
Training-Free Long-Context Scaling of Large Language Models

Chenxin An * 1 2 Fei Huang 2 Jun Zhang Shansan Gong 1 Xipeng Qiu 3 Chang Zhou 2 Lingpeng Kong 1

Abstract
The ability of Large Language Models (LLMs)
to process and generate coherent text is markedly
weakened when the number of input tokens ex-
ceeds their pretraining length. Given the expen-
sive overhead of finetuning large-scale models
with longer sequences, we propose Dual Chunk
Attention (DCA), which enables LLAMA2 70B
to support context windows of more than 100k
tokens without continual training. By decom-
posing the attention computation for long se-
quences into chunk-based modules, DCA man-
ages to effectively capture the relative positional
information of tokens within the same chunk
(Intra-Chunk) and across distinct chunks (Inter-
Chunk), as well as integrates seamlessly with
Flash Attention. In addition to its impressive
extrapolation capability, DCA achieves perfor-
mance on practical long-context tasks that is com-
parable to or even better than that of finetuned
models. When compared with proprietary mod-
els, our training-free 70B model attains 94% of
the performance of gpt-3.5-16k, indicating
it is a viable open-source alternative. All code
and data used in this work are released at https:
//github.com/HKUNLP/ChunkLlama.

1. Introduction
The ability to comprehend and process long-context infor-
mation is essential for large language models (LLMs) (Ope-
nAI, 2023; Touvron et al., 2023a;b; Bai et al., 2023; An-
thropic, 2023) to cater to a wide range of applications effec-
tively. These include analyzing and responding to inquiries
within sizable PDFs, retaining extended dialogue history,
and empowering interactive chatbots (Wei et al., 2023; Lee
et al., 2023; Rula & D’Souza, 2023; Saad-Falcon et al.,
2023; Lv et al., 2024).

*Work done during internship at Alibaba Group 1The University
of Hong Kong 2Alibaba Group 3Fudan University. Correspondence
to: Chenxin An <cxan23@connect.hku.hk>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Recent advances have shown that the long-context ability
can be improved by further training a short-context model
on long text sequences (Ruoss et al., 2023; Rozière et al.,
2023). The impressive performance of Llama2 Long (Xiong
et al., 2023), which is trained from a mix of long text data
and the original Llama2 (Touvron et al., 2023b) pre-training
corpus, stands as a testament to this approach. Nevertheless,
due to the limited accessibility of these training corpora
and the prohibitive cost of long-context finetuning, current
open-source models often fall short in performance when
compared to the proprietary counterparts, and are generally
available in smaller sizes (e.g., 7B/13B).

Given these constraints, approaches that do not require addi-
tional training for context scaling in LLMs become particu-
larly attractive. Recent training-free methods, including LM-
infinite (Han et al., 2023) and StreamingLLM (Xiao et al.,
2023), have shown that LLMs trained on a limited context
window can efficiently process text of infinite length (Zhang
et al., 2023; 2024; Xiao et al., 2024; Qin et al., 2024). As-
suming that LLMs are unable to generalize to texts longer
than the training length, these models handle extended se-
quences by selectively retaining essential local information.
Such paradigms effectively maintain a low Perplexity (PPL),
yet they lose long-range dependencies. To retain the global
information, another perspective is to effectively extrapolate
to sequence lengths that surpass those encountered during
their training (Sun et al., 2022; Kazemnejad et al., 2023;
Liu et al., 2023b; Chi et al., 2023). Popular techniques
for Llama-based models, including Position Interpolation
(PI) (Chen et al., 2023b) and NTK-Aware RoPE (NTK) (Lo-
calLLaMA, 2023b;a), are adaptations of Rotary Positional
Encodings (RoPE) (Su et al., 2022). These scaled positional
encodings necessitate fewer finetuning steps compared to
the original RoPE, and their training costs can be further
reduced via methods such as YaRN (Peng et al., 2023) and
CLEX (Chen et al., 2023a). However, in a training-free set-
ting, we find that these approaches usually lead to a notable
increase in PPL especially in input lengths that are more
than twice the training length (§4, Table 1).

In this paper, we introduce Dual Chunk Attention (DCA),
a new training-free framework to extrapolate the context
window of LLMs. We avoid linearly downscaling the posi-
tion indices or increasing the base frequency in RoPE (Su
et al., 2022). Instead, we opt to reuse the original position

1

https://github.com/HKUNLP/ChunkLlama
https://github.com/HKUNLP/ChunkLlama

Training-Free Context Scaling of Large Language Models

indices with their embeddings from the pretrained model,
yet to redesign the construction of the relative position ma-
trix in such a way that it can accurately reflect the relative
position of two tokens as faithfully as possible. Inspired by
efficient chunk-based attention patterns (Child et al., 2019;
Song et al., 2023; Ratner et al., 2023; He et al., 2024), DCA
segments self-attention computations for a long sequence
into small chunks, each chunk being smaller than the size
of the pretraining window. DCA consists of three com-
ponents: (1) intra-chunk attention, tailored for processing
tokens within the same chunk; (2) inter-chunk attention, for
processing tokens between distinct chunks; and (3) succes-
sive chunk attention, for processing tokens in successive,
distinct chunks. These respective treatments help the model
effectively capture both long-range and short-range depen-
dencies in a sequence. In addition to that, the chunk-based
attention calculation can be seamlessly integrated with Flash
Attention 2 (Dao et al., 2022; Dao, 2023), a key element for
long-context scaling in the open-source community.1

We present a comprehensive evaluation of our models on
a diverse range of tasks that include language modeling,
passkey retrieval, and real-world long-context applications
that span question answering (Pang et al., 2022; Kočiský
et al., 2018; Dasigi et al., 2021; An et al., 2023) and sum-
marization (Zhong et al., 2021). Unlike previous work that
is usually limited to verification on 7B/13B models, the sig-
nificant training efficiency of our method makes it possible
to validate on 70B models, ensuring robust conclusions. To
verify the model’s long-context ability independent of po-
tential data exposure during pretraining, we used this paper
itself as the input and crafted a series of questions for the
models.2 Our empirical results reveal the following insights:

1. Extrapolation. On language modeling, DCA marks a
significant advance for training-free approaches. It first
shows that LLMs with a 4k context window can be ex-
panded to more than 32k without training, maintaining
a negligible increase in PPL, whereas previous methods
typically falter at context lengths beyond 8k. Furthermore,
we demonstrate that Llama2 70B, when integrated with
DCA, showcases an exceptional extrapolation capability
to handle context sizes exceeding 100k tokens.

2. Orthogonality. DCA is orthogonal to existing popular
scaled positional encodings such as PI (Chen et al., 2023b)
and NTK (LocalLLaMA, 2023b;a). We empirically show
that existing long-context LLMs, which have already sup-
ported a 32k context window, can further extrapolate to
a 192k context length while maintaining high passkey
retrieval accuracy and low perplexity.

1Without Flash Attention, the maximum input tokens for
Llama2 7B/13B is about 16k, and for Llama2 70B, it is 5k when
tested on two A100 80G GPUs in our experiments

2We invite interested readers to examine the results in Ta-
bles 6,7

3. Long-Context Understanding. We evaluate DCA on a
suite of long-context understanding benchmarks in both
zero-shot and few-shot settings. The results suggest that
our training-free models achieve performance comparable
to, or even surpassing, that of existing state-of-the-art
models built through costly continual training.

2. Background
2.1. Positional Encoding

The original positional embedding from the Transformer
model (Vaswani et al., 2017) maps absolute position indices
to a d-dimensional feature space, and incorporates this into
the input layer. The input x, associated with the position
index i, is expressed as: xi = x+ f(i), where f : N → Rd

is the (positional) embedding function.

One of the most prevalent positional encoding methods
for LLMs is the Rotary Positional Encoding (RoPE) (Su
et al., 2022). RoPE eschews the conventional approach of
infusing positional information into the input layer. Instead,
it directly incorporates this information into the attention
layer. For a sequence of l tokens, we denote the position
indices for keys and queries3 as follows:

Pk = Pq = [0, 1, . . . , l − 1]. (1)

We abuse the notation f for the embedding function of
RoPE, which accepts a query vector q or a key vector k,
and the respective position index as arguments. For example,
we have qi = f(q, Pq[i]) and kj = f(k, Pk[j]), where [i]
denotes the i-th element of the list. In the most straight-
forward case, we have P [i] = i. The function f 4outputs a
modified query or key vector that encapsulates the position
index, ensuring that the inner product between the i-th query
and the j-th key (for i ≥ j) captures the relative positional
information Pq[i]− Pk[j]. Although RoPE takes absolute
position indices as input, the result of the inner product
of q,k only contains relative position information (i.e., we
have q⊤

i kj = q⊤
mkn whenever m−n = i−j). The relative

position matrix M introduced by RoPE during self-attention
can be described as a Toeplitz matrix, as shown in Figure 1.
Each element M [i][j] = Pq[i]− Pk[j] signifies the relative
position between qi (the i-th query) and kj (the j-th key).

2.2. Extrapolation of RoPE

Recent work (Chen et al., 2023b; Chowdhury & Caragea,
2023; Chen et al., 2023a) has demonstrated that LLMs with
the original RoPE lack robust length extrapolation capabil-
ities, typically resulting in performance degradation when

3Queries and keys are usually derived by projecting the input
x through a learnable linear layer.

4A typical implementation of f can be found in model-
ing llama.py Line 211 apply rotary pos emb()

2

https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py

Training-Free Context Scaling of Large Language Models

0

3

2

1

4

5

6

9

8

7

2

1

0

3

4

5

8

7

6

9

1

0

2

3

4

7

6

5

8

9

0

1

2

3

6

5

4

7

8

0

1

2

5

4

3

6

7

0

1

4

3

2

5

6

0

3

2

1

4

5

2

1

0

3

4

1

0

2

3

0

1

2

0

1 0

0 1 2 3 4 5 6 7 8 9 10 11
𝑃!: Position ids of 𝒌

𝑃 "
:

Po
si

ti
on

 i
ds

 o
f
𝒒

11

10

9

8

7

6

5

4

3

2

1

0

𝑃!

