
Under review as a conference paper at ICLR 2023

PROMOTING SEMANTIC CONNECTIVITY: DUAL NEAR-
EST NEIGHBORS CONTRASTIVE LEARNING FOR UNSU-
PERVISED DOMAIN GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT
Domain Generalization (DG) has achieved great success in generalizing knowledge
from source domains to unseen target domains. However, current DG methods rely
heavily on labeled source data, which are usually costly and unavailable. Thus, we
study a more practical unsupervised domain generalization (UDG) problem. Learn-
ing invariant visual representation from different views, i.e., contrastive learning,
promises well semantic features for in-domain unsupervised learning. However,
it fails in cross-domain scenarios. In this paper, we first delve into the failure of
vanilla contrastive learning and point out that semantic connectivity is the key to
UDG. Specifically, suppressing the intra-domain connectivity and encouraging the
intra-class connectivity help to learn the domain-invariant semantic information.
Then, we propose a novel unsupervised domain generalization approach, namely
Dual Nearest Neighbors contrastive learning with strong Augmentation (DN2A).
Our DN2A leverages strong augmentations to suppress the intra-domain connectiv-
ity and proposes a novel dual nearest neighbors search strategy to find trustworthy
cross domain neighbors along with in-domain neighbors to encourage the intra-
class connectivity. Experimental results demonstrate that our DN2A outperforms
the state-of-the-art by a large margin, e.g., 12.01% and 13.11% accuracy gain with
only 1% labels for linear evaluation on PACS and DomainNet, respectively.

1 INTRODUCTION

Deep learning methods have yielded prolific results in various tasks in recent years. However, they
are tailored for experimental cases, where training and test data share the same distribution. When
transferred to practical applications, these methods perform poorly on out-of-distribution data due to
domain shift (Shen et al., 2021; Wang et al., 2021). To tackle this issue, Domain Generalization (DG)
methods (Muandet et al., 2013; Zhou et al., 2020) learn transferable knowledge from multiple source
domains to generalize on unseen target domains. Despite promising results of DG, the assumption of
large-scale labeled source data hinders practical use due to the expensive and cumbersome annotation
capture. Thus, we study the more practical unsupervised domain generalization (UDG) (Zhang et al.,
2022) problem to learn domain-invariant features in an unsupervised manner.
Recent advances in unsupervised learning prefer contrastive learning (CL) (Wu et al., 2018; Chen et al.,
2020; He et al., 2020; Tian et al., 2020), which learns semantic representation by exploiting invariance
(similarity over different views of the same image) to various data transformations. However, most
CL methods are designed for i.i.d. datasets and can hardly accommodate the cross-domain scenario
in UDG. As depicted in Fig 1, current CL methods fail to learn domain-invariant semantic features
but learn domain-biased features. For further understanding, we dive into this phenomenon and
propose the semantic connectivity for UDG to measure the intra-domain and intra-class similarity.
From augmentation graph view (HaoChen et al., 2021; Wang et al., 2022), semantic connectivity
is the support overlap of augmented samples within the same semantic class. We further point out
that the degraded semantic connectivity is responsible for the failure of vanilla CL in UDG, which is
reflected in two folds: large intra-domain connectivity and small intra-class connectivity. For one
thing, positive samples generated by standard augmentations under the i.i.d. hypothesis share too
much domain-relevant information. The domain-relevant information induces the model to employ
domain-related features for alignment, resulting in large intra-domain connectivity. For another,
domain invariance is hard to capture via handcrafted transformations due to significant distribution
shifts across domains (e.g., one can hardly transform a cat in sketch to photo). Thus, small intra-class
connectivity occurs in cross-domain scenarios.
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To address these problems, we propose to suppress the intra-domain connectivity while enlarging
intra-class connectivity. First, we leverage strong augmentations to generate positive samples with
a small amount of shared information, where the domain nuisance information is suppressed. The
suppressed domain-related information leads to the decreased intra-domain connectivity, and the
learned unsupervised representation can achieve a greater degree of invariance against domain shifts.
Besides, we employ cross domain nearest neighbors (NN) as positive samples to impose the domain
invariance by enforcing the similarity over cross domain samples potentially belonging to the same
category, which can increase the cross-domain intra-class connectivity. Additionally, we improve
cross domain NN by a dual NN strategy which further introduces in-domain NN as positives to
overcome the intra-domain variances and increase the intra-domain intra-class connectivity. For
cross-domain NNs, a direct search may result in many false matches, due to distribution shifts across
domains. Since searching NN within a domain (w/o distribution shift) is more accurate than across
domain, we propose a novel Cross Domain Double-lock NN (CD2NN) search strategy that employs
more accurate in-domain NN as a mediator to find more trustworthy cross domain neighbors for
boosting the performance. For in-domain NN, since directly searching may fail to find sufficiently
diverse samples to overcome intra-domain variances, we resort to more distinct cross domain NN as
a mediator to find more diverse neighbors, namely In-domain Cycle NN (ICNN). Totally, our dual
nearest neighbors, i.e., CD2NN and ICNN, can increase the intra-class connectivity for UDG. In a
nutshell, contributions of this paper are summarized as:

• We propose a novel semantic connectivity metric to indicate the problem of contrastive learning
in UDG, and propose a novel approach, namely Dual Nearest Neighbors contrastive learning
with strong Augmentation (DN2A) to increase the semantic connectivity with theoretical proofs.

• We propose to leverage strong augmentations to suppress the intra-domain connectivity and use
cross domain neighbors as positive samples to increase the intra-class connectivity by enforcing
the similarity over cross domain samples potentially belonging to the same category.

• We propose a novel cross domain double-lock nearest neighbors search strategy to find more
trustworthy cross domain neighbors and improve it by a novel in-domain cycle nearest neighbors
search strategy to further boost the semantic connectivity.

Experimentally, our DN2A outperforms state-of-the-art methods by a large margin, e.g., 12.01%
and 13.11% accuracy gain with only 1% labels for linear evaluation on PACS and DomainNet,
respectively. Besides, with less than 4% samples compared with ImageNet for training, our method
outperforms ImageNet pretraining, showing a promising way to initialize models for the DG problem.

2 RELATED WORK
Domain Generalization. Most domain generalization (DG) methods assume an adequate amount of
labeled data for training. A common approach is domain invariant learning via kernel methods (Muan-
det et al., 2013; Ghifary et al., 2016) or domain-adversarial learning (Li et al., 2018b;c). Many works
propose data augmentation (Volpi et al., 2018; Zhou et al., 2020) to generate samples from fictitious
domains. There are several methods that leverage optimization-based methods, e.g., meta-learning (Li
et al., 2018a) and Invariant Risk Minimization (Arjovsky et al., 2019). Despite promising results,
assumption of sufficient labeled data may hinder DG from real applications. Similar to (Zhang et al.,
2022), we focus on a new task of Unsupervised DG (UDG) that trains with unlabeled source data.

Unsupervised Learning. Recent progress focuses on contrastive learning, which maximizes the
mutual information across different augmentations of the same image (Wu et al., 2018; Chen et al.,
2020; He et al., 2020). This augmentation invariance is achieved by enforcing similarity over different
views of the same image while avoiding model collapse by introducing other images as negative
samples. Besides augmented views, nearest neighbors in the learned embedding space are used as
positives to achieve promising results (Dwibedi et al., 2021; Koohpayegani et al., 2021).

Unsupervised Domain Adaptation (UDA). UDA aims to transfer the knowledge from a labeled
source domain to an unlabeled target domain. Haeusser et al. (2017) enforce the association loss
between source and target data. Li et al. (2021) propose domain consensus clustering to learn
the intrinsic structure of target data. CDS (Kim et al., 2021) performs self-supervised learning
(SSL) within a single domain and across two domains. PCS (Yue et al., 2021) further extends the
instance-wise SSL in CDS to prototypical SSL, and proposes a powerful end-to-end UDA framework.

Unsupervised Learning for DG. Recently, Zhang et al. (2022) present the UDG task and focus on
negative selection by reweighting the contrastive loss based on domain similarity. However, negative
samples mainly serve as noise to avoid the model collapse in contrastive learning. Excessive focus
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on negative selection has limited gain in improving the performance. Harary et al. (2021) propose
to intentionally generate edge-like images as positive samples, which is a strong human prior and
the model fails to learn non-edge related features such as color and texture. Besides, an additional
module is required to be trained for edge mapping. Comparably, we employ strong augmentations to
suppress domain information, and propose to find the cross domain double-lock nearest neighbors
as positive samples (that are not imaginary and pre-defined, i.e., they are representative of actual
semantic samples in the given dataset) to impose the domain invariance for boosting the performance.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Notations. Given a dataset S of NS samples {Xi, yi, di}NS

i=1 from a joint distribution PS on
X × Y ×D, where X denotes the input space, Y is the category label space, and D is the domain
label space. X,Y,D denotes the corresponding random variables. Let PS

X , PS
Y and PS

D denote the
marginal distribution of PS on X,Y,D respectively. Let Supp(·) denote the support of a distribution.

