
A Hybrid COMTE-LEFTIST Time-Series Explanation
Method For a Time-series Classification Bitcoin

Recommendation System

Lucas Rabelo de Araujo Morais
Universidade Federal de Pernambuco

Recife, PE, Brazil, 50670-901
lram2@cin.ufpe.br

Teresa Bernarda Ludermir
Universidade Federal de Pernambuco

Recife, PE, Brazil, 50670-901
tbl@cin.ufpe.br

Abstract

This paper introduces COMTE-LEFTIST, a hybrid explanation method for time-
series classification, specifically applied to a Bitcoin recommendation system.
The method combines COMTE, a counterfactual explanation framework, with
LEFTIST, a feature-based local explainer, to enhance the interpretability of model
predictions. COMTE-LEFTIST evaluates the impact of key shapelets from coun-
terfactual examples on prediction scores, shedding light on how these shapelets
influence trading decisions. We tested multiple models using one-minute Bit-
coin closing price data across different time windows, with the MRSQM model
achieving 70% accuracy for 30-minute sell/hold recommendations, outperforming
deep learning models for shorter timeframes. This hybrid approach contributes to
greater explainability in time-series classification, demonstrating how the integra-
tion of counterfactual and feature-based explanations can improve transparency in
AI-driven financial strategies.

1 Introduction

The pioneering work of Nakamoto (2008) introduced Bitcoin as a decentralized payment system,
eliminating the need for intermediaries such as financial institutions, governments, and banks. This
system operates without relying on trust, instead utilizing blockchain technology, which ensures
reliability while offering individuals greater autonomy and privacy in their transactions. As Hellani et
al. (2018) noted, while Bitcoin cannot exist without blockchain, the reverse is not true; blockchain
technology is independent of Bitcoin. After Bitcoin’s inception and subsequent growth, a new market
emerged around blockchain, giving rise to other cryptocurrencies like Dash and Ethereum. Caporale
et al. (2017) identified predictable patterns within this market, suggesting that these patterns could
serve as the foundation for trading strategies. This is where AI comes into play—by leveraging
time-series patterns, AI-driven strategies can optimize trading, though they also need to provide
transparency for the end user.

As pointed out by Faouzi (2024), standard machine learning classification algorithms are not always
well-suited for time-series data due to the complexity of temporal patterns. Prior research, such as that
of Kwon et al. (2019) and Fior et al. (2022), has explored classification strategies in cryptocurrency
markets. Kwon et al. (2019) employed LSTM and Gradient Boosting to classify cryptocurrency
price movements (e.g., price-up or price-down), finding Bitcoin particularly challenging to predict.
Meanwhile, Fior et al. (2022) used XGBoost to estimate feature importance across various cryptocur-
rencies and developed CryptoMLE, an explainable AI tool that reveals how market technical features
influence price trends.

Latinx in AI @ NeurIPS-24 (LXAI 2024).

Typically, models such as SHAP and LIME are employed to explain the outputs of black-box models,
and these advancements have significantly contributed to the field of model interpretability. In this
context, Guillemé et al. (2019) introduced LEFTIST, the first agnostic local explainer specifically
designed for time-series classification. Further advancements in time-series model interpretability
were made by Ates et al. (2021), who, to the best of our knowledge, developed COMTE—the first
method to generate counterfactual explanations for machine learning frameworks in multivariate time
series.

In light of this broader context, the goal of this paper is to present a hybrid explanation method, com-
bining COMTE and LEFTIST. Our approach is designed to capture the impact of the most important
shapelets from counterfactual explanations on the prediction score, thus enhancing interpretability in
time-series classification.

2 Methodology

The machine learning frameworks used in this study include sktime (version 0.30.2), developed
by Löning et al. (2020), and tslearn (version 0.6.3), developed by Tavenard et al. (2020), both of
which were utilized for time-series classification (TSC). For tabular classification tasks, we employed
sklearn (version 1.3.0), developed by Pedregosa et al. (2011). Deep learning (DL) models were
implemented using pytorch (version 2.3.1). All explainability methods were integrated with Python
3.10. The Bitcoin closing price data, with one-minute granularity (in USD), spanning from 2011-
09-01 to 2024-08-01, was sourced from the Bitstamp cryptocurrency exchange via the ccxt library
(version 4.3.58).

