
Memory Mosaics at scale

Jianyu Zhang
New York University, New York

FAIR, Meta Inc., New York

Léon Bottou
FAIR, Meta Inc., New York

New York University, New York

Abstract

Memory Mosaics [Zhang et al., 2025], networks of associative memories, have
demonstrated appealing compositional and in-context learning capabilities on
medium-scale networks (GPT-2 scale) and synthetic small datasets. This work
shows that these favorable properties remain when we scale memory mosaics to
large language model sizes (llama-8B scale) and real-world datasets.
To this end, we scale memory mosaics to 10B size, we train them on one trillion
tokens, we introduce a couple architectural modifications (“memory mosaics v2”),
we assess their capabilities across three evaluation dimensions: training-knowledge
storage, new-knowledge storage, and in-context learning.
Throughout the evaluation, memory mosaics v2 match transformers on the learning
of training knowledge (first dimension) and significantly outperforms transformers
on carrying out new tasks at inference time (second and third dimensions). These
improvements cannot be easily replicated by simply increasing the training data
for transformers. A memory mosaics v2 trained on one trillion tokens still perform
better on these tasks than a transformer trained on eight trillion tokens.

1 Introduction
In Machine Learning, compositional capabilities and in-context/out-of-distribution learning capa-
bilities have been continuously pursued but remain challenging. Early attempts to achieve these
goals include pursuing disentanglement via various statistical “independence” [Comon, 1994, Roth
et al., 2022], pursuing out-of-distribution/learning from the perspective of optimization on multiple
environments [Finn et al., 2017, Arjovsky et al., 2019, Bengio et al., 2019]. In contrast, transformer-
based models demonstrate certain compositional capabilities and early in-context learning abilities.
However, we still lack a clear understanding of how current transformers achieve these capabilities,
and why earlier models were unable to.
Memory mosaics [Zhang et al., 2025], networks of simple key-value associative memories (without
position encoding), offer a comparatively transparent way to understand how composition or disen-
tanglement occur. Trained and evaluated on medium-scale networks and synthetic datasets, memory
mosaics reveal promising superior in-context learning abilities. Therefore, we ask “To peruse a
strong and general new task learning capability, how can we scale memory mosaics to large networks
and real-world datasets?”

The contribution of this work: 1) We successfully scale up memory mosaics to llama-8B scale, using
one trillion real-world training tokens. The resulting network is named as Memory Mosaics v2.1 2

Compared to memory mosaics, memory mosaics v2 made three architectural modifications, including
an adaptive bandwidth of associative memory, a gated time-variant key feature extractor, and a 3-level
memory design. 2) We propose three evaluation dimensions to comprehensively assess model ability
(from i.i.d. to o.o.d. scenarios). 3) Our memory mosaics v2 demonstrate superior new-task learning
capabilities (with fewer examples and less priori knowledge from human designers).

1For clarity, “Memory Mosaics” refers to the version in Zhang et al. [2025], while “Memory Mosaics v2”
refers to this scaled-up version.

2https://github.com/facebookresearch/MemoryMosaics

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/facebookresearch/MemoryMosaics

This paper is organized as follows. Section 2 introduces background knowledge on associative
memories. Section 3 presents the architecture of memory mosaics v2. Then section 4 describes the
training process, section 5 evaluates memory mosaics v2 and transformers across three dimensions –
training (persistent) knowledge storage, new knowledge storage, and in-context learning. Section 6
discusses the failure of replicating memory mosaics v2 by simply increasing the training data (×8
more data) for transformers. Section 7 studies the advantage of memory mosaics v2 in fine-tuning.
Finally, section 8 provides discussion and further directions.

2 Background on Associative Memory
General speaking, memory mosaics architecture [Zhang et al., 2025] replaces attention blocks in
transformers [Vaswani et al., 2017] with associative memories. This section provides the background
on associative memories, highlights the connection and differences between “associative memory” in
memory mosaics and “attention” in transformers.

Associative Memory Associative memories have a long history in both psychology and computer
science, referring to relationships between unrelated items. In this work, we follow the definition from
Zhang et al. [2025], according to which an associative memory is a device that can store key-value
pairs {(k1, v1) . . . (kn, vn)} and retrieve values given a corresponding key:3

k 7→ f(k; {(k1, v1) . . . (kn, vn)}) (1)

The key-value pairs are stored in a set, and thus can be assumed to be permutation invariant. This
exchangeability property suggests that we can view an associative memory as a device that estimates
a conditional probability distribution P (V |K) on the basis of the sample (k1, v1) . . . (kn, vn) of key-
value pairs. The retrieval function is then a conditional expectation over this estimated distribution:

f
(
k; {(k1, v1) . . . (kn, vn)}

)
= E(V |K = k) . (2)

This conditional expectation can be estimated by kernel regression, e.g. Gaussian kernel regression:4

f
(
k; {(k1, v1) . . . (kn, vn)}

)
=

n∑
i=1

e−β∥k−ki∥
2∑n

i=1e
−β∥k−ki∥2 vi , (3)

where β controls the bandwidth of Guassian kernel.

Connection between associative memory and attention Associative memory in Equation 3 is
closely connected to attention [Bahdanau et al., 2015] when all key vectors ki share the same squared
norm. That is, expression (3) becomes: 5

f
(
k; {(k1, v1) . . . (kn, vn)}

)
=

n∑
i=1

e β k
⊤ki∑n

j=1 e
β k⊤kj

vi . (4)

Moreover, the size of associative memory (i.e., the number of key-value examples) is analogous to
the sequence length in attention.

Differences between associative memory and attention The associative memory viewpoint is
conceptually simple and transparent. This simplicity contributes several key differences in associa-
tive memory (compared with attention), including: 1) L2 normalized key vectors with an explicit
bandwidth parameter β, 2) a symmetric kernel with the same formula for keys as queries, and
3) the absence of explicit position encoding. These differences further contribute to the superior
compositional capabilities and in-context learning capabilities in memory mosaics.

3 Memory Mosaics v2
Transformers show an interesting induction head mechanism [Olsson et al., 2022], that is, predict
b after sequence [. . . , a, b, . . . , a]. This mechanism contributes to their in-context learning ability.
According to Bietti et al. [2023], position encoding and asymmetric query-key extractors (e.g.

3both keys and values shall be vectors in Rd.
4This Gaussian kernel smoothing not only converges to the true conditional expectation E(K|V) when

n → ∞ and β =
√
n [Nadaraya, 1964, Watson, 1964], but also makes it easy to compute gradients.

5For the easy of reading, we reuse the “attention score” notion to e β k⊤ki∑n
j=1 e

β k⊤kj
in associative memories.

2

qT =WqxT , kT =WkxT) are essential for transformers to achieve this induction head mechanism
with at least two layers of attention.
Inspired by studies of induction head mechanism, Memory Mosaics [Zhang et al., 2025] construct
associative memories using keys to represent the recent past and values to represent the near future
(Figure 2 left):

kT = φθ(xT , xT−1, . . .), vT = ψθ(xT+1, xT , . . .) (5)

This simple designer allows memory mosaics to get ride of explicit position encoding, use the same
key as query, perform induction head with only one layer. The resulting memory mosaics also reveal
appealing in-context learning capabilities on small synthetic datasets.
Based on memory mosaics, this section introduces Memory Mosaics v2, aiming at a stronger and
more general in-context learning ability on broader real-world tasks (without loss of performance
on other common benchmarks). Compared to memory mosaics, memory mosaics v2 incorporates
three architecture modifications, including an adaptive bandwidth in associative memory, a gated
time-variant key feature extractor, and a 3-level memory design.

3.1 Adaptive bandwidth in Gaussian kernel smoothing

Memory mosaics use one fixed bandwidth parameter β for different sizes n of associative memory
(Equation 1). It is well known that bandwidth controls the bias-variance trade-off [Hastie et al.,
2009] of kernel regression (memory-based) methods. That is, for a given distribution, the optimal
bandwidth depends on the number of examples (key-value pairs in associative memory). Inspired
by the asymptotic Mean Integrated Squared Error kernel bandwidth estimation approach where
1/

√
β ∝ n−1/(p+4) [García-Portugués, 2024], memory mosaics v2 schedule β in Equation 4 as:

β = β1n
α + β0 , (6)

where β0 ≥ 0, β1 > 0, 1 > α > 0 are learnable parameters. I.e., the more key-value pairs
(examples), the smaller bandwidth 1/

√
β.

