss

#(-) = argmin, [Ln(7(-))],
where ,

La(r()) = 230, (B = ()
and fE*C“)) are cross-fitted estimates of the scores equation |7 I obtained by replacing g,- (),
ha= (), €q= (), and mg« () with g_c( )( ), h_f(z)(x) é_f(l)( ), and 171, ot )( ), respectively.

a > ra

B PROOF OF LEMMA [3.4]

By Assumptions and 2.3] estimating E[Y (a) | X = z] reduces to estimating E[Y | X =
x, A* = a.

Suppose we observe data {X;,Y;, Z;, A;}; for simplicity, we omit the index ¢. Under Assump-
tion[3.2]
1

fAZ|X=2)=) fAZ|X=2A"=ad)f(A"=a" | X =2)

a*=0

1
=) fA|X =z, A" =a")f(A"=a" | X =2)f(Z| X =a,A" =a”).
a*=0
Similarly,
fY,Z,A| X =)
1
=Y [V ZA|X =24 =a")f(A" =a" | X =)

a*=0

1
=) [V |X=3,A"=a")f(A"=a" | X =2)f(A| X =2,A" =a")f(Z| X =a,A" = a”).

a*=0

By Assumption[3.1] f(A, Z | X = z) is invertible. Define

PAZ| X =xz):=(f(A _2—iZ:2—j|X:x))ij
PY,Z,A| X =x):= ((YA—2—2Z—2—]\X—JC))M,
P(A|X =2, 4% = (fA=2i| X =2, A" =2-])), .
P(Z|X=2A") = (f(Z=2-i|X=2,4"=2-})),,
P(Y | X = 2,A7) = lag(f<Y|X:x,A*:2fz‘>),
P(A" | X =2) :=diag (f(A" =2—i| X =2)),,

where i, j € {1,2}.
Then the above equations can be rewritten as

PAZ|X=2)=PA|X=2,APA | X=2)P(Z|X =z, A",
PY,AZ|X=2)=PA|X=2,A")PY | X=2,A")PA" | X =2)P(Z| X =x,A")".
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Multiplying P(Y, A, Z | X = 2) by P(A,Z | X = x)~! yields

PY,AZ|X=2)P(A,Z| X =2)"'=P(A| X =2, A")P(Y | X =2, A*) P(A| X = 2, A*)" L.

This is the canonical form of matrix eigen-decomposition. By Assumption[3.3] P(Y | X = z, A*)
can be solved as the eigenvalues. Therefore, the treatment effect E[Y | X = z, A* = 1] — E[Y |
X =z, A* = 0] can be uniquely identified from the data.

C PROOF OF LEMMA
We begin by proving the result in the context of estimating

Ha+ (2) = E(Y; | A} = 0", X; = ),
and show that

flax () = fla= (T) = Op(max(mngna My, My €, gnhn)) .

Cross-fitting employs cross-fold estimation to mitigate bias due to overfitting. Specifically, observa-
tions I that fall into the same terminal node as x are randomly split into two subsets, /; and 5. The
estimator is then defined as

i Loy,

ly .
fiar (2) = gk () + 7 figt (2),

where | = |I], [y = |I1], l2 = |I2|, and /lgl* (x),ﬂéﬁ (z) are constructed using nuisance functions
estimated from the complementary samples 1> and I, respectively.

We aim to show that

[Lé& (z) — ﬂé& (z) = Op(max(mngn, My Ry, Mp€n, gnhn)),

where /1% () is the oracle estimator of 11/% () obtained by solving

1 Z A — g1-a+ (X5) Zi — h1—q-(X5) 1

00 (0] — g1 (K0) P (X0) — T (X3) e (%) (0 Mo (K0

A
Liien

+ mas (X) = it (2)) = 0.

We now decompose 1% (z) — jilt (z) :

14
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fua () — figh ()
_ l Ai - ka (Xz) Z; — ]iblfa* (Xt) 1 e . M .
= I |J€I1 ga* (Xz) — 91—(1* (Xz) iLa* (Xz) . }Allfa* (Xz) Ear (Xz) (YYZ a (Xz)) + Mg (Xz)]
B Ai—gio(X)  Zimhie(X) 1
1 Leh 9o+ (Xi) = g1—a= (Xi) ha (X;) — h1—a= (Xi) €q+ (Xi) S o (X)) e (XZ)]
l A; — g1—a* (Xl) Zi —hia- (Xl) 1 Mg* i) — Mg ;
N l |J€I1 Gax (Xz) — g1—a* (Xz) b (XZ) —hi—a» (XZ) €a~ (XZ) ( ‘ (Xl) ! (Xl))
+ Mg (X)) — Mg (X;)
Ai — G1-a- (X;) Z; — hi_q+ (X;) 1
G (Xi) = 10+ (Xi) hoe (X;) — h1—q+ (X;) €ar (X3)
A —gie(X) Zi — hi—o~ (X5) 1 (X
Jar (Xi) = g1-a= (Xi) ha= (Xi) — h1—a=(Xi) €q (X¢)> (¥ = ma (X))
n A — G1—a-(X5) Zi — hi_a+ (X)) 1
Ga (Xi) = §1-a*(Xi) hge (X;) = hy_ar (X;) €a (Xi)
_ Ai — g1-—a> (Xz) Zi —h1_q~ (Xz) 1 Mo N = s )
9= (Xi) = 910+ (Xi) ha= (Xi) = h1 o= (X5) ea*<Xi)> (mae (X) = e (X)) |

