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Abstract

Grounded dialogue consists of conditioning
a conversation on additional latent inputs
("factoids") beyond the dialogue context,
such as Wikipedia articles, IMDB reviews,
persona, and images. Due to a scarcity of
<context, factoid> labels, it is common prac-
tice to jointly learn the knowledge-selection
and grounded response generation tasks end-
to-end. When conditioning the response
on these factoids, previous work has either
treated the factoids as a weighed average
vector, or separately computed probabilities
for each <context, factoid> pair. However,
the former creates a bottleneck whilst the
latter prevents factoids from being consid-
ered jointly. Our new method, PolyMemNet,
learns a matrix representation of the context
and factoids, allowing for multiple factoids
to be jointly considered in response selec-
tion, without imposing a bottleneck. We
show how this achieves up to a 17% boost
in knowledge-selection accuracy and 13%
in response-selection accuracy versus mem-
ory networks.

1 Introduction

There is growing interest in grounded dialogue
models which can condition their responses on
additional latent inputs ("factoids") beyond the
dialogue context, such as Wikipedia articles (Di-
nan et al., 2019), IMDB reviews (Moghe et al.,

[A] Hi how are you doing? I am
okay how about you?

Context [B] I used to do home health
aide but now I am disabled .
I love to drink fancy tea.
P I have a big library at home.
ersona

I’m a museum tour guide.
I’'m partly deaf.

I am sorry to hear that. What

Ground truth happened

MemNet I currently work for a museum.

That is no good. I'm deaf so it

PolyMemNet (ours) limits me to what I can do.

Table 1: Example predictions from the Persona
Chat validation set. PolyMemNet successfully
chooses a response that both incorporates persona
and responds to the dialogue context, while MemNet
ignores the context and just repeats the persona al-
most verbatim.

2018), persona (Zhang et al., 2018), and im-
ages (Mostafazadeh et al., 2017). This allows
the model to access latent information implic-
itly assumed by speakers. It is an effective
means of reducing hallucination (Shuster et al.,
2021) whereby the model produces plausible but
factually inaccurate responses and genericness
whereby the model produces mainly common
but bland responses (e.g. "I think so", "that’s
right" etc.) (Li et al., 2016). Following Dinan
et al. (2019), we are concerned principally with
the tasks of knowledge-selection, choosing an
appropriate factoid given the dialogue context,



and response-selection, choosing an appropri-
ate response given both the context and cho-
sen factoid (table 1). Learning the knowledge-
selection function through supervision (Kim
et al., 2020; Dinan et al., 2019) scales poorly
due to the scarcity of <context, factoid> labels,
which require manual annotation by crowdwork-
ers. Generating pseudo-labels through <factoid,
response> similarity automates this, but requires
careful engineering of the similarity function
which may not generalise to different types of
grounding where there is limited surface-level
semantic similarity. For these reasons, it is com-
mon practice to jointly learn both tasks end-to-
end (i.e. unsupervised knowledge-selection).

The requirement for gradients to flow
between knowledge-selection and response-
selection modules materially constrains how the
factoids can interact with the context during
the response-selection phase. Specifically, in
previous works, factoids are either treated as a
weighted-average vector (Mazaré et al., 2018;
Fan et al., 2021), or separate probability distribu-
tions are computed for each <context, factoid>
pair, before a final marginalisation step (Bruyn
et al., 2020; Shuster et al., 2021; Zhang et al.,
2021). Both approaches have significant down-
sides: the former creates a bottleneck similar to
RNNSs as the information from multiple factoids
must be compressed into a single vector (Bah-
danau et al., 2015) and also makes it difficult
to represent the one-to-many relation between
contexts and factoids (Kim et al., 2020); the lat-
ter prevents factoids from interacting with each
other and is much more memory intensive. This
is especially problematic for retrieval models,
because performance often scales with batch
size (Humeau et al., 2020).

We present an architecture, PolyMemNet,
that removes this bottleneck whilst allowing
factoids to be considered jointly when select-

ing a response. Specifically, our model extends
the memory network architecture (Sukhbaatar
et al., 2015) by learning multiple latent vector
representations of the dialogue context which
separately attend to the factoids, thereby al-
lowing a rich interaction between context, fac-
toids, and response candidates (table 1). We
show how this achieves up to a 17% boost
in knowledge-selection accuracy and 13% in
response-selection accuracy, while maintaining
a similar memory footprint to memory networks.
We also show how this end-to-end method of-
fers enhanced generalisation over unseen topics
compared to supervised models. Our key contri-
butions are:

* Removing the single vector bottleneck to
enable multiple hypotheses to be jointly
considered in the response-selection pro-
cess.

