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Abstract

In reinforcement learning (RL), state representa-
tions are key to dealing with large or continuous
state spaces. While one of the promises of deep
learning algorithms is to automatically construct
features well-tuned for the task they try to solve,
such a representation might not emerge from end-
to-end training of deep RL agents. To mitigate
this issue, pretrained representations are often
learnt from auxiliary tasks on offline datasets
as part of an unsupervised pre-training phase to
improve the sample efficiency of deep RL agents
in a future online phase. Bootstrapping methods
are today’s method of choice to make these addi-
tional predictions but it is unclear which features
are being learned. In this paper, we address this
gap and provide a theoretical characterization of
the pre-trained representation learnt by temporal
difference learning (Sutton, 1988). Surprisingly,
we find that this representation differs from the
features learned by pre-training with Monte Carlo
and residual gradient algorithms for most tran-
sition structures of the environment. We describe
the goodness of these pre-trained representations
to linearly predict the value function given
any downstream reward function, and use our
theoretical analysis to design new unsupervised
pre-training rules. We complement our theoretical
results with an empirical comparison of these
pre-trained representations for different cumulant
functions on the four-room (Sutton et al., 1999)
and Mountain Car (Moore, 1990) domains and
demonstrate that they speed up online learning.

1. Introduction
The process of representation learning is crucial to the
success of reinforcement learning at scale. In deep rein-
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Figure 1: In deep RL, we see the penultimate layer of the net-
work as the representation φ which is linearly transformed
into a value prediction V̂φ,w and auxiliary predictions Ψ(x)
by bootstrapping methods.

forcement learning, a neural network is used to parameterise
a representation φ which is linearly mapped into a value
function (Figure 1) (Yu and Bertsekas, 2009; Bellemare
et al., 2019; Levine et al., 2017); this approach often leads to
state-of-the-art performance in the field (Mnih et al., 2015).

However, a representation supporting the downstream task
of interest might not emerge from end-to-end training.
Hence, auxiliary objectives are often incorporated into the
training process to help the agent combine its inputs into
useful features (Sutton et al., 2011; Jaderberg et al., 2017;
Bellemare et al., 2017; Lyle et al., 2021) and the resulting
network’s representation can help the agent estimate the
value function. Motivated by the desideratum of features
rich enough for several downstream tasks, a number
of works recently considered learning reward- agnostic
representations from offline datasets of transitions with the
environment (Stooke et al., 2021; Liu and Abbeel, 2021;
Touati and Ollivier, 2021; Farebrother et al., 2023). The aim
of this unsupervised pre-training step is that, when provided
with a reward, the agent learns a control policy faster from
these frozen representations than when trained in a tabula
rasa way. While intuitively pretrained representations
should capture temporal aspects of the environment, how
prior computation should be leveraged in the form of frozen
representations is lacking. This paper aims to fill this gap.
We focus on unsupervised learning from auxiliary tasks
consisting in predicting the expected return of a fixed policy
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Bootstrapped Representations in Reinforcement Learning

for several cumulant functions (Farebrother et al., 2023).

Because these tasks have mainly been trained by temporal
difference learning (TD), we first analyze the features
resulting from this kind of pretraining. In an idealized
setting, we find that the way we train these value functions,
for instance by TD learning, Monte Carlo or residual
gradient, influences the resulting features (Section 3).

In Section 4, we quantify the approximation error of a
linear prediction of the value function from these frozen
representations in the TD learning and batch Monte Carlo
settings. Given an unknown environment reward, we find
that using an identity cumulant matrix theoretically leads to
rich features. Because in practice we are interested in using
a number of tasks much smaller than the number of states
at the stage of unsupervised training, we provide an error
bound that arises from sampling a small number of random
pseudo-reward functions. In Subsection 5.3, we propose
a novel unsupervised pretraining method with adapative
cumulants and show that the resulting pretrained features
outperform training from scratch on small scale domains.

2. Background
We consider a Markov decision process (MDP) M =
〈S,A,R,P, γ〉 (Puterman, 1994) with finite state space S,
finite set of actionsA, transition kernelP : S×A →P(S),
deterministic reward functionR : S ×A → [−Rmax, Rmax],
and discount factor γ ∈ [0, 1). A stationary policy π : S →
P(A) is a mapping from states to distributions over actions,
describing a particular way of interacting with the environ-
ment. We denote the set of all policies by Π. We write
Pπ : S →P(S) the transition kernel induced by a policy
π ∈ Π

Pπ(s, s′) =
∑
s′∈S
P(s, a)(s′)π(a | s)

and rπ : S → [−Rmax, Rmax] the expected reward function

rπ(s) = Eπ[R(S0, A0) |S0 = s,A0 ∼ π(· |S0)].

For any policy π ∈ Π, the value function V π(s) measures
the expected discounted sum of rewards received when start-
ing from state s ∈ S and acting according to π:

V π(s) := E
π,P

[ ∞∑
t=0

γtR(St, At) |S0 = s,At ∼ π(· |St)

]
.

It satisfies the Bellman equation (Bellman, 1957)

V π(s) = rπ(s) + γES′∼Pπ(·|s)[V
π(S′)],

which can be expressed using vector notation (Puterman,
1994) (viewing rπ and V π as vectors in RS and Pπ as an
RS×S transition matrix) as

V π = rπ + γPπV
π = (I − γPπ)−1rπ.

We are interested in approximating the value function V π

using a linear combination of features (Yu and Bertsekas,
2009; Levine et al., 2017; Bellemare et al., 2019). We call
the mapping φ : S → Rd a state representation, where
d ∈ N+. Usually, we are interested in reducing the number
of parameters needed to approximate the value function and
have d� |S|. Given a feature vector φ(s) for a state s ∈ S
and a weight vectorw ∈ Rd, the value function approximant
at s can be expressed as

Vφ,w(s) = φ(s)>w.

We write the feature matrix Φ ∈ RS×d whose rows corre-
spond to the per-state feature vectors (φ(s), s ∈ S). This
leads to the more concise value function approximation

Vφ,w = Φw.

In the classic linear function approximation literature, the
feature map φ is held fixed, and the agent adapts only the
weights w to attempt to improve its predictions. By contrast,
in deep reinforcement learning, φ itself is parameterized by
a neural network and is typically updated alongside w to
improve predictions about the value function.

We measure the accuracy of the linear approximation Vφ,w
in terms of the squared ξ-weighted l2 norm, for ξ ∈P(S), 1

‖Vφ,w − V π‖2ξ =
∑
s∈S

ξ(s)(φ(s)Tw − V π(s))2.

The ξ-weighted norm describes the importance of each state.

2.1. Auxiliary Tasks

In deep reinforcement learning, the agent can use its rep-
resentation φ to make additional predictions on a set of T
auxiliary task functions {ψt ∈ RS}t∈{1,...,T} where each
ψt maps states to real values (Jaderberg et al., 2017; Belle-
mare et al., 2019; Dabney et al., 2021). These predictions
are used to refine the representation itself. We collect these
targets into an auxiliary task matrix Ψ ∈ RS×T whose rows
are ψ(s) = [ψ1(s), ..., ψT (s)]. We are interested in the case
of linear task approximation

Ψ̂ = ΦW,

where W ∈ Rd×T is a weight matrix, and want to choose
Φ and W such that Ψ̂ ≈ Ψπ. In this paper, we consider a
variety of auxiliary tasks that ultimately involve predicting
the value functions of auxiliary cumulants, also referred to
as general value functions (GVFs; Sutton et al., 2011). By
construction, these tasks can be decomposed into a non-zero
cumulant function g : S → RT , mapping each state to

1We assume that ξ(s) > 0 for all states s ∈ S.
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T real values, and an expected discounted next-state term
when acting according to π

ψπ(s) = g(s) + γES′∼Pπ(·|s)[ψ
π(S′)].

In matrix form, this recurrence can be expressed as follows

Ψπ = G+ γPπΨπ = (I − γPπ)−1G,

where G ∈ RS×T is a cumulant matrix whose columns
correspond to each pseudo-reward vector. An example of a
family of auxiliary tasks following this structure is the suc-
cessor representation (SR) (Dayan, 1993). The SR encodes
a state in terms of the expected discounted time spent in
other states and satisfies the following recursive form

ψπ (s, s′′) = I [s = s′′] + γES′∼Pπ(·|s) [ψπ (S′, s′′)] ,

for all s′′ ∈ S. The SR is a collection of value functions
associated with the cumulant matrix G = I . Here we focus
our analysis in its tabular form, noting that it can be extended
to larger state spaces in a number of ways (Barreto et al.,
2017; Janner et al., 2020; Blier et al., 2021; Thakoor et al.,
2022; Farebrother et al., 2023).