3.2 Gated time-variant key feature extractor

Memory mosaics employs a simple time-invariant leaky averaging to extract key features:
kT = Norm

(
k̄T

)
with k̄T = k̃T + λ k̄T−1 k̃T =Wφ xT (7)

The averaging weights in Equation 7 are fixed and independent of the semantic input x. As a result,
semantically similar cases, such as “tom-and-jerry” and “tom- - -and- - -jerry”, may receive different
key features. Inspired by recurrent-style networks [Peng et al., 2023, Gu and Dao, 2023, Beck et al.,
2025], memory mosaics v2 utilize the following gated time-variant key feature extractor: 6

kT = αφNorm
(
k̄T

)
with

{
k̄T = gT k̃T + λT k̄T−1 k̃T =Wφ xT
gt = eWgxT ∈ R , λT = e−|WλxT | ∈ R

, (8)

where αφ ∈ R and Wφ,Wg,Wλ are learnable parameters, the averaging weights λT ∈ R and the
exponential gate gT ∈ R semantically depend on input xT . See Appendix Figure 9 for graphical
illustrations.
For key feature extractor, memory mosaics v2 reuses the same convolutional key extractor as in
memory mosaics:

vT = αψNorm
(
v̄T

)
with v̄T = γ ṽT + (1− γ) ṽT+1 ṽT =Wψ xT , (9)

where γ, αψ ∈ R and Wψ are learnable parameters.

3.3 3-level memory

Transformer architecture [Vaswani et al., 2017] consists of attention blocks and feedforward neural
network blocks. The former handles local contextual information from an input sequence, while the
latter stores global persistent information shared by different training sequences. Memory mosaics
[Zhang et al., 2025] simplify the attention and the feedforward network in transformer as contextual
associative memory and persistent memory, respectively. This simplification reduces the dependence
between the “attention score” and the token position, as shown in Figure 1. Compared with transform-

6It worth noting that this work is neither a linearization of attention nor attention efficiency. The recurrent
feature extractor in Eq. 7 is used to create keys, while associative memory in Eq. 1 still stores all key-value pairs.

3

0 100 200 300 400 500
token positions

10 7

10 5

10 3

10 1

at
te

nt
io

n
sc

or
e

RoPE
per head
average over head

0 100 200 300 400 500
token positions

10 7

10 5

10 3

10 1

at
te

nt
io

n
sc

or
e

Memory Mosaic
per head
average over head

Figure 1: Average attention scores of the last token attending previous tokens. Left: Transformer
with RoPE position encoding. Right: Memory Mosaics [Zhang et al., 2025]. The (averaged) attention
scores in transformer heavily depends on token positions (curly curves), while the attention scores in
memory mosaics at far tokens (e.g. position 0 to 450) are almost invariant to positions (flat curves).

ers (Figure 1 left), the attention scores in memory mosaics (Figure 1 right) exhibit a structured pattern.
That is, attention scores on near-tokens (positions) heavily depend on positions, while attention scores
on far-tokens are almost invariant to token positions. Inspired by this experimental discovery, memory
mosaics v2 replace each contextual associative memory in memory mosaics with two associative
memories, short-term memory and long-term memory, using distinct parameters (as in Figure 2).

Short-term memory The short-term memory at position t only stores key-value pairs of near-
tokens, ranging from t− h+ 1 to t− 1, implementing Eq. (4) as:

f
(
k; {(kt−h+1, vt−h+1) . . . (kt−1, vt−1)}

)
=

t−1∑
i=t−h+1

e β k
⊤ki∑t−1

j=t−h+1 e
β k⊤kj

vi . (10)

Long-term memory In contrast, the long-term memory skips near tokens and only stores key-value
pairs before position t−m, implementing Eq. (4) as f(k; {(k1, v1) . . . (kt−m, vt−m)}).7 By setting
m < h, memory mosaics v2 create an overlap between long-term and short-term memory, resulting
in a soft boundary between these two memories. Eventually, the outputs of many long-term memories
and short-term memories are concatenated together, following by a linear projection Wo.

Persistent Memory Memory mosaics v2 implements persistent memory using dense two-layer
neural networks with SwiGLU activation [Shazeer, 2020] due to computational efficiency concerns.8

Associative
memory

Feature Extractor

Output time series
tracks () without
looking forward into

() but using memory
matches.

Associative Memory
retrieves past key-value pairs

 by current key

Value time series
Represents the near future

of the input time series.
Key time series

Represents the recent past
of the input time series.

Input time series

normalize

long-term
memories

Persistent
memories

Decoding layer

N
b r

ep
ea

te
d

bl
oc

ks

normalize

short-term
memories

t-m1 t t-h1 tt-1

long-term
memories

short-term
memories

Attention Mask

ignore
near key-value pairs

focus on
near key-value pairs

Implementations

store persistent knowledges of training data

Persistent
memories

● associative memories, or
● dense neural networks, or
● mix-of-expert sparse networks

Figure 2: Left: Memory Unit. Right: Memory Mosaics v2 architecture.

4 Training
We train two memory mosaics v2 of difference sizes (small/large). Memory mosaics v2 small
(llama-1.5B scale) contains 24 layers, 2048 hidden dimensions, and 16 heads, trained on 200 billion
tokens of a diverse datamix. Memory mosaics v2 large (llama-8B scale) increases the number of
layers to 32, hidden dimensions to 4096, and the number of heads to 32, trained on 1 trillion tokens
of the same datamix. Both models are trained on 4,096 context length, followed by a fine-tuning
process on 32,768 context length. Other training details are provides in appendix C.

7Note that k, v, and β in long-term and short-term memory are constructed with distinct parameters.
8A two-layers feed-forward network and a key-value associative memory are interchangeable as shown in

Sukhbaatar et al. [2019].

4

Stochastic long-term memory size During training, memory mosaics v2 samples the long-term
memory delay stepm from [64, 256], sets the short-term memory window size h = 256. At inference,
m is set to 64. This stochastic long-term memory training setup encourages the allocation of position-
invariant signals to long-term memory and position-dependent signals to short-term memory (as
shown in Figure 1). The experimental results in Appendix G Table 12 show that this training setup
enhances context-length extrapolation ability by more than 15%.

Baseline We train two baseline transformers (small/large) with the same configurations as their
memory mosaics v2 counterparts. Unless otherwise specified, in this work, transformer models use
llama architecture [Grattafiori et al., 2024] with multi-head attention.

5 Three evaluation dimensions
The evaluation design provides a means to assess the specific properties of a system. Memory mosaics
v2 aims at the ability to learn new tasks with fewer examples and less task-specific priori knowledge
[Zhang, 2025]. Thus, to fully assess this capability, this section adopts three evaluation dimensions.

• Persistent-knowledge storage and retrieval, the ability of persistent-memory to store and
retrieve knowledge of training dataset. This capability prepares knowledge that could be reused
in other tasks during inference. We use common language benchmarks to access this aspect.

• New-knowledge storage and retrieval, the ability to store and retrieve new information of test
dataset. It is a prerequisite for “learning” new tasks via memory-based methods. We employ
“multi-unrelated-documents storing and question-answering” tasks to evaluate this aspect.

• In-context Learning, directly evaluates the ability to learn new tasks with fewer examples and
less task-specific priori knowledge. We use multiclass classification to assess this aspect.

5.1 Persistent-knowledge storage and retrieval

Table 1 evaluates both memory mosaics v2 and baseline transformers on 19 commonly used language
benchmarks, showing that they perform closely on these benchmarks.This is expected since both
models share the same persistent memory architecture.