* Learning knowledge-selection in an unsu-
pervised manner, allowing for arbitrary
sources of grounding such as documents
or persona.

* A memory-efficient solution in which per-
formance scales with number of latent vec-
tors without material increases in memory
usage.

We anonymously make our code publicly
available on GitHub to enable reproducibility’.

2 Related work

Early work in grounded NLP separated the task
into knowledge-selection and response/answer-
generation (Dinan et al., 2019). Typically,
coarse-grained sparse retrieval techniques such
as BM25 (Robertson and Zaragoza, 2009) and
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TF-IDF (Ramos, 2003) were used to reduce
the search space over factoids, followed by a
neural reranker to perform fine-grained evalu-
ation over candidates (Chen et al., 2017). Re-
cent approaches learn the entire process end-to-
end (Lian et al., 2019), often multitasking on
labelled knowledge-selection data to reduce the
noisiness of retrieved factoids in the early part
of training (Dinan et al., 2019; Kim et al., 2020).
Two contrasting approaches to context-
factoid interaction in the response genera-
tion phase have emerged: a) Vector-based ap-
proaches obtain a weighted-average factoid vec-
tor which is summed/concatenated with the con-
text representation (Mazaré et al., 2018; Fan
et al., 2021) or employ differentiable sampling
techniques such as Gumbel-Softmax (Jang et al.,
2017; Lian et al., 2019); b) Marginalisation ap-
proaches compute separate probability scores
p(y|z, 2 ) for each <context, factoid> pair and
marginalise only at the end (Shuster et al., 2021;
Zhang et al., 2021; Bruyn et al., 2020). The for-
mer allows factoids to be considered jointly, but
bottlenecks them into a single vector. The latter
removes the bottleneck, but is more memory-
intensive and cannot consider factoids jointly.
Our PolyMemNet model takes inspiration
from late-stage interaction techniques such as
the Polyencoder in response retrieval (Humeau
et al., 2020) and ColBERT in openQA (Khat-
tab et al., 2021), which have bridged the
performance-gap between bi-encoders, in which
contexts and responses only interact via a final
dot product score and cross-encoders, which
perform full all-on-all attention. Our approach
differs in that we use the latent codes as a
hidden state which accumulates information
from both the context and factoids to perform
grounded response-selection, rather than sim-
ply in a paired retrieval task such as <context,
response> or <query, document> retrieval.

3 Methodology

PolyMemNet (figure 1) comprises context rep-
resentation (CR), knowledge-selection (KS) and
response-selection (RS) modules. The CR mod-
ule learns multiple vector representations of the
context, which in the KS module separately
query different information from the factoids.
In the RS module, it applies pseudo-relevance
feedback (Cao et al., 2008) with the response
candidates on the joint <context, factoids> rep-
resentation, before obtaining the final <context,
response> scores.

3.1 Memory Networks

In the standard memory network ("MemNet")
(see figure 1) (Sukhbaatar et al., 2015), we
obtain a vector representation of the context
x = enc(x) as a query and then perform dot
product attention with a set of memory vec-
tors H, (i.e. the factoids) as keys and values
to obtain a weighted average representation of
them. We then re-add the initial query via a skip-
connection to obtain a joint representation o.
Lastly we define the scoring function S(zx,y) as
the dot product between o, and the vector repre-
sentation of the response y and train the model
via cross entropy loss, using the other samples
in the batch as negatives.

3.2 Context representation module

MemNet can be seen as a special case of a class
of models that operate over sets of latent vectors
("codes"). We begin with some randomly ini-
tialised learnable latent codes C € R!*? where [
is the number of latent codes (we use [ = 128 for
our default setup; see table 3) and d is the dimen-
sionality of the model. We define the context
representation Oy as the result of dot product
attention between these codes as queries and the
context embeddings Hy, € R™ ¢ as keys and
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Figure 1: The PolyMemNet architecture. © denotes a dot product function and & denotes element-wise
addition. (red) highlights differences with the standard MemNet model.

values:

Oy = softmaz(CHY)H,

Note, the only difference between PolyMem-
Net and MemNet when [ = 1 is the use of a
learned code to extract a linear combination of
context embeddings, rather than the [CLS] token
or mean pooling.

