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Abstract

Grounded dialogue consists of conditioning001
a conversation on additional latent inputs002
("factoids") beyond the dialogue context,003
such as Wikipedia articles, IMDB reviews,004
persona, and images. Due to a scarcity of005
<context, factoid> labels, it is common prac-006
tice to jointly learn the knowledge-selection007
and grounded response generation tasks end-008
to-end. When conditioning the response009
on these factoids, previous work has either010
treated the factoids as a weighed average011
vector, or separately computed probabilities012
for each <context, factoid> pair. However,013
the former creates a bottleneck whilst the014
latter prevents factoids from being consid-015
ered jointly. Our new method, PolyMemNet,016
learns a matrix representation of the context017
and factoids, allowing for multiple factoids018
to be jointly considered in response selec-019
tion, without imposing a bottleneck. We020
show how this achieves up to a 17% boost021
in knowledge-selection accuracy and 13%022
in response-selection accuracy versus mem-023
ory networks.024

1 Introduction025

There is growing interest in grounded dialogue026

models which can condition their responses on027

additional latent inputs ("factoids") beyond the028

dialogue context, such as Wikipedia articles (Di-029

nan et al., 2019), IMDB reviews (Moghe et al.,030

Context

[A] Hi how are you doing? I am
okay how about you?
[B] I used to do home health
aide but now I am disabled .

Persona

I love to drink fancy tea.
I have a big library at home.
I’m a museum tour guide.
I’m partly deaf.

Ground truth I am sorry to hear that. What
happened

MemNet I currently work for a museum.

PolyMemNet (ours) That is no good. I’m deaf so it
limits me to what I can do.

Table 1: Example predictions from the Persona
Chat validation set. PolyMemNet successfully
chooses a response that both incorporates persona
and responds to the dialogue context, while MemNet
ignores the context and just repeats the persona al-
most verbatim.

2018), persona (Zhang et al., 2018), and im- 031

ages (Mostafazadeh et al., 2017). This allows 032

the model to access latent information implic- 033

itly assumed by speakers. It is an effective 034

means of reducing hallucination (Shuster et al., 035

2021) whereby the model produces plausible but 036

factually inaccurate responses and genericness 037

whereby the model produces mainly common 038

but bland responses (e.g. "I think so", "that’s 039

right" etc.) (Li et al., 2016). Following Dinan 040

et al. (2019), we are concerned principally with 041

the tasks of knowledge-selection, choosing an 042

appropriate factoid given the dialogue context, 043
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and response-selection, choosing an appropri-044