Table 1: Memory mosaics v2 and transformers performance on 19 common language benchmarks.

model context
length obqa arc

easy
wino-
grande

arc
challenge piqa boolq hell-

aswag nq siqa tqa gsm8k mmlu
alt

human
eval+ squad bbh math mbpp race

middle
race
high avg

transformer small 32k 35.2 61.0 60.1 31.4 73.6 63.0 59.3 11.7 44.5 26.7 3.0 35.2 32.4 54.7 26.0 1.2 9.2 52.2 37.4 37.8
memory mosaics v2 small 32k 35.0 60.0 58.4 32.9 73.3 62.7 58.0 11.8 46.6 29.3 3.1 34.7 30.8 59.3 27.3 1.1 9.4 49.2 38.4 38.0

transformer large 32k 45.8 77.3 72.3 52.6 80.8 72.6 79.2 31.9 49.3 61.5 32.4 49.0 38.3 76.3 45.6 8.7 9.8 62.6 45.6 52.2
memory mosaics v2 large 32k 45.4 78.0 71.2 51.8 80.4 73.1 78.6 30.9 48.6 62.0 27.4 48.2 43.0 78.2 47.8 8.8 9.6 61.6 46.5 52.2

How do we know whether these benchmarks access persistent-knowledge ability rather than new-
knowledge ability? To answer this question, we re-evaluate these benchmarks on memory mosaics
v2 but with long-term memory being removed after training. The underlying reason is that if a task
solely relies on the information stored in persistent memory and retrieved by short-term memory,
removing long-term memory should not significantly affect performance.
Table 2 shows that removing long-term memory after training does not degrade the performance of 13
common benchmarks. This suggests that these 13 tasks are almost exclusively based on information
stored in persistent memory and retrieved by short-term memory. In contrast, Appendix Table 9
indicates that the other 6 benchmarks perform poorly when long-term memory is removed.
Based on these findings, we use the 13 tasks to evaluate persistent knowledge storage and retrieval
capability. The results (Table 1) show that memory mosaics v2 and transformers perform similarly
in this evaluation dimension, suggesting that both models are capable of effectively storing and
retrieving persistent knowledge.

Table 2: Memory mosaics v2 performance on 13 common language benchmarks. Removing the
“long-term memory” after training barely hurt the performance (56.6% vs 56.8%). Flops/token is
estimated at context length 256 via tha approach of Casson [2023].

params flops/token obqa arc
easy

wino-
grande

arc
challenge piqa boolq hell-

aswag nq siqa tqa gsm8k mmlu
alt

human
eval+ avg

Transformer large 8.8B 16.7B 45.8 77.3 72.3 52.6 80.8 72.6 79.2 31.9 49.3 61.5 32.4 49.0 38.3 57.1

memory mosaics v2 large 9.9B 18.9B 45.4 78.0 71.2 51.8 80.4 73.1 78.6 30.9 48.6 62.0 27.4 48.2 43.0 56.8
memory mosaics v2 large

without long-term memory 8.3B 15.6B 45.4 77.9 71.2 51.8 80.4 73.1 78.6 30.8 48.6 62.1 26.7 46.8 42.2 56.6

5

Computation and # parameters concerns Table 2 summarizes the size of parameters and compu-
tation required for transformers and memory mosaics v2. Interestingly, removing long-term memory
from memory mosaics v2 after training achieves a comparable transformer performance on the 13
persistent-knowledge benchmarks, while using fewer parameters and computations.

5.2 New-knowledge storage and retrieval

The new-knowledge storage and retrieval ability is a prerequisite for learning new tasks via memory-
based methods (e.g., Gaussian kernel regression), because the data of new tasks must be adequately
“stored” before learning (Note that memory-based methods are lazy methods). To illustrate this point,
consider a poor goldfish with 7-second memory – how can it possibly learn a 90-minute movie?
Similarly, a model with limited new-knowledge storage ability will struggle to learn information that
exceeds its storage (memory) capacity.

Task description To assess this ability, we employ two “multi-unrelated-documents question-
answering” tasks from the RULER benchmark [Hsieh et al., 2024]. These tasks involve multiple
concatenated realistic articles followed by a question related to one of these articles, requiring the
model to find the correct answer based on the correct article.9 A prompt example is:

Answer the question based on the given documents. The following are given documents. Document 1:
[...] Document2: [...] [...] Document 20: [...] Question: What religion were the Normans? Answer:

These tasks are notably more challenging than typical ’needle-in-a-haystack’ benchmarks [Kamradt,
2023], owing to their high information entropy. The typical ’needle-in-a-haystack’ task is too easy,
resulting in many models achieving near-perfect performance. See Table 13 in Appendix for details.

Main results Table 3 compares memory mosaics v2 and transformers, pretrained on a 4k context
length, on these question-answer tasks. Memory mosaics v2 outperforms transformers on 4k task-
length by 1.4%∼5.6%. Similarly, Table 4 presents the same comparison, but with both models
fine-tuned at a 32k context length. As task lengths increase to 32k, the “multi-unrelated-documents
question-answering” tasks become more challenging. At this increased difficulty level, memory
mosaics v2 significantly outperforms transformers by 12.3% to 14.8%.

Table 3: Comparison of memory mosaics v2 and transformer, trained on 4k context length, on RULER
question-answer tasks. Memory mosaics v2 not only outperforms transformer on 4k task-length, but
also successfully extrapolate the context length ×4 ∼ ×8 times without any fine-tuning.

model context length task-length 4k 8k 16k 32k

transformer small 4k 39.4 × × ×
memory mosaics v2 small 4k 45.0 35.0 34.1 31.7

transformer large 4k 57.7 × × ×
memory mosaics v2 large 4k 59.3 48.8 46.4 26.5

Table 4: Comparison of memory mosaics v2 and transformer, trained on 4k and fine-tuned on 32k
context length, on RULER question-answer tasks. Memory mosaics v2 outperforms transformer by
12.3%∼14.8%.

model context length 4k 8k 16k task-length 32k 64k

transformer small 32k 37.0 29.3 29.0 22.1 ×
memory mosaics v2 small 32k 44.3 39.3 39.4 36.9 25.3

transformer large 32k 51.2 48.8 44.7 41.1 ×
memory mosaics v2 large 32k 58.9 55.5 54.9 53.4 46.4

The failures of many potential baselines Many memory compression algorithms, such as RNNs,
xLSTM [Beck et al., 2025], rwkv [Peng et al., 2023], and state-space models [Gu and Dao, 2023],
fail on this task by construction because they cannot store all articles before reading the question.
Similarly, local-window memory approaches, such as Alibi position encoding Press et al. [2021] and
sliding-window attention Beltagy et al. [2020], also struggle for the same reason.10 This incompetent

9Similarly to the process used in section 5.1 for verifying persistent-knowledge storage and retrieval tasks,
appendix Table 10 compares memory mosaics v2 with and without long-term memory on these question-
answering tasks, confirming the necessity of “long-term memory” for these tasks.

10One might argue to play around this shortage by reading the question before the multiple articles. However,
this process involves task-specific priori knowledge from human designers. In the end, instead of proving the

6

of memory compression algorithms has also been experimentally demonstrated by Hsieh et al. [2024]
and Li et al. [2024]. Also, see Appendix G for these experimental evidences.

Extrapolating context length (without fine-tuning) Context length extrapolation (without fine-
tuning) not only is computationally appealing, but also reveals the model’s consistency in handling
context. Unfortunately, transformers (with ROPE position encoding) struggle to extrapolate context
length, as shown in Table 3.11 In contrast, memory mosaics v2, trained on 4k context length, not
only outperform transformers on 4k length, but also perform well after extrapolating context length
×4 ∼ ×8 times without any fine-tuning or adaptation.

5.3 In-context learning

Having demonstrated the new-knowledge storage and retrieval ability of memory mosaics v2, this
section takes a step further to evaluate its capacity to learn new tasks or distributions at inference
time. This ability is also commonly referred to as in-context learning.

Tasks description To assess the in-context learning ability, we employ classic multiclass classifica-
tion problems,12 adopted from Li et al. [2024]. The classification tasks include:

• Banking77 [Casanueva et al., 2020] is a banking-intent classification task with 77 target categories.
Each example has an average length of 24 tokens.