𝑃"

1011

10

Figure 1. Visualization of the Relative Position Matrix M utiliz-
ing standard RoPE. The pretraining context window is 6 and the
input sequence length is 12. The x-axis Pk indicates the position
indices of keys, while the y-axis Pq corresponds to the position in-
dices of queries. Each matrix entry M [i][j] represents the relative
positional offset Pq[i]− Pk[j].

tested on input sequences longer than those seen during
pretraining (Li et al., 2023b; Zhu et al., 2023). Recent stud-
ies (Chen et al., 2023b; Su, 2023; Jin et al., 2024) mainly
attribute this limitation to the presence of unseen relative
positions in pretraining phase and propose to redesign the
relative position matrix. As illustrated in the example in
Figure 1, the model is trained on sequences of 6 tokens,
while inference is carried out on a sequence of 12 tokens.
This discrepancy can lead to a high PPL because relative
positions beyond 6 were never trained. Previous approaches,
such as PI and NTK, aim to mitigate this issue by reducing
the magnitude of M [i][j] to ensure it falls within the scope
of the observed context length during training. For instance,
applying PI in this example would adjust the position in-
dices by scaling: Pq[i] ⇒ Pq[i]/2 and Pk[j] ⇒ Pk[j]/2.
Consequently, the relative position matrix is also scaled:
M [i][j] = M [i][j]/2. Here, a scaling factor 2 = 12

6 is
employed to scale down the relative positions, leading to
inferior resolution of the position information and weak
extrapolation ability.

3. Method
In this section, we describe our new training-free framework
Dual Chunk Attention in detail. A running example of dual
chunk attention is shown in figure 2. Our method starts from
the intra-chunk attention (Figure 2 (a)) which is a chunk-
based efficient attention pattern (Child et al., 2019; Song
et al., 2023). The position embedding of each chunk ranges
from 0 to chunk size where the chunk size is set to be smaller
than pretraining length. The intra-chunk attention pattern
practically means directly truncating the input from left to
the chunk size discarding information from previous chunks.
Such truncation usually brings low perplexity (Xiao et al.,
2023) but loses long-range information. To address this
limitation, we implement inter-chunk attention (Figure 2

(b)) that enables attention calculations between different
chunks, albeit with less precision for distant token positions.
Finally, we introduce successive-chunk attention, a variant
of inter-chunk attention depicted in Figure 2 (c), which is
specifically applied when two chunks are adjacent in order
to preserve locality. An ablation study to show how these
attention mechanisms influence PPL and passkey retrieval
accuracy can be found in Figure 4.

3.1. Intra-Chunk Attention

Intra-Chunk Attention is employed to calculate the inner
product of queries and keys within the same chunk. For a
long sequence of length l, we partition the sequence into
n = l

s chunks, ensuring that the position indices within
each chunk will not exceed the chunk size s. Figure 2
(a) illustrates the process of segmenting a sequence of 12
tokens exceeding the pretraining length 10 into 2 chunks,
with each chunk comprising s = 6 < 10 tokens. Then the
position indices for keys and queries are scaled within the
chunk size 6. Concretely, we have position indices for keys
Pk = [0, 1, 2, 3, 4, 5︸ ︷︷ ︸

chunk 0

, 0, 1, 2, 3, 4, 5︸ ︷︷ ︸
chunk 1

] and P Intra
q = Pk, where

P Intra
q means position indices for queries during intra-chunk

attention. To formalize, in intra-chunk attention, we adjust
the position indices for queries and keys as follows:

P Intra
q = Pk = [0, 1, . . . , l − 1] mod s. (2)

For the absolute indices i and j within the same chunk i.e.,
⌊i/s⌋ = ⌊j/s⌋, satisfying 0 ≤ j ≤ i < l, the element
M [i][j] is defined as the difference between the positional
encodings of the query and the key:

M [i][j] = P Intra
q [i]− Pk[j]. (3)

When ⌊i/s⌋ = ⌊j/s⌋, we calculate M [i][j] follows Eq. 3.
The computed M of the previous example where we have a
sequence length of 12 and a chunk size of 6, is illustrated
in Figure 2 (a). The intra-chunk attention score for the
interaction between the i-th query and the j-th key is then
calculated as:

q⊤
i kj = f(q, P Intra

q [i])⊤f(k, Pk[j]). (4)

3.2. Inter-Chunk Attention

To aggregate information from other chunks, we introduce
Inter-Chunk Attention. In Llama-based LLMs, the posi-
tion indices for queries are greater than those of the keys
to reflect the left-to-right information flow, i.e, we have
Pq[i] ≥ Pk[j] whenever i ≥ j. Using Pq = P Intra

q and Pk

for attention calculation between different chunks clearly
violates this property. For example, considering qs and k1

where s is the chunk size, their relative distance given by
P Intra
q [s] = 0 and Pk[1] = 1 is -1. We maintain the position

3

Training-Free Context Scaling of Large Language Models

(a) Intra-chunk Attention (b) Inter-chunk Attention (c) Successive-Chunk Attention

0

3

2

1

4

5

9

9

9

9

9

9

2

1

0

3

4

8

8

8

8

8

8

1

0

2

3

7

7

7

7

7

7

0

1

2

6

6

6

6

6

6

0

1

5

5

5

5

5

5

0

4

4

4

4

4

4

0

3

2

1

4

5

2

1

0

3

4

1

0

2

3

0

1

2

0

1

0 1 2 3 4 5 0 1 2 3 4 5
!!: Position ids of "

9

9

9

9

9

9

9

9

9

9

9

9

!!

!"#$%&'
Chunk1

!" #$%&': Position ids of "
(inter-chunk attention)

Chunk2

!=6

0

3

2

1

4

5

2

1

0

3

4

1

0

2

3

0

1

2

0

1 0

0

3

2

1

4

5

2

1

0

3

4

1

0

2

3

0

1

2

0

1 0

0 1 2 3 4 5 0 1 2 3 4 5
!!: Position ids of "

5

4

3

2

1

0

5

4

3

2

1

0

!!

!"#$%&' Chunk1

!" #$%&': Position ids of "
(intra-chunk

attention)

Chunk2

!=6

0

3

2

1

4

5

6

9

8

7

9

9

2

1

0

3

4

5

8

7

6

8

8

1

0

2

3

4

7

6

5

7

7

0

1

2

3

6

5

4

6

6

0

1

2

5

4

3

5

5

0

1

4

3

2

4

4

0

3

2

1

4

5

2

1

0

3

4

1

0

2

3

0

1

2

0

1 0

0 1 2 3 4 5 0 1 2 3 4 5
!!: Position ids of "

9

9

9

8

7

6

9

9

9

8

7

6

!!

!"#$%&' Chunk1 Chunk2

!" #$%&': Position ids of "
(intra-chunk

attention)

5

4

3

2

1

0

5

4

3

2

1

0

!"()**

!" #$%(&: Position ids of "
(inter-chunk

attention)

!=4"=6

Figure 2. Visualization of the Relative Position Matrix M employing Dual Chunk Attention (DCA), with chunk size s = 6, pretraining
window size c = 10, and local window size w = 4 noted by the shadow in (c). The sequence is segmented into chunks to ensure that
relative positions do not exceed 9. The matrix element M [i][j] represents the relative position between the i-th query vector q and the
j-th key vector k. Unlike the original position indices for q,k in RoPE, DCA utilizes distinct position index sets Pk, P

Intra
q (defined in

Eq. 2), P Inter
q (defined in Eq. 5), P Succ

q (defined in Eq. 7) to compute the relative distances within different sections of M .

indices for keys Pk considering KV cache and seek for a
new set of Pq during inter-chunk attention, noted as P inter

q .
Given Eq. 2, the position indices for keys are cyclically re-
peated with the maximum position index max(Pk) = s− 1.
To ensure that the queries have larger position indices than
all keys from previous chunks, A simple strategy to distin-
guish distant queries is to assign them a considerably large
position index, such as the maximum position index during
pretraining c − 1 > max(Pk), where c is the pretraining
context length:

P Inter
q = [c− 1, c− 1, . . . c− 1︸ ︷︷ ︸

l elements

], (5)

When ⌊i/s⌋ ̸= ⌊j/s⌋, we can give the relative position
matrix M with qi and kj from distinct chunks as:

M [i][j] = P Intra
q [i]− Pk[j] = c− 1− Pk[j] ≥ c− s.

(6)

As reflected in Figure 2 (b), we assign P Inter
q with a constant

value of c− 1 = 9 for all positions, which is larger than the
maximum position index s− 1 = 5 in Pk. We complete the
rest part of the matrix M left blank by intra-chunk attention
with Eq. 6.

3.3. Successive-Chunk Attention

Successive-Chunk Attention can be viewed as a special case
for inter-chunk attention, proposed to maintain the locality
of LLMs where locality means LLMs tend to heavily rely on
the neighboring tokens to predict the next token (Xiao et al.,
2023; Han et al., 2023). Simply using inter-chunk attention
may no longer keep the precise relative position between
neighboring tokens, leading to performance degradation.

As shown in Figure 2(b), where the chunk size is s = 6
and the pretraining length is c = 10, the last key of the

first chunk, k5, with Pk[5] = 5, is followed by the first
query of the second chunk, q6, with the position index
P Inter
q [6] = 9. Despite their absolute distance being 1, the

relative distance between q6 and k5 is P Inter
q [6]−Pk[5] = 4.

This configuration challenges the model’s ability to maintain
locality in its attention mechanism.

Fortunately, this issue only occurs between successive
chunks, so we introduce a new successive-chunk attention
to deal with this case. Concretely, we propose to maintain
the locality of w neighboring tokens via adjusting the first
w position indices in for P Inter

q . For example, in Figure 2
(c), given pretraining context c = 10, chunk size s = 6,
and P Inter

q = [9, 9, 9, 9, 9, 9︸ ︷︷ ︸
chunk 0

, 9, 9, 9, 9, 9, 9︸ ︷︷ ︸
chunk 1

], the position in-

dices P Succ
q can be set to [6, 7, 8, 9, 9, 9︸ ︷︷ ︸

chunk 0

, 6, 7, 8, 9, 9, 9︸ ︷︷ ︸
chunk 1

] for

attention calculation between successive chunks, if we keep
a local window of w = 4. Formally, given chunk size s,
pretraining size c and local window w we have:

P Succ
q = [

w elements︷ ︸︸ ︷
s, s+ 1, . . . , s+ w − 1, c− 1, . . . , c− 1︸ ︷︷ ︸

the same for all chunks

], (7)

where w means the local window size and can be directly set
to the difference between pretraining length and chunk size
c−s. For i, j from successive chunks, the calculation results
of M [i][j] using P Succ

q andPk are reflected in Figure 2 (c)
where the shadow means the resulting local window. Eq 7
ensures that the neighboring w keys have the closest distance
to the current query.

