Stackelberg Learning from Human Feedback:
Preference Optimization as a Sequential Game

Barna Pasztor* Thomas Kleine Buening
ETH Ziirich The Alan Turing Institute

Andreas Krause
ETH Ziirich

Abstract

We propose Stackelberg Learning from Human Feedback (SLHF), a new framework
for preference optimization. SLHF frames the alignment problem as a sequential-
move game between two policies: a Leader, which commits to an action, and a
Follower, which responds conditionally on the Leader’s action. This formulation
departs from prior approaches such as Reinforcement Learning from Human Feed-
back (RLHF), which rely on assigning a scalar reward value to each action, and
Nash Learning from Human Feedback (NLHF), which seek to compute a Nash equi-
librium. SLHF decomposes preference optimization into a refinement problem for
the Follower and an optimization problem against an adversary for the Leader. The
sequential structure of SLHF naturally enables test-time improvement, as the Fol-
lower learns to refine the Leader’s actions, and these refinements can be leveraged
through iterative sampling. We compare the solution concepts of SLHF, RLHF and
NLHEF, and lay out key advantages in consistency, data sensitivity, and robustness to
intransitive preferences. Our experiments demonstrate that SLHF effectively aligns
large language models with diverse, potentially intransitive, human preferences,
and its test-time improvement generalizes across models without further training.

1 Introduction

Reinforcement Learning from Human Feedback (RLHF) has become the dominant paradigm for
aligning Large Language Models (LLMs) with human preferences [11, 26]. The standard pipeline
involves two stages: first, a reward model is trained on a dataset of pairwise human comparisons, and
second, a policy is optimized via reinforcement learning to maximize this reward [13]. While this
approach has achieved impressive results, it hinges on a critical, and often flawed, assumption: that
diverse human preferences can be faithfully represented by a single, real-valued reward function. In
practice, this assumption often fails. Scalar reward models cannot capture intransitive structures, and
even when preferences are transitive, widely used formulations such as the Bradley-Terry model [9]
can cause the learned rewards to diverge from the actual preferences [8].

A common alternative to relying on reward models and the Bradley-Terry assumption are preference
models [25], which directly predict the probability of one action being preferred over another in a
given context. However, such models might exhibit preference cycles so that the notion of policy
optimality becomes ambiguous. Nash Learning from Human Feedback (NLHF) proposes the Nash
Equilibrium (NE) as a solution to this problem by framing preference optimization as a two-player
simultaneous-move game, where the Nash equilibrium (NE) corresponds to a typically stochatic

*Corresponding author. Email: barna.pasztor@ai.ethz.ch

18th European Workshop on Reinforcement Learning (EWRL 2025).

policy whose actions are preferred to any other policy’s actions on average [34]. We extend this game-
theoretic framing by introducing Stackelberg Learning from Human Feedback (SLHF). In contrast to
NLHF, SLHF formulates preference optimization as a sequential-move game inspired by Stackelberg
dynamics [49]: a Leader first commits to an action, and a Follower then responds conditional on the
Leader’s action. This asymmetric structure offers a distinct advantage as the Follower learns to refine
a given action, an easier objective than optimizing the action directly or against a non-stationary
opponent as in NLHF. Consequently, the Leader’s objective becomes anticipating the outcome of this
refinement process and choose the action least exploitable by the Follower.

Instead of a stochastic policy, SLHF proposes a principled method to cover all actions in the preference
cycle that we call fest-time improvement: the ability to refine model outputs at inference time via
repeated sampling. This is particularly valuable when a model, trained on preferences aggregated
across diverse annotators, must ultimately align with an individual’s taste, especially since such
aggregation can induce intransitive preference cycles (Section 4). SLHF realizes this refinement
through its two components: the Leader policy produces an initial response, and the Follower
policy generates refined responses conditional on the previous output. Unlike sampling from a static
distribution, this produces a sequence of outputs that can efficiently explore the preference space.
Crucially, this allows for performance gains through test-time computation alone, without any need
for additional training or external feedback.

In summary, our main contributions are:

* We introduce Stackelberg Learning from Human Feedback (SLHF), a preference optimization
framework that models alignment as a two-player sequential game. We formalize this game
over a learned pairwise preference model and show that SLHF admits a unique Stackelberg
equilibrium under standard regularity assumptions (Section 4).

* We propose STACKELBERGGDA, an algorithm that approximates the Stackelberg equilibrium via
two-timescale gradient descent ascent. Our algorithm benefits from online RL optimization with-
out the need of an explicit reward model or expensive inference with a mixture policy (Section 5).

* Our experimental results show that the Follower, conditioned on the Leader’s output, consistently
outperforms both RLHF and NLHF baselines, whereas the Leader performs similarly to the
approximated Nash policy. Furthermore, we show that the Follower generalizes across models,
improving outputs from independently trained policies without additional fine-tuning (Section 6).

2 Related Work

Reinforcement Learning from Human Feedback (RLHF). RLHF aims to optimize a policy
based on human preferences by learning from comparisons or rankings rather than explicit numeric
rewards [60, 26]. Most RLHF methods follow a two-step pipeline introduced by Christiano et al.
[13]: first, a reward model is trained from pairwise comparisons; then, this model is used as a proxy
reward function for policy optimization, typically using PPO [46]. This framework has been widely
adopted for tasks such as text summarization [50], question answering [35, 33], and language model
fine-tuning [68, 6, 20, 39]. Recent work has also combined these two steps into a bilevel optimization
problem to jointly optimize reward model and policy [48, 53, 32].

Limitations of Reward Modeling. Most RLHF methods reduce preference learning to scalar
reward estimation, typically using the Bradley-Terry model [9]. While effective for transitive,
single-objective preferences, such models fail to represent intransitive structures and may even
misrank transitive ones under model misspecification [8]. As a result, they struggle to capture
the diversity and ambiguity of real human preferences [11]. These issues are compounded during
optimization: the final policy can be highly sensitive to the distribution of training comparisons [34]
and may collapse to a single preference mode under continued training [63]. Interestingly, even when
preferences are elicited from LLMs, as in the AlpacaEval framework [17], the feedback can exhibit
intransitive preference structures [64]. In contrast, we work directly with pairwise preference signals
without imposing an underlying reward model. This enables optimization with respect to diverse and
potentially intransitive feedback.

Preference Optimization. To address the limitations of reward modeling in RLHF, TPO [5]
extends Direct Preference Optimization (DPO) [43] by optimizing for the win rate against a reference

policy. Nash Learning from Human Feedback (NLHF) casts the learning problem as a two-player
simultaneous-move game and introduces NASH-MD-PG and NASH-EMA-PG to approximate
the Nash Equilibrium (NE) of a learned preference model via mirror descent [34]. Subsequent
work has extended this perspective, proposing various algorithms to optimize for (approximate) NE,
including ONLINE-IPO [10], SPPO [62], SPO [51], INPO [66], DNO [44], RSPO [52], NASH-RS
[30], and MPO [56]. These methods typically converge to mixed strategies unless one option is
majority-preferred, even in non-regularized settings [30], due to the symmetry of simultaneous-move
games. In contrast, we formulate preference optimization as a sequential-move game, inspired by
Stackelberg (Leader-Follower) dynamics. Here, the Leader commits first, and the Follower responds
conditionally on the Leader’s action. This asymmetric structure leads to a different solution concept
than the NE, admitting deterministic policies in the non-regularized limit.

Test-time Preference Improvement. Improving the capabilities of LLMs through additional
computation at test-time has received significant attention recently, especially in verifiable domains
such as coding or mathematics [59]. Closest to our work are self-correction algorithms that aim to
improve their responses without external feedback at test-time. A natural approach to self-correction
is to provide instructions only without further training, which, however, can lead to performance
degradation [24, 67, 54, 41]. Other work on training models for self-correction either assumes human
or Al revisions [45, 41] or a reward function scoring responses [58, 2, 65, 28]. Similarly to SLHF,
Kumar et al. [28] also propose to train an LLM in a sequential manner, however, assume a reward
model and train in two-stages instead of a single loop. On the other hand, STACKELBERGGDA can
self-improve on general preferences and train in a single loop.

3 Problem Statement

We consider a contextual bandit setting with a finite set of contexts X’ and actions). The contexts x
are sampled from a fixed and known distribution p € Ay, where A y denotes the probability simplex
over X. A policy 7 : X — Ay maps each context z € X to a discrete probability distribution
(- | x) € Ay, where Ay is the probability simplex over). We let IT := {m: X — Ay} denote the
set of all policies. In the case of LLM fine-tuning, X’ corresponds the set of prompts,) to the set of
responses, and 7 to the LLM.

Preferences are observed as pairwise comparisons between two actions y €) and iy’ €) given a
context x € X and provided by a human or Al annotator a. The annotator is drawn at random from
a distribution v € A 4, where A := {1, ..., A} denotes the set of all annotators. The feedback of
annotator a is then given by y* =, 7', where y* and 7' are the preferred and non-preferred actions,
respectively. Let the preference function p(y = y' | «) define the probability that y is preferred over
y’ given x, where the randomness is due to the choice of annotator, that is, the preference function
is given by p(y = ' | @) == Eqy [1{y =4 v’ | 2}].> Slightly overloading notation, we define the
preference over two policies 7 and 7’ given context x as

p(r =7 [@) = Eyor(o)y mr (o) [Py = ¥ | T)].)