• Tacred [Zhang et al., 2017] is a relation classification task of two objects in a sentence, extracted
from newswire or webtext, with 41 target categories. Each example has an average length of 77
tokens.

• Goemotion [Demszky et al., 2020] is an emotion classification task of Reddit comments with 28
target categories. Each example has an average length of 26 tokens.

To solely evaluate the ability to learn new tasks (reduce the influence of training knowledge), we
create an anonymous version with anonymous target labels (e.g. “class 1”, “class 2”) for each
classification task. The original classification setup with semantic labels (e.g. “happy”, “angry”) is
referred to as semantic version.
In this section, we adopt a few-shot learning setup where each “shot” consists of one (x, y) example
from each possible target label category. By collecting multiple shots, we create an n-shot classifica-
tion task. To encode these (x, y) examples for memory mosaics v2 and transformers, we serialize the
(x, y) pairs into a sequence followed by a test query xtest.13 A prompt example is:

Given a customer service query, please predict the intent of the query. [...] The examples are as follows:
query: xshot1, instant: yshot1, [...], query: xshot2, instant: yshot2, [...], query: xtest, instant:

Main Results Figure 3 compares the performance of memory mosaics v2 and transformers in three
classification tasks with semantic target labels. The horizontal axis represents the number of shots,
while the vertical axis represents the classification accuracy on xtest. We can observe two phenomena:
1) memory mosaics v2 consistently improve classification performance as it sees more demonstration
shots (blue curves). In contrast, transformers struggle to maintain their performance and exhibit
counterintuitively degraded performance as more demonstrations are provided (red curves). 2)
Memory mosaics v2 significantly outperform transformers by more than 10%. Check Appendix H
for the comparison between memory mosaics v2 small and transformer small (a larger margin).

machine is intelligent, it often proves that human designers are intelligent. Please recall that a child does not
prepare all questions before going to school.

11The comparison ignores many memory compression and local window approaches [Press et al., 2021,
Beltagy et al., 2020], because they fail on this evaluation by construction.

12We choose classic classification problems over other fancy benchmarks for two reasons. Firstly, the mecha-
nisms underlying classification are well-studied, allowing us to confidently attribute good or poor performance to
the system’s properties. Secondly, classification tasks can be designed to be arbitrarily different from the training
set by changing the classification boundary, making it easier to measure the ability to learn new distributions. In
contrast, as of this writing, many fancy benchmarks may not offer the same level of control and fine-grained
analysis.

13Transformers are known to be sensitive to the prompt strategies [Gupta et al., 2024, Mirzadeh et al., 2024],
such as the delimiter before x and y, shuffling/not-shuffling the (x, y) examples within each shot. To reduce
the influence of prompt strategies, we evaluate each classification task with different delimiters (“[space]” and
“\n”), shuffled/non-shuffled (x, y) examples. Then choose the best prompt strategy for each n-shot classification
task. Check appendix I for prompt examples.

7

Figure 4 presents a similar comparison as Figure 3, but on anonymous target labels. Again, memory
mosaics v2 significantly outperforms transformers on all classification tasks.

2 4 6 8 10 12 14 16
number of shots

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

Ac
cu

ar
y

banking77 with semantic label

2 3 4 5 6 7 8 9 10
number of shots

0.50

0.52

0.54

0.56

0.58

0.60

0.62

Ac
cu

ar
y 10.2%

tacred with semantic label

2 4 6 8 10 12 14 16
number of shots

0.26

0.27

0.28

0.29

0.30

0.31

Ac
cu

ar
y

goemotion with semantic label
Transformer large
Memory Mosaics v2 large

Figure 3: Semantic label in-context learning comparison between memory mosaics v2 and trans-
former. Memory mosaics v2 significantly outperform transformers on in-context learning with a large
margin (more than 10%). Meanwhile, memory mosaics v2 benefits from more demonstration shots
(x-axis), unlike transformers.

2 4 6 8 10 12 14 16
number of shots

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ar
y

banking77 with anonymous label

2 3 4 5 6 7 8 9 10
number of shots

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Ac
cu

ar
y

15.5%

tacred with anonymous label

2 4 6 8 10 12 14 16
number of shots

0.06

0.07

0.08

0.09

0.10

0.11

Ac
cu

ar
y

goemotion with anonymous label

Transformer large
Memory Mosaics v2 large

Figure 4: Anonymous label in-context learning comparison between memory mosaics v2 and
transformers. Memory mosaics v2 significantly outperform transformers on all classification tasks.

In summary, the experiments demonstrate that memory mosaics v2 not only outperform transformer
by a significant margin (more than 10%) on in-context learning, but also consistently improve
performance as more demonstrations are provided. These results highlight the superior in-context
learning ability of Memory Mosaics v2.

2 4 6 8 10
number of shots

0.25

0.30

0.35

0.40

0.45

Ac
cu

ar
y

tacred with semantic label

2 4 6 8 10
number of shots

0.05

0.10

0.15

0.20

0.25

0.30

Ac
cu

ar
y

tacred with anonymous label

Transformer small
Transformer small + long-short term attention
Memory Mosaics v2 small

Figure 5: Augmenting trans-
former with long-short term atten-
tion doesn’t help in-context learning.

Augment transformer with long-short term attention
Memory mosaics (v2) contains several unique components
that are not applicable to transformers, such as the symmetric
key and query, and the adaptive bandwidth. One seemingly
applicable component for transformers is the separation of
long-term and short-term memories introduced in Section 3.3.
However, Figure 5 shows that augmenting a transformer with
long-short-term attention does not help it overcome the lim-
itations of in-context learning. These phenomena imply that
memory mosaics (v2) is not simply a transformer variation but
represents a different architecture.

Computation and Parameter Concerns On the last two
evaluation dimensions (new knowledge storage and retrieval,
and in-context learning), memory mosaics v2 outperform transformers by more than 10% with
slightly more parameters. This 10% advantage holds even when comparing under the same number
of parameters or the same computational budget. See Appendix Figure 12 for details.

6 Risk-return trade-off of frontier-model-sized memory mosaics v2
Having demonstrated the superior new tasks learning ability of memory mosaics v2 up to 9.9 billion
parameters and 1 trillion training tokens, this section analyzes the “risk-return trade-off” to further
scale memory mosaics v2 to the size of the frontier model, unveiling potential benefits and challenges.

Two Approaches To train a large frontier foundational model, one can either:
1) take a low-risk-low-return approach by investing more resources (GPUs and data) and reusing old

recipes (e.g. architecture), or

8

2) take a middle-risk-high-return approach by trying new smart techniques.

Taking the first approach, one can take advantage of existing software, hardware, experiences, and
datasets to quickly “reproduce” a huge foundational model. However, this approach is unlikely to
result in a model that stands out from others, as it is based on shared recipes.
In contrast, taking the latter approach may require optimizing software and hardware, adapting
techniques, a sharp sense of research direction, and possessing a keen sense of research direction
along with strong problem solving abilities.14 Despite the high requirements for personnel, this
approach holds the potential for tremendous breakthroughs.
Ultimately, the decision between these two approaches depends on the available resources and per-
sonnel. To aid in this decision-making process, this section provides a simple and brutal comparison:

How much more data does the transformer recipe approach need to match the performance of
memory mosaics v2?

6.1 Comparison of two approaches

To answer this question, we compare the new tasks learning ability15 of memory mosaics v2 and
transformers trained on various amounts of data. Specifically, multiple transformer models are trained
on 200B, 1T, and 8T training tokens, while a memory mosaics v2 is trained on 1T training tokens.

New-knowledge storage and retrieval Table 5 shows the comparison on the new-knowledge
storage and retrieval ability. Training on the same number of tokens (1T), transformers lag behind
memory mosaics v2 by 12.3% (41.1% vs 53.4%). ×8 times more training tokens (8T) improves the
performance of transformers. However, the resulting transformer (trained on 8T tokens) still lags
behind memory mosaics v2 (trained on 1T tokens) by 6.5% (46.9% vs 53.4%).
Although further increasing training data may improve the performance of transformers in this
evaluation dimension, it comes at the cost of significantly larger training cost (time and resource).
Moreover, a serious problem occurs: we are running out of data!