By combining intra-chunk, inter-chunk, and successive-

4

Training-Free Context Scaling of Large Language Models

chunk attention, we finally calculate M [i][j] as:

M [i][j] =

P Intra
q [i]− Pk[j] if ⌊i/s⌋ − ⌊j/s⌋ = 0

P Succ
q [i]− Pk[j] if ⌊i/s⌋ − ⌊j/s⌋ = 1

P Inter
q [i]− Pk[j] if ⌊i/s⌋ − ⌊j/s⌋ > 1.

The inner product of q,k in DCA is consequently defined
as:

qT
i kj =

f(q, P Intra

q [i])T f(k, Pk[j]), if ⌊i/s⌋ − ⌊j/s⌋ = 0

f(q, P Succ
q [i])T f(k, Pk[j]), if ⌊i/s⌋ − ⌊j/s⌋ = 1

f(q, P Inter
q [i])T f(k, Pk[j]), if ⌊i/s⌋ − ⌊j/s⌋ > 1,

(8)

3.4. Normalization

Softmax layer The inner product calculations within the
DCA are formalized as shown in Equation 8. Subsequently,
a softmax function is applied to normalize the computed
inner products:

pi = softmax(
[
q⊤
i k0√
d

,
q⊤
i k1√
d

, . . . ,
qi⊤ki√

d

]
). (9)

where d denotes the dimension of hidden states.

Flash Attention The PyTorch-style pseudocode for how
integrating DCA with Flash Attention 2 (Dao, 2023), can
be found in Algorithm 1. The explanation and complexity
analysis of the code can be found in Appendix §A.3. With
Flash Attention, DCA attains comparable GPU memory
usage and inference speed to the original self-attention in
Llama. Results can be found in Figure 3.

4. Experiments
We evaluate our framework, DCA, on various variants of
Llama2 (Touvron et al., 2023b), specifically the 7B, 13B,
and 70B models, along with their chat counterparts, which
have a 4k pretraining context. Our Llama2-based model
is denoted as CHUNKLLAMA2. Additionally, we apply
DCA to two popular open-source long context models: (1)
Together-32k (Together, 2023)5: This model uses Positional
Interpolation (PI) as its positional encoding. The DCA-
enhanced version of this model is referred to as ChunkTo-
gether. (2) CodeLlama (Rozière et al., 2023)6: This model
applies NTK-Aware RoPE. Following the application of
DCA, the resulting model is termed ChunkCodeLlama.

4.1. Experimental Setup

DCA can be implemented by a monkey patch to replace the
inference code of the original LlamaAttention. Thanks

5https://huggingface.co/togethercomputer/
LLaMA-2-7B-32K

6https://huggingface.co/codellama

to Flash Attention 2 (Dao, 2023), for the 7B/13B variants of
CHUNKLLAMA2, we only need one single NVIDIA A100-
80G GPU for the inference. When scaling up to 70B models,
two A100 GPUs are enough to manage inference within a
16k context length. The chunk size s can be typically set to
3
4 training length and for Llama2, this value is 3072. The
number of chunks depends on the input sequence length.

In addition to training-free evaluations, we also provide
finetuned models from 7B/13B Llama2 checkpoints. This
finetuning process leverages only long conversations with
16k input tokens, following Vicuna (LMSYS, 2023) and
LongChat (Li et al., 2023a). The training dataset is sourced
from ShareGPT7 and AlpacaGPT4 (Taori et al., 2023). For
the data derived from ShareGPT, we specifically curate a
subset by extracting responses generated by GPT-4, and
dialogues that exceed 4k tokens in length. This selection
results in a compilation of 5,405 training instances.

We adhere to the training hyperparameters as specified in
the LongChat repository8. We further finetune Llama2 with
over 16k steps with a batch size of 1. The finetuning process
amounts to approximately 40 GPU hours for the 7B model
and 60 GPU hours for the 13B variant.

Datasets We evaluate the long sequence language mod-
eling performance of our CHUNKLLAMA2 on the book
corpus dataset PG19 (Rae et al., 2020), with context lengths
ranging from 4k to 192k tokens. For the 7B and 13B models,
we employ a sliding window of 256, in line with previous
work (Peng et al., 2023; Chen et al., 2023c). For 70B mod-
els, we adjust the sliding window size to 2048 and when
dealing with contexts that exceed 96k tokens, we adjust the
sliding window to be half of the input length considering
the running time. For few-shot experiments, we follow the
settings in Llama2 Long (Xiong et al., 2023). Concretely,
we evaluate 0-shot performance of CHUNKLLAMA2 on Nar-
rativeQA (Kočiský et al., 2018), 1-shot on QMSum (Zhong
et al., 2021), 2-shot on QuALITY (Pang et al., 2022) , and
2-shot for Qasper (Dasigi et al., 2021). For zero-shot exper-
iments, we test CHUNKLLAMA2 on 4 closed-ended tasks
from L-Eval (An et al., 2023): TOFEL, QuALITY (cleaned
from Pang et al. (2022)), Coursera, SFiction. We also vali-
date our model on passkey retrieval used in Mohtashami &
Jaggi (2023). Evaluations on passkey retrieval (Mohtashami
& Jaggi, 2023) can be found in Appendix A.1.

Baselines We compare with popular open-source long-
context models available in Huggingface Transformers9.
Base Models: Focused Transformer 3B (Tworkowski et al.,
2023), CLEX 7B (Chen et al., 2023a), YaRN 7B/13B (Peng
et al., 2023), MPT 30B (MosaicML, 2023b;a), Together
7B (Together, 2023), CodeLlama 7B (Rozière et al., 2023),

7https://sharegpt.com/
8https://github.com/DachengLi1/LongChat
9prior to December 1, 2023

5

https://huggingface.co/togethercomputer/LLaMA-2-7B-32K
https://huggingface.co/togethercomputer/LLaMA-2-7B-32K
https://huggingface.co/codellama
https://sharegpt.com/
https://github.com/DachengLi1/LongChat

Training-Free Context Scaling of Large Language Models

Longlora 13B/70B (Chen et al., 2023c), and Llama2 Long
7B/13B/70B (Xiong et al., 2023). Chat Models: LongChat-
v1.5-32k 7B (Li et al., 2023a), Vicuna-v1.5-16k (LMSYS,
2023) 7B/13B, Longlora-Chat 70B (Chen et al., 2023c), and
Llama2 Long-Chat 70B (Xiong et al., 2023).

4.2. Long-Sequence Language Modeling

Table 1 presents the Perplexity (PPL) scores on the PG19
validation set for various training-free and finetuned mod-
els. All these baselines are Llama-based. We demonstrate
that the previously best training-free method fails with a
context length of 16k. However, CHUNKLLAMA2 can ex-
trapolate to a context window of more than 32k, with only
an increase of 0.02 in PPL. We further demonstrate that
CHUNKLLAMA2 surpasses the results of finetuned mod-
els within a 16k context length. Notably, the 70B variant
of CHUNKLLAMA2 exhibits consistency in performance
across a range of context lengths, achieving a PPL score
that only marginally rises from 5.18 to 5.59.

We also reveal that DCA can be integrated with models that
have been further trained on longer contexts with PI (Chen
et al., 2023b) or NTK-Aware RoPE (LocalLLaMA, 2023b;a)
and support a context length of 192k in Table 2. The encour-
aging outcomes observed with 64k input tokens motivate
us to test CHUNKLLAMA2 on even longer contexts. We
progressively tested the model with input token lengths ex-
tending from 32k to 192k (Table 2). For Llama2 70B, DCA
has proven effective in extending the context window to 96k
tokens. This extension is achieved with only a minor in-
crease of 0.56 PPL compared to its original performance at
a 4k context length. Alongside evaluating CHUNKLLAMA2,
we also applied DCA to existing long-context models that
utilize different positional encodings. Integrating DCA with
existing long-context models requires only an adjustment of
the chunk size within the DCA framework. We show that
CodeLlama and Together’s Llama2 fork can be efficiently
scaled to a 192k context length using DCA with a chunk size
of 24k. We further validated the performance of our model
on the passkey retrieval task (Mohtashami & Jaggi, 2023).
The results also indicate that by integrating DCA with exist-
ing long-context models, the enhanced system maintains a
90% retrieval accuracy with an extended context length of
up to 192k tokens (Figure 7).

4.3. Practical Tasks

In contrast to previous studies that typically validate their
methods based on PPL, we also apply our framework to
both base models and instruction-finetuned chat models on
real-world benchmarks.

Few-shot Results We validate DCA on models that have
not undergone instruction tuning in a few-shot learning set-

Table 1. Perplexity (PPL) evaluation on PG19 (Rae et al., 2020)
validation set. The results highlighted in red indicate the Perplexity
has increased by more than 1.0 compared to its original value at the
pretraining context length of 4096. ReRoPE (Su, 2023) encounters
OOM (Out of Memory) problems with 16k input tokens as it is
currently not compatible with Flash Attention. The scaling factors
in PI and NTK are dynamically changed.