Unsupervised Domain Generalization (UDG). Let SUL = {Xi, di}NUL

i=1 be the unlabeled dataset
from PSUL and SL = {Xi, yi}NL

i=1 be the labeled dataset from PSL . The unknown testing distribution
PStest has no domain overlap with all training data, i.e., Supp(PStest

D )∩(Supp(PSUL

D )∪Supp(PSL

D )) =
∅. UDG aims to learn a model with parameters θ that achieves a minimum error on unseen PStest :

θ∗ = argmin
θ

E(X,Y,D)∼PStest [ℓ(X,Y ; θ)] (1)

3.2 PRELIMINARY: VANILLA CONTRASTIVE LEARNING

Contrastive learning aims at mapping positive pairs to similar representations while pushing away
negative pairs in the embedding space. For any embedded sample zi, we have the positive embedding
z+i (often a random augmentation), many negative embeddings z− ∈ Ni, and the InfoNCE loss:

Li
Info = − log

exp
(
zi · z+i /τ

)
exp

(
zi · z+i /τ

)
+

∑
z−∈Ni

exp (zi · z−/τ)
(2)

where τ is the temperature. In particular, SimCLR (Chen et al., 2020) uses random data augmentations
to generate two views of the image, which are fed into an encoder ϕ to obtain zi = ϕ(aug(xi)) and
z+i = ϕ(aug(xi)). Negative embeddings z− are formed as all the other embeddings in the mini-batch.
Following (Zhang et al., 2022), the encoder ϕ is a ResNet-18 with a non-linear projection head.

(a) Different domains (b) Different classes
Figure 1: The t-sne visualization of unsupervised
features learned by SimCLR on PACS.

Vanilla contrastive learning (CL) fails in UDG.
We empirically train the model with Eq. 2 on
three domains (Art., Cartoon and Sketch) of
PACS (Li et al., 2017). As shown in Fig. 1, the
t-sne of learned features shows that vanilla CL
fails to learn domain-invariant semantic features
but learns domain-biased features. Samples from
different domains are clustered and separable,
while samples from different classes are indis-
tinguishable. Thus, the learned representation is
not domain-invariant and marginal distribution
alignment is not satisfied. Consequently, vanilla CL fails to generalize well on target domains.

Degraded semantic connectivity is responsible for the failure.
Definition 1. (Semantic Connectivity) For any input x ∈ X , let A(·|x) be the distribution of its
augmentations A. Let C be the joint distribution on X × X of augmented views of images xi, xj as
C(x+

i , x
+
j ) = A(x+

i |xi)A(x+
j |xj). Then we have intra-domain Cα and intra-class Cβ connectivity.

Cα := Ed∼PS
D
E
xi,xj∼P

SUL
d

C(x+
i , x

+
j ), Cβ := Ey∼PS

Y
E
xi,xj∼P

SUL
y

C(x+
i , x

+
j ) (3)

Then, the semantic connectivity is defined as Cs := Cβ/Cα.

The key to the success of CL lies in the assumption that intra-class samples could form a connected
graph with proper augmentations (HaoChen et al., 2021; Wang et al., 2022), which we point as good
semantic connectivity. However, this assumption is not satisfied in UDG, with the degraded semantic
connectivity reflected in two ways:
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(a) Augmentation graph of vanilla method and our method. (b) Acc. vs. Connectivity

Figure 2: (a) Vanilla augmentations generate positive samples with large intra-domain connectivity
Cα and small intra-class connectivity Cβ . Our method decreases Cα by strong augmentations and
increase Cβ by using dual nearest neighbors as the positives. (b) Larger semantic connectivity Cs,
i.e., larger intra-class and smaller intra-domain connectivity, leads to better generalization accuracy.

• Intra-domain connectivity Cα is too large since pre-defined transformations under the i.i.d
hypothesis reserve too much domain-related information.

• Intra-class connectivity Cβ is too small since pre-defined transformations cannot overcome
significant distribution shifts across domains.

Specifically, as shown in Fig. 2 (a), generated by pre-defined transformations under the i.i.d hypothesis,
positive pairs share too much domain-relevant information, which induces the model to leverage
domain-related features for alignment and results in large intra-domain connectivity. Besides, pre-
defined transformations cannot overcome significant distribution shifts across domains (e.g., one
can hardly transform a cat in sketch to photo), which leads small intra-class connectivity in cross
domain scenarios. Consequently, a connected graph is more likely formed among intra-domain
instead of intra-class samples, which leads to learning domain-clustered features rather than class-
clustered (shown in Fig. 1). We empirically evaluate the connectivity measures on PACS to verify our
statements. Fig. 2 (b) shows that smaller Cα and larger Cβ (i.e., larger Cs) lead to better generalization
accuracy of the learned models. To address the degraded semantic connectivity in UDG, we propose
to destroy intra-domain connectivity and construct intra-class connectivity, respectively.

3.3 DESTROYING INTRA-DOMAIN CONNECTIVITY VIA STRONG DATA AUGMENTATION

As explored in previous works (Cubuk et al., 2019; 2020), strong augmentations usually have two
types, i.e., geometric and non-geometric. Specifically, we consider 14 types of augmentations with
significant magnitude to produce as strong augmentations as possible, detailed in the appendix.
Proposition 1. For stronger augmentations Â, where A ⊆ Â, the augmented views have smaller
intra-domain connectivity as Ĉα := Ed∼PS

D
E
xi,xj∼P

SUL
d

[Â(x+
i |xi)Â(x+

j |xj)], where Ĉα < Cα.

Proof. Please refer to the appendix.

3.4 CONSTRUCTING INTRA-CLASS CONNECTIVITY BY DUAL NEAREST NEIGHBORS

Transformations cannot overcome significant distribution shifts across different domains, e.g., one can
hardly transform a cat in sketch to photo. Thus, we search for cross domain nearest neighbors (NN)
in the latent embedding space as the positive samples. In this way, we can link multiple cross domain
samples potentially belonging to the same semantic class to increase the cross domain intra-class
connectivity. In addition, intra-domain gap also exists due to some degree of semantic variation, e.g.,
different shapes and backgrounds. Thus, we further improve by employing in-domain NN as positive
samples to increase the intra-domain intra-class connectivity. Totally, our dual nearest neighbors, i.e.,
cross domain and in-domain NN, can increase the intra-class connectivity for UDG.
Proposition 2. Dual nearest neighbors (NN) can increase the intra-class connectivity as Ĉβ =

Ey∼PS
Y
E
xi,xj∼P

SUL
y

[A(x+
i |xi)A(NN (xj)

+|NN (xj))], where Ĉβ > Cβ . More accurate cross
domain NN and more diverse in-domain NN can further increase the intra-class connectivity.
Proof. Please refer to the appendix.
Specifically, for a given sample xj and its embedding zj , we have a cross domain support set of
embeddings belonging to different domains Qz = {zq1 , ..., z

q
k, ..., z

q
|Qz|} , where dj ̸= dqk. We

propose to search zj’s NN in the support set Qz as the positive sample.

idnnj = argmin
k∈{1,...,|Qz|}

∥zj − zqk∥2, z
nn
j = N(zj , Qz) = Qz[id

nn
j ] (4)
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Cross Domain Double-lock Nearest Neighbors (CD2NN). Due to huge distribution shifts, directly
searching nearest neighbor (NN) in the cross domain support set may lead to false matches, i.e., the
query and its NN have different category labels. As a result, directly using the cross domain NN
as positives may introduce noise in unsupervised learning and compromise the final result. Since
searching NN within a domain (w/o distribution shift) is more accurate than searching across domain,
we propose a novel cross domain double-lock NN search strategy to leverage more accurate in-domain
NN as a mediator to find more trustworthy cross domain NN.