2.1 Pre-processing and Training Pipeline

The pre-processing and training pipeline is illustrated in Figure 1. In the first step (highlighted by the
black box in the figure), data was collected from the Bitstamp cryptocurrency exchange using the
ccxt library. In the second step, the full time-series was segmented into smaller time windows of 30
minutes, 1 hour, and 2 hours. Each window was labeled as either "1" or "0", where "1" represents a
sell recommendation—indicating that if a certain amount of Bitcoin or satoshis (the smallest unit of
Bitcoin) is bought during the specified time window, the average Bitcoin price is expected to rise
in the next window. Conversely, "0" represents a hold recommendation, implying that the average
Bitcoin price is expected to fall, and thus the market is not favorable for selling Bitcoin or satoshis at
that time.

Figure 1: Data Preprocessing and Training Pipeline

2

In the third step, the training pipeline starts with a train-test split, where 80% of the data was allocated
for training and 20% for testing. The split was stratified by label, ensuring that the proportions of
classes 0 and 1 were maintained at 45%-55% in both the training and testing datasets across the
30-minute, 1-hour, and 2-hour windows. MinMax standardization was applied, fitted on the training
data, and then used to transform the test data to avoid information leakage. Finally, machine learning
(ML) and deep learning (DL) models were trained, and agnostic explanation methods were applied to
enhance interpretability and support decision-making.

2.2 Classification Models

Three categories of models were selected for this study: ML Tabular models, ML time-series models
(specifically designed for time-series classification), and DL models. Each model was trained on
different time windows, but the same hyperparameters were maintained across the models to ensure a
fair comparison of performance. Table 1 summarizes all models used for each time window. The
simplest model employed was the dummy classifier, a time-series-specific model that always predicts
the most frequent class label.

Table 1: Summarization of Models
Model Parameters Type / Library

MRSQM MrSQM(strat=’R’, random_state=42) ML Time-Series / sktime
Catch22 Catch22Classifier(random_state=3) ML Time-Series / sktime

Dummy Classifier DummyClassifier(strategy=’prior’, random_state=3) ML Time-Series / sktime
Time-series SVM Classifier TimeSeriesSVC(kernel="sigmoid", gamma="auto", probability=True,random_state=42) ML Time-Series / tslearn

Composable Time-series Forest ComposableTimeSeriesForestClassifier(RocketClassifier(num_kernels=100), n_estimators=10,random_state=4) ML Time-Series / sktime
KNN KNeighborsClassifier(n_neighbors=5) ML Tabular / sklearn

SVM Classifier SVC(random_state = 42,probability=True, kernel = ’sigmoid’,gamma="auto") ML Tabular / sklearn
XGBoost Classifier XGBClassifier(objective=’binary:logistic’,random_state = 42) ML Tabular / xgboost

Random Forest Classifier RandomForestClassifier(random_state = 5) ML Tabular / sklearn
CNN-GRU with Attention Conv1D; MaxPooling1D; GRU Layer; Attention Layer; GlobalAveragePooling1D; BatchNormalization; Output Layer Deep Learning / pytorch

CNN-LSTM Conv1D Layer; AdaptiveMaxPooling1D; Flatten Layer; Fully Connected Layer; BatchNormalization; Output Layer Deep Learning / pytorch
Fully Conected MLP Flatten Layer; Fully Connected Layer; Output Layer Deep Learning / pytorch

BiLSTM Bidirectional LSTM; BatchNormalization; Output Layer Deep Learning / pytorch

Among the time-series classification models, MRSQM (Multiple Representations Sequence Miner),
introduced by Nguyen and Ifrim (2022), follows a three-step process. First, it performs symbolic trans-
formation, converting numeric series into multiple symbolic representations using either Symbolic
Aggregate Approximation (SAX) or Symbolic Fourier Approximation (SFA). Next, it selects relevant
features from these symbolic representations, and finally, it applies a logistic regression learning
algorithm. The variant used in this work, MRSQM-R, employs unsupervised feature selection.