2.2. Monte Carlo Representations

To understand how auxiliary tasks shape representations,
we start by presenting the simple case where the values of
auxiliary cumulants are predicted in a supervised way. Here,
the targets Ψπ = (I − γPπ)−1G are obtained by Monte
Carlo rollouts, that is using the fixed policy to perform
roll-outs and collecting the sum of rewards. The goal is to
minimize the loss below

LMC
aux(Φ,W ) = min

W∈Rd×T
‖Ξ1/2(ΦW −Ψπ)‖2F .

This method results in the network’s representation Φ, as-
suming a linear, fully-connected last layer, corresponding to
the k principal components of the auxiliary task matrix Ψπ if
the network is other unconstrained (Bellemare et al., 2019).

Proposition 1 (Monte Carlo representations). If
rank(Ψπ) > d, all representations spanning the top-
d left singular vectors of Ψπ with respect to the inner
product 〈x, y〉Ξ are global minimizers of LMC

aux and can be
recovered by stochastic gradient descent.

In large environments, it is not practical to collect full tra-
jectories to estimate Ψπ. Instead, practitioners learn them
by bootstrapping (Sutton and Barto, 1998).

2.3. Temporal Difference Learning with a Deep
Network

Temporal difference (TD; Sutton, 1988) is the method of
choice for these auxiliary predictions. The main idea of

this approach is bootstrapping (Sutton and Barto, 1998). It
consists in using the current estimate of the auxiliary task
function to generate some targets replacing their true value
Ψπ in order to learn a new approximant of the auxiliary task
function. In this paper, we consider one-step temporal dif-
ference learning where we replace the targets by a one-step
prediction from the currently approximated auxiliary task
function. In deep reinforcement learning, both the repre-
sentation φ and the weights W are learnt simultaneously by
minimizing the following loss function

LTD
aux(φ,W ) = E

s∼ξ
s′∼Pπ(·|s)

[
φ(s)W − SG

(
g(s) + γφ(s′)W

)]2
where SG denotes a stop gradient and means that φ and
W are treated as a constant when taking the gradient from
automatic differentiation tools (Bradbury et al., 2018; Abadi
et al., 2016; Paszke et al., 2019). Written in matrix form,
we have

LTD
aux(Φ,W ) = ‖(Ξ)

1
2 (ΦW − SG(G+ γPπΦW ))‖2F

Here, Ξ ∈ RS×S is a diagonal matrix with elements {ξ(s) :
s ∈ S} on the diagonal. For clarity of exposition, we ex-
press this loss with universal value functions but the analysis
can be extented to state-action values at the cost of additional
complexity. The idea is to reduce the mean squared error
between the approximant ψ̂ and the target values by stochas-
tic gradient descent (SGD). Taking the gradient of L with
respect to Φ andW , we obtain the semi-gradient update rule

Φ← Φ− αΞ ((I − γPπ)ΦW −G)W>

W ←W − αΦTΞ ((I − γPπ)ΦW −G) (1)

for a step size α. Because the values of the targets change
over time, the loss L does not have a proper gradient field
(Dann et al., 2014) except in some particular cases (Barnard,
1993; Ollivier, 2018) and hence classic analysis of stochastic
gradient descent (Bottou et al., 2018) does not apply.

3. Bootstrapped Representations
We now study the d-dimensional features that arise when
performing value estimation of a fixed set of cumulants and
how the choice of a learning method such as TD learning
affects the learnt representations. Our first result character-
izes representations that bootstrap themselves. We assume
that the features Φ are updated in a tabular manner under
the dynamics in Equation (1). To simplify the presentation,
we now make the following invertibility assumption.
Assumption 1. We assume that ΦTΞ(I − γPπ)Φ is invert-
ible for any full rank representation Φ ∈ RS×d.

This standard assumption is for instance verified when ξ is
the stationary distribution over states under π of an aperi-
odic, irreducible Markov chain (see e.g. Sutton et al., 2016).
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e2 e 3

e 1

Figure 2: Left: A simple 3-state MDP. Right: Five sub-
spaces, each represented by a circle, spanned by Φ during
the last training steps of gradient descent on LTD

aux for d = 2.

An interesting characterization of the dynamical system in
Equation (1) is its set of critical points. For a given Φ, we
write

WTD
Φ,G ∈ {W ∈ Rd×T |∇WLTD

aux(Φ,W ) = 0}.

Using classic linear algebra, we find that the weights WTD

obtained at convergence correspond to the LSTD solution
(Bradtke and Barto, 1996; Boyan, 2002; Zhang et al., 2021)

WTD
Φ,G =

(
ΦTΞ(I − γPπ)Φ

)−1
ΦTΞG.

A key notion for our analysis is the concept of invariant
subspace of a linear mapping.

Definition 1 (Gohberg et al., 2006). A representation Φ ∈
RS×d spans a real invariant subspace of a linear mapping
M : S → R|S| if the column span of Φ is preserved by M ,
that is in matrix form

span(MΦ) ⊆ span(Φ).

For instance, any real eigenvector of M generates one of its
one-dimensional real invariant subspaces.

We are now equipped with the tools to enumerate the set of
critical representations {Φ ∈ RS×d | ∇ΦLTD

aux(Φ,WTD
Φ ) =

0} in the lemma below.

Lemma 1 (Critical representations for TD). All full rank
representations which are critical points to LTD

aux span
real invariant subspaces of (I − γPπ)−1GGTΞ, that is
span((I − γPπ)−1GGTΞΦ) ⊆ span(Φ).

Proof. The proof is given in Appendix B and relies on the
view of LSTD as an oblique projection (Scherrer, 2010).

In the particular case of an identity cumulant matrix and
a uniform distribution over states, this set can be more di-
rectly expressed as the representations invariant under the
transition dynamics.

Corollary 1. If G = I and Ξ = I/|S|, all full rank rep-
resentations which are critical points to LTD

aux span real
invariant subspaces of the invariant subspaces of Pπ .

Similarly to how the top principal components of a ma-
trix explain most of its variability (Hotelling, 1933), these
critical representations are not equally informative of the
dynamics of the environment. This motivates the need to
understand the behavior of the updates from Equation (1).
To ease the analysis, we assume that the weights W have
converged perfectly to WTD

Φ,G at each time step (Le Lan
et al., 2022a) and consider the following continuous-time
dynamics.

d

dt
Φ = −∇ΦL(Φ,WTD

Φ,G) = −F (Φ), (2)

where:

F (Φ) := 2Ξ
(
(I − γPπ)ΦWTD

Φ,G −G
)

(WTD
Φ,G)>.

Our key result is that the stable critical points of this ordinary
differential equation correspond to the real top-d invariant
subspace of Pπ , when this exists.

Theorem 1 (TD representations). Assume G = I and a
uniform distribution ξ over states. Let λ1, .., λ|S| be the
(possibly complex) eigenvalues of Pπ, ordered by decreas-
ing real part Re(λi) > Re(λi+1), i ∈ {1, .., |S|}. Under
the dynamics in Equation (2), all real invariant subspaces of
dimension d are critical points, and only the top-d invariant
subspace, if it exists, is stable.

The result above implies that the TD algorithm converges to-
wards a real top-d invariant subspace or diverges with proba-
bility 1. While real diagonalisable transition matrices always
induce real invariant subspaces, complex eigenvalues do not
guarantee their existence and in such a case, where there is
no top-d real invariant subspace, the representation learning
algorithm does not converge. As an illustration, consider the
three-state MDP depicted in Figure 2, left, whose transition
matrix is complex diagonalisable and given by

Pπ =

0 1 0
0 0 1
1 0 0


Its eigenvalues are λ1 = 1 associated to the real eigen-
vector e1 and the complex conjugate pair (λ2, λ2) =
(e2πi/3, e−2πi/3), associated to the pair of real eigenvectors
(e2, e3). Hence, the real invariant subspaces of Pπ are
{0}, span(e1), span(e2, e3), span(e1, e2, e3). Note that
there is no 2-dimensional real invariant subspace containing
the top eigenvector e1. Consequently, the 2-dimensional
representation learnt by gradient descent on the TD learning
rule with G = I does not converge and rotates in the higher
dimensional subspace span(e1, e2, e3) (see Figure 2, right).
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MAIN ALGORITHM l1-BALL OPTIMAL REPRESENTATION REPRESENTATION LOSS LEARNT REPRESENTATION

BATCH MC SVD
(
(I − γPπ)−1) MC SVD

(
(I − γPπ)−1G

)
RESIDUAL SVD

(
(I − γPπ)−1)Σd RESIDUAL (I − γPπ)−1 SVD (G)

TD Φ∗
TD TD INV

(
(I − γPπ)−1GGTξ

)
Table 1: Different types of representation loss and their induced representations. The supervised targets Ψ ∈ RS×T are
(I − γPπ)−1G. SVD(M) denotes the top-d left singular vectors of M, INV(M) the top-d invariant subspace of M and
Σd ∈ Rd×d the diagonal matrix with the top-d singular values of (I − γPπ)−1 on its diagonal.