Specifically, given the query embedding z, the in-domain support set of embeddings within a mini-
batch from the same domain Qin

z (for each zqink ∈ Qin
z , dqink = di), and the cross domain support set

from different domains Qcr
z (for each zqcrk ∈ Qcr

z , dqcrk ̸= di ), we define N(z,Q, k) as the k-nearest
neighbors (k-NN) of z in Q. We have the in-domain NN of z as N(z,Qin

z , 1) = zqinnn and cross
domain NN as N(z,Qcr

z , 1) = zqcrnn . Our proposed CD2NN R(z,Qcr
z , k) is defined as

R1(z,Q
cr
z , k) = {zcri | (zcri ∈ N(z,Qcr

z , k)) ∧ (zcri ∈ N(zqinnn , Qcr
z , k))} (5)

R2(z,Q
cr
z , k) =

{
zcrj |

(
zcrj ∈ N(z,Qcr

z \zqcrnn , k)
)
∧
(
zcrj ∈ N(zqcrnn , Q

cr
z \zqcrnn , k)

)}
(6)

R(z,Qcr
z , k) =

{
R1(z,Q

cr
z , k) ,R1(z,Q

cr
z , k) ̸= ∅

R2(z,Q
cr
z , k) ,R1(z,Q

cr
z , k) = ∅

(7)

Figure 3: An illustrate example for our proposed CD2NN.

where R1 and R2 leverage the
in-domain neighbor in Qin

z and
Qcr

z to improve the accuracy
of cross domain neighbors, re-
spectively. As an illustrative ex-
ample shown in Fig. 3, for the
given query z, directly search-
ing NN results in {2}, which
is a wrong match with the dif-
ferent class label. By CD2NN
based on in-domain neighbor
{1}, an accurate neighbor {3}
is found (left part in Fig. 3). When there are no matches meeting the rule, i.e., R1 = ∅, we further
leverage CD2NN based on in-domain neighbor {6, 7} to recall the accurate neighbor {6} (right part
in Fig. 3). Notice that if R = ∅, the cross domain neighbor of current query is not trustworthy
enough to be used as positive sample. When |R| ≥ 1, we just select the top-1 ranked neighbor as the
positive sample, denoted as R(z,Qcr

z ) in short.
Proposition 3. Our proposed CD2NN is more accurate than cross domain NN in the UDG setting.
Proof. Please refer to the appendix.
In-domain Cycle Nearest Neighbors (ICNN). Directly searching NN in the in-domain support set
may fail to find sufficiently diverse samples to overcome intra-domain semantic variances. Thus, we
resort to more distinct cross domain NN as a mediator to find more diverse in-domain NN. To ensure
the reliability, we employ our proposed CD2NN as the cross domain NN R(z,Qcr

z ). Then, we search
for the cross domain NN of R(z,Qcr

z ) as the in-domain cycle NN of z as N(R(z,Qcr
z ), Qin

z , 1),
denoted as C(z,Qin

z ) in short.
In summary, with positive samples generated by strong augmentation, cross domain double-lock NN
and in-domain cycle NN, we have the total loss as below. At the beginning of training, the discovered

Li
ours = Li

Info−λ·|R| log
exp

(
R(zi, Q

cr
zi ) · z

+
i /τ

)∑n
j=1 exp

(
R(zi, Qcr

zi ) · z
+
j /τ

)−λ·|C| log
exp

(
C(zi, Qin

zi ) · z
+
i /τ

)∑n
j=1 exp

(
C(zi, Qin

zi ) · z
+
j /τ

)
(8)

neighbors are unreliable due to random initialization. As the training proceeds, the searched neighbors
are more and more reliable. Thus, λ is set as time-dependent. In practice, a simple binary ramp-up
function works well sufficiently, i.e., λ(t) = 0 in the first T epochs, and λ(t) = 1 when t > T .

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Settings and Datasets. Following (Zhang et al., 2022), we conduct two real-world UDG settings on
benchmark datasets DomainNet (Peng et al., 2019) and PACS (Li et al., 2017), namely all correlated
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Table 1: Left: Accuracy (%) results of the all correlated setting on PACS. For each target domain,
all other 3 are used as source domains for training. All methods use ResNet18 as the backbone and
are pretrained for 1000 epochs before training on few labeled (source only) data. All baselines use
a linear classifier (we also include a KNN result w/o any supervised training). ERM indicates the
randomly initialized model. Avg. indicates the mean of per-domain accuracies. The reported results
are averaged over 3 runs. All baseline results are taken from (Zhang et al., 2022). The best results are
in bold. Right: Epochwise t-SNE for our method. T-SNE of ℓ2-normalized features for all classes.

Target domain Photo Art. Cartoon Sketch Avg.

Label Fraction 1%

ERM 10.90 11.21 14.33 18.83 13.82
MoCo V2 22.97 15.58 23.65 25.27 21.87
AdCo 26.13 17.11 22.96 23.37 22.39
SimCLR V2 30.94 17.43 30.16 25.20 25.93
DIUL 27.78 19.82 27.51 29.54 26.16
BrAD (KNN) 55.00 35.54 38.12 34.14 40.70
BrAD (linear cls.) 61.81 33.57 43.47 36.37 43.81

Ours (KNN) 66.37 42.68 49.85 54.37 53.32
Ours (linear cls.) 69.15 46.04 51.19 56.88 55.82

Label Fraction 5%

ERM 14.15 18.67 13.37 18.34 16.13
MoCo V2 37.39 25.57 28.11 31.16 30.56
AdCo 37.65 28.21 28.52 30.35 31.18
SimCLR V2 54.67 35.92 35.31 36.84 40.68
DIUL 44.61 39.25 36.41 36.53 39.20
BrAD (KNN) 58.66 39.11 45.37 46.11 47.31
BrAD (linear cls.) 65.22 41.35 50.88 50.68 52.03

Ours (KNN) 68.93 46.83 54.40 59.92 57.52
Ours (linear cls.) 73.16 52.20 59.75 66.43 62.89

Label Fraction 10%

ERM 16.27 16.62 18.40 12.01 15.82
MoCo V2 44.19 25.85 33.53 24.97 32.14
AdCo 46.51 30.21 31.45 22.96 32.78
SimCLR V2 54.65 37.65 46.00 28.25 41.64
DIUL 53.37 39.91 46.41 30.17 42.47
BrAD (KNN) 67.20 41.99 45.32 50.04 51.14
BrAD (linear cls.) 72.17 44.20 50.01 55.66 55.51

Ours (KNN) 69.73 50.29 59.22 64.95 61.05
Ours (linear cls.) 75.41 53.14 63.69 68.57 65.20

Epoch 50

Epoch 200

Epoch 1000

Epoch 0

Epoch 400

Epoch 600

and domain correlated. All correlated indicates the unlabeled and labeled data are homologous in
the category and domain spaces, i.e., Supp(PSUL

D ) = Supp(PSL

D ) and Supp(PSUL

Y ) = Supp(PSL

Y ).
Domain correlated indicates the unlabeled and labeled data share the same domain space but different
categories, i.e., Supp(PSUL

D ) = Supp(PSL

D ) and Supp(PSUL

Y ) ∩ Supp(PSL

Y ) = ∅. Extensive
experiments on open-set domain generalization and few-shot domain adaptation are in the appendix.

Implementation Details. For unsupervised training, based on SimCLR (Chen et al., 2020), we adopt
ResNet-18 as the backbone, and use the projection head with two MLP layers mapping the features
to 128-d and with ℓ2-norm on top. We strictly follow the protocol of existing UDG methods (Harary
et al., 2021; Zhang et al., 2022), including same backbone, same number of epochs, and same subset
of classes used for training and testing. We use batches of size 128, Adam optimizer with lr 3e−4 and
cosine LR-schedule for 1000 epochs training. For all correlated, we evaluate with linear probing and
KNN accuracy. For domain correlated, due to category shift, we evaluate the model after finetuning
30 epochs with lr 1e−3. Please refer to the appendix for other implementation details.

4.2 EXPERIMENTAL RESULTS

All correlated UDG. Following (Zhang et al., 2022), we evaluate the generalization ability under
all correlated setting, where the proportion of labeled data varies from 1% to 10%. As shown in
Table 1 (PACS) and 2 (DomainNet), our method achieves the SOTA result. Compared with vanilla
CL methods, our DN2A achieves a significant improvement, i.e., 23.56% and 23.07% better than
SimCLR V2 on PACS and DomainNet with 10% labeled data, respectively. Vanilla methods learn
domain-biased features, which fail to generalize well. While our method learns domain-invariant
semantic features and forms semantic clusters in the feature space as shown with t-SNE in Table 1.
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Table 2: Accuracy (%) results of the all correlated setting on DomainNet. Overall and Avg. indicate
the overall test data accuracy and the mean of per-domain accuracies, respectively. They are different
since the test sets of different domains are not of the same size. For other details, see Table 1 caption.

Source domains {Paint. ∪ Real ∪ Sketch} {Clipart ∪ Info. ∪ Quick.}
Target domain Clipart Info. Quick. Painting Real Sketch Overall Avg.