ate response given both the context and cho-045

sen factoid (table 1). Learning the knowledge-046

selection function through supervision (Kim047

et al., 2020; Dinan et al., 2019) scales poorly048

due to the scarcity of <context, factoid> labels,049

which require manual annotation by crowdwork-050

ers. Generating pseudo-labels through <factoid,051

response> similarity automates this, but requires052

careful engineering of the similarity function053

which may not generalise to different types of054

grounding where there is limited surface-level055

semantic similarity. For these reasons, it is com-056

mon practice to jointly learn both tasks end-to-057

end (i.e. unsupervised knowledge-selection).058

The requirement for gradients to flow059

between knowledge-selection and response-060

selection modules materially constrains how the061

factoids can interact with the context during062

the response-selection phase. Specifically, in063

previous works, factoids are either treated as a064

weighted-average vector (Mazaré et al., 2018;065

Fan et al., 2021), or separate probability distribu-066

tions are computed for each <context, factoid>067

pair, before a final marginalisation step (Bruyn068

et al., 2020; Shuster et al., 2021; Zhang et al.,069

2021). Both approaches have significant down-070

sides: the former creates a bottleneck similar to071

RNNs as the information from multiple factoids072

must be compressed into a single vector (Bah-073

danau et al., 2015) and also makes it difficult074

to represent the one-to-many relation between075

contexts and factoids (Kim et al., 2020); the lat-076

ter prevents factoids from interacting with each077

other and is much more memory intensive. This078

is especially problematic for retrieval models,079

because performance often scales with batch080

size (Humeau et al., 2020).081

We present an architecture, PolyMemNet,082

that removes this bottleneck whilst allowing083

factoids to be considered jointly when select-084

ing a response. Specifically, our model extends 085

the memory network architecture (Sukhbaatar 086

et al., 2015) by learning multiple latent vector 087

representations of the dialogue context which 088

separately attend to the factoids, thereby al- 089

lowing a rich interaction between context, fac- 090

toids, and response candidates (table 1). We 091

show how this achieves up to a 17% boost 092

in knowledge-selection accuracy and 13% in 093

response-selection accuracy, while maintaining 094

a similar memory footprint to memory networks. 095

We also show how this end-to-end method of- 096

fers enhanced generalisation over unseen topics 097

compared to supervised models. Our key contri- 098

butions are: 099

• Removing the single vector bottleneck to 100

enable multiple hypotheses to be jointly 101

considered in the response-selection pro- 102

cess. 103

• Learning knowledge-selection in an unsu- 104

pervised manner, allowing for arbitrary 105

sources of grounding such as documents 106

or persona. 107

• A memory-efficient solution in which per- 108

formance scales with number of latent vec- 109

tors without material increases in memory 110

usage. 111

We anonymously make our code publicly 112

available on GitHub to enable reproducibility1. 113

2 Related work 114

Early work in grounded NLP separated the task 115

into knowledge-selection and response/answer- 116

generation (Dinan et al., 2019). Typically, 117

coarse-grained sparse retrieval techniques such 118

as BM25 (Robertson and Zaragoza, 2009) and 119

1github.com/AtticRuckverwandlung/AugmentingMemoryNetworks

2



TF-IDF (Ramos, 2003) were used to reduce120

the search space over factoids, followed by a121

neural reranker to perform fine-grained evalu-122

ation over candidates (Chen et al., 2017). Re-123

cent approaches learn the entire process end-to-124

end (Lian et al., 2019), often multitasking on125

labelled knowledge-selection data to reduce the126

noisiness of retrieved factoids in the early part127

of training (Dinan et al., 2019; Kim et al., 2020).128

Two contrasting approaches to context-129

factoid interaction in the response genera-130

tion phase have emerged: a) Vector-based ap-131

proaches obtain a weighted-average factoid vec-132

tor which is summed/concatenated with the con-133

text representation (Mazaré et al., 2018; Fan134

et al., 2021) or employ differentiable sampling135

techniques such as Gumbel-Softmax (Jang et al.,136

2017; Lian et al., 2019); b) Marginalisation ap-137

proaches compute separate probability scores138

p(y|x, zk) for each <context, factoid> pair and139

marginalise only at the end (Shuster et al., 2021;140

Zhang et al., 2021; Bruyn et al., 2020). The for-141

mer allows factoids to be considered jointly, but142

bottlenecks them into a single vector. The latter143

removes the bottleneck, but is more memory-144

intensive and cannot consider factoids jointly.145

Our PolyMemNet model takes inspiration146

from late-stage interaction techniques such as147

the Polyencoder in response retrieval (Humeau148

et al., 2020) and ColBERT in openQA (Khat-149

tab et al., 2021), which have bridged the150

performance-gap between bi-encoders, in which151

contexts and responses only interact via a final152

dot product score and cross-encoders, which153

perform full all-on-all attention. Our approach154

differs in that we use the latent codes as a155

hidden state which accumulates information156

from both the context and factoids to perform157