Another time-series classification algorithm used was Catch22 (Canonical Time-series Characteristics
classifier), developed by Lubba et al. (2019). This approach condenses a pool of 4791 time-series
features from 93 classification problems into 22 high-performance features. In this study, the sktime
library utilized a RandomForestClassifier as the default estimator for Catch22. Additionally, Support
Vector Machine (SVM) classifiers were applied for time-series classification, as seen in prior studies
by Zhang et al. (2010) and Cuturi (2011). The Composable Time-series Forest classifier, proposed by
Deng et al. (2013), was also employed due to its ability to capture complex temporal patterns and
effectively differentiate between time-series from different classes.

For traditional machine learning models, we used widely recognized algorithms available in the
scikit-learn library. Regarding deep learning models, we employed architectures like Convolu-
tional Neural Networks (CNNs), Long Short-Term Memory networks (LSTMs), Gated Recurrent
Units (GRUs), and attention mechanisms. Additionally, a simpler fully connected Multi-Layer
Perceptron (MLP) was tested. As highlighted by Du et al. (2018), LSTMs are effective at capturing
long-term temporal dependencies (the same applies to GRUs), CNNs capture spatial sparsity and
heterogeneity in the data, and attention mechanisms enhance the model’s ability to extract more
complex features from each layer. All Neural Network models were trained with 1000 epochs, using
an early stop strategy based on the validation loss (if the loss did not improve for 50 epochs then the
training had to stop). The Kruskal-wallis test, a non-parametric test created by Kruskal and Wallis
(1952), was used to verify if there was any statistically significant difference between different classes
of models, since we didn’t have much experimental data and normality assumptions couldn’t be
fulfilled, a statistical significance level of 5% was chosen for the experiment.

2.3 Explanation Models

SHAP (Lundberg and Lee, 2017) and LIME (Ribeiro et al., 2016) are traditionally used as model-
agnostic methods for explaining classification algorithms and quantifying the impact of features on
predictions at both local and global scales. LIME estimates feature importance by minimizing the

3

following equation 1, where g ∈ G and G is the class of linear models, Ω(g) is low enough, in order
to attain interpretability and local fidelity, L is the loss function and Πx(z) = exp

(
−D(x,z)2

σ2

)
.

ξ(x) = ∗argming∈G (L(f, g, πx) + Ω(g)) (1)

Whereas Shapley values of each feature are estimated by equation 2, where F is the set of all features,
S ⊆ F , xS are the input feature values in the set S. The terms fS∪{i} and fS correspond to models
trained with and without feature i respectively.

ϕi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
(
fS∪{i}(xS∪{i})− fS(xS)

)
(2)

However, both LIME and SHAP face challenges when dealing with time-series data. To address
this, the LEFTIST approach leverages shapelets—discriminative time-series subsequences that are
representative of class membership—as interpretable features. Detailed information about LEFTIST
can be found in Guillemé et al. (2019). In LEFTIST, time-series are segmented into interpretable
components denoted as S(t), with mj

t representing the jth neighbor of mt = (1, ..., 1). The
explanation model is defined through the function ht as shown below:

ht(m
t
j) =

m⊕
i=1

 St
i ifmj,i

t = 1

transformt(S
t
i) ifmj,i

t = 0
(3)

For this study, we utilized the TSinterpret library, version 0.4.5, developed by Höllig et al.
(2023). The LEFTIST function within this library was applied, with the uniform transformation
function chosen for this case. LIME values were used to estimate feature importance within the
transformed space. Additionally, TSinterpret provides counterfactual explanations through the
COMTE function. As described by Ates et al. (2021), COMTE employs a greedy search algorithm
that selects candidates from the training set (referred to as distractors) for counterfactual generation.
These distractors ensure that the counterfactuals are derived from actual data samples, preventing
the use of synthetic data, which might lead to non-meaningful explanations. COMTE identifies the
distractor that minimizes the following Equation 4.