To understand the importance of the stop-gradient in TD
learning, it useful to study the representations arising from
the minimization of the following loss function

Lres
aux(Φ,W ) = ‖Ξ 1

2 (ΦW − (G+ γPπΦW )) ‖2F ,

which corresponds to residual gradient algorithms (Baird,
1995). While it has been remarked on before that the weights
minimizing Lres

aux(Φ,W ) for a fixed Φ differ from WTD
Φ,G

(see Lemma 8; Lagoudakis and Parr, 2003; Scherrer, 2010),
this objective function also has a different optimal represen-
tation

Proposition 2 (Residual representations). Let d ∈
{1, ..., S} and Fd be the top d left singular vectors of G
with respect to the inner product 〈x, y〉Ξ = yTΞx, for all
x, y ∈ R|S|. All representations spanning (I − γPπ)−1Fd
are global minimizers of Lres

aux and can be recovered by
stochastic gradient descent.

While TD and Monte Carlo representations are in general
different, in the particular case of symmetric transition ma-
trices and orthogonal cumulant matrices, they are the same.

Corollary 2 (Symmetric transition matrices). If a cumulant
matrix G ∈ RS×T (with T > S) has unit-norm, orthogonal
columns (e.g. G = I), the representations learnt from the
supervised objective LMC

aux and the TD update rule LTD
aux

are the same for symmetric transition matrices Pπ under a
uniform state distribution ξ.

This is because eigenvectors and singular vectors are iden-
tical in that setting and the eigenvalues of the successor
representation are all positive.

4. Representations for Policy Evaluation
With the results from the previous section, the question that
naturally arises is which approach results in better repre-
sentations. To provide an answer, we consider a two-stage
procedure. First, we learn a representation Φ by predicting
the values of T auxiliary cumulants simultaneously, using
one of the learning rules described in Section 3. Then, we re-
tain this representation and perform policy evaluation. If the
value function is estimated on-policy, it converges towards
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Figure 3: MC (left) and TD (right) approximation errors
as a function of the misalignment of the top left and right
singular vector of the SR induced by greedifying the policy.
Trained with LMC

aux , LTD
aux, G = I , d = 1 on a 4-state room.

the LSTD solution (Tsitsiklis and Van Roy, 1996)

V̂ TD = ΦwTD
Φ

where wTD
Φ =

(
ΦTΞ(I − γPπ)Φ

)−1
ΦTΞrπ . We are inter-

ested in whether this value function results in low approxi-
mation error on average over random reward functions rπ,
that is we want the following error to be small

Erπ [‖ΦwTD
Φ − V π‖2ξ ] (3)

where the expectation is over the reward functions rπ sam-
pled uniformly over the l1 ball {rπ ∈ RS | ‖rπ‖1 6 1}.
This set models an unknown reward function.

We say that a representation Φ∗TD is l1-ball optimal for TD
learning when it minimizes the error in Equation (3). Here
Φ∗TD depends on the transition dynamics of the environment
but not on the reward function.

Lemma 2. A representation Φ∗TD is l1-ball optimal for TD
learning iff it is a solution of the following optimization
problem.

Φ∗TD ∈ arg minΦ

∥∥Ξ1/2(ΦWTD
Φ,I − (I − γPπ)−1)

∥∥2

F
.

When Pπ is symmetric and Ξ = I/|S|, the minimum is
achieved by both the top-d left singular vectors and top-d
invariant subspace of the SR. However, as the misalignment
between the top-d left and top-d right singular vectors of
(I − γPπ) increases, the top-d invariant subspace results
in lower error compared to the top-d singular vectors (see
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Figure 3); note that here, none of them achieves Φ∗TD and
hence G = I is not optimal for TD learning.

As a comparison, we study which representations are l1-ball
optimal for linear batch Monte Carlo policy evaluation. In
that setting, we are given a dataset consisting of states and
their associated value, which can be estimated by the reali-
sation of the random return (Bellemare et al., 2017; Sutton
and Barto, 2018), and the weights are learnt by least square
regression. As above, we want the features minimizing

Erπ [‖ΦwMC
Φ − V π‖2ξ ] (4)

where V̂ MC = ΦwMC
Φ is the value function learnt at conver-

gence and wMC
Φ = (Φ>ΞΦ)−1Φ>ΞV π .

Lemma 3. A representation Φ∗MC is l1-ball optimal for
batch Monte Carlo policy evaluation if its column space
spans the top-d left singular vectors (with respect to the
inner product 〈x, y〉Ξ) of (I − γPπ)−1.

Unlike TD, Φ∗MC is achieved by training LMC
aux with G = I .

We summarize in Table 1 our representation learning results
mentioned throughout Section 3 and Section 4. For com-
pleteness, we also include l1-ball optimal representations
for residual algorithms. Proofs can be found in Appendix C.

4.1. TD and Monte Carlo Need Different Cumulants

Having characterized which features common auxiliary
tasks capture and what representations are desirable to sup-
port training the main value function, we now show that
MC policy evaluation and TD learning need different cumu-
lants. In large environments, we are interested in cumulant
matrices encoding a small number of tasks T � S.

Lemma 4. Denote BT the top-T right singular vectors of
the SR andO(T, S) the set of orthogonal matrices in RT×S .
Training auxiliary tasks in a MC way with any G from the
set {G ∈ RS×T |∃M ∈ O(T, S), G = BTM} results in an
l1-ball optimal representation for batch Monte Carlo.

We showed in Section 3 that training auxiliary tasks by TD
does not always converge when the transition matrix has
complex eigenvalues. Maybe surprisingly, we find that this
is not problematic when learning the main value function
by TD. Indeed, the rotation of its own weights balances the
rotation of the underlying representation.

Lemma 5. Let {Φω} be the set of rotating representations
from Figure 2 learnt by TD learning with G = I and d = 2.
All these representations are equally good for learning the
main value function by TD learning, that is ∀ω ∈ [0, 1],

E‖r‖22<1

∥∥Φωw
TD
Φω − V

π
∥∥2

F

is constant and independent of ω.

AlthoughG = I does not always lead to Φ∗TD when training
LTD

aux, by analogy with the MC setting, we assume that
G = I leads to overall desirable representations. Assuming
Ξ = I/|S|, this means we would like the subspace spanned
by top-d invariant subspaces of (I−γPπ)−1 to be the same
as the subspace spanned by the top d invariant subspaces of
(I − γPπ)−1GG>.
Lemma 6. The set of cumulant matrices G ∈ RS×T that
preserve the top-T invariant subspaces of the successor rep-
resentation by TD learning are the top-T orthogonal invari-
ant subspaces of (I − γPπ)−1, that is satisfying G>G = I
by orthogonality and (I−γPπ)−1G ⊆ G by the invariance
property.

Unlike the MC case, a desirable cumulant matrix should en-
code the exact same information as the representation being
learnt and the choice of a parametrization here matters.

4.2. A Deeper Analysis of Random Cumulants

We now study random cumulants which have mainly been
used in the literature (Dabney et al., 2021; Lyle et al., 2021;
Farebrother et al., 2023) as a heuristic to learn representa-
tions. We aim to explain their recent achievements as a pre-
training technique (Farebrother et al., 2023) and their effec-
tiveness in sparse reward environments (Lyle et al., 2021).
Proposition 3 (MC Error bound). Let G ∈ RS×T be a
sample from a standard gaussian distribution and assume
d 6 T . Let Fd be the top-d left singular vectors of the
successor representation (I − γPπ)−1 and F̂d be the top
left singular vectors of (I − γPπ)−1G. Denote σ1 > σ2 >
... > σS the singular values of the SR and dist(Fd, F̂d) the
sin θ distance between the subspaces spanned by Fd and
F̂d. We have

E[dist(Fd, F̂d)] 6

√
d

T − d− 1

σd+1

σd
+

e
√
T

T − d

 n∑
j=d+1

σ2
j

σ2
d

 1
2

Proof. A proof can be found in Appendix D and follows
arguments from random matrix theory.

