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ABSTRACT

Decoding algorithms play a central role in enhancing the performance of large
language models (LLMs) on complex reasoning tasks. A common approach incor-
porates Process Reward Models (PRMs), which estimate the quality of intermediate
reasoning paths and guide the selection of possible continuations. In this setting,
our analysis reveals two notable phenomena: reward estimates tend to decline as
reasoning progresses, and the reasoning paths exhibit distinct volatility patterns
across decoding steps depending on whether the paths lead to correct or incorrect
final answers. In particular, correct reasoning tends to be associated with stable re-
ward trajectories, while incorrect reasoning often shows high volatility. Motivated
by this observation, we propose Volatility-Scaled Guided Decoding (VSGD), a
decoding algorithm that prioritizes candidate paths with lower volatility by jointly
considering the magnitude of PRM-estimated rewards and the volatility of these
rewards across decoding steps. Experiments on datasets including GSM8K and
MATH500 indicate that VSGD reduces the volatility of selected reward trajecto-
ries and improves the accuracy of the final answer. These findings suggest that
considering the temporal dynamics of reward values, in addition to their magnitude,
provides a potential direction for enhancing guided decoding in LLMs.

1 INTRODUCTION

Large language models (LLMs) achieve strong performance across a range of reasoning tasks,
including mathematical problem solving (Vaswani et al., 2017; Brown et al., 2020; Wei et al., 2022;
Kojima et al., 2022; Touvron et al., 2023; Achiam et al., 2023; Team et al., 2024; Grattafiori et al.,
2024). Early studies suggest that carefully designed prompts, such as Chain-of-Thought, can elicit
the reasoning capability of LLMs (Wei et al., 2022; Kojima et al., 2022). Beyond prompting, recent
work highlights that the decoding algorithm is another crucial factor, as the decoding algorithm
governs token selection and influences the reasoning path. (Shi et al., 2024). Among decoding
strategies, tree-based methods such as beam search are prominent because the tree-based methods
explore multiple candidate reasoning paths in parallel, thereby increasing the likelihood of uncovering
promising reasoning paths before generating the final answer (Graves, 2012; Sutskever et al., 2014;
Bahdanau et al., 2014; Wu et al., 2016; Kool et al., 2019; Leblond et al., 2021; Meister et al., 2021;
Yang et al., 2024). Building on this idea, recent approaches propose guided decoding methods that
incorporate additional signals to prioritize promising candidates. These signals range from rule-based
constraints (Lu et al., 2021; Welleck et al., 2022) to model-based scoring functions, including reward
models that assess the quality of generated sequences (He et al., 2017; Uesato et al., 2022; Krishna
et al., 2022; Lightman et al., 2023; Liu et al., 2024; Snell et al., 2024; Wang et al., 2025).

A growing body of work incorporates external reward models into decoding algorithms to provide
target-oriented guidance during text generation. Conventional reward models guide generation by
evaluating only the final output, which restricts guidance to the end of the generation process. Process
Reward Models (PRMs) address this limitation by assigning rewards to intermediate reasoning steps,
thereby enabling step-level guidance of incomplete sequences during decoding (Chan et al., 2019;
Uesato et al., 2022; Lee et al., 2023; Lightman et al., 2023; Wang et al., 2024; Setlur et al., 2024;
Zeng et al., 2025). Guided decoding algorithms leverage these PRM-estimated scores to prioritize
incomplete sequences that are more likely to yield high-quality final answers (Chen et al., 2024; Snell
et al., 2024; Zhang et al., 2025b; Hu et al., 2025). However, existing approaches primarily emphasize
the magnitude of individual reward values, overlooking how these values evolve across successive
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Figure 1: Our empirical observations on the reward trajectory, which motivated our proposed method
VSGD. (Left) Reward trajectories rt of process reward model (PRM)–based decoding methods show
that correct reasoning paths typically maintain stable and low-volatility rewards, whereas incorrect
paths exhibit unstable and high-volatility patterns. (Middle) We quantify volatility σ(rt) as a measure
of how much rewards fluctuate across decoding steps. Histogram of volatility, computed over 500
samples from MATH500 dataset, shows that correct paths consistently exhibit lower volatility than
incorrect paths. (Right) Motivated by this finding, we propose Volatility-Scaled Guided Decoding
(VSGD), which scales rewards by volatility to favor candidate paths with stable reward trajectories.