Averaging over the context distribution p, the expected probability that 7 is preferred over 7’ is then
given by p(m > ') == Epp[p(m = 7' | z)].

w

3.1 Background on Existing Solution Concepts and Approaches

For any context x € X, if there exists an action y €) such that p(y} > y |) > 0.5 for all
y € Y, we call yx a Condorcet winner for x. If preferences over actions are transitive, i.e., there
exists a total order over actions, then a Condorcet winner exists and is the first in that order. If
every context x € X admits a Condorcet winner, one can simply define the optimal policy 7* by
setting 7*(x) = y for all z € X'. However, if preferences form cycles or exhibit other irregularities,
a Condorcet winner may not exist. In Section 4.1, we show that even if all annotators in v have
transitive preferences, the aggregated preferences can still exhibit cycles. While defining the optimal
policy 7* is straightforward when a Condorcet winner exists, in the presence of diverse and cyclic
preferences, the concept of optimality is ambiguous. Previous work typically adopts one of two
approaches, each associated with a distinct notion of optimality, which we briefly review below.

*This can be straightforwardly generalized to the case where each annotator is associated with a probabilistic
preference function p, (y = v’ |) that describes the probability that annotator a prefers 3’ over y given .

Reinforcement Learning from Human Feedback (RLHF). RLHF as proposed by Christiano
et al. [13] and adapted to language modeling by Ziegler et al. [68] splits preference optimization into
two steps. First, it assumes that the preference function p follows the Bradley-Terry model [9] so that

ply =y | x) =o(r(z,y) —r(z,y)), (2)

where o(x) = m is the sigmoid function and r : X x) — R is a real-valued reward function.
The reward function 7 is unknown so that an estimator 7 is used that maximizes the log-likelihood of

a given dataset D = {(z;,y?, y})}¥,.

In a second step, the policy 7* is chosen to maximize the expected reward with respect to 7 regularized
by the Kullback-Leibler (KL) divergence against a fixed reference policy 7™ € II:

e arg I;leaﬁ(Ew~p |:Ey~7r(|ac) [’F(aj» y)} — 7KL, (71— || ﬂ_ref) ’ (3)

where 7 > 0 and KL, (7 ||) is computed between 7 (- | z) and (- |). Under the Bradley-Terry
assumption, Equation (3) admits a unique closed-form solution [43]. However, additive score models
like Bradley-Terry are provably limited in expressing cyclic or intransitive preference structures,
which have been empirically observed in both strategic games [8] and human preference data [3, 11].
Consequently, the optimal policy 7* depends critically on the data distribution in the training set D,
especially its sampling biases [34], which we elaborate more on in Section 4.1.

Nash Learning from Human Feedback (NLHF). NLHF provides an alternative approach to
optimizing preferences by formulating the problem as a simultaneous-move game between two
policies w € IT and «’ € II [34]. The optimization problem is given by:

max min E, ., [p(w =7 | 2) — TKLg (7 || 7™0) 4 7KL, (' || ’ﬂ'ret)} . 4)
well n/ell

The solution to Equation (4) is a Nash equilibrium (7*, 7"*), where neither side can be improved
unilaterally. The existence and uniqueness of this equilibrium follows from the concave-convex nature
of the objective [34]. Unlike RLHF, which relies on a fixed dataset D of labeled comparisons and is
sensitive to its sampling distribution, NLHF collects feedback during training and does not assume a
specific preference structure. This makes NLHF better suited to situations where online feedback is
available and preferences are diverse. Notably, if there is no action that is majority-preferred, the
NE must be mixed even in the absence of KL regularization [30]. This inherent stochasticity can be
undesirable in applications where consistency and reliability are critical.

4 Stackelberg Learning from Human Feedback (SLHF)

We now present Stackelberg Learning from Human Feedback (SLHF), a novel perspective on the
preference optimization problem. Inspired by Stackelberg games [49], we adopt a game-theoretic
approach and model the optimization as a sequential-move game between two players: the Leader
and the Follower. In our formulation, the Leader first observes the context and chooses its action
y ~ 7(- |). Then, the Follower observes both the context = and the Leader’s action y and chooses
its own action y’ ~ w(- | x,y). The Follower’s policy w is chosen from the set of policies that are
conditioned on both inputs = {w : X x Y — Ay }. Formally, the optimization problem given two
reference policies 7" € IT and w™' € € is defined as:

Eleaﬁiglelg Ewwp[EyNﬂ'(-|x)[Ey’~w(~|£L’A,y)[p(y > y/ | LIZ‘)]—}—TFKLI}y(W || wref)] _TLKLw(ﬂ- H 7Tref):| (5)

where 7L, 7 > 0 are player-specific regularization parameters, and the Follower’s regularization

term, KL, , (w || w™), is computed between w(- | z,y) and w™ (- | 2, y). Note that in the absence of
regularization, i.e., 7 = 7 = 0, Equation (5) defines a sequential-move constant-sum game.

SLHF decomposes the preference optimization task into two distinct roles, setting it apart from
single-policy methods like RLHF and NLHF. The Follower leverages its informational advantage of
observing the Leader’s committed action. This simplifies its task to learning a specialized refinement
policy that finds the best response to a known output, rather than optimizing against a non-stationary
opponent. The Leader, in turn, must anticipate this refinement and learn to produce initial actions
that are robust, meaning they remain highly preferred even after the Follower’s improvements. In

Table 1: Transitive individual annotator prefer- Table 2: The preference function derived from

ences over three options: {A, B, C'}. the individual rankings in Table 1.
Preference Relationship Proportion A B C
A-B>C o Al 05 1-p5 o
B-C>A B B 8 05 | 1—v
C-A-B gl Cli-al| ~ 0.5

Section 4.1, we illustrate that when preferences form a cycle and no Condorcet winner exists, the
Leader selects the least exploitable action, while the Follower traverses the preference cycle, covering
all plausibly optimal actions with minimal samples.

It is worth highlighting that Equation (5) differs from many common Stackelberg formulations studied
in the algorithmic game theory literature [14], where the Leader commits to a stochastic policy 7, and
the Follower selects a response w conditional on 7 but without access to the realization y ~ (- |).
In contrast, the Follower gets to condition on y in SLHF, which provides strictly more information
when 7 is stochastic and yields an easier stationary problem.

In line with previous results that the RLHF optimization problem (3) admits a closed-form solution,
we show that there exists a unique solution to the SLHF problem (5). The proof is deferred to the
Appendix A.1.

Proposition 1. Let 7%, 7F > 0 and suppose that 7(y | x) > 0 for all (x,y) € X x). For
any preference function p(y > y' | x), there exists a unique solution (7*,w*) to the preference
optimization problem in Equation (5).

The solution (7*,w*) is called a Stackelberg equilibrium. 1t is folklore in the algorithmic game theory
literature that there exists a deterministic Stackelberg equilibrium when the Leader’s realized action
is observed by a best responding Follower, as there always exists a deterministic best response for the
Follower and therefore there is no point in randomizing for the Leader. This stands in contrast to the
NE, which is in general stochastic.

Remark 2. For any preference function p(y = y' | x), the SLHF optimization problem (5) has a
deterministic solution (7*,w*) when 7% = 7F = 0. Note that this solution may not necessarily be
unique (due to the lack of regularization).

For completeness, we provide a proof for Remark 2 in Appendix A.2.

Test-time Improvement. Motivated by applications such as text summarization, open-ended
generation, and media creation, where users can reject outputs and ask for a new sample, we introduce
the concept of test-time improvement for preference optimization. While previous works address this
problem in verifiable domains and for reward models (see Section 2), to the best of our knowledge,
we are the first to consider it in the context of general preference models. We assume that at test-time,
a single user (annotator) a ~ v and a context x are sampled. The user then has the option to resample
the action until they receives one that suits their preference, analogously to the pass@k metric for
verifiable domains. This is a non-trivial task as the models are trained on the average preferences of
the population v while at test-time the task is to optimize for a single user. The Stackelberg solution
(m*,w*) naturally extends to this setting: it returns an initial action y; ~ 7*(- |), and subsequent
actions are sampled as y; ~ w*(- | z,y;—1) fori = 2,3,..., thereby progressively improving the
output. We illustrate test-time improvement qualitatively in Section 4.1 and provide experimental
evidence in Section 6, demonstrating that LLLMs fine-tuned with STACKELBERGGDA exhibit this
behavior.

4.1 Comparison of Solution Concepts

Before we describe how to approximate the Stackelberg equilibrium, we present the differences
between RLHF, NLHF, and SLHF at the example of the so-called Condorcet paradox [15].