L(f, c, A, x′) =
(
(τ − fc(x

′))
+
)2

+ λ (∥A∥1 − δ)
+ (4)

In this equation, c, represents the class of interest, τ is the target probability, fc(x) is the probability
for class c, f represents the classification model. A is a binary diagonal matrix, λ is a tuning
parameter, x′ is the optimum counterfactual explanation and δ is the threshold below which reducing
the number of variables does not improve explanations.

2.4 COMTE-LEFTIST

In the proposed method, the LEFTIST and COMTE approaches are combined to emphasize the
impact of the most important shapelets from the counterfactual explanation on class predictions.
To generate these hybrid explanations, a mask is constructed using the positive LIME or SHAP
values derived from the LEFTIST approach. This mask filters out only the shapelets that contribute
positively to the class prediction. The complete process is illustrated in Figure 2.

4

Figure 2: COMTE-LEFTIST Pipeline

The process begins by generating a mask of positive LEFTIST values, estimated either by LIME
or SHAP. In this mask, positive values are marked as True, while negative or zero values are
marked as False. This mask is then applied to the COMTE values, where the positive values are
extracted to form part of the counterfactual explanation, while the non-positive values retain the
shapelets from the predicted time-series. The predicted and counterfactual values under the mask are
then concatenated, after which they are fed into the prediction model to compute the effect of the
counterfactual explanation on the prediction score, as represented by Equation 5.

h(f, x, x′) = f(x)− f

(
m⊕
i=1

{
xi if maski = False

x′
i if maski = True

)
(5)

In Equation 5, mask = (True, . . . , False), denotes the mask of LEFTIST values, where i =
1, . . . ,m refers to the position of the time-series values. The variable x represents the values of the
predicted time-series, while x′ corresponds to the counterfactual values. The operator

⊕
represents

concatenation, and f is the prediction function, which may or may not include standardized values
depending on the training configuration of the model.

The hybrid explanation is then visualized by plotting the most important shapelets of both the
counterfactual and predicted series, each highlighted in different colors. This visualization shows
the impact of the highlighted counterfactual shapelets on the final prediction score, offering a
clearer understanding of how these counterfactual components influence the model’s decision-making
process.

3 Results

The models were evaluated based on their accuracy, with the complete set of metrics presented in
Tables 2 and 3. Across all time windows, the best-performing model was MRSQM, surpassing even
deep learning (DL) models. For 30-minute time-series, MRSQM achieved 70% accuracy in providing
sell and hold recommendations. For 60-minute windows, the accuracy was 69%, and for 120-minute
windows, it was 68%. The performance of deep learning models was comparatively better for the
120-minute time window, exceeding that of the machine learning (ML) tabular models. However, for
the other time windows (30 minutes and 60 minutes), ML models slightly outperformed DL models.
Overall, the time-series-specific models consistently outperformed the tabular-based ones in all cases,

5

SVM based models, both in ML tabular and time-series classes, were worst than the baseline model,
all DL models outperformed the baseline model.

Table 2: Prediction Accuracy for Time Series Specific and ML Tabular Models

Time Window Time Series Specific Machine Learning Tabular
Dummy Classifier Catch22 MRSQM SVC TS Forest Random Forest KNN SVC XGB

30 minutes 0.55 0.64 0.70 0.48 0.66 0.68 0.65 0.53 0.57
1 Hour 0.54 0.63 0.69 0.48 0.66 0.68 0.65 0.52 0.58
2 Hours 0.54 0.64 0.68 0.51 0.66 0.60 0.58 0.53 0.57