reasoning steps. We refer to the sequence of reward scores assigned to each intermediate reasoning
step as the reward trajectory, denoted by rt. We use the term volatility σ(rt) to describe how
stable the reward trajectory is across steps. Formally, we measure volatility as the root mean square
deviation of the stepwise rewards from their mean. As illustrated in Fig. 1, our empirical analysis
suggests an association between volatility and correctness: in observed cases, correct reasoning paths
tend to maintain relatively stable reward trajectories, while incorrect reasoning paths show unstable
reward trajectories. To obtain these trajectories, we use 500 samples from the MATH500 dataset,
following the approach used in Lightman et al. (2023); Wang et al. (2024), which selects candidate
continuations based on the minimum PRM-estimated reward across decoding steps. Motivated by
this observation, we propose to adjust reward estimates using volatility, so that paths with both high
rewards and stable trajectories are given higher priority during decoding.

In this paper, we propose the Volatility-Scaled Guided Decoding algorithm (VSGD), a decoding
algorithm that integrates the volatility of reward trajectories into the decoding process. We define
volatility as the root mean square deviation of reward values across decoding steps, capturing the
stability of a reasoning path. Leveraging the volatility measure, VSGD scales reward signals to
favor trajectories with more stable rewards, which empirically correlate with correct solutions. Our
contributions are as follows:

• We empirically analyze reward trajectories and demonstrate that the volatility, which mea-
sures the variability of reward values, exhibits distinct patterns between correct and incorrect
reasoning paths.

• Motivated by this observation, we propose Volatility-Scaled Guided Decoding (VSGD), a
decoding algorithm that rescales reward values using the volatility of reward trajectory to
prioritize stable reasoning paths.

• Experiments on datasets including GSM8K and MATH500, show that VSGD improves
reasoning performance by favoring low-volatility reward trajectories. In addition, we show
that VSGD maintains superior performance under constrained settings where the number of
reasoning steps or the number of complete reasoning paths is limited.

2 RELATED WORK

Guided Decoding Algorithms. Decoding algorithms are strategies that decide which word or
token a language model should generate next, thereby controlling the overall process of text gen-
eration. (Graves, 2012; Sutskever et al., 2014; Bahdanau et al., 2014; Wu et al., 2016; Kool et al.,
2019; Josifoski et al., 2023). Control over text generation enables additional signals to guide the
selection of candidate continuations. The guidance can take the form of rule-based constraints that
restrict token selection to satisfy logical requirements (Lu et al., 2021; Welleck et al., 2022), or
model-based scoring functions that assign values to incomplete sequences and thereby guide the
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search toward preferred continuations (He et al., 2017; Uesato et al., 2022; Krishna et al., 2022;
Lightman et al., 2023). Recent studies show that incorporating additional signals into decoding can
enhance LLM reasoning by directly affecting the decoding process (Liu et al., 2024; Snell et al., 2024).
Tree-based algorithms are particularly suited for guided decoding because tree-based algorithms
maintain multiple candidate continuations, allowing additional signals to be applied when ranking or
pruning alternatives before the final answer is generated (Yao et al., 2023; Feng et al., 2023; Chen
et al., 2024; Yang et al., 2024). Among these, one variant is Monte Carlo Tree Search, which guides
decoding by simulating possible continuations (Chaffin et al., 2022; Li et al., 2023a; Feng et al.,
2023; Hao et al., 2023). However, the reliance on repeated simulations results in high computational
cost (Chaffin et al., 2022; Hao et al., 2023; Liu et al., 2023). By contrast, beam search provides a more
favorable trade-off between effectiveness and efficiency, as beam search retains a tractable number of
candidate sequences, supporting straightforward integration of external scoring functions (Josifoski
et al., 2023; Chen et al., 2024), making it a widely used algorithm for guided decoding.

Process Reward Models. While guided decoding typically relies on external signals applied to
entire sequences, recent studies incorporate additional signals into decoding algorithms to provide
guidance during text generation. Process Reward Models (PRMs) extend this paradigm by assigning
rewards to intermediate reasoning steps rather than only to final outputs, thereby enabling step-level
evaluation of incomplete sequences (Chan et al., 2019; Uesato et al., 2022; Lee et al., 2023; Lightman
et al., 2023; Wang et al., 2024; Setlur et al., 2024; Zeng et al., 2025). Guided decoding algorithms
exploit these PRM-estimated scores by aggregating the scores across steps to prioritize sequences
that are more likely to generate correct outputs (Chen et al., 2024; Snell et al., 2024; Zhang et al.,
2025b; Hu et al., 2025). Nonetheless, most existing approaches emphasize the magnitude of reward
values while overlooking the temporal dynamics of reward trajectories.