Table 5: Comparison of memory mosaics v2 and transformers, trained on 4k and fine-tuned on 32k
context length, on RULER question-answer tasks. (“transformer large*” uses group-query attention to
reduce memory cost, increases training context length to 8k to boost long-context performance.)

model context length train tokens 4k 8k 16k task-length 32k 64k

transformer large 32k 200B 48.6 42.9 40.7 33.8 ×
transformer large 32k 1T 51.2 48.8 44.7 41.1 ×

transformer large* 32k 8T 59.2 54.5 50.9 46.9 ×
memory mosaics v2 large 32k 1T 58.9 55.5 54.9 53.4 46.4

2 4 6 8 10 12 14 16
num of shots

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

banking77 with semantic label

2 3 4 5 6 7 8 9 10
num of shots

0.45

0.50

0.55

0.60

Ac
cu

ra
cy

tacred with semantic label

2 4 6 8 10 12 14 16
num of shots

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

Ac
cu

ra
cy

goemotion with semantic label

Transformer Large - 200B train data
Transformer Large - 1T train data
Transformer Large* - 8T train data
Memory Mosaics v2 Large - 1T train data

Figure 6: Semantic label in-context learning comparison between memory mosaics v2 and trans-
former. Memory mosaics v2 is trained on 1T tokens, while three transformers are trained on 200B,
1T, 8T tokens, respectively. Transformer with ×8 times more training data (8T, dash red line) starts
to match the performance of Memory Mosaics v2 (1T, solid blue line).

14These requirements, in turn, demand a small group of high-quality researchers and managers.
15In i.i.d. regime, such as persistent-knowledge storing and retrieval, of course, more data + larger model =

better performance. This argument in i.i.d. scenario has been well studied three decades ago Vapnik [1991].

9

2 4 6 8 10 12 14 16
num of shots

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

banking77 with anonymous label

2 3 4 5 6 7 8 9 10
num of shots

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

tacred with anonymous label

2 4 6 8 10 12 14 16
num of shots

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

Ac
cu

ra
cy

goemotion with anonymous label
Transformer Large - 200B train data
Transformer Large - 1T train data
Transformer Large* - 8T train data
Memory Mosaics v2 Large - 1T train data

Figure 7: nonymous label in-context learning comparison between memory mosaics v2 and trans-
formers. Sadly, transformers trained on 8T (dash red line) still lag behind memory mosaics v2 trained
on 1T (solid blue line) by a large margin.

In-context learning Figures 6 and 7 show the comparison on in-context learning ability. For
semantic label tasks (Figure 6), ×8 times more training data helps transformers (8T data) match the
performance of memory mosaics v2 (1T data). However, for the more challenging anonymous label
tasks, more training data cannot help transformers. Contour-intuitively, transformers trained on more
training data (8T) exhibit a degraded performance on anonymous label tasks (Figure 7).
In summary, ×8 more training data helps transformers in certain new task learning benchmarks.
However, the resulting transformers (8T data) still lag behind memory mosaics v2 trained on 1T data.
More importantly, in anonymous label tasks that heavily rely on the new task learning ability, more
training data cannot help transformers. These experiments answer the initial question: “How much
data does the transformer recipe approach need to match the performance of memory mosaics v2?”.

7 Fine-tuning speed: who can fine-tune with one minibatch?
Despite the strong in-context learning capability of memory mosaics v2 shown in Section 5.3, it
may still be attractive to fine-tune a model for a specific domain in order to either reduce inference
costs or improve in-domain performance. It is generally expected that such models can be efficiently
fine-tuned for a new domain using a comparatively small number of examples.

0 1 10 100 1000
finetuning minibatchs (optimization steps)

0

10

20

30

40

50

Ac
cu

ra
cy

 +22.0%

 Only 1 finetuning minibatch (step)!

multi-unrelated-documents question-answering (32k task-length)

Memory Mosaics Large
Transformer Large

Figure 8: Fine-tuning speed comparison
between memory mosaics v2 and trans-
former.

Figure 8 compares the fine-tuning speed (in terms of data
size) of memory mosaics v2 and transformers. Both mod-
els, pre-trained on 4k context windows, were fine-tuned to
32k context length using the recipe described in Section 4
and evaluated on the same RULER tasks (32k task-length)
described in Section 5.2.
Surprisingly, a single fine-tuning mini-batch (one opti-
mization step) on memory mosaics v2 yields a 22% ac-
curacy improvement. Two fine-tuning mini-batches on
memory mosaics v2 are sufficient to reach the optimal
performance. In contrast, a transformer fine-tuned with
800 mini-batches still lags behind memory mosaics v2
fine-tuned with a single mini-batch.

8 Discussion and future direction
This work scales memory mosaics (named memory mosaics v2) to llama-8B scale, demonstrating
superior performance on new task learning, outperforming transformers by more than 10%. The three
evaluation dimensions introduced in this work provide a transparent and controlled assessment of
model capabilities, particularly focusing on the new task learning. The risk-return trade-off analysis
reveals the weakness of the mainstream “more data more computation” belief, highlighting research
opportunities on other smart techniques. One future direction is to reduce the computational cost
for very long context lengths using fuzzy hashing Breitinger et al. [2014], Chen et al. [2024] and
hierarchical memory Yuan et al. [2025], Lu et al. [2025] approaches.

Acknowledgments
Léon Bottou is a CIFAR fellow. We thank Gabriel Synnaeve, Jade Copet, Badr Youbi Idrissi, and
Ammar Rizvi for their considerable support with hardware, software, data, and baselines.

10

References
Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.

arXiv preprint arXiv:1907.02893, 2019.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In Yoshua Bengio and Yann LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. Advances in Neural Information Processing Systems, 37:107547–107603,
2025.

Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

Yoshua Bengio, Tristan Deleu, Nasim Rahaman, Rosemary Ke, Sébastien Lachapelle, Olexa Bilaniuk,
Anirudh Goyal, and Christopher Pal. A meta-transfer objective for learning to disentangle causal
mechanisms. arXiv preprint arXiv:1901.10912, 2019.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint. Advances in Neural Information Processing Systems, 36:
1560–1588, 2023.

Frank Breitinger, Barbara Guttman, Michael McCarrin, Vassil Roussev, and Douglas White. Approx-
imate matching: Definition and terminology. techreport nist special publication 800-168. national
institute of standards and technology, 2014.

Iñigo Casanueva, Tadas Temčinas, Daniela Gerz, Matthew Henderson, and Ivan Vulić. Efficient
intent detection with dual sentence encoders. arXiv preprint arXiv:2003.04807, 2020.

Adam Casson. Transformer flops. 2023. URL https://adamcasson.com/posts/transformer
-flops.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong
Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, et al. Magicpig: Lsh sampling for efficient llm
generation. arXiv preprint arXiv:2410.16179, 2024.

Pierre Comon. Independent component analysis, a new concept? Signal processing, 36(3):287–314,
1994.

Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan Cowen, Gaurav Nemade, and
Sujith Ravi. Goemotions: A dataset of fine-grained emotions. arXiv preprint arXiv:2005.00547,
2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pages 1126–1135. PMLR, 2017.

E. García-Portugués. Notes for Nonparametric Statistics. 2024. URL https://bookdown.org/e
garpor/NP-UC3M/. Version 6.9.1. ISBN 978-84-09-29537-1.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Vipul Gupta, David Pantoja, Candace Ross, Adina Williams, and Megan Ung. Changing Answer
Order Can Decrease MMLU Accuracy, June 2024.

Trevor Hastie, Robert Tibshirani, Jerome Friedman, et al. The elements of statistical learning, 2009.

11

https://adamcasson.com/posts/transformer-flops
https://adamcasson.com/posts/transformer-flops
https://bookdown.org/egarpor/NP-UC3M/
https://bookdown.org/egarpor/NP-UC3M/

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models? arXiv preprint arXiv:2404.06654, 2024.