grounded response-selection, rather than sim-158

ply in a paired retrieval task such as <context,159

response> or <query, document> retrieval.160

3 Methodology 161

PolyMemNet (figure 1) comprises context rep- 162

resentation (CR), knowledge-selection (KS) and 163

response-selection (RS) modules. The CR mod- 164

ule learns multiple vector representations of the 165

context, which in the KS module separately 166

query different information from the factoids. 167

In the RS module, it applies pseudo-relevance 168

feedback (Cao et al., 2008) with the response 169

candidates on the joint <context, factoids> rep- 170

resentation, before obtaining the final <context, 171

response> scores. 172

3.1 Memory Networks 173

In the standard memory network ("MemNet") 174

(see figure 1) (Sukhbaatar et al., 2015), we 175

obtain a vector representation of the context 176

x = enc(x) as a query and then perform dot 177

product attention with a set of memory vec- 178

tors Hz (i.e. the factoids) as keys and values 179

to obtain a weighted average representation of 180

them. We then re-add the initial query via a skip- 181

connection to obtain a joint representation oz. 182

Lastly we define the scoring function S(x, y) as 183

the dot product between oz and the vector repre- 184

sentation of the response y and train the model 185

via cross entropy loss, using the other samples 186

in the batch as negatives. 187

3.2 Context representation module 188

MemNet can be seen as a special case of a class 189

of models that operate over sets of latent vectors 190

("codes"). We begin with some randomly ini- 191

tialised learnable latent codes C ∈ Rl×d where l 192

is the number of latent codes (we use l = 128 for 193

our default setup; see table 3) and d is the dimen- 194

sionality of the model. We define the context 195

representation Ox as the result of dot product 196

attention between these codes as queries and the 197

context embeddings Hx ∈ Rn×d as keys and 198
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Figure 1: The PolyMemNet architecture. ⊙ denotes a dot product function and ⊕ denotes element-wise
addition. (red) highlights differences with the standard MemNet model.

values:199

Ox = softmax(CHT
x )Hx200

Note, the only difference between PolyMem-201

Net and MemNet when l = 1 is the use of a202

learned code to extract a linear combination of203

context embeddings, rather than the [CLS] token204

or mean pooling.205

3.3 Knowledge-selection module206

For a given context, there are many plausible207

factoids which could be used to generate a re-208

sponse. This one-to-many relation (Kim et al.,209

2020) makes learning to select a factoid based210

on a single context vector difficult, as it is pulled211

in different directions by competing factoids. By212

using multiple latent context vectors however,213

each vector can learn a specialisation, similar214

to the effect of multi-headed attention in trans-215

formers (Voita et al., 2019). This allows the216

model to ’hedge its bets’ and maintain multi- 217

ple hypotheses before viewing the available re- 218

sponses. Formally, we encode each of the k 219

factoids per sample (we set k = 4 for all of our 220

experiments following Zhang et al. (2021)). We 221

use the output from the [CLS] token which is 222

prepended to the factoids to obtain a fixed-size 223

representation for each. We define this matrix 224

as Hz ∈ Rk×d = {z1, z2, ..., zk}. We perform 225

dot product attention with these factoids, and 226

add a skip-connection to obtain the joint repre- 227

sentation Oz: 228

Oz = softmax(OxH
T
z )Hz +Ox 229

3.4 Response-selection module 230

We encode the response in the same way as the 231

factoids to obtain a vector y ∈ Rd. Following 232

(Humeau et al., 2020) we perform dot product 233

attention using the response as a query and the 234

joint representation as keys and values: 235
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oy = softmax(yOT
z )Oz236

This is a form of pseudo-relevance feedback237

(PRF) (Cao et al., 2008), although unlike the238

original PRF which operated over sparse embed-239

dings, this operates over dense embeddings. As240

each joint representation vector oz may have at-241

tended to different information from the factoids,242

the model is able to select how to incorporate243

the factoids by first considering the available244

response candidates. This ’look before you leap’245

approach mitigates against the model predicting246

a response which has no corresponding candi-247

date, which is a limitation of current retrieval248

models. We finally score the response by tak-249

ing the dot product of each response embedding,250

with its corresponding PRF representation:251

S(x, y) = oy · y252

During training, following Henderson et al.253

(2017), we recycle the other response embed-254

dings in the batch as negatives.255

LNLL =
∑
i=1

S(xi, yi)−
∑
i=1

log
∑
j=1

eS(xi,yj)256

3.5 Computing knowledge selection scores.257

Unlike most knowledge-selection architectures,258

our model does not explicitly compute a proba-259

bility distribution over documents P (Z|x). In-260

stead, we only have an interaction matrix ∈261

Rl×k between the context representation Ox262

and factoid embeddings Hz. Empirically, we263

find that simply mean pooling over the context264

representation dimension obtains strong results265
2. For the purposes of evaluating the model with266

respect to knowledge-selection, we simply take267

2Max pooling also gave very similar results.