This bound fundamentally depends on the ratio of the singu-
lar values σd+1/σd of the successor representation. As the
oversampling parameter (T − d) grows, the right hand side
tends towards 0. In particular, for the right hand side to be
less than ε, we need the oversampling parameter to satisfy
(T − d) > 1/ε2. We investigate to which extent this result
holds empirically for the TD objective in Subsection 4.1.

5. Empirical Analysis
In this section, we illustrate empirically the correctness of
our theoretical characterizations from Section 3 and com-
pare the goodness of different cumulants on the four room
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Figure 4: Subspace distance between Φ and the top-d left singular vectors of the SR on the left (resp. and a top-d
Pπ-invariant subspace in the middle over the course of training LTD

aux,LMC
aux and Lres

aux for 105 steps, averaged over 30 seeds
(d = 3). MDPs with real diagonalisable (left, middle) and symmetric (right) transition matrices are randomly generated.
Shaded areas represent 95% confidence intervals.

(Sutton and Barto, 2018) and Mountain car (Moore, 1990)
domains. Let PΦ = Φ(Φ>Φ)†Φ>. Here, any distance
between two subspaces Φ and Φ∗ is measured using the
normalized subspace distance, 2 (Tang, 2019) defined by

dist(Φ,Φ∗) = 1− 1

d
· Tr (PΦ∗PΦ) ∈ [0, 1].

5.1. Synthetic Matrices

To begin, we train the TD, supervised and residual update
rules from Section 3 up to convergence knowing the exact
transition matrices Pπ . In Figure 4 left and middle, we ran-
domly sample 30 real diagonalisable matrices Pπ ∈ R50×50

to prevent any convergence issue from the TD update rule.
In Figure 4 right, we generate symmetric transition matrices
Pπ ∈ R50×50. To illustrate the theory, we run gradient
descent on each learning rule by expressing the weights
implicitly as a function of the features (see Equation (2)
for TD for instance). Figure 4, left shows that these
auxiliary task algorithms learn different representations and
successfully recover our theoretical characterizations from
Table 1. Figure 4 right illustrates that the supervised and
TD rules converge to the same representation for symmetric
Pπ , as predicted by our theory.

5.2. Efficacy of Random Cumulants

Following our theoretical analysis from Subsection 5.2, our
aim is to illustrate the goodness of random cumulants at
recovering the left singular vectors of the successor rep-
resentation on the four room domain (Sutton et al., 1999)
and to investigate to which extent an analogous result holds
empirically for the TD rule. We investigate the importance
of three properties of a distribution: isotropy, norm and or-
thogonality of the columns. We consider random cumulants
from different distributions: a standard Gaussian N(0, I),
a Gaussian distribution which columns are normalized to

2It is equivalent to the sin θ distance up to some constant
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Figure 5: Subspace distance after 5 × 105 training steps
(d = 5) between Φ learnt with LMC

aux and the top left singular
vectors of the SR (left) and between Φ learnt with LTD

aux and
the top invariant subspaces of the SR (right) for different
random cumulants, on the four-room domain. Shaded areas
represent 95% confidence intervals

be unit-norm, the O(N) Haar distribution and random indi-
cators functions. Figure 5, left shows that the the indicator
distribution which is not isotropic performs worse overall
for the supervised objective and when the number of tasks
is large enough, orthogonality between the columns of the
cumulant matrix leads to better accuracy. In comparison,
Figure 5, right studies the goodness of random cumulants
at recovering the top-d invariant subspaces of the SR and
depicts a different picture. Here, the Gaussian distribution
achieves the highest error irrespective of the number of tasks
sampled while the normalized Gaussian achieves lower error
suggesting the norm of the columns matter for TD training.
The indicator distribution performs well for many number of
sampled tasks indicating that the isotropy of the distribution
is not as important for TD as it is for supervised training.
Finally, the orthogonal cumulants achieve the lowest error
when the number of tasks is large enough, showing this is
an important property for both kinds of training.

5.3. Offline Pre-training

In this section we follow a similar evaluation protocol as
that of Farebrother et al. (2023), but applied to the four room
and Mountain car domains to allow a clear investigation of
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Figure 6: Comparing effects of offline pre-training on the
FourRooms (left) and sparse Mountain Car (right) domains
for different cumulant generation methods. Results are
averages over three seeds.

the various cumulant generation methods and the effects of
their corresponding GVFs as a representation pre-training
method for reinforcement learning. Details can be found
in Appendix A.

We consider four cumulant functions. The first two are sta-
tionary and are generated before offline pre-training begins.
For ExactSVD, we compute the top-k right singular vectors
of the successor representation matrix of the uniform ran-
dom policy. For Normal, we generate cumulant functions
sampled from a standard Normal distribution.

The second two cumulant functions are learned during of-
fline pre-training using a separate neural network. RNI
(Farebrother et al., 2023), learns a set of indicator functions
which are trained to be active in a particular percentage of
the states (15% in this experiment). Clustering Contrastive
Representations (CCR) learns cumulants by learning a rep-
resentation of the state using CPC (Oord et al., 2018), and
then performs online clustering of the learned representa-
tions with k clusters. The online clustering method we use
differs slightly from standard approaches in that we main-
tain an estimate of the frequency that each cluster center is
assigned to a state, pi, and the assigned cluster is identified
with arg mini pi‖φ(x)−bi‖, where φ(x) is the learned CPC
representation and bi is cumulant i’s centroid. Examples of
the cumulants produced by these four methods, and their
corresponding value functions, are given in Appendix A.

Figure 6 compares the online performance after pre-training,
for various cumulant functions, with the online performance
of DQN without pre-training. Two take-aways are readily
apparent. First, that offline pre-training, speeds up online
learning, as expected. Second, that the two best perform-
ing methods are both sensitive to the structure of the envi-
ronment dynamics, directly in the case of ExactSVD and
indirectly through the CPC representation for CCR.

6. Related Work
Optimal representations. Bellemare et al. (2019) define

a notion of optimal representations for batch Monte Carlo
optimization based on the worst approximation error of the
value function across the set of all possible policies, later
relaxed by Dabney et al. (2021). Instead, we do not consider
the control setting but focus on policy evaluation. Ghosh
and Bellemare (2020) and Le Lan et al. (2022b) characterize
the stability, approximation and generalization errors of the
SR (Dayan, 1993) and Schur representations which are Pπ-
invariant, a key property to ensure stability. In contrast, we
formalize that predicting values functions by TD learning
from G = I leads to Pπ-invariant subspaces.

Auxiliary tasks. Lyle et al. (2021) analyse the represen-
tations learnt by several auxiliary tasks such as random
cumulants (Osband et al., 2018; Dabney et al., 2021) assum-
ing real diagonalizability of the transition matrix Pπ and
constant weights W . They found that in the limit of an infin-
ity of gaussian random cumulants, the subspace spanned by
TD representations converges in distribution towards the left
singular vectors of the successor representation. Instead, our
theoretical analysis holds for any transition matrix and both
the weights W and the features Φ are updated at each time
step. Recently, Farebrother et al. (2023) rely on a random bi-
nary cumulant matrix which sparsity is controlled by means
of a quantile regression loss. Finally, other auxiliary tasks
regroup self-supervised learning methods (Schwarzer et al.,
2020; Guo et al., 2020). Tang et al. (2022) demonstrate that
these algorithms perform an eigendecompositon of real di-
agonalisable transition matrix Pπ , under some assumptions,
suggesting a close connection to TD auxiliary tasks.

7. Conclusion
In this paper, we have studied representations learnt by boot-
strapping methods and proved their benefit for value-based
deep RL agents. Based on an analysis of the TD continuous-
time dynamical system, we generalized existing work (Lyle
et al., 2021) and provided evidence that TD representations
are actually different from Monte Carlo representations.

Our investigation demonstrated that an identity cumulant
matrix provides as much information as the TD and super-
vised auxiliary algorithms can carry; this work also shows
that it is possible to design more compact pseudo-reward
functions, though this requires prior knowledge about the
transition dynamics. This led us to propose new families of
cumulants which also proved useful empirically.

We assumed in this paper that the TD updates are carried out
in tabular way, that is that there is not generalization between
states when we update the features. An exciting opportunity
for future work is to extend the theoretical results to the
case where the representation is parametrized by a neural
network. Other avenues for future work include scaling up
the representation learning methods here introduced.
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A. Additional Empirical Results
A.1. Additional details for Subsection 5.1

In this experiment, we selected a step size α = 0.08 for all the algorithms. We also choose a uniform data distribution
Ξ = I/|S| and a cumulant matrix G = I for simplicity.