Consider a problem with |X'| = 1 and Y = {4, B, C}, and let the population of annotators .A consist
of three distinct types. Table | defines the annotators’ preferences over). Each type of annotator
has a strict preference ranking and the proportion of the types according to the distribution over
annotators v is such that o« 4+ 8 + v = 1. Table 2 shows the aggregated preferences of the whole

population. For example, row A column B states that 1 — 3 of the population prefers A over B,
ie,p(A > B) =1— (. Acommon example is to choose &« = = v = 1/3, which leads to a
cyclic relationship between three actions in which A > B > C but C' > A. Hence, there exists no
Condorcet winner in this case.’ This example is often referred to as the Condorcet paradox, because
the annotators individually have transitive preferences (Table 1), but their aggregated preferences
form a cycle (Table 2). For ease of presentation, we consider a non-regularized problem in the rest of
this section so that 7 = 7% = 71" = 0.

RLHF Solution. Our first observation is that the estimated reward function 7 : X x Y — R
depends heavily on the sampling distribution of the dataset D used to estimate 7. Consider a case
where D consists only of observations between pairs (A, B) and (B, C') and the pair (A, C') is not
included. Since A > B and B > C, the reward estimate that maximizes the log-likelihood satisfies
7#(A) > #(B) > #(C). Hence, the RLHF solution to Equation (3) is 7*(A) = 1. However, similar
outcomes can occur for actions B and C' when only pairs (A, C), (B,C) or (A,C), (A, B) are
sampled, respectively. This illustrates a key limitation of RLHF, namely that its solutions are sensitive
to the specific comparisons present in D.

Nash Equilibrium. Under the assumption that v, 3,y < 0.5, the NE of the matrix game defined
in Table 2 is given by 7*(A4) = 1 — 2, 7*(B) = 1 — 2a, 7*(C) = 1 — 2. In the special case of
a = =~ = 1/3, the NE is uniform over)/, i.e., it has the highest possible entropy. Even though
this solution does not depend on the distribution of any dataset, it leads to a stochastic policy that
might be undesirable depending on the application area.

Stackelberg Equilibrium. Since the Follower gets to observe the Leader’s action, it can play a
best response w(- |), which we can in turn use to derive the Leader’s optimal policy 7*:

C ify=Awp.1 A ifa > max{f,v} wp. 1
w(ly=<A ify=Bwp.1 () =< B if § > max{a,v} wp. 1.
B ify=Cwp.1 C ify > max{a, B} wp. 1

Unlike RLHEF, this solution does not rely on any offline dataset D. Furthermore, in contrast to
NLHEF, it admits a deterministic solution in the absence of KL regularization. However, when
a = 8 =~ = 1/3, the Leader is indifferent among the three actions, meaning that any distribution
over A, B, C constitutes a Stackelberg equilibrium. This includes the Nash equilibrium 7*(A4) =
™(B) =7*(C) =1/3.

Test-time Improvements. Finally, we consider how each solution can be improved at test-time
with respect to the preferences of a single annotator a € A. Suppose o = § = v = 1/3, and without
loss of generality, let a belong to the first annotator type with preference A - B > C. The RLHF
solution may return A, which aligns with a’s most preferred action. However, as previously discussed,
the outcome of RLHF depends on the dataset D; it could just as easily produce B or C. Since the
RLHEF policy is deterministic, repeated sampling does not change this outcome. In contrast, the
NLHF solution is uniform over A, B, C, so the probability of sampling A in a single draw is 1/3. By
sampling N times, the probability of observing at least one A is 1 — (2/3)", which equals 56% for
N = 2and 70% for N = 3. The Stackelberg solution starts similarly: the first action is sampled from
the Leader’s potentially uniform policy. However, subsequent actions are drawn from the Follower’s
policy, i.e., y; ~ w*(| ,y;—1) for ¢ > 2. In this case, the probability of sampling A within N = 2
steps increases to 67%, and for N = 3, the entire preference cycle is traversed regardless of the
Leader’s initial choice.

5 Stackelberg Gradient Descent Ascent (STACKELBERGGDA)

We now introduce STACKELBERGGDA, a two-timescale Gradient Descent-Ascent (GDA) algorithm
tailored to the sequential preference optimization problem in Equation (5). STACKELBERGGDA
performs simultaneous ascent on the Leader’s objective and descent on the Follower’s, but with a

30ther common optimality conditions in social choice theory are also undefined for this case, e.g., the Borda
or plurality winner.

User: <user_prompt>

User: <user_prompt> Assistant: <leader_response>

Assistant: User: Improve the previous answer!
(a) Prompt received as the Leader agent

Assistant:
(b) Prompt received as the Follower agent

Figure 1: Prompt templates used to train a single-model for both Leader and Follower completions.

larger step size for the Follower. This separation of timescales enables the Follower to approximate
its best response to the slowly evolving Leader, promoting stable convergence. Let

F(1,0) = B p (o) misCela) [P = 8| 0) + 77 KLy (w]| 0") = 7KL (|| 7)] (6)
denote the objective of the optimization in Equation (5). STACKELBERGGDA performs simultane-
ously gradient ascent and descent update steps on 7 and w with step size o and o', respectively, to
find the max min solution to f defined in Equation (6). It is a two-timescale algorithm as we choose
af > ol resulting in w adapting faster than 7. After each gradient step, we restore feasibility by

projecting both 7 and w back onto their respective probability simplexes. We denote the two-timescale
6]

coefficient as k = a—i
Observe that f(,w) is concave-convex in 7 and w, respectively.* While standard gradient descent-
ascent with equal learning rates is known to converge in this setting [27, 12, 37, 4, 36], we instead
adopt a two-timescale variant. This choice is motivated by its stronger convergence guarantees in
more general nonconvex-concave regimes [29], as well as its empirical success in both Actor-Critic
methods [40] and the training of Generative Adversarial Networks [22]. This becomes especially
valuable in the next section, where we describe the practical implementation of STACKELBERGGDA
for large state and action spaces and parameterized policies.

Scalable Implementation of STACKELBERGGDA for LLM Fine-Tuning. When working with a
large context and action spaces X" and)/, for example, when fine-tuning LLMs, optimizing over II
and €) becomes intractable. To address this challenge, 7 and w can be parametrized and the gradients
estimated from batches. Most importantly for LLM fine-tuning, the Leader and the Follower can
share the same parametrization by using the prompt template shown in Figure 1, thereby reducing the
memory requirements. Details and the pseudocode for this practical implementation can be found in
Appendix B.

6 Experiments

We experimentally evaluate and compare the different solution concepts in the context of fine-tuning
large language models to align with human preferences. Our results show that the Leader model
trained with STACKELBERGGDA achieves comparable preference scores to NASH-MD-PG [34]
and higher scores than RLOO [1], which serve as representative algorithms of the NLHF and
RLHF frameworks, respectively. Moreover, the Follower model significantly improves upon the
Leader’s responses, and this improvement generalizes to outputs from other models without requiring
additional fine-tuning. Throughout this section, we refer to the context « as a prompt and the action y
as a response. We provide the key results on fine-tuning in Section 6.1 and test-time improvements
in Section 6.2. We defer our results on iterative improvements to Appendix D.2, ablations on the
hyperparameter to Appendix D.3, and scaling to larger models to Appendix D.4.

Experimental Setup. We use the HELPSTEER2 dataset [57], which contains 11,826 human-
annotated single-turn dialogues, each rated by human annotators along five attributes: helpfulness,
correctness, coherence, complexity, and verbosity. We treat these attributes as distinct annotators,
denoted by the set A, and define v as a uniform distribution over A. For each attribute a € A, we
estimate a reward function 7, using the Bradley-Terry model. The overall preference function p is
then defined as

Py =y | 2) = Ti‘zﬂwx,y) > (4}, ™

acy

“This follows from results in Munos et al. [34]. For completeness, we provide a formal proof in Appendix A.3.

Table 3: Pairwise preference comparisons between the responses of QWEN2.5-0.5B, RLOO, NASH-
MD-PG, and STACKELBERGGDA algorithms. Each cell represents the preference model’s average
score for the row algorithm over the column algorithm.

QWEN2.5-0.5B RLOO NASH-MD-PG STACKELBERGGDA

LEADER FOLLOWER

QWEN2.5-0.5B 0.000 0.407 0.279 0.266 0.200
RLOO 0.593 0.000 0.393 0.387 0.344
NASH-MD-PG 0.721 0.607 0.000 0.497 0.406
STACKELBERGGDA -LEADER 0.734 0.613 0.503 0.000 0.395
STACKELBERGGDA -FOLLOWER 0.800 0.656 0.594 0.605 0.000

Each reward function is trained independently, initialized from the QWEN2.5-1.5B° model with
a single linear head. Although each 7, is transitive, their aggregation into p can produce cycles,
analogous to the Condorcet paradox discussed in Section 4.1. Further details on the preference
model specification and the resulting intransitivity are provided in Appendix D.1. Our design choice
to model preferences as an aggregation of separate reward functions was motivated to ensure the
richness of preferences and provide detailed analysis of repeated improvements in Appendix D.2.
We note that any method that models the preference function p is compatible with SLHF such as
LLM-as-a-judge [21] or preference models trained for pairwise comparison [25].