the argmax of this vector as the chosen knowl- 268

edge. 269

P (Z|x) = softmax(
1

L

L∑
l=1

ox,lH
T
z ) 270

Note however that this only provides a lower 271

bound of the model’s ability, as having multi- 272

ple latent vectors allows the model to maintain 273

competing hypotheses for knowledge-selection, 274

creating more holistic interaction between con- 275

texts, factoids and responses. 276

4 Experiment 277

We conduct experiments on both knowledge- 278

grounded and persona-grounded datasets (table 279

2), and report our results for both the knowledge- 280

selection and the response-selection tasks. We 281

compare our model both to our own baselines 282

and results from other papers. 283

4.1 Datasets 284

Wizard of Wikipedia (WoW). (Dinan et al., 285

2019) Contains asymmetric dialogues between 286

an ’apprentice’ and a ’wizard’, structured 287

around a topic that both speakers are instructed 288

to deep-dive. The wizard has access to extracts 289

from Wikipedia (c.61 per turn) which they use 290

to inject knowledge into the discussion. The test 291

set is split into two subsets: test seen and test 292

unseen. The former contains topics shared with 293

the training data while the latter contains novel 294

topics. The knowledge-selection task involves 295

selecting the golden factoid from the c.61 can- 296

didates as chosen by the human wizard during 297

dataset creation. We report both knowledge and 298

response-selection. 299

Persona Chat (PC). (Zhang et al., 2018) Con- 300

tains dialogues between crowdworkers, who are 301
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Dataset Train Valid Test # Turns # Words
Wizard of Wikipedia 74,092 3,939 3,865 9.0 21.6
PersonaChat 131,438 7,801 6,634* 14.8 11.9

Table 2: Statistics for the datasets showing their sizes, average turns per dialogue and average words per
utterance. *test data is not actually released, so we use the validation data where relevant instead.