Table 3: Prediction Accuracy for Deep Learning Models

Time Window Deep Learning
Attention CNN-GRU CNN-LSTM MLP BiLSTM

30 minutes 0.64 0.64 0.56 0.63
1 Hour 0.64 0.63 0.56 0.61
2 Hours 0.64 0.63 0.58 0.59

However, we cannot state that time-series specific ML models are statistically better than DL or ML
tabular models, since given the Kruskal-Wallis test we don’t have enough evidence at the 5% level of
significance to reject the hypothesis that all groups of models are equal (P-value = 0.8386), that’s
why, if the focus is mainly on accuracy of the models, it’s important to test between different model
classes before selecting one. Regarding precision of both classes, with results in Tables 4, 5 and 6,
MRSQM (model with best accuracy) achieved the highest precision in class 1 for all time windows,
meaning that it’s the most precise model in giving Sell recommendations.

Table 4: Prediction Precision for Time Series Specific Models (Class 0) (Class 1)

Time Window Time Series Specific
Dummy Classifier Catch22 MRSQM SVC TS Forest

30 minutes (0.00)(0.55) (0.61)(0.68) (0.65)(0.74) (0.43)(0.52) (0.61)(0.70)
1 Hour (0.00)(0.54) (0.61)(0.66) (0.66)(0.73) (0.44)(0.52) (0.62)(0.71)
2 Hours (0.00)(0.54) (0.62)(0.66) (0.65)(0.71) (0.47)(0.54) (0.62)(0.70)

Table 5: Prediction Precision for ML Tabular Models (Class 0) (Class 1)

Time Window Machine Learning Tabular
Random Forest KNN SVC XGB

30 minutes (0.65)(0.71) (0.62)(0.67) (0.48)(0.57) (0.59)(0.57)
1 Hour (0.66)(0.70) (0.62)(0.66) (0.48)(0.56) (0.59)(0.58)
2 Hours (0.66)(0.68) (0.62)(0.64) (0.50)(0.53) (0.62)(0.61)

Table 6: Prediction Precision for Deep Learning Models (Class 0) (Class 1)

Time Window Deep Learning
Attention CNN-GRU CNN-LSTM MLP BiLSTM

30 minutes (0.70)(0.62) (0.71)(0.62) (0.64)(0.55) (0.65)(0.63)
1 Hour (0.73)(0.61) (0.72)(0.61) (0.83)(0.55) (0.75)(0.59)
2 Hours (0.75)(0.61) (0.71)(0.61) (0.76)(0.56) (0.62)(0.58)

Figure 3 presents a set of random time-series for a 1-hour time window, where the MRSQM model,
identified as the top-performing model across all time frames, was used to generate hybrid explana-
tions by combining the COMTE and LEFTIST methods. To ensure reproducibility, a random seed of
2 was used (employing the random and numpy libraries). In these figures, the orange highlighted line

6

in the counterfactual series marks the most significant time window in the counterfactual explanation,
based on LEFTIST values from the predicted series. The impact on prediction probability is indicated
in each figure’s title. The blue highlighted line represents the most important segment of the predicted
series influencing the class prediction.

Figure 3: COMTE-LEFTIST Hybrid Model

For the explanations where the series were classified as Class 1 (Sell Recommendation), shown
in Figure 3, the first series (top-left) demonstrates a stable pattern. Considering the highlighted
counterfactual explanation, the model would not give a sell recommendation if the series exhibited
more chaotic behavior, followed by a drop in Bitcoin prices during that period. In the second series
of Class 1 (bottom-left), there is a notable rise in Bitcoin price within the highlighted area. Based on
the counterfactual explanation, the model would not issue a sell recommendation if the Bitcoin price
had been slowly declining, followed by only a minor increase in the last minutes of the time window.

For the Hold recommendation (Class 0) predictions, displayed on the right side of Figure 3, the first
explanation (top-right) indicates that a hold recommendation would not have been considered if there
had been a price drop followed by a subsequent rise and stabilization in the final minutes. In the
bottom-right series, the sell recommendation would only be triggered if, following the highlighted
counterfactual explanation, an increase in Bitcoin price was followed by a noticeable devaluation in
the last minutes of the time window.