3.3 Knowledge-selection module

For a given context, there are many plausible
factoids which could be used to generate a re-
sponse. This one-to-many relation (Kim et al.,
2020) makes learning to select a factoid based
on a single context vector difficult, as it is pulled
in different directions by competing factoids. By
using multiple latent context vectors however,
each vector can learn a specialisation, similar
to the effect of multi-headed attention in trans-
formers (Voita et al., 2019). This allows the

model to "hedge its bets’ and maintain multi-
ple hypotheses before viewing the available re-
sponses. Formally, we encode each of the &
factoids per sample (we set k = 4 for all of our
experiments following Zhang et al. (2021)). We
use the output from the [CLS] token which is
prepended to the factoids to obtain a fixed-size
representation for each. We define this matrix
as H, € RF*? = {z,, 2, ..., 2. }. We perform
dot product attention with these factoids, and
add a skip-connection to obtain the joint repre-
sentation O,:

0, = softmaa:(OxH;r)Hz + Oy

3.4 Response-selection module

We encode the response in the same way as the
factoids to obtain a vector y € R?. Following
(Humeau et al., 2020) we perform dot product
attention using the response as a query and the
joint representation as keys and values:



oy = softmaz(yOr)0,

This is a form of pseudo-relevance feedback
(PRF) (Cao et al., 2008), although unlike the
original PRF which operated over sparse embed-
dings, this operates over dense embeddings. As
each joint representation vector o, may have at-
tended to different information from the factoids,
the model is able to select how to incorporate
the factoids by first considering the available
response candidates. This ’look before you leap’
approach mitigates against the model predicting
a response which has no corresponding candi-
date, which is a limitation of current retrieval
models. We finally score the response by tak-
ing the dot product of each response embedding,
with its corresponding PRF representation:

S(xay)zoy'y

During training, following Henderson et al.
(2017), we recycle the other response embed-
dings in the batch as negatives.

Lyrr = Z S(xi,yi) — Z log Z &S (@iy;5)
i=1 =1

=1

3.5 Computing knowledge selection scores.

Unlike most knowledge-selection architectures,
our model does not explicitly compute a proba-
bility distribution over documents P(Z|z). In-
stead, we only have an interaction matrix €
R!** between the context representation Oy
and factoid embeddings H,. Empirically, we
find that simply mean pooling over the context
representation dimension obtains strong results
2. For the purposes of evaluating the model with
respect to knowledge-selection, we simply take

“Max pooling also gave very similar results.

the argmax of this vector as the chosen knowl-
edge.

L
1
P(Z|x) = softmazn(z 2 0, HY)
=1

Note however that this only provides a lower
bound of the model’s ability, as having multi-
ple latent vectors allows the model to maintain
competing hypotheses for knowledge-selection,
creating more holistic interaction between con-
texts, factoids and responses.

4 Experiment

We conduct experiments on both knowledge-
grounded and persona-grounded datasets (table
2), and report our results for both the knowledge-
selection and the response-selection tasks. We
compare our model both to our own baselines
and results from other papers.

4.1 Datasets

Wizard of Wikipedia (WoW). (Dinan et al.,
2019) Contains asymmetric dialogues between
an ’apprentice’ and a ’wizard’, structured
around a topic that both speakers are instructed
to deep-dive. The wizard has access to extracts
from Wikipedia (c.61 per turn) which they use
to inject knowledge into the discussion. The test
set is split into two subsets: test seen and test
unseen. The former contains topics shared with
the training data while the latter contains novel
topics. The knowledge-selection task involves
selecting the golden factoid from the c.61 can-
didates as chosen by the human wizard during
dataset creation. We report both knowledge and
response-selection.

Persona Chat (PC). (Zhang et al., 2018) Con-
tains dialogues between crowdworkers, who are



Dataset Train  Valid Test # Turns # Words
Wizard of Wikipedia 74,092 3,939 3,865 9.0 21.6
PersonaChat 131,438 7,801 6,634* 14.8 11.9

Table 2: Statistics for the datasets showing their sizes, average turns per dialogue and average words per
utterance. *test data is not actually released, so we use the validation data where relevant instead.

instructed to get to know one another. Each of
them is assigned a persona consisting of at least
5 short sentences. Similar to WoW, we treat
each persona sentence as a latent factoid. The
dataset also provides more challenging revised
personas, which contain precisifications or gen-
eralisations of the original personas: e.g. ’I like
playing sports’ could become I play football
every weekend’ or vice versa. The response-
selection task requires selecting the golden re-
sponse from 19 other random candidates. We
report response-selection only as we do not have
knowledge-selection labels.