Compared Methods. We use RLOO [1] and NASH-MD-PG [34] as representative algorithms
for the RLHF and NLHF frameworks, respectively. Since RLHF requires a scalar feedback signal,
we use the mean of the attribute reward models 7, as the reward function for RLOO. All models
are fine-tuned from the QWEN2.5-0.5B° model and run for 1,000 gradient steps with a batch
size of B = 32. We sweep over learning rates 7 € {le—6,5e—6,1le—5} and KL penalties T €
{0.001,0.01,0.1} for all algorithms. For NASH-MD-PG, we additionally sweep over the mixture
parameter 3 € {0,0.25,0.5,0.75, 1}, and for STACKELBERGGDA, the two-timescale coefficient
k € {1,5,10}. We evaluate each configuration based on its average preference rate over the initial
model QWEN2.5-0.5B and find that n = 1e~® and 7 = 0.001 perform best across the board, with
B = 0.75 for NASH-MD-PG and x = 5 for STACKELBERGGDA. All implementations use the
Transformers [61] and TRL [55] libraries, with the AdamW optimizer [31].

6.1 Round-Robin Tournament

Table 3 reports pairwise preference scores between the initial QWEN2.5-0.5B and the three fine-
tuned models. Both the first responses of STACKELBERGGDA (Leader) and NASH-MD-PG achieve
approximately 73% preference over QWEN2.5-0.5B and 61% over RLOO, while they tie at 50%
when compared to each other. This outcome is consistent with scenarios in which multiple high-
quality responses exist and the Stackelberg and Nash solutions coincide, as discussed in Section 4.1.

Importantly, applying the Follower model of STACKELBERGGDA to improve its own initial responses
leads to a substantial performance gain. It achieves 80% preference over QWEN2.5-0.5B, 66%
over RLOO, 60% over NASH-MD-PG, and even outperforms the responses it was conditioned on
in 60.5% of comparisons. Thus, the two-turn inference yields significant gains at the cost of an
additional inference step.

6.2 Test-time Improvements

We next evaluate the ability of each model to improve responses at test time, specifically by act-
ing as a Follower that refines an initial response produced by another model. Although only
STACKELBERGGDA is explicitly trained for this task (though only to best respond to itself),
we apply the same refinement procedure to all models to assess whether they can generalize
to this setting. To do so, we evaluate every pair of Leader and Follower models selected from
{QWEN2.5-0.5B, RLOO, NASH-MD-PG, STACKELBERGGDA } as follows. For every validation

https://huggingface.co/unsloth/Qwen2.5-1.5B- Instruct
*https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct

https://huggingface.co/unsloth/Qwen2.5-1.5B-Instruct
https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct

Table 4: Test-time improvement using different models for the initial response (Leader) and the
improvement (Follower). Each cell represents the preference model’s average score for the Follower’s
responses over the Leader’s responses.

Leader

QWEN2.5-0.5B RLOO NASH-MD-PG STACKELBERGGDA

5 QWEN2.5-0.5B 0.549 0.443 0.363 0.362
E RLOO 0.534 0.403 0.369 0.360
5 NASH-MD-PG 0.708 0.600 0.493 0.476
= STACKELBERGGDA 0.803 0.665 0.600 0.606

prompt, we first generate a response with the chosen Leader model, and then apply the Follower
prompting template from Figure 1(b) to generate a potentially improved response using the Follower
model. We refer to these as the Leader and Follower responses, respectively. By exhaustively
evaluating all Leader-Follower combinations, we assess each model’s ability to serve as a test-time
improver across a range of initial conditions. Table 4 reports the resulting preference scores, showing
how often the Follower output is preferred over the Leader’s generation.

STACKELBERGGDA consistently improves across all Leader models; most notably over QWEN2.5-
0.5B and RLOO, but also achieving 60% gains over both NASH-MD-PG and itself. By contrast,
QWEN2.5-0.5B and RLOO only improve on the initial responses from QWEN2.5-0.5B and even
produce worse outputs when applied to other Leader models. NASH-MD-PG is able to improve
on responses from QWEN2.5-0.5B and RLOO when used as a Follower; however, even its 70%
preference score over QWEN2.5-0.5B falls short of its own 73% score reported in Table 3. These
results extend previous works on verifiable domains [24, 67, 54, 41] by underscoring the importance
of explicitly learning to improve given outputs and that mere instruction prompting is not sufficient to
improve with respect to preferences either.

7 Conclusion

In this paper, we introduced Stackelberg Learning from Human Feedback (SLHF), a two-player
sequential-move framework that directly optimizes pairwise preference signals without relying on
real-valued reward models. Our proposed algorithm, STACKELBERGGDA, efficiently approximates
the unique Stackelberg equilibrium and scales to complex tasks such as aligning large language
models with human preferences. Empirically, STACKELBERGGDA’s Leader matches or exceeds
standard baselines, while its Follower consistently refines outputs at test-time, even when paired with
models it was not trained with.

Similarly to NLHF, a key limitation of our approach is its reliance on a well-specified and repre-
sentative pairwise preference function, which can be challenging to obtain in open-ended or under-
specified domains. Additionally, while the sequential formulation enables test-time improvement
through conditional generation, it does so without leveraging real-time user feedback. Combining
STACKELBERGGDA with user preference elicitation and incorporating personalized refinement at
inference-time presents an interesting direction for future work.

Acknowledgments

Barna Péasztor was supported by an ETH AI Center doctoral fellowship. Thomas Kleine Buening
was supported by the EPSRC Prosperity Partnership FAIR (grant number EP/V056883/1). We thank
Marian Schneider for his support in the experiments’ technical setup.

References

[1] A. Ahmadian, C. Cremer, M. Gallé, M. Fadaee, J. Kreutzer, O. Pietquin, A. Ustiin, and S. Hooker.
Back to basics: Revisiting REINFORCE-style optimization for learning from human feedback
in LLMs. In L.-W. Ku, A. Martins, and V. Srikumar, editors, Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 2024.

[2] A.F. Akyurek, E. Akyurek, A. Kalyan, P. Clark, D. T. Wijaya, and N. Tandon. RL4F: Generating
natural language feedback with reinforcement learning for repairing model outputs. In A. Rogers,
J. Boyd-Graber, and N. Okazaki, editors, Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), 2023.

[3] C. Al6s-Ferrer, E. Fehr, and M. Garagnani. Identifying nontransitive preferences. Technical
report, Working Paper, 2022.

[4] A. Auslender and M. Teboulle. Projected subgradient methods with non-euclidean distances for
non-differentiable convex minimization and variational inequalities. Mathematical Program-
ming, 120:27-48, 2009.

[5] M. G. Azar, M. Rowland, B. Piot, D. Guo, D. Calandriello, M. Valko, and R. Munos. A
General Theoretical Paradigm to Understand Learning from Human Preferences. Proceedings
of Machine Learning Research, 238:4447-4455, 10 2023.

[6] Y. Bai, A. Jones, K. Ndousse, A. Askell, A. Chen, N. DasSarma, D. Drain, S. Fort, D. Ganguli,
T. Henighan, et al. Training a helpful and harmless assistant with reinforcement learning from
human feedback. arXiv preprint arXiv:2204.05862, 2022.

[7] A.Beirami, A. Agarwal, J. Berant, J. Eisenstein, C. Nagpal, A. Theertha Suresh, G. Research,
and G. DeepMind. Theoretical guarantees on the best-of-n alignment policy. arXiv preprint
arXiv:2401.01879, 2024.

[8] Q. Bertrand, W. M. Czarnecki, and G. Gidel. On the limitations of the elo, real-world games
are transitive, not additive. In Proceedings of The 26th International Conference on Artificial
Intelligence and Statistics, 2023.

[9] R. A. Bradley and M. E. Terry. Rank analysis of incomplete block designs: I. the method of
paired comparisons. Biometrika, 39(3/4):324-345, 1952.

[10] D. Calandriello, D. Guo, R. Munos, M. Rowland, Y. Tang, B. A. Pires, P. H. Richemond,
C. Le Lan, M. Valko, T. Liu, R. Joshi, Z. Zheng, and B. Piot. Human Alignment of Large Lan-
guage Models through Online Preference Optimisation. In Proceedings of the 41st International
Conference on Machine Learning, 2024.

[11] S. Casper, X. Davies, C. Shi, T. K. Gilbert, J. Scheurer, J. Rando, R. Freedman, T. Korbak,
D. Lindner, P. Freire, T. Wang, S. Marks, C.-R. Segerie, M. Carroll, A. Peng, P. Christoffersen,
M. Damani, S. Slocum, U. Anwar, A. Siththaranjan, M. Nadeau, E. J. Michaud, J. Pfau,
D. Krasheninnikov, X. Chen, L. Langosco, P. Hase, E. Biyik, A. Dragan, D. Krueger, D. Sadigh,
and D. Hadfield-Menell. Open Problems and Fundamental Limitations of Reinforcement
Learning from Human Feedback. arXiv preprint arXiv:2307.15217,7 2023.

[12] G. H. Chen and R. T. Rockafellar. Convergence rates in forward—backward splitting. SIAM
Journal on Optimization, 7(2):421-444, 1997.

[13] P.F. Christiano, J. Leike, T. B. Brown, M. Matrtic, S. Legg, and D. Amodei. Deep Reinforcement
Learning from Human Preferences. In Proceedings of the 31st Conference on Neural Information
Processing Systems, 2017.

