

000 001 002 003 004 005 FLOW EXPANSION VIA VERIFIER-CONSTRAINED 006 NOISED STATE SPACE EXPLORATION 007 008 009 010

011 **Anonymous authors**
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Paper under double-blind review

ABSTRACT

Flow and diffusion models are typically pre-trained on limited available data (e.g., molecular samples), covering only a fraction of the valid design space (e.g., the full molecular space). As a consequence, they tend to generate samples from only a narrow portion of the feasible domain. This is a fundamental limitation for scientific discovery applications, where one typically aims to sample valid designs beyond the available data distribution. To this end, we address the challenge of leveraging access to a verifier (e.g., an atomic bonds checker), to adapt a pre-trained flow model so that its induced density expands beyond regions of high data availability, while preserving samples validity. We introduce formal notions of *strong* and *weak verifiers* and propose algorithmic frameworks for *global* and *local flow expansion* via probability-space optimization. Then, we present Flow Expander (FE), a scalable mirror descent scheme that provably tackles both problems by verifier-constrained entropy maximization over the flow process noised state space. Next, we provide a thorough theoretical analysis of the proposed method, and state convergence guarantees under both idealized and general assumptions. Ultimately, we empirically evaluate our method on both illustrative, yet visually interpretable settings, and on a molecular design task showcasing the ability of FE to expand a pre-trained flow model increasing conformer diversity while preserving validity.

1 INTRODUCTION

Recent years have seen major progress in large-scale generative modeling. In particular, flow (Lipman et al., 2022; 2024) and diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon, 2019; Ho et al., 2020) now produce high-fidelity samples and have been applied successfully across domains such as chemistry (Hoogeboom et al., 2022), biology (Corso et al., 2022), and robotics (Chi et al., 2023). These models are typically trained via divergence minimization objectives, such as score (Song et al., 2020) or flow matching (Lipman et al., 2022), to approximate the distribution induced by training data (e.g., molecular samples) which typically only cover a tiny subset of the full valid design space. As a consequence, pre-trained generative models concentrate their density over a narrow region of valid designs, and are unlikely to generate valid samples beyond areas of high data availability. This is a fundamental limitation for scientific discovery tasks such as material design and drug discovery, where one typically wishes to generate valid designs beyond the data distribution. In particular, limited coverage of the valid design space leads to an irreducible sub-optimality gap in *generative optimization* (De Santi et al., 2025b; Uehara et al., 2024b; Li et al., 2024) problems, where one aims to generate samples maximizing a task-specific utility function $f : \mathcal{X} \rightarrow \mathbb{R}$ (e.g., binding affinity for protein docking), as illustrated in Figure 1.

Prior work has addressed this issue through manifold-exploration schemes that re-balance a pre-trained model’s density over diverse, promising modes (e.g., De Santi et al., 2025a;b; Celik et al., 2025). However, the validity signal learned by a pre-trained flow model diminishes outside high-data regions. Therefore, seemingly promising low-probability modes that such methods would further explore, could turn out to be invalid. This highlights the need to inject further validity information

Figure 1: Limited coverage of the valid design space leads to generating sub-optimal samples for downstream optimization tasks.

054 into the exploration process via an external *verifier* (Botta et al., 2025; Wang et al., 2024): formally, a
 055 function $v : \mathcal{X} \rightarrow \{0, 1\}$ that provides data-specific validity signal. Luckily, there exists more-or-less
 056 accurate verifiers for a wide variety of real-world discovery applications, such as atomic-bond check-
 057 ers for drug discovery (e.g., O’Boyle et al., 2011), protein folding predictors for protein design (e.g.,
 058 Jumper et al., 2021), as well as physics-based simulators for mechanical and material design (e.g.,
 059 Kresse & Furthmüller, 1996). Motivated by these insights, in this work we advance flow and diffusion-
 060 based design space exploration methods (De Santi et al., 2025a;b) by asking the following question:

061 *How can we leverage a given verifier to adapt a flow or diffusion model to generate designs beyond
 062 high data-availability regions while preserving validity?*

063 Answering this would contribute to the algorithmic-theoretical foundations of *generative exploration*,
 064 and enable applications of flow-based exploration schemes in diverse scientific discovery tasks.