4.2 Baseline models

For strong comparison baselines, we select mod-
els that can pre-compute factoid representations
and do not require ground truth knowledge-
selection labels. We believe this is a more realis-
tic setting given a) during inference the number
of factoids is typically too large to recompute
their representations dynamically, b) labelled
<context, factoid> data is scarce and therefore
not scalable.

Retrieval Augmented Retrieval. Similar to
RAG models (Lewis et al., 2020) except in a bi-
encoder retrieval setting: We marginalise over
each <context, factoid> pair to obtain a single
vector representation we compare against the
response vectors. The generative version of this
architecture has obtained state-of-the-art (SoTA)
results on the WoW task (Shuster et al., 2021).

Concat Transformer (PC only). Bi-encoder
which concatenates all persona sentences to di-

alogue context and encodes with all-on-all at-
tention between context and persona. Although
this approach is tangential to ours, as factoids
cannot be pre-computed, we report it for com-
pleteness, given the current SOTA models use
this approach (Ouguz et al., 2021; Wolf et al.,
2019b).

Oracle Supervision (WoW only). Bi-encoder
trained on pseudo-knowledge-labels selected by
TF-IDF (Ramos, 2003) score with the response.
We only evaluate on WoW where we have
ground truth knowledge labels. This baseline
is a scalable alternative to learning knowledge-
selection end-to-end as we do.

Memory Network. One-hop memory net-
work with a skip-connection, in which context
acts as query and factoids as the memory vectors
(Dinan et al., 2019). This baseline has shown
strong results in persona-grounding (Mazaré
et al., 2018), and contrasts against our model
as it compresses the context and factoids into a
single latent vector.

4.3 Implementation

We implement our models in PyTorch (Paszke
et al., 2019) using HuggingFace’s transform-
ers library (Wolf et al., 2019a). We finetune
our models from the TinyBERT (Jiao et al.,
2020) checkpoint using the AdamW optimizer
(Loshchilov and Hutter, 2017) with an initial
learning-rate of 5e — 5 with linear decay, with
a batch size of 128 for up to 10 epochs, until
validation loss plateaus. We limit each factoid
and response to 32 tokens, which is typically



Number of codes | Recall@1
=1 63.3
=32 68.4
=128 69.5
[ =512 70.1

Table 3: Accuracy increases with number of codes
on the Persona Chat validation set with original per-
sona.

Model Seen  Unseen
MemNet 752 56.0
Retrieval Augmented Retrieval | 73.8 55.4
PolyMemNet 78.2 58.3

Table 4: Recall@1 on the response-selection task
for WoW test sets.

sufficient to avoid truncation. To enable multi-
turn retrieval, for the context, we take the last
128 tokens which is capped at the last four turns
for PC or last two turns for WoW 3. To save
memory, we only capture gradients for the top
scoring factoids for each sample (k = 4). This
prevents the embeddings becoming stale (Guu
et al., 2020), while remaining memory-efficient.

4.4 Evaluation

We evaluate performance using recall@ [, which
measures the model’s ability to select the golden
factoid/response from a pool of candidates (Di-
nan et al., 2019). We use the validation data for
PC instead of the test data which is not publicly
available.

4.5 Results

End-to-end training beats noisy supervision.
As shown in table 5, PolyMemNet significantly
outperforms oracle supervision. This suggests
knowledge-selection benefits from the addi-
tional loss signal of the response-selection task.
The performance-gap is particularly noticeable

3 As shown in table 2, WoW utterances are on average
twice as long as those in PC

on unseen topics, where our model often outper-
forms fully-supervised methods such as TMN
and PostKS, suggesting supervision causes over-
fitting. We believe this is an important result,
as real users are unlikely to stick to the lim-
ited subset of topics covered in knowledge-
grounded datasets. We underperform the su-
pervised SKT model, however this has uses the
BERT-base model which is sigificantly larger
than TinyBERT which we use (110M parame-
ters vs 14.5M).