Model Evaluation Context Window
4096 8192 16384 32768 65536

Finetuned
Longlora-32k 7B 8.14 7.85 7.70 7.80 91.79
Together-32k 7B 8.21 7.95 7.76 7.64 >102

CodeLlama-16k 7B 8.93 8.64 8.44 8.36 8.65
CLEX-16k 7B 8.84 7.66 7.43 7.57 8.73

Training-free
Llama2 7B 7.87 >102 >102 >102 >102

Llama2-ReRoPE 7B 7.94 7.75 OOM OOM OOM
Llama2-PI 7B 7.87 9.19 15.11 >102 >102

Llama2-PI-Yarn 7B 7.87 8.80 11.75 42.42 >102

Llama2-NTK 7B 7.87 11.98 26.12 58.91 >102

Llama2-NTK-Yarn 7B 7.87 8.06 9.82 11.74 41.57
CHUNKLLAMA2 7B 7.87 7.67 7.64 7.89 15.87
CHUNKLLAMA2 13B 7.15 6.95 6.99 7.90 15.14
CHUNKLLAMA2 70B 5.24 5.18 5.21 5.30 5.59

Llama3
Llama3 8B 9.04 8.71 78.88 >102 >102

Llama3 70B 5.36 5.16 >102 >102 >102

CHUNKLLAMA3 8B 9.04 8.71 8.61 8.62 8.95
CHUNKLLAMA3 70B 5.36 5.16 5.14 5.14 5.21

ting. The results are summarized in Table 3. Experimental
settings are the same as those in Xiong et al. (2023). If
the input prompts exceed an input length of 16k tokens,
they are truncated from the left side. Most test cases within
NarrativeQA (Kočiský et al., 2018) and QMSum (Zhong
et al., 2021) have input lengths exceeding 16k tokens, while
the lengths of test cases in Qasper (Dasigi et al., 2021) and
QuALITY (Pang et al., 2022) are generally under 8k to-
kens. Without any training cost, both the 7B/13B variants of
CHUNKLLAMA2 achieve results comparable to popular fine-
tuned baselines such as YaRN (Peng et al., 2023), MPT (Mo-
saicML, 2023b), Together (Together, 2023), which are based
on previous scaled RoPE (Chen et al., 2023b; LocalLLaMA,
2023b) or Alibi (Press et al., 2022).

Unlike previous studies that usually verify their techniques
on smaller versions of Llama2, we also present results for
DCA paired with Llama2 70B, where DCA improves per-
formance by an average of more than 8.0 points over the
original Llama2 model with a 4k training length. Given
the increasing cost of long-context finetuning for 70B mod-
els, we did not find many open-source 70B baselines. We
compare our training-free method against the robust 70B
baseline, Longlora (Chen et al., 2023c), which employs
LoRA-based (Hu et al., 2021) efficient tuning based on the
Redpajama dataset (Computer, 2023) for 1000 steps support-
ing a 32k context window. The results demonstrate that our

6

Training-Free Context Scaling of Large Language Models

Table 2. Perplexity evaluation on PG19 (Rae et al., 2020) validation set with context lengths of up to 192k tokens. We test DCA on
Llama2 70B together with 2 popular further pretrained models using PI and NTK. The results highlighted in red indicate the PPL has
increased by more than 1.0 compared to its original value at the pretraining context length of 4096.

Model Position Training Evaluation Context Window
Emb context 4k 32k 64k 96k 128k 160k 192k

Llama2 7B RoPE 4k 7.87 >102 >102 >102 >102 >102 >102

CHUNKLLAMA2 7B RoPE 4k 7.87 7.89 15.87 43.57 96.21 >102 >102

Llama2 70B RoPE 4k 5.24 >102 >102 >102 >102 >102 >102

CHUNKLLAMA2 70B RoPE 4k 5.24 5.30 5.59 5.80 6.12 6.52 7.05

Llama3 8B RoPE 8k 9.04 >102 >102 >102 >102 >102 >102

CHUNKLLAMA3 8B RoPE 8k 9.04 8.61 8.62 8.95 9.43 10.04 10.66
Llama3 70B RoPE 8k 5.36 >102 >102 >102 >102 >102 >102

CHUNKLLAMA3 70B RoPE 8k 5.36 5.14 5.14 5.21 5.32 5.40 5.45
CodeLlama 7B NTK 16k 8.93 8.36 8.65 9.14 9.87 15.68 24.78
ChunkCodeLlama 7B NTK 16k 8.93 8.36 8.13 8.33 8.66 9.30 9.83
Together 7B PI 32k 8.21 7.64 >102 >102 >102 >102 >102

ChunkTogether 7B PI 32k 8.21 7.64 7.59 7.64 7.67 7.74 7.83

Table 3. Comparison between popular open-source base models (first block) and proprietary models (last block) across four research
benchmarks on their validation set. We underline the best results in each block. Results exceeding the previous best open-source finetuned
model are in bold. Llama2 Long has been trained with a total of 400B tokens over 100,000 steps. The maximum allowed prompt length is
set to 16,384 tokens. †: results are taken from Xiong et al. (2023) We use the simplest prompt: long-document Question:... Answer:.
In-context examples are randomly selected from the training set, and we also have a discussion on the selection of in-context examples in
Appendix §A.4.

Model Further Training NarrativeQA Qasper QuALITY QMSum Avgtraining context F1 (0-shot) F1 (2-shot) EM (2-shot) R-g (1-shot)

FoT 3B† ✓ 8k 16.3 15.4 20.5 10.6 15.7
Yarn 7B† ✓ 128k 20.9 26.2 32.3 11.4 22.7
Together 7B† ✓ 32k 23.3 27.3 41.2 12.6 26.1
Yarn 13B † ✓ 128k 23.4 27.1 46.4 11.9 27.2
Longlora 13B ✓ 32k 25.8 26.4 48.9 15.1 29.1
MPT 30B† ✓ 8k 22.9 29.0 41.5 10.3 25.9
Llama2-DynNTK 70B ✗ 4k 11.1 27.8 60.9 7.8 26.9
Llama2 70B† ✗ 4k 25.7 27.5 53.0 11.9 29.5
Longlora 70B ✓ 32k 34.2 29.0 69.9 15.6 37.2

CHUNKLLAMA2 7B ✗ 4k 20.0 28.2 35.6 14.7 24.6
CHUNKLLAMA2 13B ✗ 4k 26.3 29.3 47.9 15.2 29.7
CHUNKLLAMA2 70B ✗ 4k 32.5 29.6 73.2 16.0 37.8
CHUNKLLAMA3 8B ✗ 8k 27.4 30.5 52.6 15.4 31.5
CHUNKLLAMA3 70B ✗ 8k 33.7 33.1 75.4 16.0 39.5

proprietary models
Llama2 Long 7B† ✓ 32k 21.9 27.8 43.2 14.9 27.0
Llama2 Long 13B† ✓ 32k 25.6 31.2 57.6 15.7 32.5
Llama2 Long 70B† ✓ 16k 30.9 35.7 79.7 16.5 40.7

70B DCA model achieves comparable performance (37.8
vs. 37.2) requires no training steps.

Compared to the strong proprietary baseline, Llama2
Long (Xiong et al., 2023), which has been trained with
a total of 400 billion tokens (Llama2 pretraining corpus and
new long text data) over 100,000 steps, the performance
gaps for all sizes of models are generally within a 3-point
range. The in-context examples used in this experiment
are randomly selected from the training set. We have also
tried other ways to select the examples, and the details are
included in Appendix A.4.

Zero-shot Results In addition to verifying DCA on base
models, we also apply DCA on the chat version of Llama2
(with instruction tuning) in a zero-shot learning scenario.
Specifically, we test our models on four closed-ended tasks
from L-Eval (An et al., 2023) with diverse input lengths
ranging from 3k to 27k. All these datasets adopt Exact
Match (EM) as the evaluation metric. Overall, the conclu-
sions are similar to the few-shot evaluation. Our training-
free 7B/13B models show comparable performance with
open-source models with further training. Notably, in zero-
shot experiments, we demonstrate a significant improve-
ment over the Chat version of Longlora 70B (Chen et al.,
2023c). Furthermore, when compared with proprietary mod-
els such as GPT-3.5 with a 16k token context and the chat

7

Training-Free Context Scaling of Large Language Models

Table 4. Comparison with open-source chat models (first block) and proprietary models (last block) on 4 closed-ended tasks with various
input lengths from L-Eval (An et al., 2023). We underline the best results in each block. Results exceeding previous the best open-source
finetuned model are in bold. ‘dialogues’ means the mix of ShareGPT and AlpacaGPT4 used in our training. Llama2-PI-SFT and
Llama2-NTK-SFT are models trained with the same data and training steps with CHUNKLLAMA2. ‡: results are taken from Xiong et al.
(2023).

Model Finetuning Training TOFEL QuALITY Coursera SFiction Avgcorpus context (3k∼5k) (4k∼9k) (5k∼17k) (6k∼27k)

Llama2-Chat 7B ✗ 4k 51.67 37.62 29.21 60.15 48.74
Llama2-DynNTK 7B ✗ 4k 52.27 30.69 13.95 57.02 38.48
Longchat-v1.5-32k 7B ShareGPT 32k 39.77 37.62 32.99 57.02 41.85
Llama2-PI-SFT 7B Dialogues 16k 56.13 38.61 36.19 53.90 46.20
Llama2-NTK-SFT 7B Dialogues 16k 53.90 38.11 34.01 64.06 47.51
Vicuna-v1.5-16k 7B ShareGPT 16k 55.39 39.60 38.66 60.15 48.45
Llama2-Chat 13B ✗ 4k 60.96 42.57 35.75 54.68 48.99
Llama2-DynNTK 13B ✗ 4k 62.45 33.16 37.06 60.93 48.40
Vicuna-v1.5-16k 13B ShareGPT 16k 68.40 53.96 40.69 61.71 56.19
Longlora-Chat 70B LongAlpaca 32k 71.37 55.45 44.76 67.96 59.88

Training-free
CHUNKLLAMA2-Chat 7B ✗ 4k 57.62 35.14 32.12 61.72 46.64
CHUNKLLAMA2-Chat 13B ✗ 4k 66.54 43.06 41.56 57.03 52.04
CHUNKLLAMA2-Chat 70B ✗ 4k 82.15 60.39 48.54 61.72 63.20
Llama3
CHUNKLLAMA3-Instruct 8B ✗ 8k 83.27 63.86 56.24 70.31 68.42
CHUNKLLAMA3-Instruct 70B ✗ 8k 84.75 82.17 76.88 75.78 79.89
Finetuned
CHUNKLLAMA2-Chat 7B Dialogues 16k 62.08 41.58 39.68 64.06 51.85
CHUNKLLAMA2-Chat 13B Dialogues 16k 65.42 53.96 44.76 65.62 57.94

proprietary models
GPT3.5-16k-0613 Unkown – 78.43 61.38 63.51 64.84 67.03
Claude1.3-100k Unkown – 83.64 60.03 73.76 72.65 72.52
Llama2 Long-Chat 70B‡ Long doc+diag 16k 81.8 – 52.9 – –

version of Llama2 Long, the results suggest that the Llama2
70B chat model can be directly scaled to a 16k context
window without additional training with DCA, achieving
94% of the performance of gpt-3.5-turbo-16k. We
also demonstrate that our model’s performance can be en-
hanced through additional finetuning on long dialogue data
following the approach used by Vicuna (LMSYS, 2023)
and Longchat (Li et al., 2023a), both of which are popular
finetuned baselines utilizing ShareGPT. With further train-
ing, CHUNKLLAMA2-Chat outperforms the previously best
13B model, Vicuna-v1.5-13b-16k, by a significant margin
of 1.75 points.