instructed to get to know one another. Each of302

them is assigned a persona consisting of at least303

5 short sentences. Similar to WoW, we treat304

each persona sentence as a latent factoid. The305

dataset also provides more challenging revised306

personas, which contain precisifications or gen-307

eralisations of the original personas: e.g. ’I like308

playing sports’ could become ’I play football309

every weekend’ or vice versa. The response-310

selection task requires selecting the golden re-311

sponse from 19 other random candidates. We312

report response-selection only as we do not have313

knowledge-selection labels.314

4.2 Baseline models315

For strong comparison baselines, we select mod-316

els that can pre-compute factoid representations317

and do not require ground truth knowledge-318

selection labels. We believe this is a more realis-319

tic setting given a) during inference the number320

of factoids is typically too large to recompute321

their representations dynamically, b) labelled322

<context, factoid> data is scarce and therefore323

not scalable.324

Retrieval Augmented Retrieval. Similar to325

RAG models (Lewis et al., 2020) except in a bi-326

encoder retrieval setting: We marginalise over327

each <context, factoid> pair to obtain a single328

vector representation we compare against the329

response vectors. The generative version of this330

architecture has obtained state-of-the-art (SoTA)331

results on the WoW task (Shuster et al., 2021).332

Concat Transformer (PC only). Bi-encoder333

which concatenates all persona sentences to di-334

alogue context and encodes with all-on-all at- 335

tention between context and persona. Although 336

this approach is tangential to ours, as factoids 337

cannot be pre-computed, we report it for com- 338

pleteness, given the current SoTA models use 339

this approach (Ouguz et al., 2021; Wolf et al., 340

2019b). 341

Oracle Supervision (WoW only). Bi-encoder 342

trained on pseudo-knowledge-labels selected by 343

TF-IDF (Ramos, 2003) score with the response. 344

We only evaluate on WoW where we have 345

ground truth knowledge labels. This baseline 346

is a scalable alternative to learning knowledge- 347

selection end-to-end as we do. 348

Memory Network. One-hop memory net- 349

work with a skip-connection, in which context 350

acts as query and factoids as the memory vectors 351

(Dinan et al., 2019). This baseline has shown 352

strong results in persona-grounding (Mazaré 353

et al., 2018), and contrasts against our model 354

as it compresses the context and factoids into a 355

single latent vector. 356

4.3 Implementation 357

We implement our models in PyTorch (Paszke 358

et al., 2019) using HuggingFace’s transform- 359

ers library (Wolf et al., 2019a). We finetune 360

our models from the TinyBERT (Jiao et al., 361

2020) checkpoint using the AdamW optimizer 362

(Loshchilov and Hutter, 2017) with an initial 363

learning-rate of 5e− 5 with linear decay, with 364

a batch size of 128 for up to 10 epochs, until 365

validation loss plateaus. We limit each factoid 366

and response to 32 tokens, which is typically 367
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Number of codes Recall@1
l = 1 63.3
l = 32 68.4
l = 128 69.5
l = 512 70.1

Table 3: Accuracy increases with number of codes
on the Persona Chat validation set with original per-
sona.

Model Seen Unseen
MemNet 75.2 56.0
Retrieval Augmented Retrieval 73.8 55.4
PolyMemNet 78.2 58.3

Table 4: Recall@1 on the response-selection task
for WoW test sets.