Gregory Kamradt. Needle in a haystack - pressure testing llms. Github, 2023. URL https:
//github.com/gkamradt/LLMTestNeedleInAHaystack/tree/main.

Tianle Li, Ge Zhang, Quy Duc Do, Xiang Yue, and Wenhu Chen. Long-context llms struggle with
long in-context learning. arXiv preprint arXiv:2404.02060, 2024.

Enzhe Lu, Zhejun Jiang, Jingyuan Liu, Yulun Du, Tao Jiang, Chao Hong, Shaowei Liu, Weiran He,
Enming Yuan, Yuzhi Wang, et al. Moba: Mixture of block attention for long-context llms. arXiv
preprint arXiv:2502.13189, 2025.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large
Language Models, October 2024.

E. Nadaraya. On estimating regression. Theory of Probability and Its Applications, 9:141–142, 1964.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Huanqi Cao, Xin
Cheng, Michael Chung, Matteo Grella, Kranthi Kiran GV, et al. Rwkv: Reinventing rnns for the
transformer era. arXiv preprint arXiv:2305.13048, 2023.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Karsten Roth, Mark Ibrahim, Zeynep Akata, Pascal Vincent, and Diane Bouchacourt. Disentan-
glement of correlated factors via hausdorff factorized support. arXiv preprint arXiv:2210.07347,
2022.

Noam Shazeer. GLU variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Sainbayar Sukhbaatar, Edouard Grave, Guillaume Lample, Herve Jegou, and Armand Joulin. Aug-
menting self-attention with persistent memory, 2019.

V. Vapnik. Principles of risk minimization for learning theory. In J. Moody, S. Hanson, and R.P.
Lippmann, editors, Advances in Neural Information Processing Systems, volume 4. Morgan-
Kaufmann, 1991.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Geoffrey S. Watson. Smooth regression analysis. Sankhyā: The Indian Journal of Statistics, Series A,
pages 359–372, 1964.

Jingyang Yuan, Huazuo Gao, Damai Dai, Junyu Luo, Liang Zhao, Zhengyan Zhang, Zhenda Xie,
YX Wei, Lean Wang, Zhiping Xiao, et al. Native sparse attention: Hardware-aligned and natively
trainable sparse attention. arXiv preprint arXiv:2502.11089, 2025.

Jianyu Zhang. Ai for the open-world: the learning principles. arXiv preprint arXiv:2504.14751,
2025.

Jianyu Zhang, Niklas Nolte, Ranajoy Sadhukhan, Beidi Chen, and Léon Bottou. Memory mosaics.
In The Thirteenth International Conference on Learning Representations, 2025.

Yuhao Zhang, Victor Zhong, Danqi Chen, Gabor Angeli, and Christopher D. Manning. Position-
aware attention and supervised data improve slot filling. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing (EMNLP 2017), pages 35–45, 2017.

12

https://github.com/gkamradt/LLMTest NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest NeedleInAHaystack/tree/main

Memory Mosaics at scale
Supplementary Material

A Gated time-variant key feature extractor & convocational value extractor
Figure 9 illustrates how keys and values are constructed in memory mosaics v2.

Figure 9: Left: Key kt feature extractor: kt = Norm(k̄t). Right: Value vt feature: vt = Norm(v̄t).

B Training data sequence length distributions
Figure 10 shows the distributions of the length of the training data sequence truncated to 4096 or
32,768 max length.

0 1000 2000 3000 4000
seq length

10 2

10 1

pe
rc

en
ta

ng
e

training data sequence length distribution (truncated at 4k)

0 5000 10000 15000 20000 25000 30000
seq length

10 4

10 3

10 2

10 1

pe
rc

en
ta

ng
e

training data sequence length distribution (truncated at 32k)

Figure 10: Training data sequence length distributions. For a given maximum sequence length during
training (e.g. 4k), longer sequences are truncated to the maximum sequence length. This truncation
results in the peaks at the end of distributions.

13

C Training details
hyperparameters For all Memory Mosaics v2 and baseline Transformer models16, we use a
consistent set of hyperparameters. That is, a batch size of 1024, a sequence length of 4096, an adamw
optimizer with β1 = 0.9 and β2 = 0.95 accompanied by a L2 weight decay of 0.1 and a gradient
norm clip of 1, a learning rate warm-up of 2000 iterations followed by a cosine learning rate scheduler
that reduces the learning rate by a factor of 100 at the end. The initial learning rates (after warm-up)
are set to 3e-4 for “small” models and 1e-3 for “large” models.
We also employ document-wise attention mask, where the attention scores are only computed within
each sequence (document) in the training data, to reduce computation cost. Two special tokens,
“<|begin_of_text|>” and “<|end_of_text|>” are appended at the begining and ending of a sequence,
respectively.
During training, memory mosaics v2 samples the long-term memory delay step m from [64, 256],
sets the short-term memory window size h = 256. At inference, m is set to 64, as illustrated in
Figure 11.

Randomly Overlapped long-term & short-term memory

Short-term memory
Attention mask
from t-1 to t-h.

h is fixed (to 256)
throughout training

and inference

Long-term memory
attention mask
 from t-m to 1

m is uniformly sampled
[64, 256] throughout

training,
fixed to 64 at inference

t-1

t-h t-m

1
22

1

Figure 11: Randomly overlapped long-term & short-term memory.

It is worth noting that these hyperparameters were originally searched and optimized for the baseline
transformer models. We transfer these hyperparameters to memory mosaics v2 without further
hyperparameter searching. Thus, it is possible that this hyperparameter setup is suboptimal for
memory mosaics v2.

Parameter Initialization and reparameterization Table 6 summarizes the parameter initialization
methods and reparameterization tricks. W1,W2,W3 refer to the parameters in persistent memory that
are implemented as two-layer dense neural networks, W2

(
SiLU(W1(x)) ∗W3(x)

)
. SiLU(x) =

x · sigmoid(x) is an activation function. d ∈ {2048, 4096} indicates the hidden dimension of
Memory Mosaics v2 small and large. d′ ∈ {6144, 14336} indicates the hidden dimension of the
two-layer neural networks in persistent memory. l indicates the depth of the Mosaics blocks, starting
from 0.

Table 6: Parameter initialization methods and reparameterization tricks used in Memory Mosaics v2.
Parameter Location reparameterization Initialization

β0 adaptive bandwidth β0 = emin(θ,10) θ = 1.5

β1 adaptive bandwidth β1 = emin(θ,10) θ = 1.5

αφ feature extractor αφ = min(|θ|, 1) θ = 1/3

αψ feature extractor αψ = emin(|θ|,15) θ = 0

γ feature extractor - U(0, 1)

Wψ,Wφ,Wg,Wλ,Wo long-short memory - min
(
max(N (0, σ),−3σ), 3σ

)
, σ = 1√

2d(l+1)

W1,W3 persistent memory - min
(
max(N (0, σ),−3σ), 3σ

)
, σ = 1√

2d(l+1)

W2 persistent memory - min
(
max(N (0, σ),−3σ), 3σ

)
, σ = 1√

2d′(l+1)

We,Wc embedding & classifier - min
(
max(N (0, σ),−3σ), 3σ

)
, σ = 1√

2d

16The hidden dimension of the two-layers neural network in persistent memory is set to 6,144 and 14,336 for
small and large models, respectively.