[14] V. Conitzer and T. Sandholm. Computing the optimal strategy to commit to. Proceedings of the
ACM Conference on Electronic Commerce, 2006:82-90, 2006.

[15] J. A. N. de Caritat Mis et al. Essai sur ’application de I’analyse a la probabilité des décisions
rendues a la pluralité des voix. Imprimerie royale, 1785.

10

[16] Y. Dubois, X. Li, R. Taori, T. Zhang, I. Gulrajani, J. Ba, C. Guestrin, P. Liang, and T. Hashimoto.
Alpacafarm: A simulation framework for methods that learn from human feedback. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023.

[17] Y. Dubois, B. Galambosi, P. Liang, and T. B. Hashimoto. Length-controlled alpacaeval: A
simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

[18] J. Eisenstein, C. Nagpal, A. Agarwal, A. Beirami, A. D’Amour, D. Dvijotham, A. Fisch,
K. Heller, S. Pfohl, D. Ramachandran, P. Shaw, and J. Berant. Helping or herding? reward
model ensembles mitigate but do not eliminate reward hacking, 2024.

[19] M. Geist, B. Scherrer, and O. Pietquin. A Theory of Regularized Markov Decision Processes.
In Proceedings of the 36th International Conference on Machine Learning, 2019.

[20] A. Glaese, N. McAleese, M. Trebacz, J. Aslanides, V. Firoiu, T. Ewalds, M. Rauh, L. Weidinger,
M. Chadwick, P. Thacker, et al. Improving alignment of dialogue agents via targeted human
judgements. arXiv preprint arXiv:2209.14375, 2022.

[21] J. Gu, X. Jiang, Z. Shi, H. Tan, X. Zhai, C. Xu, W. Li, Y. Shen, S. Ma, H. Liu, Y. Wang, and
J. Guo. A Survey on LLM-as-a-Judge. 11 2024.

[22] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium. In Proceedings of the Thirty-first
International Conference on Neural Information Processing Systems, 2017.

[23] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA:
Low-rank adaptation of large language models. In International Conference on Learning
Representations, 2022.

[24] J. Huang, X. Chen, S. Mishra, H. S. Zheng, A. W. Yu, X. Song, and D. Zhou. Large language
models cannot self-correct reasoning yet. In Proceedings of the Twelfth International Conference
on Learning Representations, 2024.

[25] D.Jiang, X. Ren, and B. Y. Lin. LLM-BLENDER: Ensembling Large Language Models with
Pairwise Ranking and Generative Fusion. In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics, volume 1, 2023.

[26] T. Kaufmann, P. Weng, V. Bengs, and E. Hiillermeier. A Survey of Reinforcement Learning
from Human Feedback. arXiv preprint arXiv:2312.14925, 2023.

[27] G. M. Korpelevich. The extragradient method for finding saddle points and other problems.
Matecon, 12:747-756, 1976.

[28] A. Kumar, V. Zhuang, R. Agarwal, Y. Su, J. D. Co-Reyes, A. Singh, K. Baumli, S. Igbal,
C. Bishop, R. Roelofs, L. M. Zhang, K. McKinney, D. Shrivastava, C. Paduraru, G. Tucker,
D. Precup, F. Behbahani, and A. Faust. Training language models to self-correct via rein-
forcement learning. In Proceedings of the Thirteenth International Conference on Learning
Representations, 2025.

[29] T. Lin, C. Jin, and M. I. Jordan. Two-timescale gradient descent ascent algorithms for nonconvex
minimax optimization. Journal of Machine Learning Research, 26(11):1-45, 2025.

[30] K. Liu, Q. Long, Z. Shi, W. J. Su, and J. Xiao. Statistical impossibility and possibility of
aligning 1lms with human preferences: From condorcet paradox to nash equilibrium. arXiv
preprint arXiv:2503.10990, 2025.

[31] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. In Proceedings of the
International Conference on Learning Representations, 2019.

[32] J. Makar-Limanov, A. Prakash, D. Goktas, N. Ayanian, and A. Greenwald. Sta-rlhf: Stackelberg
aligned reinforcement learning with human feedback. In Coordination and Cooperation for
Multi-Agent Reinforcement Learning Methods Workshop, 2024.

11

[33] J. Menick, M. Trebacz, V. Mikulik, J. Aslanides, F. Song, M. Chadwick, M. Glaese, S. Young,
L. Campbell-Gillingham, G. Irving, et al. Teaching language models to support answers with
verified quotes. arXiv preprint arXiv:2203.11147, 2022.

[34] R. Munos, M. Valko, D. Calandriello, M. G. Azar, M. Rowland, D. Guo, Y. Tang, M. Geist,
T. Mesnard, A. Michi, M. Selvi, S. Girgin, N. Momchev, O. Bachem, D. J. Mankowitz, D. Precup,
B. Piot, and G. Deepmind. Nash Learning from Human Feedback. In Proceedings of the 41st
International Conference on Machine Learning, 2024.

[35] R. Nakano, J. Hilton, S. Balaji, J. Wu, L. Ouyang, C. Kim, C. Hesse, S. Jain, V. Kosaraju,
W. Saunders, et al. Webgpt: Browser-assisted question-answering with human feedback. arXiv
preprint arXiv:2112.09332, 2021.

[36] A. Nedi¢ and A. Ozdaglar. Subgradient methods for saddle-point problems. Journal of
optimization theory and applications, 142:205-228, 2009.

[37] A. Nemirovski. Prox-method with rate of convergence o (1/t) for variational inequalities with
lipschitz continuous monotone operators and smooth convex-concave saddle point problems.
SIAM Journal on Optimization, 15(1):229-251, 2004.

[38] L. G. Openai, J. Schulman, O. Jacob, and H. Openai. Scaling Laws for Reward Model Overop-
timization. In International Conference on Machine Learning, 2023. ISBN 2210.10760v1.

[39] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang Sandhini
Agarwal Katarina Slama Alex Ray John Schulman Jacob Hilton Fraser Kelton Luke Miller
Maddie Simens Amanda Askell, P. Welinder Paul Christiano, J. Leike, and R. Lowe. Training
language models to follow instructions with human feedback. In Proceedings of the 36th
Conference on Neural Information Processing Systems, 2022.

[40] H. Prasad, P. LA, and S. Bhatnagar. Two-timescale algorithms for learning nash equilibria
in general-sum stochastic games. In Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems, 2015.

[41] Y. Qu, T. Zhang, N. Garg, and A. Kumar. Recursive introspection: Teaching language model
agents how to self-improve. Advances in Neural Information Processing Systems, 2024.

[42] Qwen, :, A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei,
H. Lin, J. Yang, J. Tu, J. Zhang, J. Yang, J. Yang, J. Zhou, J. Lin, K. Dang, K. Lu, K. Bao,
K. Yang, L. Yu, M. Li, M. Xue, P. Zhang, Q. Zhu, R. Men, R. Lin, T. Li, T. Tang, T. Xia, X. Ren,
X. Ren, Y. Fan, Y. Su, Y. Zhang, Y. Wan, Y. Liu, Z. Cui, Z. Zhang, and Z. Qiu. Qwen2.5
Technical Report. arXiv preprint arXiv:2412.15115v2, 12 2024.

[43] R. Rafailov, A. Sharma, E. Mitchell, S. Ermon, C. D. Manning, and C. Finn. Direct Preference
Optimization: Your Language Model is Secretly a Reward Model. In Advances in Neural
Information Processing Systems, 2023. ISBN 2305.18290v2.

[44] C. Rosset, C.-A. Cheng, A. Mitra, M. Santacroce, A. Awadallah, and T. Xie. Direct Nash
Optimization: Teaching Language Models to Self-Improve with General Preferences. In arXiv
preprint arXiv:2404.03715, 2024.

[45] W. Saunders, C. Yeh, J. Wu, S. Bills, L. Ouyang, J. Ward, and J. Leike. Self-critiquing models
for assisting human evaluators. arXiv preprint arXiv:2206.05802, 2022.

[46] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[47] P. G. Sessa, R. Dadashi, L. Hussenot, J. Ferret, N. Vieillard, A. Ramé, B. Shariari, S. Perrin,
A. Friesen, G. Cideron, S. Girgin, P. Stanczyk, A. Michi, D. Sinopalnikov, S. Ramos, A. Héliou,
A. Severyn, M. Hoffman, N. Momchev, O. Bachem, and G. Deepmind. BOND: Aligning LLMs
with Best-of-N Distillation. arXiv preprint arXiv:2407.14622, 2024.

[48] H. Shen, Z. Yang, and T. Chen. Principled penalty-based methods for bilevel reinforcement
learning and rlhf. In Proceedings of the 41st International Conference on Machine Learning,
2024.

12

[49] H.v. Stackelberg. Theory of the market economy. Oxford University Press, 1952.

[50] N. Stiennon, L. Ouyang, J. Wu, D. M. Ziegler, R. Lowe, C. Voss, and A. Radford Dario Amodei
Paul Christiano. Learning to summarize from human feedback. In Proceedings of the 34th
Conference on Neural Information Processing Systems, 2020.