Denote /it (x) — ilt (x) by K; + Ky + K.
Analysis of K. By the triply robust property of equation 4}

Ai — g1—a* (XL) Zi — hl—a* (Xz) 1 N
G0 (X0) — 91w (X0) e (X0) — e (0 e () (e () = 1t (X0)

+ Mg (Xl> — Mg~ (X’L)‘| = 0.

Conditioned on X; = x, we have

Ai — J1—ax (X’L) Zz - hlfa* (Xz)

- 9ar (Xi) = g1—a= (Xi) ha (X;) — h1—a+ (Xi) | Xi= x] = €q-(Ti).

Let A,,, = mg+(X;) — g+ (X;). Then

Ai — g1-a (Xi) Zi — h1—a- (Xi) 1 -~
0o (K] — 1 (K0 T (K — P (K) (K1) () A““]
_ Ai—gi-ar(¥) Zi —hi_o-(2) 1 _ .
=5 9o+ (2) = g1-a+ () ha+ (2) — h1—q+(2) €a~(2) (Ami) Bl ]]
=0.

Thanks to cross-fitting, nuisance components can be treated as deterministic. Thus, conditional on

I, the summands are mean-zero and independent, leading to the variance bound in equation [9]
which is 0, (1/1).
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1 Ai — g1-a+(X) Zi — h1_q-(X;) .
’ (h 2 G000 — (0] e (6] — o () e (3 1 () (0
+ Mg (XZ) — Mg~ (Xz)> ]
_ l A’_gla<X1) hla( z) 1 _— A ]
_E[El<lliezllg“*()(l)gl a* ( )h ( ) hi_q ( Z) ea*(Xi)( ¢ (Xl) ¢ <XZ))
+ Mg (X)) — mg (X > H
1 A — J1—ax ( L) _hl a* ( ) 1 ~
=E | Var <<l1§ga (X — oo () () — e (K] () —1) (ma*(Xi)—ma*(Xi))> 12H
1 Az — J1—a* (Xz) Zz —h —a* (Xz) 1 ~
L <<ga*<xi>lgl_a*<Xi>ha*<Xi>lhl_a*<Xi>ea*<Xz—> ‘1> <m“*(X”"m“*(X”)> I2H
< P [ () — e () = 2D
1 reX
)]
Analysis of K.
Define the term:
Ai — G1-a- (X5) Zi — hi—o- (X)) 1
ga* (X’L) - gl—a* (Xl) iLa* (Xz) — iLlfa* (Xz) éa* (Xl)
A giar (X0) Zi — hi—a+(Xi) 1 - )
9o (Xi) = g1-a= (Xi) har (Xi) = hi—o= (Xi) €0~ (Xi) | — 7

We consider the following decomposition:

16



Under review as a conference paper at ICLR 2026

(1) = A — G1—a(X5) 1 A g (X)) 1
Ga= (Xi) = g1—a* (X5) €a=(X3)  gar(Xs) — g1—a= (Xi) €q- (X5)
N Fimha (X)) Zi- e (X))
ila* (Xz) - ill—a* (Xz) ha+ (Xl) — hi_q (X )
Ai — g1-a-(X3) 1 —hi—e (Xy) — hi_a+(X5)
Ga~ (X7,> — Ji—a* (Xz> €ax (Xz) iLa* (Xz) — iLl_a* (Xz) h‘a* (XZ) - hl*a* (XZ)
Zi — hi_a+(X5) Ai — §1-a- (X5) 1 Ai—gia(X0) 1
ha* (Xz) - hlfa* (X ) ga* (Xz) - glfa* (Xz) éa* (Xz) a* (Xz) — J1—a* (Xz) €aq* (Xz)
_ Ai— o= (Xs)  Ai—g1a-(Xi) —hia (X)) — hi_o= (X5)
Gar(Xi) — §1—a* (Xi)  ga(Xi) — g1—a= (X3) Ba*(Xi) — iLl,a*(XZ—) ho+ (X3) — hi—o+(Xi)
« 1 1
éa* (X7) €ax (X1)
+ Ai = G1—a* (Xz) . Ai — g1—a* (Xz)
Jar (Xi) = 91-0=(Xi) 9o (Xi) — g1-a+ (Xi)
y Zi — hi_a+ (X))  Zi—hi—a(Xh) 1
ila* (X;) — }All_a* (X3) har (Xi) — h1—a+(X3) | €ar (Xi)
n A — g1—a-(X5) Z; — ill—a*(Xi)  Zi—hia- (X5) 1 7 1
Gax (Xz) —91-a* (Xz) ila* (Xl) — il1_a* (XZ) ha+ (Xl) —hi_q» (X ) €a (Xl) €a* (Xl)
+ Ai*gl—a*(Xi) Zz*ill a* ( ) *hl a* ( ) 1
ga*(Xi) _glfa*(Xz) ]Ala (Xz) hl a* z) ha* hl a* (Xz) ea*(Xi)
L Ai— g1 (Xi) A —gi-a( —hla() 1
ga* (Xz) _glfa* (Xz) Gax (Xz — Jil—a* h hl a* (Xz) éa* (Xz) €ax (Xz)
+ Al — gl—a* (Xz) _ Az 9g1—a* - hl a* ( 1) 1
G (Xi) = G1-a~(Xi)  ga*(Xi) — G1-ax ha* — hi—-(X;) €q- (X;)
+ _hl a ( ) A —J1—a* (X) _
ha* (Xz) - hl—a* (Xz) Ga~ (X’L) 91—a~ (X’L) éa* (Xz) €q* (X’L) .
(10)
Define:
A gia (X) A= ge (X
B9 () — e (X B0 SR
L Zi — hi—o+(X;) P h1 o (X3)
Ahl o ha* (X’L) - hlfa* (X’L)’ Ah7 ) i?,a* (Xz) — hl—a* (Xi)’
1 1
Aei = ear (Xi), Ae,- = éa* (XZ)

Therefore, combining equations equation[I0and part K5, we separate K, into five mean-zero terms
and two product terms. By triply robustness of equation E} since gq+ (x) and mg«(x) are correctly
specified:

E [Agi (Ahi — AR)(Y; — M- (Xl-))Aez} -0, (11)
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Since ho+ (x) and m,~ () are correctly specified:

E[(Agi — Agi) Ak (A& — Aey)(Yi — M- (XZ-))} -0, (12)

The correct specification of h« () and mg- (x) leads to:

E[(Ag: — Agi) Ah; Aei (Y; = ma- (X3)| =0, (13)

Similarly, since gq+ (x) and m~(z) are correctly specified:

E{Ahi Agi (A& — Aey)(Y; — mg- (Xi))} —0, (14)

Also g (x) and m« () are correctly specified:

E[(Ahi — Ahi) Agi (Aé; — Aei) (Vi — g (X:))] =0, (15)

In addition, by the Cauchy-Schwarz inequality, we have

ll S (Adi — Agi)(Ahi — A (Vi — - (X)) Aes

1 i€l
Z (Y; — ma- (X)) Aei(Ag; — Ag;)? Z (Y; — Mg+ (X3))Ae;(Ah; — Ahy)?
1611 2611
= Op(gnhn)- (16)

With the same logic, we have

I Z (Ag; — Agi)(Ah; — AR)(Aé; — Aey)(Yi — Mo (Xi)) = 0p(gnhnen) (17

i€l

Therefore, combining equations equation [TT} equation [T2] equation [I3] equation [T4] equation [T3]
equation[T6 equation[T7] we have that

Ky = Op(max(gnhn;gnhnen)) = Op(gnhn)- (18)

Analysis of K.

Combine equations equation and the same decomposition of (I) in K3, we can get
K3 = op(max(mngn, mphn, mpey,)) with same decomposition process. So we have

that K1 + Ky + K3 = op(max(mpgn, Mnhn, Mnen, gnhy)), which means ,&i&(m) —
[Lél() = op(max(mugn, Mphy, Mpen, gnhy)), and therefore f[ig+(x) — fig-(z) =
op(max(Mmpgn, Mnln, Myen, gnhy)), S0 it’s obvious to get

7:(1') - 7:(37) = Op(max(mngna Mphp, Myen, gnhn))a

which completes the proof.