Label Fraction 1%
ERM 6.54 2.96 5.00 6.68 6.97 7.25 5.88 5.89
MoCo V2 18.85 10.57 6.32 11.38 14.97 15.28 12.12 12.90
AdCo 16.16 12.26 5.65 11.13 16.53 17.19 12.47 13.15
SimCLR V2 23.51 15.42 5.29 20.25 17.84 18.85 15.46 16.55
DIUL 18.53 10.62 12.65 14.45 21.68 21.30 16.56 16.53
BrAD (KNN) 40.65 14.00 21.28 16.80 22.29 25.72 22.35 23.46
BrAD (linear cls.) 47.26 16.89 23.74 20.03 25.08 31.67 25.85 27.45
Ours (KNN) 62.31 23.84 27.50 29.71 37.07 45.48 35.21 37.65
Ours (linear cls.) 68.02 24.45 29.20 31.16 37.91 52.62 37.43 40.56

Label Fraction 5%
ERM 10.21 7.08 5.34 7.45 6.08 5.00 6.50 6.86
MoCo V2 28.13 13.79 9.67 20.80 24.91 21.44 18.99 19.79
AdCo 30.77 18.65 7.75 19.97 24.31 24.19 19.42 20.94
SimCLR V2 34.03 17.17 10.88 21.35 24.34 27.46 20.89 22.54
DIUL 39.32 19.09 10.50 21.09 30.51 28.49 23.31 24.83
BrAD (KNN) 55.75 18.15 26.93 24.29 33.33 37.54 31.12 32.66
BrAD (linear cls.) 64.01 25.02 29.64 29.32 34.95 44.09 35.37 37.84
Ours (KNN) 66.54 23.98 34.47 37.89 44.65 54.57 41.64 43.68
Ours (linear cls.) 70.10 27.31 36.77 40.93 47.20 60.05 44.98 47.06

Label Fraction 10%
ERM 15.10 9.39 7.11 9.90 9.19 5.12 8.94 9.30
MoCo V2 32.46 18.54 8.05 25.35 29.91 23.71 21.87 23.05
AdCo 32.25 17.96 11.56 23.35 29.98 27.57 22.79 23.78
SimCLR V2 37.11 19.87 12.33 24.01 30.17 31.58 24.28 25.84
DIUL 35.15 20.88 15.69 25.90 33.29 30.77 26.09 26.95
BrAD (KNN) 60.78 19.76 31.56 26.06 37.43 41.38 34.77 36.16
BrAD (linear cls.) 68.27 26.60 34.03 31.08 38.48 48.17 38.74 41.10
Ours (KNN) 66.73 22.15 35.93 36.42 46.12 57.14 42.21 44.08
Ours (linear cls.) 73.04 28.23 37.80 41.77 50.94 61.69 46.72 48.91

Besides, compared with the UDG method DIUL (Zhang et al., 2022), we achieve 23.69% and 22.23%
performance gain on PACS and DomainNet with 5% labeled data, respectively. DIUL focuses on
negative sample selection with domain-specific images, but suffers limited performance gain, since
negative samples mainly serve as noise to avoid the trivial solution in CL. We argue the key lies in
positive samples and achieve better results with the proposed positive selection strategy. Moreover,
our method outperforms SOTA UDG method BrAD (Harary et al., 2021) by 12.01% and 13.11% on
PACS and DomainNet with label fractions of 1%, respectively. BrAD generates edge-like images as
positive samples with strong human prior, and fails to learn non-edge related features (e.g., color,
texture), which could also contain semantic information (e.g., yellow spot patterns for giraffe in
photo). While we use cross domain neighbors in the embedding space as positive samples, which are
not imaginary and pre-defined, i.e., representative of actual semantic samples in the given dataset.
Domain correlated UDG. Domain correlated is a more challenging setting to evaluate the gener-
alization ability of UDG methods in the real world under both domain and category shifts. Follow-
ing (Zhang et al., 2022), we adopt DomainNet with 20 categories for labeled training and testing and
the other 40 categories for unlabeled training. As shown in Table 3, our method achieves the best
generalization accuracy on all the domains. We outperform vanilla CL methods by a large margin,
i.e., 9.48% and 13.14% better than SimCLR V2 and MoCo V2, respectively. Though categories
for unlabeled training are different from those for labeled training and testing, where the learned
semantic representation is not directly helpful, our method can achieve promising results by excluding
domain-related features and maintaining domain-invariant representation space. Compared with
DIUL, we achieve 7.97% performance gain, showing the effectiveness of our proposed UDG method.
Comparison with ImageNet Pretrained Models. Current DG methods use the models pretrained
on ImageNet as initialization. While our method can outperform ImageNet pretrained models by
unsupervised training on significantly less unlabeled data. Pretraining on i.i.d. ImageNet fails to be
invariant to large intra-class variances caused by strong distribution shifts. Given data with strong
heterogeneity, our method can learn domain-invariant representations and generalize well. As shown
in Fig. 4 (a), when the unlabeled data for pretraining are of 40 classes from DomainNet, our method
outperforms ImageNet pretrained initialization by 0.94%. Note that the amount of data used for
pretraining is less than 4% of ImageNet. Besides, DN2A outperforms DIUL by a large margin. With
only 40 pretraining classes, we achieve comparable accuracy with DIUL using 100 classes.
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Table 3: Accuracy (%) results of the domain correlated setting on DomainNet.
Source domains {Paint. ∪ Real ∪ Sketch} {Clipart ∪ Info. ∪ Quick.}
Target domain Clipart Info. Quick. Painting Real Sketch Overall Avg.

ERM 55.78 22.40 25.75 31.92 41.58 24.10 33.23 33.59
BYOL 58.39 23.99 28.56 33.73 45.63 25.48 35.89 35.96
MoCo V2 72.84 33.40 34.20 45.83 60.75 43.98 47.78 48.50
AdCo 76.61 31.55 33.42 43.77 64.58 47.76 48.85 49.62
SimCLR V2 75.58 35.52 37.08 47.94 62.40 54.47 50.91 52.16
DIUL 78.40 33.98 39.87 47.82 65.07 56.90 52.64 53.67

Ours 84.13 41.61 48.12 58.61 69.09 68.28 60.23 61.64

(a) Pretraining class. (b) Pretraining epoch.
Figure 4: Accuracy (%) results of our method with different pretraining (a) classes and (b) epochs.

4.3 ABLATION STUDY
Table 4: Ablation on strong augmentation, cross domain
double-lock NN and in-domain cycle NN.

SA CD2NN ICNN Photo Art. Cartoon Sketch Avg.

% % % 38.80 30.17 33.61 43.08 36.42
! % % 53.77 34.08 40.64 48.58 44.27
! ! % 67.66 43.48 52.22 55.54 54.73
! ! ! 67.84 44.06 53.98 57.43 55.82

We conduct experiments on PACS for all cor-
related UDG. Unless specified, all models are
unsupervisedly pretrained for 600 epochs, and
we report KNN accuracy with 5% labeled data.

Effects of Augmentation Strategies. As
shown in Table 4, strong augmentations (SA)
can improve the baseline by 7.85% accuracy. As aforementioned, SA can generate positive samples
with less domain-related information and make the learned model exclude domain-biased features.

Effects of Cross Domain Double-lock Nearest Neighbor. This experiment is conducted without the
in-domain cycle NN to evaluate the performance of CD2NN. Table 4 shows that our proposed CD2NN
achieves 10.46% accuracy gain by overcoming distribution shifts and learning domain-invariant
features. Besides, we compare various neighbor selection strategies. In-domain: use in-domain
NN N(z,Qin

z , 1) as the positive; Vanilla: directly search for cross domain NN N(z,Qcr
z , 1) as

the positive; Ours: use CD2NN R(z,Qcr
z ) as the positive; GT labels: use ground-truth labels to

Table 5: Ablation on NN Selection in CD2NN.
Photo Art. Cartoon Sketch Avg.

GT labels 69.94 51.45 57.38 62.97 60.43
In-domain 62.04 38.99 46.38 47.58 48.75

Vanilla 65.22 40.85 49.88 50.44 51.60
Ours 67.66 43.48 52.22 55.54 54.73

Table 6: Ablation on In-domain Cycle NN.
Photo Art. Cartoon Sketch Avg.