Instability of Reward Trajectories. Instability in reward signals, often called volatility, refers
to how much the reward values fluctuate along a reasoning path. In reinforcement learning, Bisi
et al. (2019) formalizes volatility as the deviation of cumulative rewards from their average across
the entire trajectory. Although this formulation offers a principled measure of instability, it requires
access to complete trajectories and, to our knowledge, has not been considered in the context of
guided decoding. More recently, Zhang et al. (2025c) introduce reasoning volatility, which evaluates
the discrepancy between an intermediate reasoning step and the final answer. Concurrently, Zhang
et al. (2025a) investigates reward distributions when training PRMs for mathematical reasoning,
which reports that reasoning paths leading to correct final answers tend to maintain higher rewards
compared to incorrect reasoning paths when tested on the training dataset. In contrast, our study
analyzes reward trajectories during the decoding process and introduces reward volatility as a metric
to quantify the instability of reward trajectories, highlighting the relation between output correctness
and reward trajectories during decoding process.

3 VSGD: VOLATILITY-SCALED GUIDED DECODING ALGORITHM

In this section, we formally describe our proposed algorithm dubbed as VSGD. To begin with, Sec. 3.1
defines the notation and formalizes volatility as a measure of reward instability. Sec. 3.2 presents our
observations that reveal the relationship between volatility and the correctness of reasoning paths.
Motivated by these observations, in Sec. 3.3 we propose Volatility-Scaled Guided Decoding algorithm
(VSGD), which prioritizes reasoning paths characterized by stable reward trajectories.

3.1 NOTATION

Let x0 denote an input prompt, and let xt represent the tokens generated at decoding step t. A
reasoning path up to step t is denoted as xt = [x1, . . . , xt]. Let f denote a process reward model
(PRM) that maps a reasoning path xt to a scalar score f(xt) ∈ [0, 1], where higher values indicate
higher-quality reasoning. The step-level reward at step t is defined as rt := f(xt), and the reward
trajectory up to step t is denoted as rt = [r1, . . . , rt]. We formalize the volatility of the reward
trajectory rt as

σ(rt) :=

√√√√ 1
t

t∑
i=1

(ri − r̄t)2, (1)

where r̄t = 1
t

∑t
i=1 ri is the reward averaged over the reasoning step t. This formulation corre-

sponds to the standard deviation of a time series, a measure widely used across domains including
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Figure 2: Dynamics of correct and incorrect reasoning paths under PRM-guided decoding as estab-
lished in a prior work (Zeng et al., 2025) on MATH500, GSM8K and MMLU-subset. Correct paths
are shown in blue and incorrect paths in red. (Top) Reward trajectories with standard error shading
show that correct paths maintain higher rewards throughout decoding, while incorrect paths decline.
(Bottom) Volatility histograms (Eq. 1) indicate that correct paths generally exhibit lower volatility
than incorrect paths across benchmarks.

finance (Markowitz, 1952; Daly, 2008; 2011; Alan & Kyre, 2019), physiology (Brockmann & Hunt,
2023), and reinforcement learning (Bisi et al., 2019). In this work, we extend this notion to quantify
the variability of PRM-estimated rewards across decoding steps. Notably, our formulation differs
from that of Zhang et al. (2025c), who define reasoning volatility as the semantic discrepancy between
an intermediate reasoning step and the final answer. In contrast, we define reward volatility as the
variability of PRM-estimated rewards within the decoding process.

3.2 OBSERVATION ON REWARD TRAJECTORY

Here we present empirical results showing how conventional PRM guidance shapes decoding dy-
namics. Specifically, we compare the reward trajectories of two cases: (i) correct reasoning paths
that lead to a correct answer, and (ii) incorrect paths that end with a wrong answer. We evaluate
on three datasets: two mathematical reasoning benchmarks – GSM8K (Cobbe et al., 2021) and
MATH500 (Lightman et al., 2023) – and a subset of MMLU dataset (Hendrycks et al., 2021). For the
latter dataset, we focus on six categories (computer science, chemistry, econometrics, formal logic,
philosophy, and virology) in MMLU, and refer to it as the “MMLU-subset” throughout the paper. To
analyze reward trajectories, we apply a PRM-based guided decoding approach, following standard
configurations from prior work (Zeng et al., 2025). Since the number of steps in reward trajectories
varies across samples, we rescale each one to the unit interval [0,1]. We then use linear interpolation
to map rewards onto this common scale, allowing us to compare trajectories point by point.