4.4. Analysis

Efficiency In figure 3, the inference time and GPU mem-
ory of (a) the original self-attention mechanism as imple-
mented in PyTorch, Flash Attention (Dao, 2023), and our
proposed DCA (integrated with Flash Attention) are eval-
uated across various prompt lengths. These experiments
are run on a single NVIDIA 80G A100 GPU using Llama2
7B. The input long prompt is from NarrativeQA (Kočiský
et al., 2018). We conduct 20 trials and report the average
performance. Without Flash Attention, we observe that
the maximum input length manageable by a single GPU is
roughly between 12k and 16k tokens. DCA sustains similar
GPU memory consumption and inference speed, without
adding considerable overhead, with the original Flash atten-

tion.

Figure 3. Inference time and GPU memory of (a) the original self-
attention implemented by Pytorch, (b) Flash Attention (Dao, 2023),
and (c) DCA (this work).

Ablation Study To validate the three attention mecha-
nisms proposed in this work, we present an ablation study
for DCA in Figure 4, focusing on language modeling and
passkey retrieval tasks. We consider three experimental
conditions: (1) Employing only intra-chunk attention. (2)
Utilizing both intra-chunk and inter-chunk attention. (3)
Combining all three types of attention: intra-chunk, inter-
chunk, and successive chunk attention. From the results in
language modeling, we observe that using intra-chunk at-
tention which disregards information from previous chunks,
is able to maintain a very low PPL but hinders the model’s
ability to retrieve passkeys from other chunks. Introduc-
ing inter-chunk attention, we notice an improvement in
passkey retrieval performance at an input length of 12k.

8

Training-Free Context Scaling of Large Language Models

However, the loss of locality causes a significant increase in
the model’s PPL. By integrating successive chunk attention,
we achieve both a low PPL and high retrieval accuracy.

3RNk Rkk33 Rej39 jkde3

10

20

30

40

*QMi2ti qBM/Qr

S
2`

TH
2t

Bi
v

BMi`�
BMi`�YBMi2`
BMi`�YBMi2`Ybm++

3RNk Rkk33 Rej39 jkde3

0

0.5

1

*QMi2ti qBM/Qr

S
�b

bF
2v

_
2i

`B
2p

�H
�

++
m`

`�
+v

BMi`�
BMi`�YBMi2`
BMi`�YBMi2`Ybm++

Figure 4. Ablation study of DCA on language modeling (left) and
passkey retrieval (right). We test the three attention mechanisms
with input sequences from 8k to 32k.

5. Conclusion
In this paper, we present Dual Chunk Attention (DCA) as
a novel and efficient approach to overcoming the context
length limitations inherent in LLMs. By ingeniously lever-
aging the model’s existing position indices and introducing
a multi-faceted attention mechanism, DCA allows for ex-
trapolating more than 8x the training length without the
need for costly and time-consuming further training.

Impact Statement
Numerous studies have emerged targeting to expand the
supported context length of LLMs; however, due to high
training costs and incompatibilities with technologies such
as Flash Attention, the industry mainly relies predominantly
on expanding the base frequency of RoPE or PI. Our Dual
Chunk Attention (DCA) method is compatible with Flash
Attention and requires only modifications to the inference
code, negating the need for extensive retraining. DCA pre-
serves model performance within the training length, and
only benefits it beyond this range, offering compatibility
with models that have already undergone long-context fine-
tuning. Consequently, our approach may have a substantial
impact on the industry, providing a cost-effective solution
for managing long-context scenarios in LLM applications.
There are many potential societal consequences of our work,
none of which we feel must be specifically highlighted here.

Acknowledgements
We thank Yukang Chen and Hang Yan for their helpful com-
ments and open-source code. This research was supported
in part by the joint research scheme of the National Natu-
ral Science Foundation of China (NSFC) and the Research
Grants Council (RGC) under grant number N HKU714/21.

References
An, C., Gong, S., Zhong, M., Li, M., Zhang, J., Kong,

L., and Qiu, X. L-eval: Instituting standardized evalu-
ation for long context language models. arXiv preprint
arXiv:2307.11088, 2023.

Anthropic. Introducing 100K Context Windows,
2023. URL https://www.anthropic.com/index/

100k-context-windows.

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan,
Y., Ge, W., Han, Y., Huang, F., Hui, B., Ji, L., Li, M.,
Lin, J., Lin, R., Liu, D., Liu, G., Lu, C., Lu, K., Ma, J.,
Men, R., Ren, X., Ren, X., Tan, C., Tan, S., Tu, J., Wang,
P., Wang, S., Wang, W., Wu, S., Xu, B., Xu, J., Yang,
A., Yang, H., Yang, J., Yang, S., Yao, Y., Yu, B., Yuan,
H., Yuan, Z., Zhang, J., Zhang, X., Zhang, Y., Zhang, Z.,
Zhou, C., Zhou, J., Zhou, X., and Zhu, T. Qwen technical
report, 2023.

Chen, G., Li, X., Meng, Z., Liang, S., and Bing, L. Clex:
Continuous length extrapolation for large language mod-
els, 2023a.

Chen, S., Wong, S., Chen, L., and Tian, Y. Extending
context window of large language models via positional
interpolation, 2023b.

Chen, Y., Qian, S., Tang, H., Lai, X., Liu, Z., Han, S., and
Jia, J. Longlora: Efficient fine-tuning of long-context
large language models. arXiv:2309.12307, 2023c.

Chi, T.-C., Fan, T.-H., Rudnicky, A. I., and Ramadge, P. J.
Dissecting transformer length extrapolation via the lens
of receptive field analysis, 2023.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Chowdhury, J. R. and Caragea, C. Monotonic location
attention for length generalization, 2023.

Computer, T. Redpajama: an open dataset for training large
language models, 2023. URL https://github.com/

togethercomputer/RedPajama-Data.

Dao, T. Flashattention-2: Faster attention with better paral-
lelism and work partitioning, 2023.

Dao, T., Fu, D. Y., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. In NeurIPS, 2022.

Dasigi, P., Lo, K., Beltagy, I., Cohan, A., Smith, N. A., and
Gardner, M. A dataset of information-seeking questions
and answers anchored in research papers. In Proceedings
of the 2021 Conference of the North American Chapter

9

https://www.anthropic.com/index/100k-context-windows
https://www.anthropic.com/index/100k-context-windows
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data

Training-Free Context Scaling of Large Language Models

of the Association for Computational Linguistics: Hu-
man Language Technologies, pp. 4599–4610, Online,
June 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.naacl-main.365. URL https:

//aclanthology.org/2021.naacl-main.365.

Han, C., Wang, Q., Xiong, W., Chen, Y., Ji, H., and Wang,
S. Lm-infinite: Simple on-the-fly length generalization
for large language models, 2023.

He, Z., Feng, G., Luo, S., Yang, K., He, D., Xu, J., Zhang, Z.,
Yang, H., and Wang, L. Two stones hit one bird: Bilevel
positional encoding for better length extrapolation, 2024.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation
of large language models, 2021.

Jin, H., Han, X., Yang, J., Jiang, Z., Liu, Z., Chang, C.-Y.,
Chen, H., and Hu, X. Llm maybe longlm: Self-extend
llm context window without tuning, 2024.

Kazemnejad, A., Padhi, I., Ramamurthy, K. N., Das, P., and
Reddy, S. The impact of positional encoding on length
generalization in transformers, 2023.

Kočiský, T., Schwarz, J., Blunsom, P., Dyer, C., Her-
mann, K. M., Melis, G., and Grefenstette, E. The Nar-
rativeQA reading comprehension challenge. Transac-
tions of the Association for Computational Linguistics,
6:317–328, 2018. doi: 10.1162/tacl a 00023. URL
https://aclanthology.org/Q18-1023.

Lee, G., Hartmann, V., Park, J., Papailiopoulos, D., and
Lee, K. Prompted llms as chatbot modules for long open-
domain conversation. In Findings of the Association
for Computational Linguistics: ACL 2023. Association
for Computational Linguistics, 2023. doi: 10.18653/v1/
2023.findings-acl.277. URL http://dx.doi.org/10.

18653/v1/2023.findings-acl.277.

Li, D., Shao, R., Xie, A., Sheng, Y., Zheng, L., Gonzalez,
J. E., Stoica, I., Ma, X., and Zhang, H. How long can
open-source llms truly promise on context length. 2023a.

Li, S., You, C., Guruganesh, G., Ainslie, J., Ontanon, S.,
Zaheer, M., Sanghai, S., Yang, Y., Kumar, S., and Bho-
janapalli, S. Functional interpolation for relative positions
improves long context transformers, 2023b.

Liu, N. F., Lin, K., Hewitt, J., Paranjape, A., Bevilacqua,
M., Petroni, F., and Liang, P. Lost in the middle: How
language models use long contexts, 2023a.

Liu, X., Yan, H., Zhang, S., An, C., Qiu, X., and Lin, D.
Scaling laws of rope-based extrapolation, 2023b.

LMSYS. Vicuna: An open-source chatbot impress-
ing gpt-4 with 90 URL https://lmsys.org/blog/

2023-03-30-vicuna/.

LocalLLaMA. Dynamically scaled rope further increases
performance of long context llama with zero fine-tuning,
July 2023a. URL https://www.reddit.com/r/

LocalLLaMA/comments/14mrgpr/dynamically_

scaled_rope_further_increases/.