[51] G. Swamy, C. Dann, R. Kidambi, Z. S. Wu, and A. Agarwal. A Minimaximalist Approach
to Reinforcement Learning from Human Feedback RLHF / PbRL. In Proceedings of the 41st
International Conference on Machine Learning, 2024.

[52] X. Tang, S. Yoon, S. Son, H. Yuan, Q. Gu, and I. Bogunovic. Game-theoretic regularized
self-play alignment of large language models. arXiv preprint arXiv:2503.00030, 2025.

[53] V. Thoma, B. Pasztor, A. Krause, G. Ramponi, and Y. Hu. Contextual bilevel reinforcement
learning for incentive alignment. In Proceedings of the Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024.

[54] G. Tyen, H. Mansoor, V. Cédrbune, Y. P. Chen, and T. Mak. Llms cannot find reasoning errors,
but can correct them given the error location. In Findings of the Association for Computational
Linguistics ACL 2024, 2024.

[55] L. von Werra, Y. Belkada, L. Tunstall, E. Beeching, T. Thrush, N. Lambert, S. Huang, K. Rasul,
and Q. Gallouédec. Trl: Transformer reinforcement learning, 2020.

[56] M. Wang, C. Ma, Q. Chen, L. Meng, Y. Han, J. Xiao, Z. Zhang, J. Huo, W. J. Su, and Y. Yang.
Magnetic preference optimization: Achieving last-iterate convergence for language model
alignment. In The Thirteenth International Conference on Learning Representations, 2025.

[57] Z. Wang, Y. Dong, O. Delalleau, J. Zeng, G. Shen, D. Egert, J. J. Zhang, M. N. Sreedhar, and
0. Kuchaiev. Helpsteer 2: Open-source dataset for training top-performing reward models. In
Proceedings of the Thirty-eight Conference on Neural Information Processing Systems, 2024.

[58] S. Welleck, X. Lu, P. West, F. Brahman, T. Shen, D. Khashabi, and Y. Choi. Generating
Sequences by Learning to Self-Correct. In Proceedings of the Eleventh International Conference
on Learning Representations, 2023.

[59] S. Welleck, A. Bertsch, M. Finlayson, H. Schoelkopf, A. Xie, G. Neubig, I. Kulikov, and
Z. Harchaoui. From decoding to meta-generation: Inference-time algorithms for large language
models. Transactions on Machine Learning Research, 2024. ISSN 2835-8856.

[60] C. Wirth, R. Akrour, G. Neumann, and J. Fiirnkranz. A survey of preference-based reinforcement
learning methods. Journal of Machine Learning Research, 18(136):1-46, 2017.

[61] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault, R. Louf,
M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L.
Scao, S. Gugger, M. Drame, Q. Lhoest, and A. M. Rush. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations, 2020.

[62] Y. Wu, Z. Sun, H. Yuan, K. Ji, Y. Yang, and Q. Gu. Self-Play Preference Optimization for
Language Model Alignment. arXiv preprint arXiv:2405.00675, 2024.

[63] J. Xiao, Z. Li, X. Xie, E. Getzen, C. Fang, Q. Long, and W. J. Su. On the algorithmic bias
of aligning large language models with rlhf: Preference collapse and matching regularization.
arXiv preprint arXiv:2405.16455, 2024.

[64] Y. Xu, L. Ruis, T. Rocktidschel, and R. Kirk. Investigating non-transitivity in llm-as-a-judge.
arXiv preprint arXiv:2502.14074, 2025.

[65] Y. Zhang, M. Khalifa, L. Logeswaran, J. Kim, M. Lee, H. Lee, and L. Wang. Small language

models need strong verifiers to self-correct reasoning. In L.-W. Ku, A. Martins, and V. Srikumar,
editors, Findings of the Association for Computational Linguistics: ACL 2024, 2024.

13

[66] Y. Zhang, D. Yu, B. Peng, L. Song, Y. Tian, M. Huo, N. Jiang, H. Mi, and D. Yu. Iterative Nash
Policy Optimization: Aligning LLMs with General Preferences via No-Regret Learning. In
Proceedings of the Thirteenth International Conference on Learning Representations, 2025.

[67] H.S. Zheng, S. Mishra, H. Zhang, X. Chen, M. Chen, A. Nova, L. Hou, H.-T. Cheng, Q. V. Le,
E. H. Chi, et al. Natural plan: Benchmarking llms on natural language planning. arXiv preprint
arXiv:2406.04520, 2024.

[68] D. M. Ziegler, N. Stiennon, J. Wu, T. B. Brown, A. Radford, D. Amodei, P. Christiano,
and G. Irving. Fine-Tuning Language Models from Human Preferences. arXiv preprint
arXiv:1909.08593, 2019.

14

Contents of Appendix

A Proofs 15
A.1 Proof of Proposition 1. e 15
A2 ProofofRemark2 15
A.3 Concave-Convex Property of f L 16

B Scalable Implementation of STACKELBERGGDA 16

C Implementation Details 17

D Additional Experimental Results 17
D.1 Preference Model e 17
D.2 TIterative Improvements at Test-time 18
D.3 Ablation on the two-timescale coefficient 20
D4 Model Scaling e e e 20

A Proofs

A.1 Proof of Proposition 1

Proof. First, assume that the Leader’s policy is fixed and consider the Follower’s optimization
problem

IIBH]EmNp,yNW(~\z) [Ey (e P = ' | 2)] + TF KLy (w]| w™)]. (8)

The optimization problem in (8) is equivalent to Equation (3) for the reward function r(Z,y’) :=
p(y = y' | «) with contexts & = (z,y) and context distribution & ~ p ® 7. As a result, Equation (8)
has a unique closed-form solution [19, 43, 5] given by

Wy |z, y) = Wy |z, y) exp (Zp(y =y | 2))

Z(x,y)
where Z(z,y) = >, ¢y w(y" | z,y)exp (Fp(y’ = y | x)) is a partition factor that depends only

on (z,y) and 7. Hence, w* can be expressed as a function of (z,y) and w'"

dependence on 7.

without explicit

Now, define the following reward function for the Leader’s optimization problem
7(@,Y) = By (o Py = ¥ | 2)]. ©

Note that w* is unique so that (z, y) is a scalar. We can now restate Equation (5) for the Leader’s
optimization problem as

0 By [Byon.fo) [r(2,9)] — 72K Lo (7 || 7]
which is again a KL-regularized optimization problem that admits a closed-form solution

ref (

7y | @) = 7y | @) exp (Fr(2,y)

Z(x)

A.2 Proof of Remark 2

Proof. This lemma is folklore in the algorithmic game theory community and can be quickly verified.

Let x € X. Given any action y €), there exists a not necessarily unique y’ €) minimizing
p(y = ' |). Hence, irrespective of the Leader’s policy (- | x), there always exists a Follower’s

15

deterministic best response policy wp, (- | z,y) with wp, (v | ,y) = 1 for some . In other words,
the Follower always has a deterministic best response policy.

Similarly, the optimization problem for the Leader given some context x reduces to finding y
that maximizes E/ ., (.|2,4)[P(y > ¢ | x)] so that the SLHF optimization problem admits a
determinsitic solution. O

A.3 Concave-Convex Property of f
We show here that the objective function f in Equation (6) of the Stackelberg optimization problem
is concave-convex. Similar results were established in the context of NLHF by Munos et al. [34].

Throughout this section, we assume |X| = 1 and omit from the notation for clarity. All results
extend directly to the general case with a finite context space X.

Then, the objective function of Equation (5) is given by
F(mw) =By ymwt iy [P = ¥)] = TFKL(7 || 7)) + 7FEy () [KLy (w | 0™)]. (10)
The first term is bilinear in 7w and w, as shown by expanding the expectation:
Eymr(ymutly) PO = 1) =D 7)Y ply = v)wy' | v).
yey y'ey

The KL terms are convex in their respective arguments. Hence, f is bilinear when 7 = 7% = 0, and
strongly concave-convex when 77, 71" > 0.

B Scalable Implementation of STACKELBERGGDA

When fine-tuning large language models, the context and action spaces X" and Y are far too large to op-
timize over IT and {2 directly. To address this, we introduce a practical variant of STACKELBERGGDA
in Algorithm 1.

Policy Parameterization. We replace the tabular policies 7 and w with neural parameterizations
mg and wy (e.g., transformer networks). This renders the policy spaces tractable via their parameter
vectors # and ¢, however, the concave-convex property does not necessarily carry over to the
parameters 6 and ¢.

Batched, Variance-reduced Gradient Estimates. Exact evaluation of the expectations in V f is
infeasible due to the expectation over the context and action spaces. Instead, at each iteration we
sample a batch of size B:

{(@isyi, vl i) Yiirs @i~ py yi ~ o | @), yh ~ wo(- | @iy i), pi = p(yi = y; | 24).
We then form unbiased estimates as

Vof = 5 Z LkL)V log mo(y; | @ V¢f = Vaﬁ logwg (v | i, y:),

@Mw

with likelihood ratios kX = % and k' = % The gradient estimators are naturally

compatible with additional variance reduction techniques such as subtracting a constant baseline.
Single-Model Instantiation. Simultaneously training two billion-parameter transformer models
is memory-prohibitive. Similarly to SCORE [28], we collapse both Leader and Follower into one
model 7y by using distinct chat templates (Figure 1). When the model is only given the context x,
we use the template in Figure 1(a) that only includes = as the prompt. When the model is given both
the context x and an action y, we use the template in Figure 1(b) that includes both the context
and the action y, as well as a predefined instruction to improve the action y.