A.2. Additional details for Subsection 5.2

In this experiment, we use a step size α = 5e − 3 and train the different learning rules for 500k steps with 3 seeds. We
consider the transition matrices induced by an epsilon greedy policy on the four room domain (Sutton et al., 1999) with
ε = 0.8 and train the supervised and TD update rules as described in Subsection 5.1

Gaussian Orthogonal Group Indicator Normalized Gaussian
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Figure 7: Monte Carlo and TD approximation errors after 5.105 training steps on the learning rules LMC
aux (on the left

column) and LTD
aux (on the right column) in the four-room domain for different distributions of cumulant, averaged over

3 seeds, for d = 5. Shaded areas represent 95% confidence intervals.

A.3. Additional details for Subsection 5.3

Four Rooms is a tabular gridworld environment where the agent begins in a room in the top left corner and must navigate to
the goal state in the lower right corner. The actions are up, down, left and right and have deterministic effects. The reward
function is one upon transitioning into the goal state and zero otherwise.

Mountain Car is a two-dimensional continuous state environment where the agent must move an under-powered car from
the bottom of a valley to a goal state at the top of the nearby hill. The agent observes the continuous-valued position and
velocity of the car, and controls it with three discrete actions which apply positive, negative, and zero thrust to the car. In
this sparse reward version of the domain the reward is one for reaching the goal and zero otherwise. In this domain, we
compute the ExactSVD by first discretizing the state space into approximately 2000 states, and compute an approximate Pπ

by simulating transitions from uniformly random continuous states belonging to each discretized state.

In this evaluation we first pre-train a network representation offline with a large fixed dataset produced from following the
uniform random policy. During offline pre-training the agent does not observe the reward, and instead learns action-value
functions, GVFs, for each of several cumulant functions. After pre-training, the GVF head is removed and replaced with a
single action-value function head. This network is then trained online with DQN on the true environmental reward. Note
that we allow gradients to propagate into the network representation during online training.

In Four Rooms all methods use k = 40 cumulants and in Mountain Car all methods use k = 80 cumulants.
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Figure 8: Example for ExactSVD of the learned cumulants (first two rows) and value functions (last two rows) during offline
pre-training in FourRooms under the uniform random policy.

Figure 9: Example for Normal of the learned cumulants (first two rows) and value functions (last two rows) during offline
pre-training in FourRooms under the uniform random policy.

B. Proofs for Section 3
Throughout the appendix, we will use the notation L := I − γPπ .

The beginning of this section is dedicated to proving the main result of Section 3, Theorem 1. Before that, we introduce the
following necessary lemma.

Lemma 7. Let Φ ∈ RS×d and Ψ ∈ RS×T . Let PΦ be a (possibly oblique) projection onto span(Φ). We have

PΦΨ = Ψ⇐⇒ span(Ψ) ⊆ span(Φ)

Proof. PΦ can be written as PΦ = Φ(X>Φ)−1X> where Φ, X ∈ RS×d and X>Φ ∈ Rd×d is invertible. Write PΦ = ΦQ
with Q = (X>Φ)−1X>.
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Figure 10: Example for CCR of the learned cumulants (first two rows) and value functions (last two rows) during offline
pre-training in FourRooms under the uniform random policy.

Figure 11: Example for RNI of the learned cumulants (first two rows) and value functions (last two rows) during offline
pre-training in FourRooms under the uniform random policy.

( =⇒ ) Suppose Ψ ∈ RS×T such that PΦΨ = Ψ. Then, Ψ = Φ(QΨ). Let ω ∈ RT . Ψω = Φ(QΨ)ω so Ψω ∈ span(Φ)
Hence span(Ψ) ⊆ span(Φ).
( ⇐= ) Suppose span(Ψ) ⊆ span(Φ). Denote (et) the standard basis. We have PΦΨ = (

∑
t PΦ(Ψet)e

>
t ). Note that

Ψet ∈ span(Ψ) ⊆ span(Φ). Hence, there exists yt ∈ Rd such that Ψet = Φyt. Now, PΦΨ = (
∑
t PΦ(Φyt)e

>
t ) =

(
∑
t Φ(X>Φ)−1X>Φyte

>
t ) = (

∑
t Φyte

>
t ) = (

∑
t Ψete

>
t ) = Ψ.

Lemma 1 (Critical representations for TD). All full rank representations which are critical points to LTD
aux span real

invariant subspaces of (I − γPπ)−1GGTΞ, that is span((I − γPπ)−1GGTΞΦ) ⊆ span(Φ).

Proof. Start with these equations.

For a fixed Φ,∇W ‖(Ξ)
1
2 (ΦW −G− γPπSG[ΦW ])‖2F = 2ΦTΞ(ΦW −G− γPπΦW )

For a fixed W,∇Φ‖(Ξ)
1
2 (ΦW −G− γPπSG[ΦW ])‖2F = 2Ξ(ΦW −G− γPπΦW )WT
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Figure 12: Example for ExactSVD of the learned cumulants (first two rows) and value functions (last two rows) during
offline pre-training in sparse Mountain Car under the uniform random policy.
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Figure 13: Example for Normal of the learned cumulants (first two rows) and value functions (last two rows) during offline
pre-training in sparse Mountain Car under the uniform random policy.

By Assumption 1, ΦTΞLΦ is invertible for all full rank representations Φ. Hence, for a fixed full rank Φ,

∇W ‖(Ξ)
1
2 (ΦW −G− γPπSG[ΦW ])‖2F = 0⇐⇒W ∗Φ =

(
ΦTΞLΦ

)−1
ΦTΞG

Using the second fixed-point equation:

0 = (LΦW −G)WT ⇐⇒ LΦWWT = GWT.
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Figure 14: Example for CCR of the learned cumulants (first two rows) and value functions (last two rows) during offline
pre-training in sparse Mountain Car under the uniform random policy.
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Figure 15: Example for RNI of the learned cumulants (first two rows) and value functions (last two rows) during offline
pre-training in sparse Mountain Car under the uniform random policy.

Now plugging in the expression for W ∗Φ,

LΦ
(
ΦTDπLΦ

)−1
ΦTDπG

((
ΦTDπLΦ

)−1
ΦTDπG

)T
= G

((
ΦTDπLΦ

)−1
ΦTDπG

)T
⇔ LΦ

(
ΦTDπLΦ

)−1
ΦTDπGG

TDπΦ
(
ΦTDπLΦ

)−T
= GGTDπΦ

(
ΦTDπLΦ

)−T
⇔ Φ

(
ΦTDπLΦ

)−1
ΦTDπGG

TDπΦ = L−1GGTDπΦ

⇔ ΠLTDπΦL
−1GGTDπΦ = L−1GGTDπΦ

where ΠX = Φ(XTΦ)−1XT is the oblique projection onto span(Φ) orthogonally to span(X). This is equivalent to
Π⊥LTDπΦL

−1GGTDπΦ = 0, which is equivalent to saying that span(Φ) must be an invariant subspace of L−1GGTDπ by
Lemma 7.
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In other words, we have shown that all non-degenerate full-rank Φ which are critical points span invariant subspaces
of L−1GGTDπ. We can enumerate these via the real Jordan normal form of L−1GGTDπ. Each block of the real
Jordan normal form corresponds to an invariant subspace of L−1GGTDπ. Suppose that the real Jordan block sizes of
L−1GGTDπ are n1, n2, ..., nb (L−1GGTDπ has b real Jordan blocks), and suppose L−1GGTDπ = SJS−1 is the real
Jordan decomposition, with J = blkdiag(Jn1

(λ1), ..., Jnb(λb)). Partition the columns of S into S1, ..., Sb. Then if
Φ ∈ RS×k, the set of non-degenerate stationary full rank representations is:

{
[
Si1 ... Si`

]
| ni1 + ...+ ni` = k}.

Corollary 1. If G = I and Ξ = I/|S|, all full rank representations which are critical points to LTD
aux span real invariant

subspaces of the invariant subspaces of Pπ .

Proof. By Theorem 1, all full rank representations which are critical points of LTD
aux span real invariant subspaces of

(I − γPπ)−1.

Let Φ be a representation spanning an invariant subspace of (I−γPπ)−1. By definition, span((I−γPπ)−1Φ) ⊆ span(Φ).
Because (I−γPπ) is invertible, we have dim((I−γPπ)−1Φ) = dim(Φ). Hence, we actually have span((I−γPπ)−1Φ) =
span(Φ). There exists w1, w2 ∈ Rd such that Φw1 = (I − γPπ)−1Φw2 so (I − γPπ)Φw1 = Φw2. It follows that
Φ (w1−w2)

γ = PπΦw1. Hence, PπΦw1 ∈ span(Φ) and span(PπΦ) ⊆ span(Φ). We conclude that Φ spans an invariant
subspace of Pπ .