LocalLLaMA. Ntk-aware scaled rope allows llama
models to have extended (8k+) context size without
any fine-tuning and minimal perplexity degradation.,
June 2023b. URL https://www.reddit.com/

r/LocalLLaMA/comments/14lz7j5/ntkaware_

scaled_rope_allows_llama_models_to_have/.

Lv, K., Liu, X., Guo, Q., Yan, H., He, C., Qiu, X., and Lin,
D. Longwanjuan: Towards systematic measurement for
long text quality, 2024.

Mohtashami, A. and Jaggi, M. Landmark attention:
Random-access infinite context length for transformers.
arXiv preprint arXiv:2305.16300, 2023.

MosaicML. Introducing mpt-30b: Raising the bar for open-
source foundation models, 2023a. URL www.mosaicml.

com/blog/mpt-30b. Accessed: 2023-06-22.

MosaicML. Introducing mpt-7b: A new standard for open-
source, ly usable llms, 2023b. URL www.mosaicml.

com/blog/mpt-7b.

OpenAI. Gpt-4 technical report, 2023.

Pang, R. Y., Parrish, A., Joshi, N., Nangia, N., Phang, J.,
Chen, A., Padmakumar, V., Ma, J., Thompson, J., He,
H., and Bowman, S. QuALITY: Question answering
with long input texts, yes! In Proceedings of the 2022
Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language
Technologies, pp. 5336–5358, Seattle, United States,
July 2022. Association for Computational Linguistics.
doi: 10.18653/v1/2022.naacl-main.391. URL https:

//aclanthology.org/2022.naacl-main.391.

Peng, B., Quesnelle, J., Fan, H., and Shippole, E. Yarn:
Efficient context window extension of large language
models, 2023.

Press, O., Smith, N. A., and Lewis, M. Train short, test
long: Attention with linear biases enables input length
extrapolation, 2022.

Qin, Z., Sun, W., Li, D., Shen, X., Sun, W., and Zhong,
Y. Lightning attention-2: A free lunch for handling
unlimited sequence lengths in large language models.
ArXiv, abs/2401.04658, 2024. URL https://api.

semanticscholar.org/CorpusID:266900042.

10

https://aclanthology.org/2021.naacl-main.365
https://aclanthology.org/2021.naacl-main.365
https://aclanthology.org/Q18-1023
http://dx.doi.org/10.18653/v1/2023.findings-acl.277
http://dx.doi.org/10.18653/v1/2023.findings-acl.277
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
www.mosaicml.com/blog/mpt-30b
www.mosaicml.com/blog/mpt-30b
www.mosaicml.com/blog/mpt-7b
www.mosaicml.com/blog/mpt-7b
https://aclanthology.org/2022.naacl-main.391
https://aclanthology.org/2022.naacl-main.391
https://api.semanticscholar.org/CorpusID:266900042
https://api.semanticscholar.org/CorpusID:266900042

Training-Free Context Scaling of Large Language Models

Rae, J. W., Potapenko, A., Jayakumar, S. M., Hillier, C.,
and Lillicrap, T. P. Compressive transformers for long-
range sequence modelling. In 8th International Confer-
ence on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,
2020. URL https://openreview.net/forum?id=

SylKikSYDH.

Ratner, N., Levine, Y., Belinkov, Y., Ram, O., Magar, I.,
Abend, O., Karpas, E., Shashua, A., Leyton-Brown, K.,
and Shoham, Y. Parallel context windows for large lan-
guage models, 2023.

Robertson, S., Zaragoza, H., et al. The probabilistic rele-
vance framework: Bm25 and beyond. Foundations and
Trends® in Information Retrieval, 3(4):333–389, 2009.

Rozière, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan,
X. E., Adi, Y., Liu, J., Remez, T., Rapin, J., Kozhevnikov,
A., Evtimov, I., Bitton, J., Bhatt, M., Ferrer, C. C.,
Grattafiori, A., Xiong, W., Défossez, A., Copet, J., Azhar,
F., Touvron, H., Martin, L., Usunier, N., Scialom, T., and
Synnaeve, G. Code llama: Open foundation models for
code, 2023.

Rula, A. and D’Souza, J. Procedural text mining with large
language models, 2023.

Ruoss, A., Delétang, G., Genewein, T., Grau-Moya, J.,
Csordás, R., Bennani, M., Legg, S., and Veness, J. Ran-
domized positional encodings boost length generalization
of transformers, 2023.

Saad-Falcon, J., Barrow, J., Siu, A., Nenkova, A., Yoon,
D. S., Rossi, R. A., and Dernoncourt, F. Pdftriage: Ques-
tion answering over long, structured documents, 2023.

Song, K., Wang, X., Cho, S., Pan, X., and Yu, D. Zebra:
Extending context window with layerwise grouped local-
global attention, 2023.

Su, J. Rectified rotary position embeddings. https://

github.com/bojone/rerope, 2023.

Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., and Liu,
Y. Roformer: Enhanced transformer with rotary position
embedding, 2022.

Sun, Y., Dong, L., Patra, B., Ma, S., Huang, S., Benhaim,
A., Chaudhary, V., Song, X., and Wei, F. A length-
extrapolatable transformer, 2022.

Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X.,
Guestrin, C., Liang, P., and Hashimoto, T. B. Stanford al-
paca: An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca, 2023.

Together. Llama-2-7b-32k-instruct — and fine-tuning for
llama-2 models with together api, 2023. URL https://

together.ai/blog/llama-2-7b-32k-instruct.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models, 2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Tworkowski, S., Staniszewski, K., Pacek, M., Wu, Y.,
Michalewski, H., and Miłoś, P. Focused transformer:
Contrastive training for context scaling, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need, 2017.

Wang, L., Yang, N., and Wei, F. Learning to retrieve in-
context examples for large language models, 2024.

Wei, J., Kim, S., Jung, H., and Kim, Y.-H. Leveraging large
language models to power chatbots for collecting user
self-reported data, 2023.

Xiao, C., Zhang, P., Han, X., Xiao, G., Lin, Y., Zhang,
Z., Liu, Z., Han, S., and Sun, M. Infllm: Unveiling the
intrinsic capacity of llms for understanding extremely
long sequences with training-free memory, 2024.

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Ef-
ficient streaming language models with attention sinks,
2023.

Xiong, W., Liu, J., Molybog, I., Zhang, H., Bhargava, P.,
Hou, R., Martin, L., Rungta, R., Sankararaman, K. A.,
Oguz, B., Khabsa, M., Fang, H., Mehdad, Y., Narang,
S., Malik, K., Fan, A., Bhosale, S., Edunov, S., Lewis,
M., Wang, S., and Ma, H. Effective long-context scaling
of foundation models. CoRR, abs/2309.16039, 2023.
doi: 10.48550/ARXIV.2309.16039. URL https://doi.

org/10.48550/arXiv.2309.16039.

Ye, J., Wu, Z., Feng, J., Yu, T., and Kong, L. Composi-
tional exemplars for in-context learning. arXiv preprint
arXiv:2302.05698, 2023.

Zhang, J., Jiang, S., Feng, J., Zheng, L., and Kong, L. Linear
attention via orthogonal memory. ArXiv, abs/2312.11135,
2023. URL https://api.semanticscholar.org/

CorpusID:266359128.

11

https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://github.com/bojone/rerope
https://github.com/bojone/rerope
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://together.ai/blog/llama-2-7b-32k-instruct
https://together.ai/blog/llama-2-7b-32k-instruct
https://doi.org/10.48550/arXiv.2309.16039
https://doi.org/10.48550/arXiv.2309.16039
https://api.semanticscholar.org/CorpusID:266359128
https://api.semanticscholar.org/CorpusID:266359128

Training-Free Context Scaling of Large Language Models

Zhang, P., Liu, Z., Xiao, S., Shao, N., Ye, Q., and Dou,
Z. Soaring from 4k to 400k: Extending llm’s con-
text with activation beacon. ArXiv, abs/2401.03462,
2024. URL https://api.semanticscholar.org/

CorpusID:266844488.

Zhong, M., Yin, D., Yu, T., Zaidi, A., Mutuma, M., Jha, R.,
Awadallah, A. H., Celikyilmaz, A., Liu, Y., Qiu, X., and
Radev, D. QMSum: A new benchmark for query-based
multi-domain meeting summarization. In Proceedings
of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Hu-
man Language Technologies, pp. 5905–5921, Online,
June 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.naacl-main.472. URL https:

//aclanthology.org/2021.naacl-main.472.

Zhu, D., Yang, N., Wang, L., Song, Y., Wu, W., Wei, F., and
Li, S. Pose: Efficient context window extension of llms
via positional skip-wise training, 2023.

12

https://api.semanticscholar.org/CorpusID:266844488
https://api.semanticscholar.org/CorpusID:266844488
https://aclanthology.org/2021.naacl-main.472
https://aclanthology.org/2021.naacl-main.472

Training-Free Context Scaling of Large Language Models

A. Appendix
A.1. Passkey retrieval

In addition to practical tasks, we evaluate the long-context capability of LLMs to perform the passkey retrieval task as
defined in Mohtashami & Jaggi (2023). This task challenges a language model to locate a simple passkey (e.g., a five-
digit random number) embedded within a lengthy and otherwise nonsensical text sequence. The primary purpose of this
task is to determine if a Large Language Model (LLM) can maintain awareness of information distributed throughout a
lengthy input sequence. To assess retrieval accuracy, we randomly place the passkey at various document depths which are
distributed uniformly. For each document depth, we run 20 times with different passkeys and we test the input sequence
length from 4k to 20k. We compare the performance of DCA with 2 popular extension methods: PI (Chen et al., 2023b),
NTK-Aware (LocalLLaMA, 2023b;a), on the Llama2 13B model with a 4k pretraining context window. The performance
results are depicted in Figure 5. Notably, within a context length of 18k tokens, our model CHUNKLLAMA2 consistently
achieved a 100% passkey retrieval accuracy across all depths tested.