Fig. 2 shows the reward trajectory rt and its volatility σ(rt) defined in Eq. 1, to quantify the instability
of reward trajectories. As shown in the top row of Fig. 2, reasoning paths leading to correct final
answers consistently maintain higher rewards, whereas reasoning paths ending in incorrect answers
exhibit declines, indicating systematic differences in reward trajectories by correctness. The bottom
row of Fig. 2 shows that correct reasoning paths generally have lower volatility than incorrect paths1.
For each dataset, we assess statistical significance using the Mann–Whitney U test (Mann & Whitney,
1947), which is a non-parametric method for testing whether two distributions differ. For GSM8K,
MATH500 and all categories of MMLU-subset, the differences are significant (p < 0.05), confirming

1Concurrently, Zhang et al. (2025a) observe that when training PRMs, correct reasoning paths in the training
dataset exhibit higher reward values than incorrect reasoning paths. In contrast, we demonstrate that correct
reasoning paths not only maintain higher reward values during decoding but also exhibit distinct volatility
patterns, which we quantify explicitly.
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Algorithm 1 RescaleWithVolatility
Input: Reward trajectory rt = [r1, . . . , rt], stability constant ϵ
Output: Rescaled reward trajectory r̃t = [r̃1, · · · , r̃t]

1: r̄ ← 1
t

∑t
i=1 ri

2: σ ←
√

1
t

∑t
i=1(ri − r̄)2

3: r̃t ← [ ri/(σ + ϵ) ]ti=1
4: return r̃t

Algorithm 2 Volatility-Scaled Guided Decoding (VSGD)

Input: PRM f , prompt x0, expansion width M , beam size N , maximum step T , maximum number
of complete reasoning paths L, stability constant ϵ, reward trajectory aggregation function Agg

Output: Complete reasoning path list Xcomp
Constraint: N is divisible by M

1: X0 ← [ (x0, [ ]) | i = 1, . . . , N/M ] ▷ List of (reasoning path, reward trajectory) pairs
2: Xcomp ← [ ] ▷ List of complete reasoning paths
3: for t = 1 to T do
4: Ct,St ← [ ], [ ] ▷ Lists of incomplete reasoning paths and their aggregated scores
5: for all (xt−1, rt−1) ∈ Xt−1 do
6: for all xt ∈ Expand(xt−1,M) do
7: if xt ends with <eos> then
8: Xcomp ← Xcomp. append(xt) ▷ Store the complete reasoning path
9: if |Xcomp| ≥ L then

10: return Xcomp
11: end if
12: continue
13: end if
14: rt ← rt−1. append(f(xt))
15: r̃t ← RescaleWithVolatility(rt, ϵ)
16: Ct ← Ct. append((xt, rt))
17: St ← St. append(Agg(r̃t))
18: end for
19: end for
20: best beam indices← Argsort(St, N

M )
21: Xt ← Ct[best beam indices]
22: end for
23: return Xcomp

that volatility distributions for correct and incorrect reasoning paths differ significantly; the p-value
for each dataset is given in Table 4 in Appendix.

3.3 DECODING ALGORITHM

We present the Volatility-Scaled Guided Decoding (VSGD) algorithm, which incorporates reward
volatility into a step-level beam search framework to prioritize reasoning paths exhibiting stable
reward trajectories. In this framework, beam search maintains a fixed number of candidate sequences
at each step, and VSGD ranks candidate sequences using reward values scaled by their volatility. To
be specific, Algorithm 1 describes the scaling procedure used in VSGD algorithm. Given a reward
trajectory rt, we compute its volatility σ(rt) as in Eq. 1. Each reward value is then divided by
(σ(rt) + ϵ), where ϵ = 10−6 prevents division by zero. This rescaling penalizes trajectories with
high volatility by attenuating their reward values, thereby highlighting trajectories with more stable
reward patterns.

Algorithm 2 outlines the overall decoding process of VSGD. At each step t, for each incomplete
sequence xt−1, the function Expand(xt−1,M) generates M candidate continuations by using
xt−1 as the prefix. The PRM then assigns a step-level reward rt = f(xt) for each sequence
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Table 1: Comparison of VSGD with baseline decoding algorithms on GSM8K, MATH500, and an
MMLU-subset. The MMLU-subset comprises six categories: computer science (CS), chemistry
(Chem), econometrics (Econ), formal logic (Logic), philosophy, and virology. Final answers are
selected with Best-of-N (BoN) and Weighted Majority Voting (WMV); accuracy is reported with
standard deviation as subscripts. Best and second-best results per dataset are shown in bold and
underlined, and ∆ indicates the accuracy difference between VSGD and the strongest baseline for
each dataset. On average, VSGD improves over the strongest baseline by 1.1 points under BoN and
1.4 points under WMV.