14

D Failures of memory compression baselines
Many memory compression algorithms, such as RNNs, xLSTM [Beck et al., 2025], rwkv [Peng
et al., 2023], and state-space models [Gu and Dao, 2023], fail on new-task storage and retrieval
and in-context learning evaluation dimensions by construction. The reason is that these memory
compression algorithms lack the ability to store large amounts of information before getting a
command on how to process the information. One might argue to play around this shortage by
reading the “command” before storing the large amounts of information. However, this process
involves task-specific priori knowledge from human designers. In the end, instead of proving the
machine is intelligent, it often proves that human designers are intelligent. Please recall that a child
does not prepare all questions before going to school.
This incompetent of memory compression algorithms has been experimentally demonstrated by
Hsieh et al. [2024] and Li et al. [2024] on both RULER benchmarks and in-context learning tasks.
Table 7 compares memory compression methods (rwkv-v5-7b and mamba-2.8b-slimpj) and non-
compression method (llama2-7b) on RULER long-context tasks. It is clear that memory compression
methods perform poorly as the required context length (i.e., required information storage space)
increases.
Similarly, Table 8 compares memory compression methods (rwkv-5-world 7b and Mamba-2.8B) and
non-compression method (qwen-1.5-7b-base and mistral-7b-v0.2-base) on in-context learning tasks
(Tacred few-shot classification [Zhang et al., 2017]). In this challenging in-context scenario, memory
compression methods just don’t work at all.
Please note that this section shouldn’t be used to criticize or hinder the study of memory compression
methods. Memory compression methods have their advantages. In persistent-knowledge storage
and retrieval evaluation dimension, they performs very well. For model efficiency, memory com-
pression methods reveal a charming computation complexity. The goal of this section is to explain
why this paper doesn’t choose memory compression methods as baselines.

Table 7: Comparison of memory compression methods (rwkv-v5-7b and mamba-2.8b-slimpj) and
non-compression method (llama2-7b) on RULER long-context tasks. memory compression methods
perform poorly as the required context length increases. Numbers are copied from Hsieh et al. [2024]
Figure 4.

model task-length 1k task-length 2k task-length 4k

llama2-7b 96.0 91.6 95.0
rwkv-v5-7b 87.5 73.7 51.4

mamba-2.8b-slimpj 62.6 52.6 -

Table 8: Comparison of memory compression methods (rwkv-5-world 7b and Mamba-2.8B) and
non-compression method (qwen-1.5-7b-base and mistral-7b-v0.2-base) on in-context learning tasks
(Tacred few-shot classification [Zhang et al., 2017]). Memory compression methods fail on all cases.
Numbers are copied from Li et al. [2024] Table 4.

model 1-shot 2-shots 3-shots 4-shots 5-shots

qwen-1.5-7b-base 7b 38.7 47.3 45.2 43.6 40.6
mistral-7b-v0.2-base 53.3 53.1 51.6 48.0 42.3

rwkv-5-world 7b 2.3 2.6 1.0 0 1.2
Mamba-2.8B 0 0 0 0 0

15

E Model efficiency comparison
As we emphasized in main text, model efficiency (e.g. model service, throughput, VRAM, etc.) is
not the goal of this work. Many engineering works can be performed to adapt memory mosaics
v2 to a custom use case or hardware. To aid in these potential adaptations, Figure 12 provides a
model efficiency comparison in both computation (FLOPS) and model size (number of parameters)
viewpoints. The results show that memory mosaics v2 outperforms transformer by more than 10%
under either the same FLOPs or the parameters budgets.

2 4 6 8 10
number of billion parameters

30

40

50

RU
LE

R
QA

 a
cc

ur
ac

y
 (3

2k
 ta

sk
-le

ng
th

)

Memory Mosaics v2 large
Transformer large

2 4 6 8 10
number of billion FLOPs

30

40

50

Memory Mosaics v2 large
Transformer large

2 4 6 8 10
number of billion parameters

30

40

50

60

Ta
cR

ed
 IC

L
ac

cu
ra

cy
 (1

0
sh

ot
s)

Memory Mosaics v2 large
Transformer large

2 4 6 8 10
number of billion FLOPs

30

40

50

60

Memory Mosaics v2 large
Transformer large

Figure 12: Model efficiency (FLOPs or # parameters) comparison between Transformer large and
Memory Mosaics v2 large. Top row shows the comparison on RULER “multi-unrelated-documents
storing and question-answering” tasks, while the bottom row shows comparison on the Tacred in-
context learning task. Memory mosaics v2 large outperforms transformer large by more than 10%.

F Additional results on persistent-knowledge storage and retrieval
Table 9 shows six language benchmarks in which removing long-term memory from memory mosaics
v2 after training degrades its performance.

Table 9: Memory mosaics v2 performance on 6 language benchmarks, where removing the “long-
term memory” after training dramatically hurt the performance (42.1% vs 34.9%).

params flops/token squad bbh math mbpp race
middle

race
high avg

transformer large 8.8B 16.7B 76.3 45.6 8.7 9.8 62.6 45.6 41.4

memory mosaics v2 large 9.9B 18.9B 78.2 47.8 8.8 9.6 61.6 46.5 42.1
memory mosaics v2 large

without long-term memory 8.3B 15.6B 69.4 24.6 5.4 6.8 59.5 43.6 34.9

16

G Additional results on new-knowledge storage and retrieval
Table 10 shows that removing long-term memory from memory mosaics v2 after training degrades
the performance on the RULER question-answer tasks by 20%∼30%. This indicates that the ruler
question-answer tasks rely on long-term memory to perform well.
Table 11 compares memory mosaics v2 large and other public base models on RULER question-answer
tasks. Memory mosaics v2 large outperforms these models across all task lengths.
Table 12 illustrates the effect of the stochastic long-term memory size training setup introduced
in Section C. This stochastic long-term memory size setup is used to encourage the allocation of
position-invariant signals and position-dependent signals to long-term and short-term memories.
Table 13 compares memory mosaics v2 and transformers on a typical ‘needle-in-a-haystack’ task
from RULER [Hsieh et al., 2024]. The typical ‘needle-in-a-haystack’ is too easy such that many
models can achieve a near-perfect performance.

Table 10: The effect of removing “long-term memory” of memory mosaics V2 large on RULER
question-answer tasks.

model context length 4k 8k 16k 32k

memory mosaics large 32k 58.9 55.5 54.9 53.4
memory mosaics large without long-term memory 32k 38.5 22.2 20.0 20.2

Table 11: Comparison of Memory Mosaics v2 large (base model) and other public base models
(similar scale) on RULER question-answer tasks. Memory Mosaics v2 large outperforms these models
across all task lengths, despite that Memory Mosaics v2 uses 1/4 generation lengths (32 tokens) of
other public base models (128 tokens). The numbers in “*” rows come from Hsieh et al. [2024].

Model claimed length task-length 4k 8k 16k 32k

Memory-Mosaics-v2-large (base) 32k 58.9 55.5 54.9 53.4

Llama2-7B (base)* 4k 48.6 - - -
Mixtral-base (8x7B)* 32k 50.8 47.7 45.3 41.3
Mistral-base (7B)* 32k 53.5 51.0 48.4 44.7
Together-base (7B)* 32k 47.5 44.6 33.6 0.0
LongLoRA-base (7B)* 100k 34.5 32.1 33.6 29.4
Yarn-base (7B)* 128k 29.7 23.5 28.6 29.7
LWM-base (7B)* 1M 42.7 40.2 38.7 37.1

Table 12: The effect of stochastic long-term memory size (during training) in memory mosaics v2
small model on RULER question-answer tasks. Both models are trained on 4k context length, then
evaluated on 32k context length without any fine-tuning. The stochastic long-term memory size setup
boost context length extrapolation ability by more than 15%.

model context length stochastic long-term memory task-length 4k task-length 32k

memory mosaics v2 small 4k No 43.6 15.9
memory mosaics v2 small 4k Yes 45.0 31.7 (+15.8)

Table 13: RULER S-NIAH benchmark comparison between transformer and memory mosaics v2.
model context length 4k 8k 16k task-length 32k

transformer small 32k 99.4 99.0 98.2 97.8
memory mosaics v2 small 32k 100.0 100.0 100.0 100.0

transformer large 32k 100.0 100.0 100.0 99.6
memory mosaics v2 large 32k 100.0 100.0 100.0 100.0

17

H Additional results for in-context learning
Figure 13 and 14 shows the in-context learning comparison between memory mosaics v2 small and
transformer small (llama-1.5B scale).