We expanded the scope of the passkey retrieval tasks by incrementally increasing the input token count from 2k to 192k.
For each input context length, the model is evaluated 20 times, with the passkey’s position randomly varied in each test.
Additionally, we also verify the Together-32k 7B model (Together, 2023), which supports a 32k token context window, and
its ChunkTogether 7B counterpart. The outcomes for both the baseline and DCA-enhanced variants of these models are
illustrated in Figure 7. With only a 4k training context length, CHUNKLLAMA2 maintains high retrieval accuracy up to a
32k context length. By integrating these findings with existing long-context models, we can feasibly extend the supported
context window to an impressive 192k tokens using a learning-free approach.

lost in the beginning: An intriguing observation is that the failure cases of PI appear to be largely unrelated to the document’s
depth, while the NTK-based approach typically excels when the passkey is positioned near the beginning of the document.
However, its effectiveness significantly diminishes—with accuracy dropping to between 40% and 80%—when the passkey
is placed in the middle sections. This trend aligns with findings reported by Liu et al. (2023a). Conversely, as the input
context is expanded, CHUNKLLAMA2 demonstrates improved performance in the middle sections but the first place where a
drop in accuracy occurs is at the beginning of the text.

(a) Llama2 PI (b) Llama2 NTK (c) ChunkLlama

Figure 5. Testing Different Learning-Free Extension Methods with a 24K Context (”Needle in a Haystack” Passkey Retrieval). All the
models have a 4k pretraining context and are not further trained. The X-axis represents the input context length, and the Y-axis indicates
the depth of the passkey within the document. For each depth, we run 20 different test cases.

Figure 6. Pressure testing Mistral-7B-Instruct-v0.2 over a 192k context length for and its DCA enhanced version ((”Needle In A
HayStack”)).

13

Training-Free Context Scaling of Large Language Models

kF 9F 3F ReF jkF e9F Rk3F RNkF
0

0.5

1

*QMi2ti qBM/Qr

�+
+m

``
�+

v

hQ;2i?2`@jkF
*?mMFhQ;2i?2`@jkF

kF 9F 3F ReF jkF e9F Rk3F RNkF
0

0.5

1

*QMi2ti qBM/Qr

�+
+m

``
�+

v

GH�K�@9F
*?mMFGH�K�@9F

(a) Llama2-4k and Chunkllama (b) Together-32k and ChunkTogether

Figure 7. Passkey retrieval over a 192k context length for Llama2 13B, Together-32k 7B and their DCA enhanced versions.

0

1 0

2 1 0

3 2 1 0

0

1 0

2 1 0

3 2 1 0

0

1 0

2 1 0

3 2 1 0

7 6 5 4

7 6 5 4

7 6 5 4

7 6 5 4

Inter-chunk

7 6 5 4

7 6 5 4

7 6 5 4

7 6 5 4

7 6 5 4

7 6 5 4

7 6 5 4

7 6 5 4

0

1 0

2 1 0

3 2 1 0

0

1 0

2 1 0

3 2 1 0

0

1 0

2 1 0

3 2 1 0

Intra-chunk

0

1 0

2 1 0

3 2 1 0

0

1 0

2 1 0

3 2 1 0

0

1 0

2 1 0

3 2 1 0

4 3 2 1

5 4 3 2

6 5 4 3

7 6 5 4

4 3 2 1

5 4 3 2

6 5 4 3

7 6 5 4

7 6 5 4

7 6 5 4

7 6 5 4

7 6 5 4

successive-chunk

(a) Intra-Chunk Attention (b) Inter-Chunk Attention (c) Successive-Chunk Attention

Figure 8. Visualization of the Relative Position Matrix M employing Dual Chunk Attention (DCA) by splitting the whole sequence into 3
chunks and the chunk size s = 4. In this case, we have the pretraining window size c = 8, and local window size w = 3. The sequence
is segmented into 3 chunks to ensure that relative positions do not exceed 7. The matrix element M [i][j] represents the relative position
between the i-th query vector q and the j-th key vector k.

A.2. More Examples

In this section, we give an example of handling a 12-token sequence but the pre-training length is only 8. Based on Llama2,
the key/query position indices will be initialized as:

Pq = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

Pk = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

When query[11] and query[0] perform an inner product, their relative position is 11, which exceeds the pre-training size.

In DCA, we set a chunk size, which is a hyperparameter smaller than the pre-training length. In this example, we can set the
chunk size to 4, which means we split the entire input into 3 chunks and give new position indices for keys:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] ⇒ [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]

We then give different position indices for queries.

Intra-chunk Attention: Calculating the attention for tokens in the same chunk

P intra
q = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]

Pk = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]

The resulting position matrix is shown in Appendix Figure 8 (a) and the maximum relative position is 3− 0 = 3.

Inter-chunk Attention: Calculating the attention for tokens in the different chunks When the pre-training length is 8, we
have the maximum position index=7.

P inter
q = [7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7]

Pk = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]

14

Training-Free Context Scaling of Large Language Models

The resulting position matrix after inter-chunk attention is shown in Appendix Figure 8 (b).

Successive-chunk Attention: Calculating the attention for tokens in successive chunks. We change the first w = 3 (a
hyperparameter) elements in P inter

q :

P succ
q = [4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7]

Pk = [0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3]

The position matrix after successive-chunk attention is shown in Appendix Figure 8 (c).

A.3. Flash Attention

We divide the standard self-attention into 3 separate flash attention calculations respectively obtaining the output from
intra-chunk attention, inter-chunk-attention, and successive chunk-attention. Algorithm 1 showcases how the 3 attention
introduced in DCA integrate with Flash Attention. We illustrate with the i-th query vector qi and it needs to calculate the
inner product with all keys kj with j ≤ i. We have n = ⌊i/s⌋ chunks before the current chunks. DCA calls 3 separate
Flash Attention operations with complexity O(i − n ∗ s)(intra-chunk attention), O(s) (succssive-chunk attention) and
O(s ∗ (n− 1)).

Algorithm 1 Pseudocode of DCA with FlashAttention

q: 1 x d query vector (tensor with shape [1, d])
i: the absolute index of q (integer)
K, V: i x d matrices for keys and values (tensors with shape [i, d])
s: chunk size (integer)
P_k, P_q_intra, P_q_succ, P_q_inter: position ids (lists of integers)
n = math.floor(i/s) # Number of chunks before the current chunk
Apply rotary position embeddings to the entire key matrix K
K = apply_rotary_pos_emb(K, P_k) # K is [i, d] after embedding

------------- Intra-chunk Attention, casual=True -------------
q_intra = apply_rotary_pos_emb(q, P_q_intra[i]) # q_intra is [1, d]
Select intra-chunk keys and values
K_intra = K[s*n:i] # K_intra is [(i - s*n), d]
V_intra = V[s*n:i] # V_intra is [(i - s*n), d]
Compute output and softmax attention map for intra-chunk attention
o_intra, map_intra = Flash(q_intra, K_intra, V_intra) # o_intra is [1, d], map_intra is [1, i - s*n]

------------- Successive-chunk Attention, casual=False -----------
q_succ = apply_rotary_pos_emb(q, P_q_succ[i]) # q_succ is [1, d]
Select successive-chunk keys and values
K_succ = K[s*(n-1):s*n] # K_succ is [s, d]
V_succ = V[s*(n-1):s*n] # V_succ is [s, d]
Compute output and softmax attention map for successive-chunk attention
o_succ, map_succ = Flash(q_succ, K_succ, V_succ) # o_succ is [1, d], map_succ is [1, s]

------------- Inter-chunk Attention, casual=False -----------
q_inter = apply_rotary_pos_emb(q, P_q_inter[i]) # q_inter is [1, d]
Select inter-chunk keys and values
K_inter = K[:s*(n-1)] # K_inter is [s*(n-1), d]
V_inter = V[:s*(n-1)] # V_inter is [s*(n-1), d]
Compute output and softmax attention map for inter-chunk attention
o_inter, map_inter = Flash(q_inter, K_inter, V_inter) # o_inter is [1, d], map_inter is [1, s*(n-1)]

Normalization
Sum the attention maps for each attention type to get normalizers
sum_intra = map_intra.sum(-1) # sum_intra is a scalar
sum_inter = map_inter.sum(-1) # sum_inter is a scalar
sum_succ = map_succ.sum(-1) # sum_succ is a scalar
normalizer = sum_intra + sum_inter + sum_succ # normalizer is a scalar

Concatenate attention outputs and divide by normalizer
output = (sum_intra*o_intra, sum_succ*o_succ, sum_inter*o_inter) / normalizer # output is [1, d]

A.4. In-Context Examples Selection

We opt to select in-context examples from the training set which is a practical and common way to obtain the examples (Ye
et al., 2023; Wang et al., 2024). We experimented with 2 different methods for this selection process: (1)Random Selection:
randomly selecting examples from the training set. (2) Retrieval-Based Selection: Using the current query, we employ

15

Training-Free Context Scaling of Large Language Models

Table 5. Comparison of few-shot results using different in-context examples

Models In-Context Examples Qasper QuALITY QMSum
F1 (2-shot) EM (2-shot) R-g (1-shot)

CHUNKLLAMA2 7B EXAMPLE BEST 27.3 33.9 15.0
CHUNKLLAMA2 7B EXAMPLE RANDOM 28.2 35.6 14.7
CHUNKLLAMA2 7B EXAMPLE WORST 28.4 35.9 14.3

CHUNKLLAMA2 13B EXAMPLE BEST 28.5 46.2 15.6
CHUNKLLAMA2 13B EXAMPLE RANDOM 29.3 47.9 15.2
CHUNKLLAMA2 13B EXAMPLE WORST 29.0 47.5 15.5

retrieval algorithms such as BM25 (Robertson et al., 2009) to find the most relevant examples from the training set. We
refer to the in-context examples with the highest retrieval score as EXAMPLE BEST and those with the lowest as EXAMPLE
WORST. The performance of different selection approaches based on CHUNKLLAMA2 7B/13B is shown in Table 5. The
performance on the summarization dataset QMSum (Zhong et al., 2021) generally is less likely to be influenced by prompt
selection. However, on the 2 question-answering datasets, we find that using the closest examples, paradoxically, leads to
the poorest outcomes and the performance of both random selection and choosing the worst example is relatively similar. A
possible explanation for this phenomenon is that when the example is highly similar, LLMs tend to copy the response given
in the example which usually leads to a wrong answer.