Vanilla 67.43 43.54 52.99 56.72 55.17
Ours 67.84 44.06 53.98 57.43 55.82

construct cross-domain intra-class samples as the
positive, which is the upper bound performance. As
shown in Table 5, In-domain suffers limited perfor-
mance, since in-domain NN fails to overcome dis-
tribution shifts across domains. Though Vanilla can
achieve better performance by using cross domain
NN, it is undermined by the noise of NN searched
across different distributions. Our method improves
Vanilla by 3.13% accuracy, demonstrating the ef-
fectiveness of our proposed CD2NN to find more
accurate neighbors for boosting the performance.
Effects of In-domain Cycle Nearest Neighbor. Table 6 shows that our in-domain cycle nearest
neighbor achieves 1.09% accuracy gain by overcoming intra-domain gap. Besides, compared with
vanilla in-domain NN, our ICNN can achieves 0.65% gain by exploring more diverse samples.
Effects of k in Nearest Neighbors. In experiments, we select the top-1 ranked neighbor as the
positive. Here we investigate whether increasing the diversity of neighbors (i.e., increasing k) results
in improved performance. As shown in Table 7, although our method is somewhat robust to changing
the value of k, increasing beyond k = 1 always results in slight degradation due to the brought noise.
Effects of Epochs, Batch Size and Temperature. As shown in Fig. 4 (b), with a small number
of 200 epochs, our method outperforms DIUL by a large margin of 9.06% accuracy. As the epoch
increases, our method exceeds DIUL by 8.18% at 1000 epochs. As shown in Table 8, larger batch
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Table 7: Ablation on k in our proposed dual near-
est neighbors (i.e., in both CD2NN and ICNN)

Photo Art. Cartoon Sketch Avg.
k=1 67.84 44.06 53.98 57.43 55.82
k=2 66.62 43.37 54.21 56.80 55.25
k=4 65.57 40.79 54.13 54.93 53.86
k=8 63.91 39.04 53.27 54.81 52.76

Table 8: Ablation on batch size and temperature.
Batch Temp. Photo Art. Cartoon Sketch Avg.
128 0.15 67.43 43.72 53.20 56.19 55.14
128 0.07 67.84 44.06 53.98 57.43 55.82
128 0.03 66.71 44.85 53.81 56.87 55.56
256 0.07 66.73 44.98 54.46 58.15 56.08
64 0.07 65.57 42.29 51.84 55.42 53.78

(a) Different colors for different domains (b) Different colors for different classes

Figure 5: T-sne visualization of the learned feature space by vanilla SimCLR and our method.

(a) NN match accuracy. (b) NN searched by our and vanilla method.

Figure 6: (a) NN match accuracy. (b) NN searched by vanilla SimCLR and our method.

sizes improve the performance with the increased diversity of negative samples. Smaller temperature
that indicates stronger penalty for compactness and separability is more effective for classification.

4.4 DISCUSSION

Visualization of Feature Space. Fig. 5 (a) shows that vanilla method learns a embedding space with
domain-related information where domains are separable. While in our feature space, samples from
different domains are closely entangled, indicating the learning of domain-invariant features. As
shown in Fig. 5, vanilla method fails to learn semantic features and samples from different classes are
inseparable. By contrast, semantic clusters are clearly formed in our learned feature space.
Nearest Neighbor Match Accuracy. Fig. 6 (a) shows how the accuracy of the searched NN (i.e.
from the same class) for three strategies (in-domain NN, vanilla cross domain NN and our CD2NN)
varies as training proceeds. In-domain NN has high accuracy due to no distribution shifts. Vanilla
cross domain NN leads to many wrong matches due to domain shifts. For our method that leverages
in-domain NN to find more trustworthy cross domain NN, though starting with the low accuracy of
rough 20%, the accuracy of picking the right neighbor achieves about 74% at the end of training,
which approximates the highest in-domain NN accuracy. Besides, we show a random batch of NN
retrieved in Fig. 6 (b). The NNs picked by our method are from the same semantic class. For the
vanilla method, the retrieval is mainly based on domain-relevant information, e.g., style and texture.

5 CONCLUSION

In this paper, we first figure out the failure of vanilla contrastive learning in the UDG task is due to
large intra-domain connectivity and small intra-class connectivity of positive samples generated by
pre-defined augmentations under the i.i.d hypothesis. Thus, we leverage strong augmentations to
suppress domain-related information and propose to use a novel cross domain double-lock nearest
neighbors as positives, which effectively link different domain samples belonging to the same class.
In addition, in-domain cycle nearest neighbors are incorporated to further overcome intra-domain
variances. Experimentally, our DN2A achieves state-of-the-art performance on the UDG task.
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APPENDIX

A PROOF OF PROPOSITION

A.1 PROOF OF PROPOSITION 1

Proposition 1. For stronger augmentations Â, where A ⊆ Â, the augmented views have smaller
intra-domain connectivity as Ĉα := Ed∼PS

D
E
xi,xj∼P

SUL
d

[Â(x+
i |xi)Â(x+

j |xj)], where Ĉα < Cα.

Proof. Without loss of generality, we consider two given samples xi and xj belonging to the same
domain, i.e., di = dj . For a given data augmentation set A, we first define the augmented distance
between two samples as the maximum distance between their augmented views as

dA
(
x+
i , x

+
j

)
= max

x+
i ∈A(xi),x

+
j ∈A(xj)

∥∥x+
i − x+

j

∥∥ (9)

Since vanilla augmentations are included in strong augmentations, i.e., A ⊆ Â, we have the inequality
as dÂ

(
x+
i , x

+
j

)
≥ dA

(
x+
i , x

+
j

)
. Correspondingly, we have the supremum of the distance of two

augmented view sets as

VA ≜ sup ρ(A(xi), A(xj)) = dA(x
+
i , x

+
j ) (10)

VÂ ≜ sup ρ(Â(xi), Â(xj)) = dÂ(x
+
i , x

+
j ) (11)

Since dÂ
(
x+
i , x

+
j

)
≥ dA

(
x+
i , x

+
j

)
, we have VÂ ≥ VA. Then we define the overlap of two distribu-

tions as

ϕA ≜ Supp(A(x+
i | xi))

⋂
Supp(A(x+

j | xj)) (12)

ϕÂ ≜ Supp(Â(x+
i | xi))

⋂
Supp(Â(x+

j | xj)) (13)

Since VÂ ≥ VA, we have ϕÂ ⊆ ϕA. Then for a given data augmentation set A, we define the
minimum product of two augmented samples as

eA
(
x+
i , x

+
j

)
= min

x+
i ∈A(xi),x

+
j ∈A(xj)

x+
i x

+
j (14)

Since vanilla augmentations are included in strong augmentations, i.e., A ⊆ Â, we have the inequality
as eÂ

(
x+
i , x

+
j

)
≤ eA

(
x+
i , x

+
j

)
. We assume the mean of the product value in the overlap part of

distributions as a constant multiple of the minimum product. Then we have A(x+
i |xi)A(x+

j |xj) and
Â(x+

i |xi)Â(x+
j |xj) as

A(x+
i |xi)A(x+

j |xj) =

{
0 x+

i , x
+
j /∈ ϕA

C · eA
(
x+
i , x

+
j

)
x+
i , x

+
j ∈ ϕA

(15)

Â(x+
i |xi)Â(x+

j |xj) =

{
0 x+

i , x
+
j /∈ ϕÂ

C · eÂ
(
x+
i , x

+
j

)
x+
i , x

+
j ∈ ϕÂ

(16)

Since eÂ
(
x+
i , x

+
j

)
≤ eA

(
x+
i , x

+
j

)
and ϕÂ ⊆ ϕA, A(x+

i |xi)A(x+
j |xj) ≥ Â(x+

i |xi)Â(x+
j |xj).

Consequently, we have

Ed∼PS
D
E
xi,xj∼P

SUL
d

[A(x+
i |xi)A(x+

j |xj)] ≥ Ed∼PS
D
E
xi,xj∼P

SUL
d

[Â(x+
i |xi)Â(x+

j |xj)] (17)

Thus, we draw the conclusion Ĉα < Cα.

A.2 PROOF OF PROPOSITION 2

Proposition 2. Dual nearest neighbors (NN) can increase the intra-class connectivity as Ĉβ =

Ey∼PS
Y
E
xi,xj∼P

SUL
y

[A(x+
i |xi)A(NN (xj)

+|NN (xj))], where Ĉβ > Cβ . More accurate cross
domain NN and more diverse in-domain NN can further increase the intra-class connectivity.
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Proof. To calculate the intra-class connectivity, we firstly divide all the samples into two parts: intra-
domain intra-class samples and cross-domain intra-class samples. Correspondingly, the intra-class
connectivity can be calculated as the sum of cross-domain intra-class connectivity and intra-domain
intra-class connectivity.

Cβ = Ey∼PS
Y
E
xi,xj∼P

SUL
y

[A(x+
i |xi)A(x+

j |xj)]

= Ey∼PS
Y
E
xi,xj∼P

SUL
y,di ̸=dj

[A(x+
i |xi)A(x+

j |xj)] + Ey∼PS
Y
E
xi,xj∼P

SUL
y,di=dj

[A(x+
i |xi)A(x+

j |xj)]

(18)

Without loss of generality, we consider two given samples xi and xj belonging to the different
domains with the same semantic class, i.e., di ̸= dj and yi = yj . Give a data augmentation set A, we
define the overlap of two distributions as

ϕdi ̸=dj ≜ Supp(A(x+
i | xi))

⋂
Supp(A(x+

j | xj)) (19)

For a given data augmentation set A, transformations cannot overcome significant distribution shifts
across different domains, e.g., one can hardly transform a cat in sketch to photo. Thus, we have
ϕdi ̸=dj

≃ ∅.