F
Then, letting k = 27 denote the two-timescale weight coefficient, we optimize the model to minimize
the following loss function

:_72_ TEEE) logmo(yi | i) + = Y (pi — 77k) log mo (i | ziyi). (1)

16

Gradient steps on £(0) realize the two-time-scale gradient descent-ascent updates via a single network,
thereby substantially reducing memory usage.

Algorithm 1 STACKELBERGGDA (Practical)

1: procedure STACKELBERGGDA(X, Y, p,n)
2 Initialize the policy 7 and w

3 fori=1,2,... do

4 forb=1,...,Bdo

5: Sample prompt x ~ p
6.
7
8

Sample Leader response using the prompt in Figure 1(a): y, ~ 7o (- | 2p)
Sample Follower response using the prompt in Figure 1(b): y; ~ 7o (- | 5, Ys)
: Observe preference feedback p, = p(ys > vy, | 1)
9: end for
10: Update the weights 6 according to the loss in Equation (11): 6 < 8 — nVL(0)
11: end for
12: end procedure

C Implementation Details

Implementation We trained RLOO’ and NASH-MD-PG?® using their implementations in the
TRL Python package [55]. For all training runs, including reward modeling, we used Low-Rank
Adaptation (LoRA) [23] with rank r = 32, scaling factor o = 64, and dropout rate set to 0.1.

Compute Resources All experiments were conducted on a cluster with 8 NVIDIA GeForce RTX
4090 GPUs, 16 CPU cores, and 64 GB of RAM. The total compute time, including hyperparameter
sweeps, was approximately 4,000 GPU-hours.

D Additional Experimental Results

D.1 Preference Model

We estimate the preference model used to fine-tune the LLMs by treating the five attributes in
the HELPSTEER2 datasets [57] as distinct annotators, denoted by the set A, and define v as a
uniform distribution over A. For each attribute a € A, we estimate a reward function 7, using the
Bradley-Terry model and maximize the log-likelihood on the training dataset D = { (=, y*, y})} ¥,

N
HITHIZ U(T(wia y:U) - r($i7 y1l,)) +)\(7"([)31‘, yzﬂ) + r($i7 yi))2
=1

We here decided which response is the winning and losing one in the dataset by comparing the
attribute scores provided by the annotators. The additional regularization ensures that the rewards are
centralized around zero [18]. For the attributes correctness, helpfulness, and coherence, we consider
higher scores to be better while for verbosity and complexity lower values are more preferable. This
is in accordance with the scoring criteria described in Wang et al. [57]. We set the regularization
parameter to A = 0.01. Centralizing the reward values is crucial for our RLOO implementation,
which uses the average reward across the five attributes as its training signal. It ensures that no
attribute heavily dominates due to scale differences and avoids bias toward any particular attribute.

We train each model for 5 epochs on the training prompts and completions with batch size 32 and learn-
ing rate 1le—4. The final accuracies of the models on the validation dataset are 78%, 65%, 61%, 60%,
and 59% for verbosity, complexity, correctness, helpfulness, and coherence, respectively.

We evaluate the non-transitivity of the preference model p defined in (7) on the validation prompts
and five responses from each of the four models used for comparison in Section 6. For each prompt,
we construct a complete directed graph between the 20 completions as nodes and edges directed from

"https://huggingface.co/docs/trl/main/en/rloo_trainer
$https://huggingface.co/docs/trl/main/en/nash_md_trainer

17

https://huggingface.co/docs/trl/main/en/rloo_trainer
https://huggingface.co/docs/trl/main/en/nash_md_trainer

Algorithms
Qwen2.5-0.5B
RLOO
Nash-MD-PG
StackelbergGDA
Condorcet Winner

Figure 2: Directed graph based with completions generated by the fine-tuned models and edge
directions representing the preference between them.

the non-preferred completion towards the preferred one. Figure 2 illustrates this directed graph on
the first prompt of the validation dataset. 57% of the directed graphs include cycles, which illustrate
the intransitivity of the preference function p on the completion space).

D.2 TIterative Improvements at Test-time

We extend the experimental results from Section 6 by analyzing iterative improvements and per-
formance scaling with increased test-time computation. Our results suggests that with increasing
test-time computation the benefit of fine-tuning using both RLOO or NASH-MD-PG is negligible
compared to using the base model QWEN2.5-0.5B. In contrast, STACKELBERGGDA yields strict
improvements. Building on the example in Section 4.1, we assume that at test-time, a single annotator
a ~ v and a context x ~ p are sampled.

For the base model QWEN2.5-0.5B and the models with fine-tuned with RLOO and NASH-MD-PG,
we independently sample N responses ¥, ...,yy. For STACKELBERGGDA, which inherently
supports iterative refinement, we generate the first sample from the Leader policy y; ~ 7*(- | z),
and subsequent responses from the Follower policy y; ~ w*(- | x,y;—1) for i > 2. We define
Y1:N = (yh cee 7yN)-

In line with prior work on Best-of-IN sampling [38, 7, 17, 47], we evaluate the quality of the N
samples by computing the maximum reward obtained for each attribute under the sampled annotator’s
reward model, that is,
PN (2, y1.nv) = max 7u(z,). (12)
Yi,-- YN

Analogous to the preference function p defined in Section 3, in this section, we compare two models
7 and 7’ w.r.t. the preference functions derived from the annotator-specific reward functions under
Best-of-N sampling:

pgzv(ﬂ' - | x) = EyLNNﬂ'('II)]1{727\/(1‘,241:]\/) > 72(11\7(1773//1:N)} . (13)

Y~ (|2)

Notational Note. We here adopt a slight abuse of notation. Specifically, we write y;.x ~ 7(- | z)
to denote the sampling of N responses from a model 7, even though this notation does not faithfully
represent the sampling procedure used by STACKELBERGGDA. For QWEN2.5-0.5B, RLOO, and
NASH-MD-PG, the samples y1, . . ., yn are drawn i.i.d. from a single model (- |). In contrast, for

18

Table 5: Preference scores for RLOO versus QWEN2.5-0.5B across all attributes as a function of
the number of test-time samples V.

Attribute Number of Samples N
1 2 3 4 5

Coherence 0.521 0338 0.262 0.207 0.164
Complexity 0.892 0.842 0.801 0.771 0.754
Correctness 0.388 0.212 0.139 0.098 0.070
Helpfulness 0.322 0.150 0.087 0.057 0.036
Verbosity 0.846 0.777 0.728 0.695 0.669

Average 0.594 0.464 0403 0.366 0.338

STACKELBERGGDA, the sampling process is inherently autoregressive: we first draw y; ~ 7*(- | x)
from the Leader policy, and then generate y; ~ w*(- | z,y;—1) for i > 2 using the Follower policy.
Despite this difference, we overload the notation y;.;y ~ 7(- |) to unify the presentation in
Equations (12) and (13). In the case of STACKELBERGGDA, this notation should be interpreted as
shorthand for the autoregressive sampling process described above.

Previous work has shown that Best-of-/NV sampling can rival the performance of RLHF-based fine-
tuning [16, 47, 7]. Motivated by this, we compare the preference scores defined in Equation (13) of
RLOO, NASH-MD-PG, and STACKELBERGGDA with respect to the base model QWEN2.5-0.5B.
Throughout this section, we consider the maximum number of samples to be N = 5.

Results. Table 5 reports the preference scores for RLOO. While the model initially (i.e. N = 1)
performs competitively on complexity and verbosity attributes, iterative sampling reveals a collapse
into a single preference mode. In particular, we observed deterministic outputs for RLOO the generic
response: "I apologize, but I'm unable to engage in conversations about political topics. If you
have any other questions or need further assistance with a different subject, feel free to ask.” As a
result, the model’s diversity and coverage deteriorate, and its overall preference scores (relative to
QWEN2.5-0.5B) decline sharply as IV increases.

In contrast, NASH-MD-PG demonstrates some benefit from additional sampling, as shown in
Table 6. Its preference score for verbosity remains stable and it shows moderate improvement in
coherence. However, for the remaining attributes (correctness, helpfulness, and complexity) its gains
are slower than those achieved by QWEN2.5-0.5B with Best-of-N sampling. Consequently, the
overall preference score of NASH-MD-PG declines with increasing IV, suggesting that the model
fine-tuned with NASH-MD-PG does not improve notably (compared to the base model) when the
number of samples drawn at test-time increases.

On the other hand, STACKELBERGGDA exhibits more favorable behavior. As shown in Table 7, while
the preference score on verbosity and complexity taper off with more samples, STACKELBERGGDA
achieves notably faster gains on coherence, correctness, and helpfulness. For these attributes, the
preference rate improves by 10 percentage points or more, making STACKELBERGGDA the only
method among the three to demonstrate consistent improvement over QWEN2.5-0.5B as N increases.
This means that the performance of STACKELBERGGDA effectively scales with test-time compute.