Ks =

Ky + Ky + K3 = 0,y(m
fig () = Ma ( )
fla (x) - = 0pm
%(:c =o0p(m

Max (M G M M, M),

|
QS
=3

I

s}

S
/-\/\/-\/\/\

ax mngna mnhna mnen, gnhn

ax mngna mnhna mnenv gnhn

(

( )
X(mngna mnhna Mp€n, gnhn)) 5
( ))
max(MpGn, Mnfn, M,y gnhn))

18



Under review as a conference paper at ICLR 2026

D PROOF OF THEOREM [3.8]

Using the forest weights «;(x), which form the basis of the generalized random forest estimator
7*(z) under unknown nuisance parameters, we obtain the following linear approximation:

(@) = 7(2) + Y ail@)pi (@),
i=1

where p; (x) denotes the influence function for the i-th observation with respect to the true parameter
value 7*(x), and 7*(x) is the pseudoforest output defined by weights «;(x) and outcome 7(x) +

p; ().
Assumptions 2—-6 from |Athey et al.| (2019)) are satisfied by construction of the estimating equation
Yr(x)- In particular, 1) (x) is Lipschitz continuous in 7(z) (satisfying their Assumption 4), and
the solution to >~ , aiwj(m) = 0 always exists (satisfying their Assumption 5). From |Wager &
Athey| (2018), there exists a sequence o, (x) such that

[7*(z) — 7(2)]/on(z) = N(0,1),
where o2(x) = polylog(n/s)~'s/n, and polylog(n/s) is bounded away from zero and grows at
most polynomially in log(n/s).

Furthermore, by Lemma 4 in|Athey et al.[|(2019), we have

_mlog((1=»)~1)

(n/5)1/2[7~'($) —7(z)] = O, <max (s T2les(v D) (S/n)1/6>> )

Finally, applying Lemma3.6] as long as
Op ( max(Mygn, Mphy, Mpen, gnhn))
decays faster than polylog(n/s)~'/?(s/n)'/2, we obtain
[7(z) — 7()]/on(z) = N(0,1).

E SIMULATION DATA GENERATING PROCESS

We follow the setup in|[Zhou & Tchetgen Tchetgen|(2024). Covariates X = (X, X5) ' are drawn
from a multivariate Gaussian distribution N (0, I2). Conditional on X, the binary treatment A* is
distributed as 1

T it exp(—X1) +exp(—Xs)’
Surrogate A and proxy Z are generated as:

Pr(A* =1 X)

Pr(A=1] A" =1,X) = logit ' (1 + 2X,),
Pr(A=1] A" =0,X) = logit (=14 0.5X; — X5),
Pr(Z=1|A"=1,X) =logit }(—1 — X; 4+ 0.5X>),
Pr(Z=1]A*=0,X) = logit (2 + X;),

where logit(p) = In{p(1 — p)~1}.

The outcome Y is considered in two settings, binary and continuous, incorporating treatment het-
erogeneity:

i Pr(Y =1] A* =1,X) = logit (=2 + 0.5X; + X,),
Pr(Y =1| A* =0,X) = logit™ (1 — 2X; + 0.5X>);

11YZSIH(7TX1)+(A*7O5)(X1 +X2)+€, ENN(O, 1)

The default tuning parameters from the grf package were used for all forest-based methods: 2000
trees, minimum node size of 5, subsampling fraction of 0.5, and number of split variables equal
to p (the number of confounders). In Figure [2a] all forests were trained on a training set of size
Nuain = 9000 and evaluated on a test set of size 1y = 5000.
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F REAL DATA

Since treatment effects are unobservable in real-world data, the evaluation of effect estimators is
inherently challenging due to the absence of ground truth. This precludes the use of standard er-
ror metrics. To address this, |Yadlowsky et al.| (2024) proposed a family of evaluation metrics for
treatment prioritization rules, known as rank-weighted average treatment effects (RATE).

The central object in RATE is the calibration curve, or Targeting Operator Characteristic (TOC),
defined as

TOC(g) = E[Yi(1) = Yi(0) | 7(X,) > Fyk (1 - q)| — E[Yi(1) - Y;(0)].

This curve ranks all observations by 7(z) and compares the ATE among the top ¢ fraction of pri-
oritized units with the population ATE. The RATE metric is the area under the TOC curve: higher
values indicate that the CATE estimator effectively stratifies the population by treatment heterogene-
ity.

Figure [3] presents the TOC curve for all observations estimated by LTCF. The RATE, computed as
the area under this curve, is 233.59 mm? with a bootstrapped standard error of 13.13. This suggests
substantial heterogeneity in response to AD status. For instance, patients in the lowest 20th quantile
of estimated CATEs exhibit hippocampal volumes, on average, 400 mm? lower than the population
mean under AD status, indicating significantly greater adverse effects in this subgroup.

LARGE LANGUAGE MODELS USAGE

The authors used large language models (LLMs) solely for grammar checking. All responsibility
for the content remains with the authors.
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