While we search for cross domain nearest neighbors (NN) in the latent embedding space as the
positive sample. Denote the nearest neighbors of xj in domain i as Ni(xj). We have the overlap of
distributions as

ϕ̂N
di ̸=dj

≜ Supp(A(x+
i | xi))

⋂
Supp(A(N(xj)

+ | N(xj))) (20)

Since Ni(xj) is in the same domain with xi with similar semantic information, the augmentation
overlap exists. Then, we have ϕ̂N

di ̸=dj
> ∅ and ϕ̂N

di ̸=dj
> ϕdi ̸=dj

. Thus, we have

Ey∼PS
Y
E
xi,xj∼P

SUL
y,di ̸=dj

[A(x+
i |xi)A(NN (xj)

+|NN (xj))]

> Ey∼PS
Y
E
xi,xj∼P

SUL
y,di ̸=dj

[A(x+
i |xi)A(x+

j |xj)] (21)

Besides, we consider two given samples xi and xj belonging to the same domains with the same
semantic class, i.e., di = dj and yi = yj . Similarly, we have the distribution overlap as ϕ̂di=dj

.
Though ϕdi=dj

> ∅, the overlap is limited by some intra-domain intra-class semantic variances.
Comparably, our intra-domain nearest neighbors (NN) can overcome intra-domain variances with the
increased overlap as ϕ̂N

di=dj
> ϕdi=dj . Thus, we have

Ey∼PS
Y
E
xi,xj∼P

SUL
y,di=dj

[A(x+
i |xi)A(NN (xj)

+|NN (xj))]

> Ey∼PS
Y
E
xi,xj∼P

SUL
y,di=dj

[A(x+
i |xi)A(x+

j |xj)] (22)

Combined with Eq. 21, we have

Ey∼PS
Y
E
xi,xj∼P

SUL
y,di ̸=dj

[A(x+
i |xi)A(NN (xj)

+|NN (xj))]

+ Ey∼PS
Y
E
xi,xj∼P

SUL
y,di=dj

[A(x+
i |xi)A(NN (xj)

+|NN (xj))]

> Ey∼PS
Y
E
xi,xj∼P

SUL
y,di ̸=dj

[A(x+
i |xi)A(x+

j |xj)] + Ey∼PS
Y
E
xi,xj∼P

SUL
y,di=dj

[A(x+
i |xi)A(x+

j |xj)]

(23)

Totally, we draw the conclusion Ĉβ > Cβ .

For more accurate cross domain NN, since the searched neighbors are more likely to belong to the
same semantic class, the searched N ′

i(xj) share more similar semantic information with xi, which
results in a larger augmentation overlap as ϕ̂N ′

di ̸=dj
> ϕ̂N

di ̸=dj
. Thus, we have

Ey∼PS
Y
E
xi,xj∼P

SUL
y,di ̸=dj

[A(x+
i |xi)A(NN ′(xj)

+|NN ′(xj))]

> Ey∼PS
Y
E
xi,xj∼P

SUL
y,di ̸=dj

[A(x+
i |xi)A(NN (xj)

+|NN (xj))] (24)
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For more diverse in-domain NN, since the searched neighbors are more likely to overcome more
severe intra-domain variances, the searched N ′

i(xj) can lead to a larger augmentation overlap as
ϕ̂N ′

di=dj
> ϕ̂N

di=dj
. Thus, we have

Ey∼PS
Y
E
xi,xj∼P

SUL
y,di=dj

[A(x+
i |xi)A(NN ′(xj)

+|NN ′(xj))]

> Ey∼PS
Y
E
xi,xj∼P

SUL
y,di=dj

[A(x+
i |xi)A(NN (xj)

+|NN (xj))] (25)

Combined with Eq. 24, we can draw the conclusion that more accurate cross domain NN and more
diverse in-domain NN can further increase the intra-class connectivity.

A.3 PROOF OF PROPOSITION 3

Proposition 3. Our proposed CD2NN is more accurate than cross domain NN in the UDG setting.

Proof. Denote ecr as the error rate of the cross domain nearest neighbor and ein the error rate of the
in-domain nearest neighbor. For simplicity, we assume the error rate of the second nearest neighbor is
also ecr and ein for cross domain and in-domain, respectively. We assume when the nearest neighbor
is wrong, it is equally likely to match to anyone of the remaining C − 1 classes, where C is the total
number of classes.

Considering a given query z, the error rate of the vanilla cross domain NN is Pvanilla = ecr.

For our proposed CD2NN strategy shown in Figure 3, if R1 ̸= ∅, i.e., our CD2NN selects the NN in
R1. The selected NN is wrong only if the following two conditions are met: 1) The cross domain
NN of z is wrong; 2) The in-domain NN zqinnn of z is right and cross domain NN of zqinnn is wrong or
the in-domain NN zqinnn of z is wrong and the cross domain NN of zqinnn is not in the same class as z.
Thus, the error rate of our CD2NN is

PR1

CD2NN = ecr ·
(
(1− ein) · ecr + ein · (1− ecr + ecr ·

C − 2

C − 1
)

)
= ecr ·

(
(1− ein) · ecr + ein · (1− ecr ·

1

C − 1
)

)
< ecr · ((1− ein) · ecr + ein) . (26)

Then, we have
PR1

CD2NN < ecr · (ecr + ein − ecr · ein) . (27)
Since 0 < ecr < 1 and 0 < ein < 1, we have

ecr + ein − ecr · ein − 1 = (ecr − 1) · (1− ein) < 0. (28)

Thus, ecr + ein − ecr · ein < 1 and ecr · (ecr + ein − ecr · ein) < ecr. Since Pvanilla = ecr, from
Equation equation 27, we have:

PR1

CD2NN < ecr · ((1− ein) · ecr + ein) < Pvanilla. (29)

As shown in Figure 3, if R1 = ∅ and R2 ̸= ∅, i.e., our CD2NN selects the NN in R2. The selected
NN is wrong only if the following two conditions are met: 1) The cross domain NN of z is wrong; 2)
The cross domain NN zqcrnn of z is right and in-domain NN of zqcrnn is wrong or the cross domain NN
zqcrnn of z is wrong and the in-domain NN of zqcrnn is not in the same class as z. Thus, the error rate of
our CD2NN is

PR2

CD2NN = ecr ·
(
(1− ecr) · ein + ecr · (1− ein + ein · C − 2

C − 1
)

)
= ecr ·

(
(1− ecr) · ein + ecr · (1− ein · 1

C − 1
)

)
< ecr · ((1− ecr) · ein + ecr) (30)

Similarly, we have
PR2

CD2NN < ecr · (ein + ecr − ecr · ein) , (31)
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Since 0 < ecr < 1 and 0 < ein < 1, we have

ein + ecr − ecr · ein − 1 = (ecr − 1) · (1− ein) < 0 (32)

Thus, ein + ecr − ecr · ein < 1 and ecr · (ein + ecr − ecr · ein) < ecr. Since Pvanilla = ecr, from
Equation equation 31, we have: and

PR2

CD2NN < ecr · ((1− ecr) · ein + ecr) < Pvanilla. (33)

Totally, since PR1

CD2NN < Pvanilla and PR2

CD2NN < Pvanilla, we have PCD2NN < Pvanilla. Thus, we
show theoretically that Our proposed CD2NN is more accurate than cross domain nearest neighbor in
this specific domain generalization setting.

B MORE VISUALIZATIONS

B.1 INTRA-CLASS CONNECTIVITY OF OUR METHOD.

We add analysis from the connectivity perspective. This experiment is conducted without the in-
domain cycle NN to evaluate the performance of CD2NN. Specifically, we train the unsupervised
model on PACS with three strategies, i.e., in-domain NN, vanilla cross domain NN and our CD2NN,
respectively, and compute the corresponding intra-class connectivity. Fig. 7 shows that our CD2NN
can increase the intra-class connectivity as the training proceeds. Vanilla cross domain NN selection
strategy suffers the limited intra-class connectivity gain due to many wrong NN matches brought by
domain shifts. In-domain NN selection strategy achieves satisfactory intra-class connectivity at the
beginning of training by clustering more accurate in-domain neighbors. However, in-domain NN
selection strategy fails to overcome distribution shifts across domains and cannot align intra-class
samples from different domains, which suffers the degraded intra-class connectivity eventually.

Figure 7: Intra-class connectivity for the model trained with in-domain NN, vanilla cross domain NN
and our CD2NN strategy.

B.2 NEAREST NEIGHBORS SEARCHED BY OUR METHOD.