Theorem 1 (TD representations). Assume G = I and a uniform distribution ξ over states. Let λ1, .., λ|S| be the (possibly
complex) eigenvalues of Pπ, ordered by decreasing real part Re(λi) > Re(λi+1), i ∈ {1, .., |S|}. Under the dynamics in
Equation (2), all real invariant subspaces of dimension d are critical points, and only the top-d invariant subspace, if it
exists, is stable.

Proof. Consider this objective:

L(Φ) =
1

2
‖(Ξ 1

2 )(ΦWTD
Φ,G −G− γPπSG[ΦWTD

Φ,G])‖2F ,

and WTD
Φ,G =

(
ΦTΞLΦ

)−1
ΦTΞG and define L := I − γPπ . Observe that:

For a fixed W,∇Φ‖ΦW −G− γPπSG[ΦW ]‖2F = 2Ξ(LΦW ∗Φ −G)(W ∗Φ)T

So now we consider the continuous time dynamics:

d

dt
Φ = −∇ΦL(Φ) := −F (Φ), (5)

where:

F (Φ) := Ξ(LΦWTD
Φ,G −G)(WTD

Φ,G)T = ΞL(ΠL>ΞΦ − I)L−1GGTΞΦ(ΦTΞLΦ)−T

Consider the case G = I and Ξ = I/|S|. The proof strategy consists in constructing an eigenvector ∆ ∈ RS×d of ∂ΦF (Φ)
as a function of Φ, L,G such that ∂ΦF (Φ)[∆] = −λ∆ for some Re(λ) > 0. For every non top-d invariant subspace, we
prove that the Jacobian of the dynamics −F has a positive real part eigenvalue.

Let Φ be a stationary point which columns are orthogonal such that ΦTΦ = Id. Φ is an invariant subspace of Pπ . Assume
that Φ does not contain the eigenvectors corresponding to the top d eigenvalues. Define Λ = diag(λ1, ..., λd) its associated
eigenvalues assumed distinct. We have PΦ = ΦΛ. Hence, (I − γPπ)Φ = Φ(I − γΛ). Let λmax the largest eigenvalue of
Pπ not contained in Φ and let i ∈ {1, .., d} be the largest index such that λi < λmax. Let ∆ be the matrix with the largest
eigenvector λmax of Pπ not contained in Φ in its i-th column and 0 elsewhere.

∂ΦW
∗
Φ[∆] = −(ΦTLΦ)−1(∆TLΦ + ΦTL∆)(ΦTLΦ)−1ΦTG+ (ΦTLΦ)−1∆TG

= −(ΦTΦ(Id − γΛ))−1(∆TΦ(I − γΛ) + (1− γλmax)ΦT∆)(ΦTΦ(Id − γΛ))−1ΦTG+ (ΦTΦ(Id − γΛ))−1∆T

= (Id − γΛ)−1(ΦTΦ)−1∆T
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∂ΦF (Φ)[∆] = (L∆W ∗Φ + LΦ(dW ∗Φ))(W ∗Φ)T + (LΦW ∗Φ −G)(dW ∗Φ)T

= (1− γλmax)∆(I − γΛ)−2(ΦTΦ)−1 + LΦ(I − γΛ)−1(ΦTΦ)−1∆TΦ(ΦTLΦ)−T

+ LΦ(ΦTLΦ)−1ΦT∆(ΦTΦ)−1(I − γΛ)−T −∆(ΦTΦ)−1(I − γΛ)−T

= ∆(1− γλmax)(I − γΛ)−2(ΦTΦ)−1 −∆(ΦTΦ)−1(I − γΛ)−T

= ∆(1− γλmax)(I − γΛ)−2 −∆(I − γΛ)−1

= γ∆(−λmaxI + Λ)(I − γΛ)−2

= γ∆(−λmax + λi)(1− γλi)−2 < 0

Hence, any non top-d invariant subspace is unstable for gradient descent.

Proposition 2 (Residual representations). Let d ∈ {1, ..., S} and Fd be the top d left singular vectors of G with respect to
the inner product 〈x, y〉Ξ = yTΞx, for all x, y ∈ R|S|. All representations spanning (I − γPπ)−1Fd are global minimizers
of Lres

aux and can be recovered by stochastic gradient descent.

Proof. We can write the loss function to be minimized as

J(Φ) = min
W∈Rd×T

‖Ξ1/2(ΦW − (G+ γPπΦW ))‖2F

= min
W∈Rd×T

‖Ξ1/2(ΦW − γPπΦW −G)‖2F

= min
W∈Rd×T

‖Ξ1/2((I − γPπ)ΦW −G)‖2F

Now,

arg min
Φ∈RS×d

min
W∈Rd×T

‖Ξ1/2((I − γPπ)ΦW −G)‖2F = arg min
Φ∈RS×d

‖P⊥Ξ1/2(I−γPπ)ΦΞ1/2G‖2F

= {Φ ∈ RS×d | Φ = (I − γPπ)−1FdM,M ∈ GLd(R)}

This set of representations can be recovered by stochastic gradient descent efficiently, i.e., with number of SGD iterations
scaling at most polynomially in all problem specific parameters (Ge et al., 2017; Jin et al., 2017) in the context of SGD.

Proposition 1 (Monte Carlo representations). If rank(Ψπ) > d, all representations spanning the top-d left singular vectors
of Ψπ with respect to the inner product 〈x, y〉Ξ are global minimizers of LMC

aux and can be recovered by stochastic gradient
descent.

Proof. Let Fd denote the top d left singular vectors of Ψ.

arg min
Φ∈RS×d

min
W∈Rd×T

‖Ξ1/2(ΦW −Ψ)‖2F = arg min
Φ∈RS×d

‖P⊥Ξ1/2ΦΞ1/2Ψ‖2F

= {Φ ∈ RS×d | ∃M ∈ GLd(R),Φ = FdM}

This set of representations can be recovered by stochastic gradient descent efficiently, i.e., with number of SGD iterations
scaling at most polynomially in all problem specific parameters (Ge et al., 2017; Jin et al., 2017) in the context of SGD.

Corollary 2 (Symmetric transition matrices). If a cumulant matrix G ∈ RS×T (with T > S) has unit-norm, orthogonal
columns (e.g. G = I), the representations learnt from the supervised objective LMC

aux and the TD update rule LTD
aux are the

same for symmetric transition matrices Pπ under a uniform state distribution ξ.

Proof. Assume that Pπ is symmetric so that L and L−1 are also symmetric.

By Proposition 1, running SGD on the supervised objective LMC
aux using Ψ = L−1G as targets results in a representation

spanning the top-d left singular vectors of L−1G which are the same as the top-d left singular vectors of L−1.

By assumption G is orthogonal, hence GGT = I . Because L−1GGT is symmetric, all its eigenvalues are real. By
Theorem 1, running gradient descent on LTD

aux using G as the cumulant matrix converges to the top-d eigenvectors of
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L−1GGT = L−1. Indeed, the subspaces given by the span of the right eigenvectors of L−1 are the only L−1-invariant
subspaces. These eigenvectors are also the singular vectors of L−1 as this matrix is symmetric.

Because P is a row stochastic matrix, we have that the spectral radius of P satisfies ρ(P ) = 1, and therefore λ(P ) ⊆ [−1, 1].
Hence:

1

1− γλ
∈ [1/(1 + γ), 1/(1− γ)].

Hence, the eigenvalues of L−1 are positive. Because L−1 is symmetric, the singular values of L−1 are exactly its eigenvalues.
Hence, the top-d eigenvectors are the top-d singular vectors and the conclusion follows.

C. Proofs for Section 4
Lemma 2. A representation Φ∗TD is l1-ball optimal for TD learning iff it is a solution of the following optimization problem.

Φ∗TD ∈ arg minΦ

∥∥Ξ1/2(ΦWTD
Φ,I − (I − γPπ)−1)

∥∥2

F
.

Proof. By definition, a representation is enough for TD learning when it is a minimizer of Equation (3), that is,

Φ∗TD ∈ arg min
Φ∈RS×d

Erπ‖ΦwTD
Φ − V π‖2ξ , (6)

where the expectation is over the reward functions rπ sampled uniformly over the l1 ball ‖rπ‖21 6 1 and

wTD
Φ =

(
ΦTΞ(I − γPπ)Φ

)−1
ΦTΞrπ.