065 **Our approach** We address this challenge by formally introducing two verifier types. A *strong*
 066 *verifier* is a function $v : \mathcal{X} \rightarrow \{0, 1\}$ that characterizes validity exactly (i.e., $v(x) = 1$ iff x is valid).
 067 A *weak verifier* instead acts as a *filter*: it rejects certain invalid designs but misses others (formally
 068 $v(x) = 0 \implies x$ is invalid). While the former is arguably rare in scientific discovery applications,
 069 the latter is ubiquitous. For instance, most molecular checkers examine specific constraints (e.g.,
 070 atomic bonds, graph topology, or conformer geometry), ruling out certain invalid samples, but without
 071 guaranteeing validity. We show that strong verifiers allow to adapt a pre-trained model to *globally*
 072 expand over the entire valid design space. While this is not the case for weak verifiers, they can
 073 also be leveraged for a more conservative, *local* expansion. To this end, we introduce mathematical
 074 frameworks for *global* and *local flow expansion* via verifier-constrained entropy maximization (Sec.
 075 3). Next, we propose **Flow Expander** (FE), a scalable mirror descent scheme acting over the flow
 076 process noised state space that provably tackles both problems by sequentially alternating expansion
 077 and projection steps (Sec. 4). We provide theoretical guarantees for FE, showing convergence results
 078 under both idealized and general assumptions via mirror-flow theory (Sec. 5). Ultimately, we evaluate
 079 our method on both illustrative, yet visually interpretable settings, and on a molecular design task,
 080 showcasing the ability of FE to expand a pre-trained flow model to increase molecular conformer
 081 diversity while better preserving validity than current flow-based exploration schemes (Sec. 6).

082 **Our contributions** In this work, we provide the following contributions:

- 083 • A formalization of *Global* and *Local Flow Expansion* via verifier-constrained entropy maximization,
 084 which formally capture the practically relevant problem of expanding the coverage of a pre-trained
 085 flow or diffusion model by integrating information from an available strong or weak verifier (Sec. 3).
- 086 • **Flow Expander** (FE), a principled probability-space optimization scheme that provably solves both
 087 problems introduced via constrained entropy maximization over the flow noised state space (Sec. 4).
- 088 • **Noised Space Exploration (NSE)**, a noised state space unconstrained exploration scheme, obtained
 089 as a by product, that outperforms existing flow-based methods for high-dim. exploration (Sec. 4).
- 090 • A theoretical analysis of the proposed algorithm providing convergence guarantees under both
 091 simplified and realistic assumptions via mirror-flow theory (Sec. 5).
- 092 • An experimental evaluation of FE, showcasing its practical relevance on both visually interpretable
 093 illustrative settings, and on a molecular design task aiming to increase conformer diversity. (Sec. 6).

094 2 BACKGROUND AND NOTATION

095 **Mathematical Notation.** Using $\mathcal{X} \subseteq \mathbb{R}^d$ to refer to the design space (an arbitrary set), we denote
 096 the set of Borel probability measures on \mathcal{X} with $\mathbf{P}(\mathcal{X})$, and the set of functionals over the set of
 097 probability measures $\mathbf{P}(\mathcal{X})$ as $\mathbf{F}(\mathcal{X})$. Given an integer N , we define $[N] := \{1, \dots, N\}$.

098 **Flow-based Generative Modeling.** Generative models aim to approximately replicate and sample
 099 from a data distribution p_{data} . Flow models tackle this problem by modeling a *flow*, which incre-
 100 mentally transforms samples $X_0 = x_0$ from a source distribution p_0 into samples $X_1 = x_1$ from
 101 the target distribution p_{data} (Lipman et al., 2024; Farebrother et al., 2025). Formally, a *flow* is a
 102 time-dependent map $\psi : [0, 1] \times \mathbb{R}^d \rightarrow \mathbb{R}$ such that $\psi : (t, x) \rightarrow \psi_t(x)$. A *generative flow model* is
 103 then defined as a continuous-time Markov process $\{X_t\}_{0 \leq t \leq 1}$ generated by applying a flow ψ_t to X_0 ,
 104 i.e. $X_t = \psi_t(X_0)$, $t \in [0, 1]$ such that $X_1 = \psi_1(X_0) \sim p_{data}$. In the context of flow modeling, the
 105 flow ψ is defined by a *velocity field* $u : [0, 1] \times \mathbb{R}^d \rightarrow \mathbb{R}^d$, which is a vector field implicitly defining
 106 ψ via the following ordinary differential equation (ODE), typically referred to as *flow ODE*:

$$107 \frac{d}{dt} \psi_t(x) = u_t(\psi_t(x)), \quad \psi_0(x) = 0 \quad (1)$$

Figure 2: (2a) Pre-trained and globally expanded flow model inducing densities p_1^{pre} and optimal density p_1^* . (2b) Valid design space Ω , strong and weak verifiers $\Omega_{v_i}, i \in [3]$, and their compositions.