2 4 6 8 10 12 14 16
number of shots

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ar
y

banking77 with semantic label

2 3 4 5 6 7 8 9 10
number of shots

0.25

0.30

0.35

0.40

0.45

Ac
cu

ar
y

16.7%

tacred with semantic label

2 4 6 8 10 12 14 16
number of shots

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Ac
cu

ar
y

goemotion with semantic label

Transformer small
Memory Mosaics v2 small

Figure 13: Semantic label in-context learning comparison between memory mosaics v2 and trans-
former. Memory mosaics v2 significantly outperform transformers on in-context learning with a large
margin (more than 10%). Meanwhile, memory mosaics v2 benefits from more demonstration shots
(x-axis), unlike transformers.

2 4 6 8 10 12 14 16
number of shots

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ar
y

banking77 with anonymous label

2 3 4 5 6 7 8 9 10
number of shots

0.10

0.15

0.20

0.25

0.30

Ac
cu

ar
y

12.7%

tacred with anonymous label

2 4 6 8 10 12 14 16
number of shots

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

Ac
cu

ar
y

goemotion with anonymous label
Transformer small
Memory Mosaics v2 small

Figure 14: Anonymous label in-context learning comparison between memory mosaics v2 and
transformers. Memory mosaics v2 significantly outperform transformers on all classification tasks.

18

I Prompt examples of multiclass classification tasks
I.1 Banking77 classification with semantic labels

We sweep the delimiter from “[return]” and “[space]”, leads to the following two prompts:

“Given a customer service query, please predict the intent of the query. The predict answer must
come from the demonstration examples with the exact format. The examples are as follows:

service query:
I am still waiting on my card?
intent category:
city_arrival

service query:
My card has been found. Is there any way for me to put it back into the app?
intent category:
city_linking

...

service query:
Can I get a card even if I live outside the UK?
intent category:

”

“Given a customer service query, please predict the intent of the query. The predict answer must
come from the demonstration examples with the exact format. The examples are as follows:
service query: I am still waiting on my card?
intent category: city_arrival
service query: My card has been found. Is there any way for me to put it back into the app?
intent category: city_linking
...
service query: Can I get a card even if I live outside the UK?
intent category:”

For each prompt with either “[return]” or “[space]” delimiter, we also try to shuffle the demonstration
example (i.e., service query: [...], intent category:[...]) orders within each one shot. This shuffling
process provides another two more prompts.

I.2 Banking77 classification with anonymous labels

Anonymous tasks use the same set of prompts except that anonymous tasks replace semantic labels
(e.g. city_arrival, city_linking) with anonymous labels (e.g. class_00, class_01).

19

I.3 Goemotion classification with semantic labels

We sweep the delimiter from “[return]” and “[space]”, leads to the following two prompts:

“Given a comment, please predict the emotion category of this comment. The predict answer
must come from the demonstration examples with the exact format. The examples are as
follows:

comment:
Her upper lip always looks terrible - such an easy fix, can u believe she is so vain and never
bothers to wax
emotion category:
embarrassment

comment:
No problem. I’m happy to know it’s not what you meant.
emotion category:
joy

...

comment:
These refs have it out for the colts. I didn’t realize we traded our MVP 11 to KC either.
emotion category:

”

“Given a comment, please predict the emotion category of this comment. The predict answer
must come from the demonstration examples with the exact format. The examples are as
follows:
comment: Her upper lip always looks terrible - such an easy fix, can u believe she is so vain
and never bothers to wax
emotion category: embarrassment
comment: No problem. I’m happy to know it’s not what you meant.
emotion category: joy ... comment: These refs have it out for the colts. I didn’t realize we
traded our MVP 11 to KC either.
emotion category:”

For each prompt with either “[return]” or “[space]” delimiter, we also try to shuffle the demonstration
example orders within each one shot. This shuffling process provides another two more prompts.

I.4 Goemotion classification with anonymous labels

Anonymous tasks use the same set of prompts except that anonymous tasks replace semantic labels
with anonymous labels (e.g. class_00, class_01).

20

I.5 Tacred classification with semantic labels

We sweep the delimiter from “[return]” and “[space]”, leads to the following two prompts:

“Given a sentence and a pair of subject and object entities within the sentence, please predict
the relation between the given entities. The examples are as follows:

sentence:
But US and Indian experts say it has hesitated to take action against Lashkar-e-Taiba, which
means “The Army of the Pure, ”believing that the Islamic militants could prove useful in
pressuring its historic rival India.
the relation between Lashkar-e-Taiba and Army of the Pure is:
org:alternate_names

sentence:
The offer from ITW, the Glenview, Ill, diversified manufacturer of engineered products, repre-
sents a premium of 85 percent to the Manitowoc bid.
the relation between ITW and Glenview is:
org:city_of_headquarters

...

sentence:
The statement from North Korea, carried by the country’s official Korean Central News
Agency, did not mention Kim by name, but South Korean Unification Ministry spokesman Kim
Ho-nyeon said the North’s state media has before used such wording to refer to him.
the relation between Korean Central News Agency and North Korea is:

”

“Given a sentence and a pair of subject and object entities within the sentence, please predict
the relation between the given entities. The examples are as follows:
sentence: But US and Indian experts say it has hesitated to take action against Lashkar-e-
Taiba, which means “The Army of the Pure, ”believing that the Islamic militants could prove
useful in pressuring its historic rival India.
the relation between Lashkar-e-Taiba and Army of the Pure is: org:alternate_names
sentence: The offer from ITW, the Glenview, Ill, diversified manufacturer of engineered
products, represents a premium of 85 percent to the Manitowoc bid.
the relation between ITW and Glenview is: org:city_of_headquarters
...
sentence: The statement from North Korea, carried by the country’s official Korean Central
News Agency, did not mention Kim by name, but South Korean Unification Ministry spokesman
Kim Ho-nyeon said the North’s state media has before used such wording to refer to him.
the relation between Korean Central News Agency and North Korea is:”

For each prompt with either “[return]” or “[space]” delimiter, we also try to shuffle the demonstration
example orders within each one shot. This shuffling process provides another two more prompts.

I.6 Tacred classification with anonymous labels

Anonymous tasks use the same set of prompts except that anonymous tasks replace semantic labels
with anonymous labels (e.g. class_00, class_01).

J Computation resources
All experiments are conducted on H100 GPUs with 80GB VRAM.

21

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction do accurately reflect
the contribution and scope made by the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Check Section “Computation and # parameters concerns” for example.

"Limitations" section does discuss the limitations of the work performed by the authors,
including scope of the claims made, strong assumptions, and how robust the results are to
violations of the assumptions.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

22

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not include theorems.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Check experimental setups Section 4, Section 5, and Appendix C.
Guidelines: The paper clearly explains the training setup for experiments run in the paper.
These explanations are sufficient to reproduce the experiments. The code will be released
upon acceptance of the paper.

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

23

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Check Experiment Section4 and Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The in-context learning result figures show the performance of different
evaluation configurations together with a fitting curve. The many accuracy results of
different evaluation configurations provides a means to estimate variance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Check Appendix J.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper does confirm, in every respsect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses the potential impacts of such a works and the resulting
effects introduced by these considerations.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

25

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: not applicable.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators and original owners of assets used in the paper properly credited
and the license and terms of use explicitly mentioned.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

26

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

28

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background on Associative Memory
	Memory Mosaics v2
	Adaptive bandwidth in Gaussian kernel smoothing
	Gated time-variant key feature extractor
	3-level memory

	Training
	Three evaluation dimensions
	Persistent-knowledge storage and retrieval
	New-knowledge storage and retrieval
	In-context learning

	Risk-return trade-off of frontier-model-sized memory mosaics v2
	Comparison of two approaches

	Fine-tuning speed: who can fine-tune with one minibatch?
	Discussion and future direction
	Gated time-variant key feature extractor & convocational value extractor
	Training data sequence length distributions
	Training details
	Failures of memory compression baselines
	Model efficiency comparison
	Additional results on persistent-knowledge storage and retrieval
	Additional results on new-knowledge storage and retrieval
	Additional results for in-context learning
	Prompt examples of multiclass classification tasks
	Banking77 classification with semantic labels
	Banking77 classification with anonymous labels
	Goemotion classification with semantic labels
	Goemotion classification with anonymous labels
	Tacred classification with semantic labels
	Tacred classification with anonymous labels

	Computation resources