Write P⊥LTΞΦ = I − PLTΞΦ and PX = Φ(XTΦ)−1XT the oblique projection onto span(Φ) orthogonally to span(X). We
have

E‖r‖2161‖ΦwTD
Φ − V π‖2ξ = E‖r‖2161‖Ξ1/2P⊥LTΞΦ(I − γPπ)−1r‖22

= E‖r‖2161‖Ξ1/2P⊥LTΞΦ(I − γPπ)−1r‖22
= E‖r‖2161 tr(r>L−>P⊥LTΞΦΞP⊥LTΞΦL

−1r)

= tr(L−>P⊥LTΞΦΞP⊥LTΞΦL
−1E(rr>))

= ‖Ξ1/2P⊥LTΞΦL
−1‖2F

=
∥∥∥Ξ1/2(ΦWTD

Φ,I − (I − γPπ)−1)
∥∥∥2

F

Lemma 3. A representation Φ∗MC is l1-ball optimal for batch Monte Carlo policy evaluation if its column space spans the
top-d left singular vectors (with respect to the inner product 〈x, y〉Ξ) of (I − γPπ)−1.

Proof. We have

E‖r‖2161‖V̂ MC − V π‖2ξ = E‖r‖2161‖P⊥Ξ1/2ΦΞ1/2(I − γPπ)−1r‖22
= E‖r‖2161 tr(r>L−>Ξ1/2P⊥Ξ1/2ΦΞ1/2L−1r)

= tr(L−>Ξ1/2P⊥Ξ1/2ΦΞ1/2L−1E(rr>))

= ‖P⊥Ξ1/2ΦΞ1/2L−1‖2F

Write (I − γPπ)−1 = FΣB> the weighted SVD of (I − γPπ)−1 where F ∈ RS×S such that FTΞF = I and B ∈ RS×S
such that BTB = I . Write Fd the top-d left singular vectors corresponding to the top-d singular values on the diagonal of Σ.
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By definition, an l1-ball optimal representation is solution to the following optimization problem

arg min
Φ∈RS×d

E‖r‖2161‖V̂ MC − V π‖2ξ = arg min
Φ∈RS×d

‖P⊥Ξ1/2ΦΞ1/2L−1‖2F

= arg min
Φ∈RS×d

‖P⊥Ξ1/2ΦΞ1/2FΣB>‖2F

By the Eckart-Young theorem, ‖P⊥FdΞ1/2FΣBT ‖2F 6 ‖P⊥Φ Ξ1/2FΣBT ‖2F . Hence, the set of optimal representations is
{FdM,M ∈ GLd(R)}.

Lemma 8. Write FdΣdB>d the truncated weighted SVD of the successor representation (I − γPπ)−1. A representation is
l1-ball optimal for residual policy evaluation if its column space spans FdΣd.

Proof. Write (I − γPπ)−1 = FΣBT the weighted SVD of (I − γPπ)−1 where F ∈ RS×S such that FTΞF = I and
B ∈ RS×S such that BTB = I . Write Fd the top-d left singular vectors corresponding to the top-d singular values on the
diagonal of Σ. For a fixed Φ ∈ RS×d, the solution of minw∈Rd ‖Ξ1/2(Φw − (rπ + γPπΦw))‖2F is the Bellman residual
minimizing approximation (Lagoudakis and Parr, 2003) and is given by

wres
Φ =

(
(Φ− γPπΦ)TΞ(Φ− γPπΦ)

)−1
(Φ− γPπΦ)TΞrπ.

Hence, the value approximant can be expressed by means of an orthogonal projection matrix as follows

Φwres
Φ = (I − γPπ)−1Ξ−1/2PΞ1/2(I−γPπ)ΦΞ1/2rπ

where PX = X(XTX)−1XT denotes an orthogonal projection. By definition, a representation l1-ball optimal for residual
policy evaluation is solution to the following optimization problem

arg min
Φ∈RS×d

E‖r‖2161‖V̂ res − V π‖2ξ = arg min
Φ∈RS×d

‖Ξ1/2(I − γPπ)−1Ξ−1/2PΞ1/2(I−γPπ)ΦΞ1/2rπ − Ξ1/2(I − γPπ)−1rπ‖2F

= arg min
Φ∈RS×d

‖Ξ1/2(I − γPπ)−1Ξ−1/2PΞ1/2(I−γPπ)ΦΞ1/2 − Ξ1/2(I − γPπ)−1‖2F

= arg min
Φ∈RS×d

‖Ξ1/2(I − γPπ)−1P⊥Ξ1/2(I−γPπ)Φ‖
2
F

Using an oblique projection,

Φwres
Φ = (I − γPπ)−1Ξ−1/2PΞ1/2(I−γPπ)ΦΞ1/2rπ

arg min
Φ∈RS×d

E‖r‖2161‖V̂ res − V π‖2ξ = arg min
Φ∈RS×d

‖Ξ1/2(I − γPπ)−1Ξ−1/2PΞ1/2(I−γPπ)ΦΞ1/2rπ − Ξ1/2(I − γPπ)−1rπ‖2F

= arg min
Φ∈RS×d

‖Ξ1/2(I − γPπ)−1Ξ−1/2PΞ1/2(I−γPπ)ΦΞ1/2 − Ξ1/2(I − γPπ)−1‖2F

= arg min
Φ∈RS×d

‖Ξ1/2(I − γPπ)−1P⊥Ξ1/2(I−γPπ)Φ‖
2
F

L−1 = UΣV T

L−1× the top d right singular vectors of (I − γPπ)−1 is a solution. Let Ud,Σd, Vd correspond to the top d svals. Lets say

that Ud is S × d, Σd is square, and Vd is also S × d. What is V TVd =

[
Id
0

]
.

—-

What you want is LΦ = Vd so Φ = L−1Vd = UΣV TVd = UdΣd. If LΦ = Vd, then P⊥LΦ = P⊥Vd , so L−1P⊥Vd =

U⊥d Σ⊥d (V ⊥d )T, so the objective is now sum of the last S − d singular values squared.
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D. Proofs for Subsection 4.1
Lemma 6. The set of cumulant matrices G ∈ RS×T that preserve the top-T invariant subspaces of the successor
representation by TD learning are the top-T orthogonal invariant subspaces of (I − γPπ)−1, that is satisfying G>G = I
by orthogonality and (I − γPπ)−1G ⊆ G by the invariance property.

Proof. Let Φ ∈ RS×d spanning an invariant subspace of L−1. By definition, there exists a block diagonal matrix JΦ ∈ Rd×d
such that L−1Φ = ΦJΦ. Let G ∈ O(S, T ) spanning the top T invariant subspaces of L−1. By definition, there exists a
block diagonal matrix JG ∈ Rd×d such that L−1G = GJG. Hencer, we have

(L−1GGT)Φ = (L−1G)GTΦ

= GJTG
TΦ

= (ΦJΦ) by orthonormality

Then, Φ is an invariant subspace of L−1GG>.

Lemma 5. Let {Φω} be the set of rotating representations from Figure 2 learnt by TD learning with G = I and d = 2. All
these representations are equally good for learning the main value function by TD learning, that is ∀ω ∈ [0, 1],

E‖r‖22<1

∥∥Φωw
TD
Φω − V

π
∥∥2

F

is constant and independent of ω.

Proof. Let’s start by considering the case of the three-state circular example. We consider an orthogonal basis for the
invariant subspaces of Φ. By definition, Pπe1 = e1, P

π[e2, e3] = [e2, e3]Λ so Le1 = (1 − γ)e1 and L[e2, e3] =
(I − γP )[e2, e3] = [e2, e3]− γ[e2, e3]Λ = [e2, e3](I − γΛ).

Assume that there exists ω ∈ [0, 1] such that the representation is Φ = [e1, ωe2 + (1 − ω)e3] = [e1, e2, e3]Ω with

Ω =

1 0
0 ω
0 (1− ω)

. LΦ = [(1 − γ)e1, [e2, e3](I − γΛ)]Ω. Hence, we have LΦ = [e1, e2, e3]

[
1− γ 0

0 I − γΛ

]
Ω

and ΦTLΦ = ΩT[e1, e2, e3]T[e1, e2, e3]

[
1− γ 0

0 I − γΛ

]
Ω = ΩT

[
1− γ 0

0 I − γΛ

]
Ω. Hence, (ΦTLΦ)−1 =[

(1− γ)−1 0
0 (uT(I − γΛ)u)−1

]
with u = (w, (1− w))T. Note that uT(I − γΛ)u = ω2λ1,1 + (1− ω)2λ1,1

The TD value function is given by

Φ(ΦTLΦ)−1ΦT = [e1, e2, e3]Ω

[
(1− γ)−1 0

0 (uT(I − γΛ)u)−1

]
ΩT[e1, e2, e3]T

= [e1, e2, e3]

[
(1− γ)−1 0

0 u(uT(I − γΛ)u)−1uT

]
[e1, e2, e3]T

= (1/(1− γ)e1e
T
1 + ω2e2e

T
2 + ω(1− ω)e3e

T
2 + ω(1− ω)e2e

T
3 + (1− ω)2e3e

T
3 )/(ω2λ1,1 + (1− ω)2λ1,1)

Now ‖Φ(ΦTLΦ)−1ΦT − V π‖2F is independent of ω.