Selection BoN WMV
Dataset GD-Sum GD-Last GD-Min VSGD ∆ GD-Sum GD-Last GD-Min VSGD ∆

MATH500 48.90.3 49.50.9 50.20.8 50.80.9 +0.6 49.80.5 49.50.7 50.10.8 50.80.8 +0.7
GSM8K 86.30.4 87.90.2 88.10.2 87.90.5 −0.2 87.20.4 88.20.2 87.70.2 88.30.5 +0.1

CS 50.31.8 50.70.3 51.70.3 52.32.7 +0.6 56.00.6 53.30.9 53.70.3 55.32.3 −0.7
Chem 40.32.8 44.70.9 43.01.2 46.31.5 +1.6 44.31.5 43.00.6 43.31.2 45.31.3 +1.0
Econ 51.20.6 52.91.2 53.21.5 53.82.5 +0.6 50.91.3 51.50.8 52.90.6 54.41.8 +1.5
Logic 45.51.4 47.40.3 46.61.1 48.40.9 +1.0 46.32.5 46.61.9 49.50.7 49.70.5 +0.2
Philosophy 60.21.1 62.01.1 62.00.6 63.31.9 +1.3 61.81.1 62.31.1 60.60.7 63.62.0 +1.3
Virology 47.00.6 45.81.5 46.40.9 47.00.3 0.0 46.81.0 46.20.9 46.41.0 47.40.4 +0.6

Average 53.70.6 55.10.3 55.10.1 56.20.7 +1.1 55.40.5 55.10.2 55.50.3 56.90.7 +1.4

xt. We append rt to rt−1, forming rt, and compute the rescaled reward trajectory r̃t using
RescaleWithVolatility defined in Algorithm 1. We will use this rescaled reward trajec-
tory r̃t for ranking the reasoning path candidates.

We define the candidate list Ct which stores all candidates of reasoning path xt as well as its reward
sequence rt. Let Agg be an aggregation function which return a scalar value for a given input
vector, e.g., the minimum value within the input vector. We define the aggregated score list St which
stores the scalar score obtained by applying the aggregation function Agg to r̃t, where the choice of
aggregation depends on the decoding algorithm. Given the aggregated score list St, we sort them to
choose N/M good candidates. Let Argsort(St, k) be the operation that returns the indices of the
top-k elements in St, sorted in descending order of their scores. Then, the beam set Xt is updated by
applying Argsort(St, N

M ) to identify the indices of the N
M highest scores in St, and subsequently

selecting the corresponding tuples (xt, rt) from Ct.
When a reasoning sequence xt in the updated beam set Xt reaches the end-of-sequence token <eos>,
we call such sequence is complete, and store the complete sequences xt in the list of complete
reasoning paths Xcomp . The decoding process terminates when either the maximum reasoning step T
is reached, or all sequences end, or the maximum number of completed reasoning paths L is obtained,
after which the algorithm returns the list of complete reasoning paths Xcomp.

4 EXPERIMENTAL RESULT

We evaluate our proposed VSGD and conventional PRM-based decoding algorithms on two mathe-
matical reasoning benchmarks, GSM8K and MATH500, as well as on the MMLU-subset. Sec. 4.1
reports the main results, showing that VSGD generally achieves higher accuracy on most bench-
mark datasets we tested. In addition, VSGD makes efficient use of the computational budget,
consistently outperforming baseline methods across different limits on decoding steps T and the
number of complete reasoning paths L. Sec. 4.2 further analyzes the factors contributing to the
performance of VSGD, with particular focus on the reduced volatility of reward trajectories se-
lected by VSGD compared to an existing decoding algorithm. We also examine how VSGD
improves reasoning quality, finding that VSGD tends to mitigate the issue of incomplete reason-
ing. Our implementation is publicly available at https://anonymous.4open.science/r/
Volatility-Scaled-Guided-Decoding-B26C/README.md.