sufficient to avoid truncation. To enable multi-368

turn retrieval, for the context, we take the last369

128 tokens which is capped at the last four turns370

for PC or last two turns for WoW 3. To save371

memory, we only capture gradients for the top372

scoring factoids for each sample (k = 4). This373

prevents the embeddings becoming stale (Guu374

et al., 2020), while remaining memory-efficient.375

4.4 Evaluation376

We evaluate performance using recall@1, which377

measures the model’s ability to select the golden378

factoid/response from a pool of candidates (Di-379

nan et al., 2019). We use the validation data for380

PC instead of the test data which is not publicly381

available.382

4.5 Results383

End-to-end training beats noisy supervision.384

As shown in table 5, PolyMemNet significantly385

outperforms oracle supervision. This suggests386

knowledge-selection benefits from the addi-387

tional loss signal of the response-selection task.388

The performance-gap is particularly noticeable389

3As shown in table 2, WoW utterances are on average
twice as long as those in PC

on unseen topics, where our model often outper- 390

forms fully-supervised methods such as TMN 391

and PostKS, suggesting supervision causes over- 392

fitting. We believe this is an important result, 393

as real users are unlikely to stick to the lim- 394

ited subset of topics covered in knowledge- 395

grounded datasets. We underperform the su- 396

pervised SKT model, however this has uses the 397

BERT-base model which is sigificantly larger 398

than TinyBERT which we use (110M parame- 399

ters vs 14.5M). 400

Enriched representations from multiple la- 401

tent codes. In table 5 we observe a more 402

significant jump when grounding the Polyen- 403

coder with our method (+23.7%), compared 404

with grounding a standard bi-encoder with Mem- 405

Net (+11.5%) on PC with original persona. This 406

suggests the performance gains are due to Poly- 407

MemNet making better use of knowledge, rather 408

than merely the superiority of the Polyencoder 409

over the bi-encoder. PolyMemNet achieves 410

a 17% boost in knowledge-selection accuracy 411

and 13% in response-selection accuracy versus 412

MemNet. PolyMemNet is even comparable to 413

the MemNet from Mazaré et al. (2018) which 414

has extensive Reddit pretraining, showing our 415

approach is also very sample efficient. Hav- 416

ing multiple codes further allows PolyMemNet 417

to model the one-to-many relation between con- 418

texts and knowledge and contexts and responses, 419

as the architecture can maintain multiple ’hy- 420

pothesis’ vectors throughout the end-to-end pro- 421

cess - this effect is demonstrated through in- 422

creased performance as we increase the number 423

of codes (table 3). 424

Late-stage interaction is a good approxima- 425

tor of full interaction. In tables 5 and 4, we 426

find PolyMemNet outperforms more memory- 427

intensive models which employ full token-level 428

attention between contexts and factoids such as 429
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Method Memory usage Persona Chat Wiz. of Wikipedia
None Original Revised Seen Unseen

Starspace (Zhang et al., 2018) – 31.8 49.1 32.2 – –
Profile Memory (Zhang et al., 2018) – 31.8 50.9 35.4 – –
KV Profile Memory (Zhang et al., 2018) – 34.9 51.1 35.1 – –
MemNet (Mazaré et al., 2018) – – – 42.1 – –
MemNet † (Mazaré et al., 2018) – – – 60.7 – –
E2E TMN (w/ KL) (Dinan et al., 2019) – – – – 21.1 14.3
E2E TMN (no KL) (Dinan et al., 2019) – – – – 13.4 11.8
PostKS (w/ KL) (Lian et al., 2019) – – – – 23.4 9.4
PostKS (no KL) (Lian et al., 2019) – – – – 4.8 4.2
SKT+BERT (w/ KL) (Kim et al., 2020) – – – – 26.8 18.3
SKT+BERT (no KL) (Kim et al., 2020) – – – – 0.3 0.1
Random – 5.0 5.0 5.0 2.7 2.3
TF-IDF – 25.8 30.7 24.0 7.4 7.8
Bi-encoder – 55.0 – – – –
Polyencoder (l = 128) – 56.2 – – – –
Oracle supervision – – – – 14.7 14.0
Concat Transformer (CT) 2.22x – 42.7 45.4 – –
MemNet 1.00x – 61.3 57.0 13.4 13.2
Retrieval Augmented Retrieval (RAR) 4.20x – 65.5 57.6 9.8 9.2
PolyMemNet (l = 128) 1.03x – 69.5** 60.3** 15.7* 14.7

Table 5: Recall@1 for response-selection on the Persona Chat validation set and knowledge-selection
on the Wizard of Wikipedia test set. Memory usage is based on average usage during training on the
Persona Chat w/ original persona task. KL (= knowledge loss) indicates whether the model was additionally
supervised on the golden knowledge labels. † = with pretraining on 1.7B Reddit comments. Statistical
significance tests were conducted between PolyMemNet and the next best model, where * and ** denote
p < 0.05 and p < 0.01 respectively.

CT and RAR, despite being up to 4x more mem-430

ory efficient. We attribute the outperformance to431

a combination of the de-noising effect of vector-432

based methods, given factoids are known to be433

noisy at the token-level (Zheng et al., 2021),434

as well as the ability to condition a prediction435

on multiple factoids (compared to being treated436

separately in RAR).437

5 Conclusion438

In this work we have presented a new architec-439

ture for the task of unsupervised knowledge-440

selection and grounded response-selection in an441

end-to-end setting. Our PolyMemNet model442

extends previous late-stage interaction retrieval443

frameworks to the grounded dialogue setting,444

allowing for richer context-factoid-response in-445

teraction, without materially increasing memory 446

footprint. In knowledge-selection, particularly 447

on unseen topics, it is even able to close the 448

gap and in some cases outperform models super- 449

vised on knowledge labels. 450

Future work might consider how to extend the 451

interaction between latent codes and factoids, 452

such as by adding multiple hops to the interac- 453

tion, or learning weights for the attention pro- 454

cess. Additionally, the latent state might benefit 455

from additional self-attention and feed-forward 456

layers, as in a transformer. 457
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