Enriched representations from multiple la-
tent codes. In table 5 we observe a more
significant jump when grounding the Polyen-
coder with our method (+23.7%), compared
with grounding a standard bi-encoder with Mem-
Net (+11.5%) on PC with original persona. This
suggests the performance gains are due to Poly-
MemNet making better use of knowledge, rather
than merely the superiority of the Polyencoder
over the bi-encoder. PolyMemNet achieves
a 17% boost in knowledge-selection accuracy
and 13% in response-selection accuracy versus
MemNet. PolyMemNet is even comparable to
the MemNet from Mazaré et al. (2018) which
has extensive Reddit pretraining, showing our
approach is also very sample efficient. Hav-
ing multiple codes further allows PolyMemNet
to model the one-to-many relation between con-
texts and knowledge and contexts and responses,
as the architecture can maintain multiple "hy-
pothesis’ vectors throughout the end-to-end pro-
cess - this effect is demonstrated through in-
creased performance as we increase the number
of codes (table 3).

Late-stage interaction is a good approxima-
tor of full interaction. In tables 5 and 4, we
find PolyMemNet outperforms more memory-
intensive models which employ full token-level
attention between contexts and factoids such as



Persona Chat Wiz. of Wikipedia

Method Memory usage None Original Revised | Seen UnSeen
Starspace (Zhang et al., 2018) - 31.8 49.1 322 - -
Profile Memory (Zhang et al., 2018) - 31.8 50.9 354 - -
KV Profile Memory (Zhang et al., 2018) - 34.9 51.1 35.1 - -
MemNet (Mazaré€ et al., 2018) - - - 42.1 - -
MemNet 1 (Mazaré et al., 2018) - - - 60.7 - -
E2E TMN (w/ KL) (Dinan et al., 2019) - - - - 21.1 14.3
E2E TMN (no KL) (Dinan et al., 2019) - - - - 13.4 11.8
PostKS (w/ KL) (Lian et al., 2019) - - - - 234 94
PostKS (no KL) (Lian et al., 2019) - - - - 4.8 4.2
SKT+BERT (w/ KL) (Kim et al., 2020) - - - - 26.8 18.3
SKT+BERT (no KL) (Kim et al., 2020) - - - - 0.3 0.1
Random - 5.0 5.0 5.0 2.7 2.3
TF-IDF - 25.8 30.7 24.0 7.4 7.8
Bi-encoder - 55.0 - - - -
Polyencoder (I = 128) - 56.2 - - - -
Oracle supervision - - - - 14.7 14.0
Concat Transformer (CT) 2.22x - 427 45.4 - -
MemNet 1.00x - 61.3 57.0 13.4 13.2
Retrieval Augmented Retrieval (RAR) 4.20x - 65.5 57.6 9.8 9.2
PolyMemNet (I = 128) 1.03x - 69.5%* 60.3*%* | 15.7*% 14.7

Table 5: Recall@1 for response-selection on the Persona Chat validation set and knowledge-selection
on the Wizard of Wikipedia test set. Memory usage is based on average usage during training on the
Persona Chat w/ original persona task. KL (= knowledge loss) indicates whether the model was additionally
supervised on the golden knowledge labels. t = with pretraining on 1.7B Reddit comments. Statistical
significance tests were conducted between PolyMemNet and the next best model, where * and ** denote

p < 0.05 and p < 0.01 respectively.

CT and RAR, despite being up to 4x more mem-
ory efficient. We attribute the outperformance to
a combination of the de-noising effect of vector-
based methods, given factoids are known to be
noisy at the token-level (Zheng et al., 2021),
as well as the ability to condition a prediction
on multiple factoids (compared to being treated
separately in RAR).

5 Conclusion

In this work we have presented a new architec-
ture for the task of unsupervised knowledge-
selection and grounded response-selection in an
end-to-end setting. Our PolyMemNet model
extends previous late-stage interaction retrieval
frameworks to the grounded dialogue setting,
allowing for richer context-factoid-response in-

teraction, without materially increasing memory
footprint. In knowledge-selection, particularly
on unseen topics, it is even able to close the
gap and in some cases outperform models super-
vised on knowledge labels.

Future work might consider how to extend the
interaction between latent codes and factoids,
such as by adding multiple hops to the interac-
tion, or learning weights for the attention pro-
cess. Additionally, the latent state might benefit
from additional self-attention and feed-forward
layers, as in a transformer.
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