Datasets. We evaluate VSGD on three datasets: two mathematical reasoning benchmarks –
GSM8K (Cobbe et al., 2021) and MATH500 (Lightman et al., 2023)– as well as MMLU-subset.
Here, MMLU-subset is a subset of MMLU dataset (Hendrycks et al., 2021), consisting of six subject
areas: computer science, chemistry, econometrics, formal logic, philosophy, and virology. For all
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Figure 3: Accuracy of decoding algorithms under varying maximum number of reasoning step
T in Algorithm 2. Results are reported on (Left) mathematical reasoning datasets (GSM8K and
MATH500) and (Right) the MMLU-subset. The x-axis indicates the maximum number of reasoning
steps T , and the y-axis denotes the accuracy of the final answer. For each T , only responses whose
reasoning paths do not exceed T steps are retained when computing accuracy. Accuracy generally
improves as T increases, and VSGD consistently outperforms the baselines, suggesting that VSGD
can effectively utilize longer reasoning paths.

benchmark datasets, we report the average accuracy over three random seeds. The number of test
queries for each dataset is listed in Table 3 in Appendix.

Models. We adopt LLAMA-3.1-8B-INSTRUCT (Llama-8B) (Grattafiori et al., 2024) as the base
LLM and VersaPRM (Zeng et al., 2025) as the base PRM. It is notable that VersaPRM is trained on
datasets covering subjects that include domains in the MMLU-subset and mathematical reasoning
datasets. Unless otherwise specified, Llama-8B is used as the default LLM and VersaPRM as the
default PRM throughout the experiments. All decoding methods are configured with the same LLM
and PRM settings to ensure a fair comparison.

Baselines. We compare VSGD against baseline decoding algorithms that rank or expand incomplete
sequences using step-level rewards estimated by a PRM. GD-Sum selects candidate continuations
based on the total accumulated PRM rewards across decoding steps where we use PRMs as the
state evaluator (Feng et al., 2023; Yao et al., 2023). GD-Min evaluates candidates by the minimum
PRM-estimated reward across decoding steps (Lightman et al., 2023; Wang et al., 2024). GD-Last
considers only the PRM-estimated reward at the final decoding step (Snell et al., 2024).

Our implementation builds on the decoding algorithm of Snell et al. (2024) to incorporate VSGD.
We set the total beam size to N = 8 and the expansion width to M = 2. At each decoding step, the
top N/M = 4 incomplete sequences with the highest aggregated scores, computed from rescaled
reward trajectories r̃t, are retained. Each retained sequence is then expanded into M = 2 candidates,
yielding N = 8 candidate continuations for the next step. This procedure is repeated until a complete
response is generated, with at most T = 10 reasoning steps and up to L = 32 complete reasoning
paths, which together constrain the computational budget. For the reward trajectory aggregation
function Agg, we follow prior work which use the minimum reward value of reward trajectories rt,
i.e., mini∈[t] ri (Sun et al., 2024; Wang et al., 2024; Zeng et al., 2025). For the final answer selection,
we consider two strategies. The Best-of-N (BoN) strategy selects the candidate answer with the
highest aggregated score, while the Weighted Majority Voting (WMV) strategy determines the final
answer through voting, using the aggregated scores as weights (Li et al., 2023b).

4.1 DOES VSGD OUTPERFORM EXISTING GUIDED DECODING METHODS?

Yes, VSGD generally outperforms existing guided algorithms. Table 1 presents the performances
of VSGD and baseline decoding methods, using Llama-3 as the base model and VersaPRM as the
process reward model. Results are reported under two aggregation strategies (BoN and WMV), each
averaged over three random seeds. Overall, VSGD achieves the highest average accuracy under both
aggregation strategies, yielding relative improvements of 1.1 points over the strongest baseline in
BoN and 1.4 points in WMV. At the dataset level, VSGD delivers overall gains: in Chemistry, it
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Figure 4: Accuracy of decoding algorithms with a limited number of reasoning paths L in Algorithm 2.
We report the average accuracy on (Left) mathematical reasoning datasets, which consist of GSM8K
and MATH500 and (Right) the MMLU-subset. The x-axis indicates the number of reasoning paths
L, and the y-axis denotes accuracy of the final answer. For each L, we consider the first L reasoning
paths that reach termination earliest during decoding. Across decoding algorithms, accuracy improves
with larger L, reflecting the benefit of utilizing additional reasoning paths. This trend is pronounced
for VSGD, which more effectively use additional reasoning paths compared to the baselines.

achieves a 1.6 point improvement under BoN; in Economics, a 1.5 point improvement under WMV;
and in Philosophy, a 1.3 point improvement under both BoN and WMV. These gains are realized
without substantial degradation in domains where baselines already achieve high accuracy, where
performance of VSGD remains competitive despite minor drops. These results suggest that VSGD
obtains performance improvements across both mathematical reasoning tasks and MMLU-subset.