In Fig. 8, we showcase the domain invariant capabilities of the feature representation learned without
supervision using our DN2A approach. Each example shows the top-5 nearest neighbors of a random
query image (from the PACS dataset) searched in the entire set of images of each of the 4 different
PACS domains: Photo, Art painting, Cartoon and Sketch. All images are encoded using our self-
supervised model trained on three domains (Art painting, Cartoon and Sketch) of PACS dataset.
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Figure 8: Nearest neighbors searched by our DN2A method.

C MORE EXPERIMENTS

C.1 EXPERIMENTS ON THE OPEN DOMAIN GENERALIZATION

We follow the open domain generalization setting, i.e., the class split for each domain, in DAML (Shu
et al., 2021) to conduct experiments on PACS dataset. We train the model on the unlabeled source
data using SimCLR and our DN2A with the same experimental setting in the main text. Besides, we
also conduct unsupervised pre-training based on ImageNet initialization (as seen in the bottom half
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of Table 9). Then we use the parameters of the trained model as the initialization for the SOTA open
domain generalization method DAML (Shu et al., 2021).

Table 9: Results with different initialization methods under the open-domain setting on PACS. †

indicates that the unsupervised pre-training is based on ImageNet initialization.

Art Sketch Photo Cartoon Avg
Method Acc H-score Acc H-score Acc H-score Acc H-score Acc H-score
DAML(random init.) (Shu et al., 2021) 26.20 17.04 24.81 21.04 21.89 16.42 39.92 20.26 28.21 18.69
SimCLR + DAML 35.07 25.91 42.61 31.53 28.33 23.86 48.65 31.66 38.67 28.24
Ours + DAML 43.86 37.30 56.42 51.09 40.67 32.37 62.81 46.54 50.94 41.83
DAML(ImageNet init.) (Shu et al., 2021) 54.10 43.02 58.50 56.73 75.69 53.29 73.65 54.47 65.49 51.88
Ours† + DAML 62.75 49.16 69.96 61.91 76.04 59.11 76.27 61.59 71.26 57.94

As shown in Table 9, DAML benefits from unsupervised pre-training. Compared with the random
initialization and ImageNet initialization, our method can improve DAML for 22.73% and 5.77%
average accuracy, respectively. Compared with SimCLR, our DN2A provides a much stronger
initialization and boosts the generalization ability of DAML with a 12.27% improvement in average
accuracy and a 13.59% improvement in average H-score, demonstrating the effectiveness of our
method in the open-set DG setting.

Open-set DG setting assumes different source domains contain private classes and shared classes.
With our proposed DN2A, samples in different domains from the shared classes can be aligned. For
open-set samples in private classes of some domains (no cross domain neighbors of the same class),
our proposed cross domain double-lock NN selection strategy can filter out these untrustworthy noisy
neighbors not used as positive samples, i.e., R = ∅. With positive samples generated by strong
augmentation to suppress the domain information, our method learns class-semantic similarity by
separating visually dissimilar images, and eventually separates the private classes from the shared
classes. Totally, our method can align shared classes in different source domains, while separating
shared classes from private classes. Thus, our proposed method can achieve good performance for
the challenging open-set DG setting.

C.2 EXPERIMENTS ON THE FEW-SHOT DOMAIN ADAPTATION

We follow the few shot domain adaptation protocol defined in (Yue et al., 2021) with the same data
split, where source domain has a single or three labeled images per-class and the remaining images
are provided as unlabeled. Following (Kim et al., 2021; Yue et al., 2021), we use the Resnet-50
pretrained on ImageNet as the backbone, and use 1 or 3 source domain samples per class for the
source-only training.

Table 10: Target accuracy (%) on few-shot domain adaptation with source 1-shot and 3-shots labels
per class on the Office dataset.

Method Office: Target Acc. on 1-shot / 3-shots
A→D A→W D→A D→W W→A W→D Avg

CDS (Kim et al., 2021) 48.3 / 65.9 49.2 / 65.5 61.4 / 64.4 77.5 / 90.4 57.4 / 64.4 71.5 / 93.0 60.9 / 73.9
PCS (Yue et al., 2021) 60.2 / 78.2 69.8 / 82.9 76.1 / 76.4 90.6 / 94.1 71.2 / 76.3 91.8 / 96.0 76.6 / 84.0

PCS w/o APCU & MIM 47.2 / 71.1 52.7 / 70.6 59.0 / 75.5 76.4 / 90.3 58.5 / 74.1 66.9 / 91.8 60.1 / 78.9
Ours 50.8 / 72.4 54.9 / 71.2 65.1 / 69.7 77.6 / 90.8 62.6 / 71.9 71.5 / 93.1 63.8 / 78.2

As shown in Table 10, our method outperforms CDS by 2.9% average accuracy for 1-shot adaptation.
CDS assumes samples of the same class are closer than other samples of different classes across
different domains, and directly applies the cross domain matching, which suffers from false matches
and introduce the noise to compromise the final performance. As an end-to-end framework proposed
for domain adaptation, PCS aims to learn a model that could achieve high accuracy on the target
domain. Thus, PCS achieves the highest accuracy with adaptive prototypical classifier learning
(consisted of Adaptive Prototype-Classifier Update (APCU) and Mutual Information Maximization
(MIM)) for target domain. We also take the result without APCU and MIM from (Yue et al., 2021) for
a relatively fair comparison of the cross domain self-supervised learning strategy itself. Our method
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outperforms by 3.7% average accuracy for 1-shot adaptation. The proposed instance-prototype cross
domain matching (Yue et al., 2021) also suffers from the match noise and degrades the performance.

D RELATED WORKS

D.1 UNSUPERVISED DOMAIN ADAPTATION (UDA).

UDA aims to transfer the knowledge from a labeled source domain to an unlabeled target domain.
Haeusser et al. Haeusser et al. (2017) propose the association loss as an discrepancy measure to
enforce associations between source and target data for producing statistically domain invariant
embeddings. Li et al. Li et al. (2021) propose domain consensus clustering to learn the intrinsic
structure of the target domain via encouraging discriminative target clusters. Chen et al. Chen et al.
(2022) achieve the feature alignment via mutual nearest neighbors contrast and exploit domain
discrimination knowledge by hybrid prototype self-training.

D.2 SELF-SUPERVISED LEARNING FOR UDA.

Recently, self-supervised learning is introduced into domain adaptation. CDS Kim et al. (2021) is
proposed to perform self-supervised learning (SSL) not only within a single domain but also across
two domains for better domain adaptation performance. PCS Yue et al. (2021) further extends the
instance-wise SSL in CDS to prototypical SSL, and proposes a powerful end-to-end framework for
domain adaptation. Our DN2A is different from CDS and PCS in the starting point. CDS and PCS
are proposed for domain adaptation, where there are two domains and the goal is the target domain
alignment. While our method is proposed for domain generalization with multiple domains (more
than two domains) to learn domain invariant features. Notice that the cross-domain matching strategy,
which is the key component of CDS and PCS for domain alignment, cannot be easily extended to
multiple domains. Directly matching each pair of multiple domains may cause the negative transfer,
especially for open-set samples. While our method can flexibly find the neighbors in the right domain
among multiple domains (also applicable for two domains) for domain-invariant learning. Secondly,
CDS assumes that samples of the same class are closer than other samples of different classes across
different domains, and uses entropy minimization to implicitly discover and enforce the similarity
between cross domain pairs, which suffers from the match noise brought by the domain gap and
can be deemed as the vanilla cross domain NN selection counterpart of our method. Though PCS
proposes the instance-prototype matching to mitigate the noise, the performance is undermined,
especially for open-set samples, where there could be no positive matches from the same class. PCS
indiscriminately pushes these negative matches together, while our cross domain double-lock NN
(CD2NN) can avoid this situation by excluding the untrustworthy negative matches from training.
Thus, our proposed CD2NN strategy is more flexible, effective and robust for cross domain matching,
and can be used in CDS and PCS as a superior alternative of their cross domain SSL strategy to boost
the performance for domain adaptation tasks. Besides, our CD2NN strategy can extend CDS and
PCS to multi-source domain adaptation task, which could be interesting future work.

E LIMITATIONS

For the extreme case, where there are no shared classes between any domains, our work fails to use
cross domain nearest neighbors for learning the domain invariant feature space. One possible way
to address this issue is to use generative-based methods to generate fictitious cross domain samples
potentially belonging to the same class as nearest neighbors. Our work can be further improved with
adaptive prototypical classifier learning to achieve better performance for domain adaptation task and
multi-source domain adaptation task.

F DATASETS AND IMPLEMENTATION DETAILS

F.1 DATASETS.