The strong emphasis on complexity and verbosity by RLOO is expected, as it optimizes the average
reward across all five attributes, and these two dimensions yield the highest values. However, for
NASH-MD-PG, this outcome is less expected. We hypothesize that it stems from its training objective,
which pits the policy against a mixture of the reference policy QWEN2.5-0.5B and the most recent
iteration. Once NASH-MD-PG outperforms QWEN2.5-0.5B on all attributes, it begins focusing
on attributes where further improvement over itself is possible, namely, complexity and verbosity.
Nevertheless, this skewed emphasis is suboptimal: annotators prefer models that perform well on
all attributes. In fact, a policy that focuses on coherence, correctness, and helpfulness is preferred
by 60% of the annotators. STACKELBERGGDA’s asymmetric formulation that trains a Leader and a
Follower policy separately (though potentially unified in a single model) helps mitigate this imbalance
across attributes. This leads to a more balanced policy that is preferred by a wider range of annotators.

19

Table 6: Preference scores for NASH-MD-PG versus QWEN2.5-0.5B across all attributes as a
function of the number of test-time samples N.

Attribute Number of Samples N
1 2 3 4 5

Coherence 0.731 0.743 0.757 0.763 0.760
Complexity 0.761 0.743 0.732 0.726 0.727
Correctness 0.633 0.615 0.620 0.617 0.615
Helpfulness 0.645 0.633 0.640 0.641 0.638
Verbosity 0.858 0.855 0.850 0.849 0.852

Average 0.726 0.718 0.720 0.719 0.718

Table 7: Preference scores for STACKELBERGGDA versus QWEN2.5-0.5B across all attributes as a
function of the number of test-time samples V.

Attribute Number of Samples N
1 2 3 4 5

Coherence 0.778 0.850 0.865 0.875 0.873
Complexity 0.714 0.666 0.628 0.600 0.592
Correctness 0.670 0.762 0.791 0.795 0.803
Helpfulness 0.692 0.767 0.783 0.786 0.791
Verbosity 0.833 0.820 0.798 0.777 0.765

Average 0.738 0.773 0.773 0.767 0.765

D.3 Ablation on the two-timescale coefficient

Table 8 and Table 9 present ablations on the follower weight parameter x in STACKELBERGGDA'’s
loss function (11) when fine-tuning the QWEN2.5-0.5B and QWEN2.5-1.5B models, respectively.
Each row reports the average preference scores over the corresponding initial policy, for both the
Leader and Follower policies, on the training and validation splits. These results highlight the
importance of balancing the two components of STACKELBERGGDA'’s asymmetric training objective.
In general, moderate values of x can help the Follower improve without compromising the Leader
too severely, but excessively large weights may impair both players.

In Table 8, we observe that increasing « leads to a gradual decline in the Leader’s performance. While
the Follower benefits from increasing « from 1 to 5, performance worsens at x = 10 for both the
Leader and Follower, indicating an overemphasis on the Follower’s loss can destabilize the overall
optimization.

Table 9 shows a similar trend for the larger QWEN2.5-1.5B model. Due to the decrease of perfor-
mance above x = 5 in Table 8, we carry out the ablation on a finer grid x € {1, 2, 3,4, 5}. Moreover,
we evaluate each model after 2000 training steps as a larger base model requires more gradient
updates to converge. While the performance of x = 1 stands out in Table 9, we observe that it is
overfitting to verbosity and complexity by responding to every prompt with short, non-informative
answers asking for further information such as "Certainly! If you need detailed insights on technical
topics like that, feel free to ask—I’'m here to assist with informatively aligned queries!"”. On the
contrary to the collapse observed for RLOO in Appendix D.2, the model remains stochastic with
the responses having similar information content. This outcome demonstrates the effectiveness of
STACKELBERGGDA in optimizing its objective despite the qualitatively undesirable responses.

D.4 Model Scaling

We extend our round-robin comparison from Section 6.1 to larger models within the Qwen2.5
family, specifically, QWEN2.5-1.5B and QWEN2.5-3B [42]. These evaluations demonstrate that
STACKELBERGGDA continues to be on par or outperform baselines even as model size increases.
Since larger models require more training updates to reach convergence in our setup, we train NASH-

20

Table 8: Ablation on the follower weight parameter x in STACKELBERGGDA’s loss function (11)
fine-tuning the QWEN2.5-0.5B model. Scores show the average preference over the base model.

Follower Weight x Train Validation
Leader Follower Leader Follower
1 0.768 0.804 0.761 0.784
0.743 0.814 0.723 0.806
10 0.725 0.800 0.710 0.783

Table 9: Ablation on the follower weight parameter x in STACKELBERGGDA s loss function (11)
fine-tuning the QWEN2.5-1.5B model. Scores show the average preference over the base model.

Follower Weight x Train Validation
Leader Follower Leader Follower

1 0.848 0.852 0.850 0.851

2 0.718 0.737 0.719 0.730

3 0.767 0.806 0.771 0.803

4 0.733 0.811 0.736 0.807

5 0.720 0.819 0.720 0.818

MD-PG for 1,500 steps and STACKELBERGGDA for 2,000 steps. The RLOO method converges
earlier and requires only 1,000 steps even for these larger models. We fix the follower-weight
parameter at x = 5 for both scales, based on our ablation results in Appendix D.3.

Table 10 summarizes results for models fine-tuned from QWEN2.5-1.5B. Both NASH-MD-PG
and STACKELBERGGDA clearly outperform the base model and the RLOO baseline. While the
Leader policy of STACKELBERGGDA underperforms compared to NASH-MD-PG, the Follower
policy conditioned on the Leader’s responses matches or exceeds NASH-MD-PG’s performance,
mirroring the improvements observed when starting from the QWEN2.5-0.5B in Table 3. As noted in
Appendix D.3, this performance gap between the Leader and NASH-MD-PG could likely be reduced
by tuning «, albeit at the potential cost of Follower quality.

Table 11 shows analogous comparisons for models initialized from QWEN2.5-3B. Here, STACKEL-
BERGGDA again performs strongly, with its Follower policy matching or surpassing NASH-MD-PG
across most pairwise matchups, and both algorithms outperforming the base model. NASH-MD-PG
and STACKELBERGGDA are closely matched when compared directly. Due to compute limitations,
we capped training at 2,000 steps for these larger models. Nonetheless, the Leader policy continued
to improve near the end of training, suggesting further gains in preference score may be possible with
additional updates.

21

Table 10: Pairwise preference comparisons between the responses of QWEN2.5-0.5B, QWEN2.5-
1.5B, RLOO, NASH-MD-PG, and STACKELBERGGDA algorithms. Fine-tuned models are trained
from the QWEN2.5-1.5B. Each cell shows the average preference score of the row model over the
column model.

QWEN2.5-0.5B QWEN2.5-1.5B RLOO NASH-MD-PG STACKELBERGGDA

LEADER FOLLOWER

QWEN2.5-0.5B 0.000 0.479 0.379 0.188 0.271 0.166
QWEN2.5-1.5B 0.521 0.000 0.401 0.209 0.293 0.187
RLOO 0.621 0.599 0.000 0.197 0.310 0.175
NASH-MD-PG 0.812 0.791 0.803 0.000 0.623 0.489
STACKELBERGGDA
LEADER 0.729 0.707 0.690 0.377 0.000 0.313
STACKELBERGGDA
FOLLOWER 0.834 0.813 0.825 0.511 0.687 0.000

Table 11: Pairwise preference comparisons between the responses of QWEN2.5-0.5B, QWEN2.5-3B,
RLOO, NASH-MD-PG, and STACKELBERGGDA algorithms. Fine-tuned models are trained from
the QWEN2.5-3B. Each cell shows the average preference score of the row model over the column
model.

QWEN2.5-0.5B QWEN2.5-3B RLOO NASH-MD-PG STACKELBERGGDA

LEADER FOLLOWER

QWEN2.5-0.5B 0.000 0.504 0.399 0.187 0.304 0.187
QWEN2.5-3B 0.496 0.000 0.412 0.199 0.319 0.179
RLOO 0.601 0.588 0.000 0.173 0.338 0.201
NASH-MD-PG 0.813 0.801 0.827 0.000 0.638 0.507
STACKELBERGGDA
LEADER 0.696 0.681 0.662 0.362 0.000 0.312
STACKELBERGGDA
FOLLOWER 0.813 0.821 0.799 0.493 0.688 0.000

22

	Introduction
	Related Work
	Problem Statement
	Background on Existing Solution Concepts and Approaches

	Stackelberg Learning from Human Feedback (SLHF)
	Comparison of Solution Concepts

	Stackelberg Gradient Descent Ascent (StackelbergGDA)
	Experiments
	Round-Robin Tournament
	Test-time Improvements

	Conclusion
	Proofs
	Proof of proposition:slhfexistanceuniqueness
	Proof of lemma:SLHFdeterministicsolution
	Concave-Convex Property of f

	Scalable Implementation of StackelbergGDA
	Implementation Details
	Additional Experimental Results
	Preference Model
	Iterative Improvements at Test-time
	Ablation on the two-timescale coefficient
	Model Scaling