A.5. Performance on Unseen Data

Currently, almost all benchmarks for LLMs fail to thoroughly address the potential of data contamination, which implies that
the test data might have already been used in pretraining or finetuning phases. To demonstrate ChunkLlama’s performance
on previously unseen long-document data, we directly used the Latex code of this paper as a test case while omitting the
title, abstract, and conclusion sections. After tokenization, the total input length is 19388. We initiate the evaluation with
a set of straightforward questions that do not necessitate prior knowledge for accurate responses (see Table 6). This was
followed by a series of more challenging questions designed to assess the comprehension of the proposed DCA (refer to
Table 7).

The results indicate that, compared to the NTK, CHUNKLLAMA2 demonstrates a superior ability to correctly interpret
instructions and provide accurate responses. However, the precision of the 13B model’s answers remains suboptimal, even
for relatively simple inquiries. For instance, when queried about the finetuning corpus used by DCA, it erroneously cites the
Llama2 corpus rather than the correct corpora, which are ShareGPT and AlpacaGPT4.

On these elementary questions, ChunkLlama 70B exhibits a remarkably high accuracy rate. Moreover, ChunkLlama 70B
shows promising outcomes on more challenging queries. It is able to articulate the rationale behind our design of the inter-
chunk and successive-chunk strategies accurately. However, when we pose questions that require a global understanding of
this method, it still faces difficulties.

16

Training-Free Context Scaling of Large Language Models

Table 6. QA (Easy) results of CHUNKLLAMA2 13B/70B and Dynamic-NTK with Llama2 13B, using the content of this paper as input.
Most of the questions do not require a deep understanding of this paper. The input prompt has 19388 tokens. Dynamic-NTK is unable to
give the correct answer for all test cases. Low-quality generation results are marked with ✗.

Prompt [INST] <<SYS>> Please read the long paper and answer the questions << /SYS>> 1. Introduction \n\n
The ability to comprehend and process long-context information is essential for large language models (LLMs)
to cater to a wide range of applications effectively. These include analyzing and responding to inquiries within
sizable PDFs, retaining extended dialogue history, and empowering interactive chatbots... [/INST]

Question Can you give a title for this paper
CHUNKLLAMA270B Sure, here are some potential titles for the paper:

1. ”Dual Chunk Attention: A Training-Free Framework for Long-Context Language Models”
2. ”Efficient Long-Context Language Modeling with Dual Chunk Attention”
3. ”Scaling Long-Context Language Models without Training: A Dual Chunk Attention Approach”
4. ”DCA: A Training-Free Method for Long-Context Language Modeling”
5. ”Long-Context Language Modeling with Dual Chunk Attention: A Training...

CHUNKLLAMA2 13B Sure! Dual Chunk Attention: A Training-Free Framework for Long-Context Scaling of Large Language
Models.
This title highlights the key contributions of the paper: the proposed Dual Chunk Attention (DCA) framework,
which enables long-context scaling without additional training, and its application to various tasks. The phrase
”training-free” is also included to emphasize the main innovation of the paper.

Dynamic NTK 13B The proposed Dual Chunk Attention (DCA) framework improves the long-context scaling of Lama2 by more
than 8 times, achieving a PPL of 5.59 at a context window of 2k. ✗(ignore the instruction)

Question Which model can be scaled up to 192k context with DCA?
CHUNKLLAMA270B The Llama2 70B model can be scaled up to a 192k context window using DCA, achieving a PPL score of 5.59

CHUNKLLAMA2 13B The Llama2 70B model can be scaled up to 192k context with DCA.
Dynamic NTK 13B {\end{enumerate}\end{figure}[ht!]

\end{document}\end{document}\begin{table}✗(error)

Question In addition to Llama2, have the authors validated their method on other models?
CHUNKLLAMA270B Yes, the authors have validated their method on other models, including

Together-32k,
CodeLlama,
which are all based on Llama. They have also compared their method to a variety of open-source and
proprietary models.

CHUNKLLAMA2 13B The authors have validated their method on the following models:
* Together-32k
* CodeLlama
* Llama2 Long ✗(We did not verify DCA on Llama2 Long)

Dynamic NTK 13B The paper introduces a new training-free framework called Dual Chunk Attention (DCA) that extends the
context window by more than 8 times for 7B/13B Llama2 variants and 20 times for 70B models✗(ignore the
instruction)

Question Describe the finetuning corpus used by DCA
CHUNKLLAMA270B The finetuning corpus used by DCA is a combination of long dialogue data from ShareGPT and AlpacaGPT4

CHUNKLLAMA2 13B The finetuning corpus used by DCA is the same as the one used by the original Llama2 model, which is a
combination of the training set and the validation set of the original Llama2 model ✗(We did not use training
set of Llama)

Dynamic NTK 13B {\end{begin}\begin{table}\end{figure}
[ht!]} \end{document}\end{document}\end{document} ✗(error)

Question How many training steps does Llama2 Long need?
CHUNKLLAMA270B Llama2 Long needs 100,000 training steps

CHUNKLLAMA2 13B Llama2 Long needs 100,000 training steps.
Dynamic NTK 13B Llama2 Long needs 40,000 steps for a 4k context window. ✗(not 40,000)

Question Do the authors validate the model on L-Eval? and list the tasks
CHUNKLLAMA270B Yes, the authors validate their model on L-Eval and list the tasks in Table 4. They evaluate their model on four

closed-ended tasks from L-Eval with diverse input lengths ranging from 3k to 27k. The tasks include TOFEL,
QuALITY, Coursera, and SFiction.

CHUNKLLAMA2 13B Yes, the authors do validate the model on L-Eval and list the tasks. In the section titled ”Experiments”, the
authors present an extensive evaluation of their model on a diverse set of tasks, including NarrativeQA, Qasper,
Quality, and QMSum. ✗(These are not from L-Eval)

Dynamic NTK 13B The paper presents a new training-free framework called Dual Chunk Attention (DCA) that extends the context
window by more than 8 times for 7B/13B Llama2 variants and... ✗(ignore the instruction)

17

Training-Free Context Scaling of Large Language Models

Table 7. QA (hard) results of CHUNKLLAMA2 13B/70B and Dynamic-NTK with Llama2 13B, using the content of this paper as input.
Questions in this table typically require readers to understand this method. The input prompt has 19388 tokens. Dynamic-NTK is unable
to give the correct answer for all test cases. Low-quality generation results are marked with ✗.

Prompt [INST] <<SYS>> Please read the long paper and answer the questions << /SYS>> 1. Introduction \n\n
The ability to comprehend and process long-context information is essential for large language models (LLMs)
to cater to a wide range of applications effectively. These include analyzing and responding to inquiries within
sizable PDFs, retaining extended dialogue history, and empowering interactive chatbots... [/INST]

Question Why do the authors introduce successive-chunk attention? (Hard)
CHUNKLLAMA270B The authors introduce successive-chunk attention to address the issue of losing locality in the attention

mechanism when using inter-chunk attention. Inter-chunk attention can lead to a situation where the relative
position between two tokens in different chunks is not accurately captured, resulting in a high perplexity.
Successive-chunk attention helps to maintain locality by adjusting the position indices of the first w tokens in
each chunk to ensure that the relative position between neighboring tokens is accurately captured. This allows
the model to better handle long-context tasks that require the ability to capture long-range dependencies.

CHUNKLLAMA2 13B The authors introduce successive-chunk attention to address the issue of long-range dependencies in long-
context language models. The original positional encoding methods, such as RoPE and NTK-aware RoPE,
do not capture long-range dependencies effectively, leading to poor performance in language modeling and
passkey retrieval tasks. By introducing successive-chunk attention, the model can capture both local and
long-range dependencies.. ✗(misunderstand successive-chunk attention)

Dynamic NTK 13B The paper introduces a new training-free framework called Dual Chunk Attention (DCA) that extends the
context window by more than 8 times for 7B/13B Llama2 variants...✗(ignore the instruction)

Question Why do the authors introduce inter-chunk attention? (Hard)
CHUNKLLAMA270B The authors introduce inter-chunk attention to address the issue of poor long-range dependencies in the

intra-chunk attention module, which uses a fixed context window for attention computation. The inter-chunk
attention mechanism allows the model to attend to tokens from different chunks, enabling it to capture long-
range dependencies and improve performance on tasks that require processing long sequences.

CHUNKLLAMA2 13B 13b: The author introduces inter-chunk attention to improve the passkey retrieval performance of the model.
The author notes that using only intra-chunk attention, which disregards information from previous chunks,
can maintain a low PPL but hinder the model’s ability to retrieve passkeys from other chunks. ✗(not accurate
enough)

Dynamic NTK 13B The paper presents a new training-free framework called Dual Chunk Attention (DCA) that extends the context
window by more than 8 times for 7B/13B Llama2 variants...✗(ignore the instruction)

Question Why the relative position in DCA will not exceed the pretraining context length? (Hard)
CHUNKLLAMA270B The relative position in DCA is calculated using the position indices of the keys and queries, which are

both less than or equal to the pretraining context length. Therefore, the relative position will not exceed the
pretraining context length. (not clear enough)

CHUNKLLAMA2 13B The relative position in DCA will not exceed the pretraining context length because the model only considers
the relative positions within the same chunk. The chunks are segmented based on the pretraining context
length, and the relative positions are calculated within each chunk. (not clear enough)

Dynamic NTK 13B The relative position in Dual Chunk Attention (DCA) does not exceed the pretraining context length because it
is designed to maintain locality. (not clear enough)

Question What are the key differences between this paper and earlier papers? (Hard)
CHUNKLLAMA270B The key differences between this paper and earlier papers on large language models (LLMs) are:

1. The paper proposes a new method called Dual Chunk Attention (DCA) that enables LLMs to process
long-context information without additional training costs.
2. DCA is designed to handle long-context information by segmenting the input sequence into smaller chunks
and computing attention within each chunk, which reduces the computational cost and allows for efficient
scaling of the context window...

CHUNKLLAMA2 13B This paper proposes a new training-free framework called Dual Chunk Attention (DCA) that enables large
language models (LLMs) to process long-context information without additional training. DCA introduces a
new attention mechanism that scales the context window of LLMs without additional training, allowing for
more efficient use of computational resources.

Dynamic NTK 13B DCA is orthogonal to popular extrapolation methods such as PI and NTK-Aware RoPE, and can be integrated
with existing long-context models to scale up significantly...

18