DomainNet (Peng et al., 2019) is a recently proposed large scale dataset with 0.6 million images of
345 classes distributed on 6 domains, i.e., Real, Clipart, Infograph, Painting, Quickdraw and Sketch.
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Table 11: Various augmentations we applied to strongly augment the training images.
Operation ShearX(Y) TranslateX(Y) Rotate AutoContrast Identity Equalize

Mag Range [-0.3,0.3] [-0.3,0.3] [-30,30] 0 or 1 0 or 1 0 or 1

Operation Solarize Posterize Contrast Color Brightness Sharpeness
Mag Range [0,256] [4,8] [0.05,0.95] [0.05,0.95] [0.05,0.95] [0.05,0.95]

We follow the training/testing split released by (Peng et al., 2019) and follow (Chattopadhyay et al.,
2020) to partition the training split at a ratio of 9:1 into the training and validation splits for model
selection. PACS (Li et al., 2017) consists of four domains, i.e., Photo, Art painting, Cartoon and
Sketch, with diverse image styles. It contains seven classes and 9,991 images totally. We use the
original training/validation split provided by (Li et al., 2017).

F.2 IMPLEMENTATION DETAILS.

Specifically, our strong augmentation strategy consists of 14 types of augmentations: ShearX/Y,
TranslateX/Y, Rotate, AutoContrast, Identity, Equalize, Solarize, Posterize, Contrast, Color, Bright-
ness, Sharpness. The magnitude of each augmentation is significant enough to produce as strong
augmentations as possible. More details of different transformations are listed in Table 11. Specif-
ically, to transform an image, we randomly select 5 augmentations from the above 14 types of
transformations, which creates powerful Â with

(
14
5

)
possible combinations, and apply them to the

image sequentially.

The UDG experiments consist of three steps: 1) unsupervised training on the source domains; 2)
using a small subset of labeled source domain images to train the unsupervised model (linear probing
or fine-tuning); 3) testing the trained model on the target domain, which is unseen during the whole
training process.

For unsupervised training, based on SimCLR (Chen et al., 2020), we adopt ResNet-18 as the backbone,
and use the projection head with two MLP layers mapping the features to 128-d and with ℓ2-norm on
top. We strictly follow the protocol of existing UDG methods (Harary et al., 2021; Zhang et al., 2022),
including same backbone, same number of epochs, and same subset of classes used for training
and testing. We use batches of size 128, Adam optimizer with lr 3e−4 and cosine LR-schedule for
1000 epochs training. We set the temperature as τ = 0.07 and warm up epoch as T = 100. For
DomainNet, we train on Painting, Real and Sketch and test on Clipart, Infograph and Quickdraw,
and vice versa. For PACS, we evaluate our method in the leave-one-domain-out way, i.e., train on
three domains and test on the remaining domain.

For all correlated setting, we evaluate with linear probing and KNN accuracy. For linear probing,
we train a linear classifier with learning rate 30 for 30 epochs and use the source validation set for
model selection. Besides, we provide KNN (K=1) accuracy for our method, where we directly use
our unsupervised features without any additional training. For domain correlated setting, due to
category shift, we evaluate the model after finetuning 30 epochs with learning rate 1e−3, and use the
source validation set for model selection.

G SURROGATE METRICS FOR CONNECTIVITY.

We propose to define the Overlap Ratio (OR) metric as a surrogate measure for the degree of
connectivity. Given an unlabeled dataset SUL with NUL samples, we randomly augment each raw
image xi ∈ SUL for C times, and get an augmented set S̃UL = {xij , i ∈ [NUL], j ∈ [C]}, which
is the experimental approximation to the distribution of augmentations A(·|x). Then, for each
xip ∈ S̃ULthat is an augmented view of xi ∈ SUL, denoting its k-nearest neighbors in S̃UL in the
embedding space of the encoder f as N(xip, S̃UL\xip, k), other augmented views from the same
domain as Cα(xip) = {xjl, di = dj , l ∈ [C]}, and other augmented views from the same category
as Cβ(xip) = {xjl, yi = yj , l ∈ [C]}, we can define the intra-domain overlap ratio and intra-class
overlap ratio as the ratio of augmented views from the same domain and category in its k-nearest

19



Under review as a conference paper at ICLR 2023

neighbors, respectively.

ORα (xip) =
#[N(xip, S̃UL\xip, k) ∩ Cα (xip)]

#N(xip, S̃UL\xip, k)
∈ [0, 1] (34)

ORβ (xip) =
#[N(xip, S̃UL\xip, k) ∩ Cβ (xip)]

#N(xip, S̃UL\xip, k)
∈ [0, 1] (35)

We can define its average as Average Overlap Ratio (AOR) on the whole dataset:

AORα = Exip∼S̃UL
ORα (xip) ,AORβ = Exip∼S̃UL

ORβ (xip) (36)

Here AORα and AORβ are used as surrogate metrics for intra-domain and intra-class connectivity,
respectively. Specifically, we adopt C = 10 augmentations for each image and take k = 1 by default.
The encoder f is ResNet-18 trained with 10 epochs for warm up in an unsupervised manner.

H MAIN ALGORITHMS

Algorithm 1 Cross Domain Double-lock Nearest Neighbor Search
Require: The query embedding z, the in-domain support set of embeddings within a mini-batch

from the same domain Qin
z and the cross domain support set from different domains Qcr

z .
Ensure: Cross domain double-lock nearest neighbor of z as R(z,Qcr

z ).
1: Search the in-domain nearest neighbor of z from the in-domain support set Qin

z as N(z,Qin
z , 1) =

zqinnn .
2: Search the top-2 cross domain nearest neighbor of z from the cross domain support set Qcr

z as
N(z,Qcr

z , 2).
3: Search the top-2 cross domain nearest neighbor of zqinnn from the cross domain support set Qcr

z as
N(zqinnn , Qcr

z , 2).
4: if N(z,Qcr

z , 2) ∩N(zqinnn , Qcr
z , 2) ̸= ∅ then

5: return the top-1 ranked neighbor in N(z,Qcr
z , 2) ∩N(zqinnn , Qcr

z , 2).
6: else
7: Search the top-2 cross domain nearest neighbor of z from the cross domain support set Qcr

z
except zqcrnn as N(z,Qcr

z \zqcrnn , 2).
8: Search the top-2 in-domain nearest neighbor of zqcrnn from the cross domain support set Qcr

z
except zqcrnn as N(zqcrnn , Q

cr
z \zqcrnn , 2).

9: if N(z,Qcr
z \zqcrnn , 2) ∩N(zqcrnn , Q

cr
z \zqcrnn , 2) ̸= ∅ then

10: return the top-1 ranked neighbor in N(z,Qcr
z \zqcrnn , 2) ∩N(zqcrnn , Q

cr
z \zqcrnn , 2).

11: else
12: return ∅.
13: end if
14: end if

I THE SYMBOL TABLE

We add a symbol table as shown in Table 12 to clarify the meaning of the math symbols used in the
paper.
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Table 12: The meaning of the main symbols defined in the paper.
Symbol Meaning
Xi, yi, di image/category label/domain label
X , Y , D input/category label/domain label space
X , Y , D random variables defined in X , Y , D.
S, PS , NS dataset/distribution/size of dataset
PS
X , PS

Y , PS
D marginal distribution of PS on X,Y,D

Supp(·) support of a given distribution
SUL, SL labeled/unlabeled source training data
Stest unseen target testing data

PSUL ,PSL ,PStest distribution of SUL, SL, Stest
z embedding for the input x

z+, z− positive/negative embedding for z
A(x+|x) distribution of the augmentations of x
Cα, Cβ intra-domain/intra-class connectivity
Qin

z , Qcr
z in-domain/cross domain support set for z

N(z,Q, k) k-nearest neighbor of z in Q
zqinnn , zqcrnn in-domain/cross domain nearest neighbor of z
R(z,Qcr

z ) our proposed CD2NN neighbor of z
C(z,Qin

z ) our proposed ICNN neighbor of z
ecr, ein error rate of cross domain/in-domain NN

PCD2NN, Pvanilla error rate of our CD2NN/vanilla cross domain NN

21


	Introduction
	Related Work
	Methodology
	Problem Formulation
	Preliminary: Vanilla Contrastive Learning
	Destroying Intra-domain Connectivity via Strong Data Augmentation
	Constructing Intra-class Connectivity by Dual Nearest Neighbors

	Experiments
	Experimental Settings
	Experimental Results
	Ablation Study
	Discussion

	Conclusion
	Proof of Proposition
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3

	More Visualizations
	Intra-class connectivity of our method.
	Nearest neighbors searched by our method.

	More Experiments
	Experiments on the Open Domain Generalization
	Experiments on the Few-shot Domain Adaptation

	Related Works
	Unsupervised Domain Adaptation (UDA).
	Self-supervised Learning for UDA.

	Limitations
	Datasets and Implementation Details
	Datasets.
	Implementation Details.

	Surrogate Metrics for Connectivity.
	Main Algorithms
	The Symbol Table