Yes, VSGD effectively exploits reasoning steps. Fig. 3 compares the performances of VSGD and
baseline decoding methods, by varying the maximum reasoning step T in Algorithm 2. Recall that all
experiments are conducted with the default budget T = 10. To analyze performance under smaller
budgets (T < 10), we exclude reasoning paths whose length exceeds T , and then compute accuracy
on the remaining reasoning paths. Across all decoding algorithms, accuracy increases as T grows,
highlighting the benefit of longer reasoning trajectories. Moreover, VSGD consistently surpasses the
baselines, demonstrating stronger capability in leveraging reasoning steps to reach correct solutions.

Yes, VSGD achieves higher accuracy with additional reasoning paths. We consider a scenario
where only the first L complete reasoning paths are used for evaluation. By default, we set L = 32,
and here we investigate how performance varies as L increases. Fig. 4 reports the accuracy of
decoding algorithms as L varies in {2, 4, 8, 16, 32}. Our experimental results show that, across
decoding algorithms, accuracy generally increases with larger L, as more reasoning pahts become
available. Moreover, VSGD generally achieves higher accuracy than the baselines, indicating the
effectiveness of VSGD in using additional reasoning paths compared to existing baseline methods.

4.2 WHAT EFFECTS DOES VSGD EXHIBIT IN DECODING?

Table 2: Comparison between VSGD and GD-
Min, in terms of volatility of the trajectory.

Dataset GD-Min VSGD ∆ (%)

MATH500 0.0587 0.0537 -8.49
GSM8K 0.0267 0.0246 -7.82

CS 0.1380 0.1249 -9.48
Chem 0.1041 0.1081 3.85
Econ 0.1543 0.1438 -6.75
Logic 0.1345 0.1303 -3.10
Philosophy 0.1100 0.1002 -8.92
Virology 0.1216 0.1180 -2.96

Average 0.1065 0.1010 -5.13

VSGD prioritizes stable reward trajectories.
Table 2 reports a comparative analysis of volatility
between VSGD and GD-Min. We use GD-Min as
the baseline because it selects trajectories solely
based on PRM reward scores without considering
reward volatility, whereas VSGD incorporates re-
ward volatility by weighting trajectories with more
stable reward signals. The ∆ column in Table 2 re-
ports the relative reduction (%) of VSGD compared
to GD-Min. Compared to GD-Min, VSGD shows
lower volatility σ(rt) defined in Eq. 1, measured
across the decoding steps. For example, volatility
is reduced by −9.48% on the CS category and by
−8.92% on Philosophy, with an average reduction
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⋮ ⋮

Figure 5: Qualitative and quantitative results showing that VSGD mitigates incomplete reasoning.
(Top) Example reasoning paths from the MATH500 dataset: the baseline method GD-Min reaches the
maximum step limit T = 10 without generating the final answer, while VSGD generates a complete
reasoning path with the final answer. (Bottom) Empirical comparison of incomplete search rates on
the MMLU-subset and mathematics benchmarks which is comprised of GSM8K and MATH500. For
each dataset and decoding algorithm, we compute the proportion of cases that reach the maximum
step limit T without generating the final answer, referred to as the incomplete search rate. We report
averages across datasets for each decoding algorithm. Our experimental results show that VSGD
consistently yields lower incomplete search rates than baseline methods.

of −5.13% across all datasets. The reduction across benchmarks is statistically significant under the
Wilcoxon signed-rank test (Wilcoxon, 1945) yielding p = 0.0098, which is appropriate given that
both methods are evaluated on the same datasets. These results demonstrate that VSGD effectively
guides decoding toward reasoning paths whose reward trajectories are less volatile compared to
GD-Min.

VSGD improves accuracy by mitigating failed searches and incomplete reasoning. One key
advantage of VSGD over baseline methods is its ability to reduce cases where the reasoning process
remains unfinished. Fig. 5 provides both qualitative and quantitative evidences. The top panel of
Fig. 5 provides a qualitative example from the MATH500 dataset: the baseline method GD-Min
reaches the maximum step limit T = 10 without producing a final answer, whereas VSGD completes
the reasoning in only four steps and outputs the correct solution. The bottom panel of Fig. 5 reports
quantitative results on the MMLU-subset and mathematics (GSM8K and MATH500) benchmarks.
We measure the proportion of test cases where decoding terminates without producing the final
answer, which we define as the incomplete search rate. Across all datasets and methods, VSGD
consistently achieves substantially lower incomplete search rates than baselines, demonstrating its
effectiveness in generating complete reasoning trajectories.