We write $\{p_t\}_{t \in [0,1]}$ to refer to the probability path of *marginal densities* of the flow model, i.e., $X_t = \psi_t(X_0) \sim p_t$, and denote by p^u the probability path of marginal densities induced by the velocity field u . In practice, Flow Matching (FM) (Lipman et al., 2024) can be used to estimate a velocity field u^θ s.t. the probability path p^{u^θ} satisfies $p_0^{u^\theta} = p_0$ and $p_1^{u^\theta} = p_{data}$, where p_0 denotes the source distribution, and p_{data} the target data distribution. Typically FM is rendered tractable by defining p_t^u as the marginal of a conditional density $p_t^u(\cdot | x_0, x_1)$, e.g.:

$$X_t | X_0, X_1 = \kappa_t X_0 + \omega_t X_1 \quad (2)$$

where $\kappa_0 = \omega_1 = 1$ and $\kappa_1 = \omega_0 = 0$ (e.g. $\kappa_t = 1 - t$ and $\omega_t = t$). Then u^θ can be learned by regressing onto the conditional velocity field $u(\cdot | x_1)$ (Lipman et al., 2022). Interestingly, diffusion models (Song & Ermon, 2019) (DMs) admit an equivalent ODE-based formulation with identical marginal densities to their original SDE dynamics (Lipman et al., 2024, Chapter 10). Consequently, while in this work we adopt the notation of flow models, our contributions carry over directly to DMs.

Continuous-time Reinforcement Learning. We formulate continuous-time reinforcement learning (RL) as a specific class of finite-horizon optimal control problems (Wang et al., 2020; Jia & Zhou, 2022; Treven et al., 2023; Zhao et al., 2024). Given a state space \mathcal{X} and an action space \mathcal{A} , we consider the transition dynamics governed by the following ODE:

$$\frac{d}{dt} \psi_t(x) = a_t(\psi_t(x)) \quad (3)$$

where $a_t \in \mathcal{A}$ is a selected action. We consider a state space $\mathcal{X} := \mathbb{R}^d \times [0, 1]$, and denote by (Markovian) deterministic policy a function $\pi_t(X_t) := \pi(X_t, t) \in \mathcal{A}$ mapping a state $(x, t) \in \mathcal{X}$ to an action $a \in \mathcal{A}$ such that $a_t = \pi(X_t, t)$, and denote with p_t^π the marginal density at time t induced by policy π . Considering the continuous-time reinforcement learning formulation above, a velocity field u^{pre} can be interpreted as an action process $a_t^{pre} := u^{pre}(X_t, t)$, where a_t^{pre} is determined by a continuous-time RL policy via $a_t^{pre} = \pi^{pre}(X_t, t)$ (De Santi et al., 2025a). Therefore, we can express the flow ODE induced by a pre-trained flow model by replacing a_t with a_t^{pre} in Eq. 3, and denote the pre-trained model by its policy π^{pre} , which induces a density $p_1^{pre} := p_1^{\pi^{pre}}$ approximating p_{data} .

3 PROBLEM STATEMENT: GLOBAL AND LOCAL FLOW EXPANSION

Given a pre-trained flow model π^{pre} inducing a density p_1^{pre} that covers sufficiently only a limited region of the *valid design space*¹ $\Omega \subseteq \mathbb{R}^d$ (e.g., a molecular space, see Fig. 1), we aim to adapt it by leveraging a verifier (e.g., an atomic bonds checker) to compute a model π^* , inducing a process:

$$\frac{d}{dt} \psi_t(x) = a_t^*(\psi_t(x)) \quad \text{with} \quad a_t^* = \pi^*(x, t), \quad (4)$$

such that its density $p_1^* := p_1^{\pi^*}$ is more uniformly distributed over the valid design space than p_1^{pre} . To this end, we first denote by *verifier* a scalar function $v : \mathcal{X} \rightarrow \{0, 1\}$, and indicate by $\Omega_v = \{x \in \mathcal{X} : v(x) = 1\}$ the *verifier-set* induced by v . Next, we classify any verifier v as *strong* or *weak* depending on the relationship between its verifier-set Ω_v and the valid design space Ω .

Definition 1 (Strong Verifier). *We denote by strong verifier a function $v : \mathcal{X} \rightarrow \{0, 1\}$ s.t. $\Omega_v = \Omega$.*

By Def. 1, $v(x) = 1 \iff x \in \Omega$, hence a strong verifier fully characterizes the valid design space Ω .

¹In this work, we consider the valid design space to be an unknown, yet bounded set.

162 3.1 AN IDEALIZED PROBLEM: GLOBAL FLOW EXPANSION VIA STRONG VERIFIERS
163

164 Given a pre-trained flow model π^{pre} and a strong verifier $v : \mathcal{X} \rightarrow \{0, 1\}$ as defined within Def.
165 1, one can capture the problem of computing a new flow model π^* such that its marginal density
166 $p_1^* := p_1^{\pi^*}$ covers Ω uniformly via the following verifier-constrained entropy maximization problem.