4 Discussion

Time-series specific models have outperformed ML tabular models, which is also reported by Faouzi
(2024) stating that standard ML classification algorithms are not always well-suited for time series
data. Regarding DL models, although these methods did not outperform the time-series specific
models used in this study, Fawaz et al. (2019) conducted a review on DL methods for TSC and found
that end-to-end deep learning architectures can achieve state-of-the-art performance. However, a fair
comparison is necessary, as training time can be a limiting factor when working with DL.

The model that achieved the best performance was the MRSQM for 30 minutes, achieving 70%
accuracy, which means that out of 10 attempts, the model correctly predicts 7 of the Hold and Sell
recommendations. Considering the methodological differences, given that our F1-score was also
70%, the performance of the MRSQM is comparable to that found in the work of Kwon et al. (2019),
who compared Gradient Boosting (GB) and LSTM for TSC of various cryptocurrencies. In their best
performance predicting Bitcoin price trends, the authors, using an F1-score, reported approximately
69% with LSTM, which surpassed the GB algorithm. Ranjan et al. (2023) also used a machine

7

learning approach to classify price increases and decreases of Bitcoin, with daily and 5-minute
granularity data. They achieved the best performance with logistic regression (accuracy of 64.8%) for
daily price predictions, whereas for minute granularity their best performance was 59.4%. Therefore,
given methodological differences, the MRSQM is as good as or better than the models presented by
these authors.

A novel and promising approach that merges time-series classification and image classification to
predict Bitcoin prices (increase, decrease, and stability) was proposed by Yamak et al. (2024). The
authors state that this approach enhances the unique areas of a sequence and establishes temporal
correlations, leading to improved accuracy. Indeed, their model, Wide-TSNet, achieved 94% accuracy.
However, explainability was not explored in their work, and explaining the transition of a time-series
to an image via Markov Transition Fields might complicate understandings for those outside the
AI field. Given this, approaches using solely TSC methods (for classifying Bitcoin prices, EEG,
equipment failure, motion recognition, etc.) still need to benefit from explainability methods.

Previous works with Bitcoin and cryptocurrencies have utilized explainability in various tasks. Fior
et al. (2022), Babaei et al. (2022), and Gupta et al. (2023) have respectively used SHAP to explain
features associated with price directions (upward and downward trends) through classification models,
for cryptocurrency portfolio management, and to explain via regression models features associated
with downward and upward trends for Ethereum and Solana. These approaches illuminate what is
happening underneath the models and aid decision-making. However, none dealt with univariate
time-series, relying on other features to capture temporal behavior. By using LEFTIST or COMTE,
recent advances in the field of explainable AI in TSC for Bitcoin and cryptocurrency recommendation
systems based on classification models, which may or may not focus on intraday trading (like the
experiments we conducted), systems can be more transparent and visually appealing to end users,
ranging from domain experts to people with basic knowledge of the crypto market, since neither
SHAP nor LIME provides time-series as explanations.

5 Conclusion

This work introduced a hybrid approach named COMTE-LEFTIST, combining two well-established
agnostic explanation models for time-series classification (TSC). Despite certain limitations encoun-
tered during the experiments, the contribution of hybrid explanations is crucial for advancing the field.
As noted by Rojat et al. (2021), significant progress is still needed in explainability for time-series
data. The hybridization of counterfactual and feature-based methods presented here represents a small
yet important step towards more sophisticated and optimized explainability techniques in TSC. By
employing TSC-specific machine learning algorithms such as MRSQM, we achieved 70% accuracy
in generating Sell and Hold recommendations for Bitcoin, furthermore there was no statistically
significant difference between different classes of models, so we highlight that it’s important to
experiment between them to find the one with best accuracy, since it may depend on the problem
and complexity of the time-series. Emerging methods like Wide-TSNet, which integrate time-series
and image classification, have shown promising results and warrant further exploration. In future
research, surrogate models could be trained on these advanced models to enhance explainability using
COMTE-LEFTIST and other time-series XAI (Explainable AI) techniques. The experiments, models,
and Python notebooks supporting this work are maintained in a GitHub repository. For access to the
source code or further inquiries, readers are encouraged to contact the authors directly.