5 CONCLUSION

We introduced Volatility-Scaled Guided Decoding (VSGD), a decoding algorithm that leverages
volatility in reward trajectories within a step-level beam search framework. Our analysis revealed
that correct reasoning paths consistently exhibit lower volatility than incorrect ones, motivating the
use of volatility as a stability criterion in decoding. Experiments on GSM8K, MATH500, and the
MMLU-subset show that VSGD outperforms strong baselines in accuracy while using computational
resources more efficiently. By reducing volatility, VSGD improves the rate of successful searches and
thus explains its performance gains. More broadly, these results highlight that modeling the temporal
dynamics of reward trajectories offers a principled foundation for guided decoding in LLMs.
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Table 3: Number of evaluation queries used per dataset.

Dataset # Test Queries
Task category: Mathematical reasoning

GSM8K 1319
MATH500 500

Task category: MMLU-subset knowledge
Computer Science 100
Chemistry 100
Econometrics 114
Formal Logic 126
Philosophy 311
Virology 166

Figure 6: Distribution of outcomes across guidance methods, categorized by search completion
(y-axis) and answer correctness (x-axis). Each heatmap illustrates the proportion of examples in four
categories defined by whether the decoding algorithm completes a search and whether the final answer
is correct. For instance, the Search=True, Correct=True cell corresponds to accurate responses, while
Search=True, Correct=False denotes cases where the search completes but yields an incorrect answer.
Across both the (Top) MMLU-subset and (Bottom) mathematics datasets, VSGD generally results in
fewer search failures and fewer incorrect answers upon completion compared to baseline methods,
producing a higher proportion of accurate responses. These results demonstrate that VSGD improves
reasoning performance by enhancing both search completion and answer correctness.

A EXPERIMENTS DETAILS

We evaluate our models on a subset of the MMLU benchmark covering six domains. Among these,
Chemistry and Computer Science are selected from the college-level categories of MMLU, while
the remaining subjects represent diverse knowledge domains. The number of test samples for each
dataset is summarized in Table 3.

To ensure efficient inference, we apply 4-bit quantization to all models and enable FlashAttention
in every experiment. This configuration reduces memory consumption and accelerates attention
computation without compromising accuracy. All experiments are conducted on NVIDIA RTX 4090
GPUs.
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B COMPREHENSIVE RESULTS

Fig. 6 presents the distribution of outcomes by jointly considering search completion and answer
correctness. We evaluate decoding algorithms by partitioning examples into four categories: (i)
complete search with a correct answer, (ii) complete search with an incorrect answer, (iii) failed
search with a correct answer, which is essentially absent, and (iv) failed search with an incorrect
answer. This decomposition highlights how decoding algorithms influence the reasoning performance
of LLMs. Across both the MMLU-subset and mathematical reasoning datasets including GSM8K
and MATH500, VSGD consistently shows lower rates of search failure compared to baseline methods.
Moreover, within the subset of successful searches, VSGD generally produces a smaller fraction of
incorrect answers, suggesting that the guidance of VSGD is associated with both higher completion
rates and improved output quality. As a result, VSGD yields a higher proportion of accurate responses
and a lower proportion of failed or misleading trajectories relative to the baselines. These findings
suggest that the performance gains of VSGD can be attributed to two complementary factors: reducing
the frequency of failed searches and improving correctness within successful searches.

Table 4: Mann–Whitney U test p-values showing significant differences in volatility distributions
between correct and incorrect reasoning paths across domains.

Dataset p-value

GSM8K 1.1× 10−36

MATH500 7.4× 10−49

Computer Science 2.2× 10−3

Chemistry 1.4× 10−5

Econometrics 2.6× 10−7

Formal Logic 1.2× 10−5

Philosophy 4.8× 10−52

Virology 1.9× 10−8

Table 4 reports the p-values from the Mann–Whitney U test across mathematical reasoning bench-
marks (GSM8K and MATH500) as well as the MMLU subset, which includes Chemistry, Computer
Science, Philosophy, Econometrics, Formal Logic, and Virology. In all cases, the p-values are well
below the 0.05 threshold, indicating that the volatility distributions of correct and incorrect reasoning
paths differ significantly across domains, thereby reinforcing the patterns observed in Fig. 2.
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