We now proceed to the proof of Proposition 3. Before that, we introduce some necessary notations and lemmas.

D.1. Notations

Let O(S, d) := {A ∈ RS×d : ATA = I}.
Definition 2. Let A,B ∈ O(S, d). The principle angles Θ between A and B are given by writing the SVD of ATB =
U cos ΘV T.

Definition 3. Let A,B ∈ O(S, d) with principle angles Θ. We define the distance d(A,B) as d(A,B) := ‖sin Θ‖op.
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Proposition 4. Let A,B ∈ O(S, d). We have the following identities:

d(A,B) = ‖AAT −BBT‖op = ‖sin Θ‖op = ‖ATB̄‖op,

where B̄ ∈ O(S, S − d) satisfies BBT + B̄B̄T = I .

D.2. Approximate matrix decompositions

Lemma 9 (Deterministic error bound). Let A be an S × S matrix. Fix d 6 S, and partition the SVD of A as:

A =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V >1
V >2

]
,

where Σ1 is d × d (the dimensions of all the other factors are determined by this selection). Put Ad := U1Σ1V
T
1 as the

rank-d approximation of A. Let Ω be an S × ` test matrix (` > d). Put Y = AΩ, Ω1 = V >1 Ω and Ω2 = V >2 Ω. We have
that:

‖(I − PY )Ak‖2op 6 ‖Σ2Ω2Ω†1‖2op.

Proof. This proof is adapted from Theorem 9.1 of Halko et al. (2011).

Write Ad = Û Σ̂V̂ > the full SVD of Ad. By invariance of the spectral norm to unitary transformations,

‖(I − PY )Ad‖2op = ‖Û>(I − PY )Û(Û>Ad)‖2op = ‖(I − PÛ>Y )(Û>Ad)‖2op

Assume the diagonal entries of Σ2 are not all strictly positive. Then Σ2 is zero as a consequence of the ordering of the
singular values.

range(Û>Y ) = range

[
Σ1Ω1

0

]
= range

[
Σ1V

>
1

0

]
= range(Û>Ad)

So we can conclude that ‖(I − PY )Ad‖2op = 0 assuming that V >1 and Ω1 have full row rank.

Now assume that the diagonal entries of Σ1 are strictly positive. Let Z = Û>Y ·Ω†1Σ−1
1 =

[
Id
F

]
with F = Σ2Ω2Ω†1Σ−1

1 ∈

R(S−d)×d.

By construction, range(Z) ⊂ range(Û>Y ), hence we have,

‖(I − PÛ>Y )(Û>Ad)‖2op 6 ‖(I − PZ)Û>Ad‖2op 6 ‖A>d Û(I − PZ)Û>Ad‖op 6 ‖Σ̂(I − PZ)Σ̂‖op

Following the proof from Theorem 9.1 of Halko et al. (2011), we have

(I − PZ) 4

[
F>F B
B> IS−d

]
where B = −(Id − F>F )−1F> ∈ Rd×(S−d).

Consequently, we have

Σ̂(I − PZ)Σ̂ 4

[
Σ1F

>FΣ1 0
0 0

]
Σ̂(I − PZ)Σ̂ is PSD by the conjugation rule, hence the matrix on the right hand side is PSD too. It follows that

‖Σ̂(I − PZ)Σ̂‖op 6 ‖Σ1F
>FΣ1‖op = ‖FΣ1‖2op = ‖Σ2Ω2Ω†1‖2op
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Lemma 10 (Average spectral error). Let A be an S × S matrix with singular values σ1 > σ2 > .... Fix a target rank
2 6 d 6 S and an oversampling parameter p > 2 where p+ d > S. Draw and S × (d+ p) standard gaussian matrix Ω
and construct the sample matrix Y = AΩ. Then, we have

E‖(I − PY )Ad‖op 6

√
d

p− 1
σd+1 +

e
√
d+ p

p

 S∑
j=d+1

σ2
j

1/2

.

Proof. By Lemma 9 and linearity of the expectation, we have

E‖(I − PY )Ad‖op 6 E‖Σ2Ω2Ω†1‖op

6

√
d

p− 1
σd+1 +

e
√
d+ p

p

 S∑
j=d+1

σ2
j

1/2

,

where the last inequality comes from Theorem 10.6 of Halko et al. (2011).

Lemma 11. Let A ∈ Rm×n, and fix a d < n. Let σ1 > σ2 > . . . > σn denote the singular values of M listed in decreasing
order, and suppose that σk > 0. Let Ad denote the rank-d approximation of A. Fix any matrix Y ∈ Rm×T . We have:

‖(I − PY )Ak‖op > ‖(I − PY )PAk‖opσk.

Proof. Decompose P⊥Y Ak as:
P⊥Y Ak = P⊥Y PAkAk

‖P⊥Y Ak‖op = ‖P⊥Y PAkAk‖op > ‖P⊥Y PAk‖op‖Ak‖op = ‖P⊥Y PAk‖opσk

where the inequality comes from the sub-multiplicativity of the the operator norm

Proposition 5. Let A be an S × S matrix with singular values σ1 > σ2 > .... Fix a target rank 2 6 d 6 n and an
oversampling parameter p > 2 where p+ d > S. Draw and n× (d+ p) standard gaussian matrix Ω and construct the
sample matrix Y = AΩ. Then, we have

E‖(I − PY )PAd‖op 6

√
d

p− 1

σd+1

σd
+
e
√
d+ p

p

 S∑
j=d+1

σ2
j

σ2
d

1/2

.

Proof. By Lemma 11 and linearity of the expectation, we have

1

σd
E‖(I − PY )Ad‖op > E‖(I − PY )PAd‖op

Now applying Lemma 10, we have

√
d

p− 1

σd+1

σd
+
e
√
d+ p

p

 S∑
j=d+1

σ2
j

σ2
d

1/2

> E‖(I − PY )PAd‖op

Observe that, as the oversampling factor p grows, the RHS tends to zero. However, the dependence will be something like
p & 1/ε2, if you want the RHS to be 6 ε. This actually makes sense I think– you are using concentration of measure to
increase the accuracy, so you should pay 1/ε2 sample complexity.
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D.3. Analysis

Proposition 3 (MC Error bound). Let G ∈ RS×T be a sample from a standard gaussian distribution and assume d 6 T .
Let Fd be the top-d left singular vectors of the successor representation (I − γPπ)−1 and F̂d be the top left singular vectors
of (I − γPπ)−1G. Denote σ1 > σ2 > ... > σS the singular values of the SR and dist(Fd, F̂d) the sin θ distance between
the subspaces spanned by Fd and F̂d. We have

E[dist(Fd, F̂d)] 6

√
d

T − d− 1

σd+1

σd
+

e
√
T

T − d

 n∑
j=d+1

σ2
j

σ2
d

 1
2

Proof. Let l ∈{d,...,S}. Fl ∈ O(S, l) be the top l left singular vectors of (I − γPπ)−1 and F̂l ∈ O(S, d) be the top left
singular vectors of (I − γPπ)−1G.

d(Fd, F̂d) = ‖F̂>d F⊥d ‖op

= ‖PF̂dP
⊥
Fd
‖op

6 ‖PL−1GP
⊥
Fd
‖op as span(F̂d) ⊆ span(L−1G)

= ‖F̂>T F⊥d ‖op

= ‖F>d F̂⊥T ‖op

= ‖PFdP⊥F̂T ‖op

= ‖P⊥
F̂T
PFd‖op by symmetry of the projection matrices

= ‖(I − PF̂T )PFd‖op

= ‖(I − PL−1G)P(L−1)d‖op

6
1

σd
‖(I − PL−1G)(L−1)d‖op by Lemma 11

Now taking the expectation with respect to G and applying Proposition 5,

E[d(Fd, F̂d)] 6

√
d

T − d− 1

σd+1

σd
+

e
√
T

T − d

 n∑
j=d+1

σ2
j

σ2
d

1/2

.
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