5.1 Limitations

Limitations in our work must be addressed. One key issue with COMTE-LEFTIST is its tendency to
exhibit highly stochastic behavior, largely due to the random nature of the LEFTIST component. This
randomness can affect the calculation of the counterfactual explanation’s impact on the predicted
class probability, leading to higher variability in the results. In some cases, instead of reducing the
predicted class probability, the explanation may show an increasing or no effect at all. To mitigate this,
it is important to use different random seeds when generating explanations and to change the seed
if the counterfactual explanation unexpectedly increases the predicted class probability. However,
the underlying causes of this randomness were not fully explored in this paper and warrant further
investigation in future studies.

8

References
Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System. Retrieved from https://www.bitcoin.

org.

Hellani, H., Samhat, A. E., Chamoun, M., El Ghor, H., & Serhrouchni, A. (2018). On BlockChain Technology:
Overview of Bitcoin and Future Insights. In 2018 IEEE International Multidisciplinary Conference on
Engineering Technology (IMCET) (pp. 1-8). doi: 10.1109/IMCET.2018.8603029.

Caporale, G. M., Gil-Alaña, L. A., & Plastun, A. (2017). Persistence in the Cryptocurrency Market. CESifo
Working Paper, No. 6811, Center for Economic Studies and ifo Institute (CESifo), Munich.

Faouzi, J. (2024). Time Series Classification: A Review of Algorithms and Implementations. In Time Series
Analysis - Recent Advances, New Perspectives and Applications. IntechOpen. Available from: http://dx.
doi.org/10.5772/intechopen.1004810.

Kwon, D., Kim, J., Heo, J., Kim, C., & Han, Y. (2019). Time Series Classification of Cryptocurrency Price Trend
Based on a Recurrent LSTM Neural Network. Journal of Information Processing Systems, 15(3), 694-706.
DOI: 10.3745/JIPS.03.0120.

Fior, J., Cagliero, L., & Garza, P. (2022). Leveraging Explainable AI to Support Cryptocurrency Investors.
Future Internet, 14, 251. https://doi.org/10.3390/fi14090251

Guillemé, M., Masson, V., Rozé, L., & Termier, A. (2019). Agnostic Local Explanation for Time Series
Classification. In 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI),
Portland, OR, USA, pp. 432-439. doi: 10.1109/ICTAI.2019.00067.

Ates, E., Aksar, B., Leung, V. J., & Coskun, A. K. (2021). Counterfactual Explanations for Multivariate Time
Series. In 2021 International Conference on Applied Artificial Intelligence (ICAPAI), Halden, Norway, pp.
1-8. doi: 10.1109/ICAPAI49758.2021.9462056.

Markus Löning, Anthony Bagnall, Sajaysurya Ganesh, Viktor Kazakov, Jason Lines, Franz Király (2019):
“sktime: A Unified Interface for Machine Learning with Time Series".

Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., Payne, M., Yurchak, R., Rußwurm, M.,
Kolar, K., & Woods, E. (2020). Tslearn, A Machine Learning Toolkit for Time Series Data. Journal of Machine
Learning Research, 21(118), 1-6. Retrieved from http://jmlr.org/papers/v21/20-091.html.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E.
(2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12, 2825-2830.

Nguyen, T. L., & Ifrim, G. (2022). MrSQM: Fast Time Series Classification with Symbolic Representations.
arXiv preprint arXiv:2109.01036. Retrieved from https://arxiv.org/abs/2109.01036.

Lubba, C. H., Sethi, S., Knaute, P., Schultz, S. R., Fulcher, B. D., & Jones, N. S. (2019). catch22:
Canonical time-series characteristics. Data Mining and Knowledge Discovery, 33(6), 1821-1852.
https://doi.org/10.1007/s10618-019-00647-x.

Cuturi, M. (2011). Fast Global Alignment Kernels. In Proceedings of the 28th International Conference on
Machine Learning (ICML).

Zhang, D., Zuo, W., Zhang, D., & Zhang, H. (2010). Time Series Classification Using Support Vector Machine
with Gaussian Elastic Metric Kernel. In Proceedings of the 2010 20th International Conference on Pattern
Recognition (ICPR) (pp. 29-32). Istanbul, Turkey. https://doi.org/10.1109/ICPR.2010.16.

Deng, H., Runger, G., Tuv, E., & Vladimir, M. (2013). A time series forest for classification and feature
extraction. Information Sciences, 239, 142-153.

Du, Q., Gu, W., Zhang, L., & Huang, S.-L. (2018). Attention-based LSTM-CNNs for Time-series Classifica-
tion. In Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems (SenSys ’18).
https://doi.org/10.1145/3274783.3275208.

Kruskal, W. H., Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American
Statistical Association, 47, 583–621.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why Should I Trust You?": Explaining the Pre-
dictions of Any Classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. New York, NY, USA: Association for Computing Machinery.
https://doi.org/10.1145/2939672.2939778.

9

https://www.bitcoin.org
https://www.bitcoin.org
http://dx.doi.org/10.5772/intechopen.1004810
http://dx.doi.org/10.5772/intechopen.1004810
http://jmlr.org/papers/v21/20-091.html
https://arxiv.org/abs/2109.01036

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. In Proceedings of
the 31st International Conference on Neural Information Processing Systems (NIPS ’17) (pp. 4768-4777).
Red Hook, NY, USA: Curran Associates Inc.

Höllig, J., Kulbach, C., & Thoma, S. (2023). TSInterpret: A Python Package for the Interpretability of Time
Series Classification. Journal of Open Source Software, 8(85), 5220. https://doi.org/10.21105/joss.05220.

Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., & Muller, P.-A. (2019). Deep learning for time series
classification: a review. Data Mining and Knowledge Discovery, 33, 917–963. https://doi.org/10.1007/s10618-
019-00619-1.

Ranjan, S., Kayal, P., & Saraf, M. (2023). Bitcoin price prediction: A machine learning sample dimension
approach. Computational Economics, 61, 1617–1636. https://doi.org/10.1007/s10614-022-10262-6.

Yamak, P. T., Li, Y., Zhang, T., & Gadosey, P. K. (2024). Wide-TSNet: A novel hybrid approach for Bitcoin
price movement classification. Applied Sciences, 14(9), 3797. https://doi.org/10.3390/app14093797.

Babaei, G., Giudici, P., & Raffinetti, E. (2022). Explainable artificial intelligence for crypto asset allocation.
Finance Research Letters, 47(B), 102941. https://doi.org/10.1016/j.frl.2022.102941.

Gupta, A., et al. (2023). Cryptocurrency prediction and analysis between supervised and unsupervised learning
with XAI. 2023 IEEE International Conference on Blockchain and Distributed Systems Security (ICBDS),
New Raipur, India, pp. 1-7. https://doi.org/10.1109/ICBDS58040.2023.10346583.

Rojat, T., Puget, R., Filliat, D., Del Ser, J., Gelin, R., & Díaz-Rodríguez, N. (2021). Explainable Artificial
Intelligence (XAI) on time series data: A survey. arXiv preprint. https://arxiv.org/abs/2104.00950.

10

https://doi.org/10.1016/j.frl.2022.102941
https://doi.org/10.1109/ICBDS58040.2023.10346583
https://arxiv.org/abs/2104.00950

	Introduction
	Methodology
	Pre-processing and Training Pipeline
	Classification Models
	Explanation Models
	COMTE-LEFTIST

	Results
	Discussion
	Conclusion
	Limitations