167 **Global Flow Expansion via Verifier-Constrained Entropy Maximization**
168

$$169 \pi^* \in \arg \max_{\pi: p_0^* = p_0^{pre}} \mathcal{H}(p_1^{\pi}) \quad \text{subject to} \quad s.t. \quad p_1^{\pi} \in \mathbf{P}(\Omega_v) \quad (5)$$

171 In this formulation, the constraint $p_0^{\pi} = p_0^{pre}$ enforces that the marginal density at $t = 0$ matches the
172 pre-trained model marginal, and $\mathcal{H} \in \mathbf{F}(\Omega_v)$ denotes the differential entropy functional expressed as:

$$173 \mathcal{H}(\mu) = - \int d\mu \log \frac{d\mu}{dx}, \quad \mu \in \mathbf{P}(\Omega_v) \quad (6)$$

175 where Ω_v is the bounded verifier-set induced by v . Crucially, Problem 5 computes a flow model π^*
176 inducing the density $p_1^{\pi^*}$ with maximum entropy among all densities supported on Ω_v . Therefore, the
177 optimal density $p_1^{\pi^*}$ according to Problem 5 corresponds to the uniform density over the entire valid
178 design space Ω , i.e., $p_1^{\pi^*} = \mathcal{U}(\Omega)$ - as uniforms are the entropy-maximizing densities on bounded
179 sets and $\Omega_v = \Omega$ due to v being a strong verifier. Notably, Problem 5 does not depend on the prior
180 generative model π^{pre} . In fact, since the strong verifier v fully characterizes the valid design space
181 Ω , prior information is not required to compute the maximally explorative, yet valid flow model π^* .

182 Problem 5 provides a sharp data-free objective for verifier-based flow/diffusion model learning, well
183 capturing the ideal goal of a uniform prior over the valid design space for subsequent use in down-
184 stream tasks. Nonetheless, as discussed in Sec. 1, strong verifiers are arguably rare in most scientific
185 discovery applications (e.g., material design, drug discovery). Towards overcoming such limitation, in
186 the following we sharpen our notion of verifier to one that is ubiquitous in real-world discovery tasks.

187 3.2 A REALISTIC FRAMEWORK: LOCAL FLOW EXPANSION VIA WEAK VERIFIERS
188

189 We first relax the notion of strong verifier introduced in Def. 1 to the following one of *weak verifier*.

190 **Definition 2** (Weak Verifier). *We denote by weak verifier a function $v : \mathcal{X} \rightarrow \{0, 1\}$ s.t. $\Omega_v \supset \Omega$.*

192 As Fig. 2b illustrates, Def. 2 requires only the one-sided condition $v(x) = 0 \implies x \notin \Omega$; unlike
193 strong verifiers, it does not guarantee $v(x) = 1 \implies x \in \Omega$ (i.e., v cannot certify membership
194 in Ω). Instead, it represents a superset $\Omega_v \supset \Omega$ and effectively acts as a *filter*. Moreover, multiple
195 weak verifiers $\{v_i\}$ can be combined, yielding $\Omega_v = \bigcap_i \Omega_{v_i}$, which is typically tighter to Ω for more
196 diverse verifiers v_i , e.g., checking atomic bonds, molecular graph topology, and conformer geometry.

197 Given this new realistic notion of verifier, the global flow expansion Problem 5 would evidently
198 no longer compute the desired flow model. In fact, for a weak verifier v it holds $\Omega_v \supset \Omega$, therefore
199 the optimal flow density $p^* = \mathcal{U}(\Omega_v)$ would generate invalid designs over $\Omega_v \setminus \Omega$, as shown in Fig.
200 2b. Moreover, weak verifiers typically induce unbounded verifier sets, which would even render
201 Problem 5 ill-posed. To address these issues, we introduce the *local flow expansion* problem, which
202 aims to locally expand the prior flow model π^{pre} by integrating information from both v and π^{pre} .

203 **Local Flow Expansion via KL-regularized Verifier-Constrained Entropy Maximization**
204

$$205 \pi^* \in \arg \max_{\pi: p_0^* = p_0^{pre}} \mathcal{H}(p_1^{\pi}) - \alpha \mathcal{D}_{KL}(p_1^{\pi} \| p_1^{pre}) \quad \text{subject to} \quad s.t. \quad p_1^{\pi} \in \mathbf{P}(\Omega_v) \quad (7)$$

207 Here, the weak verifier v acts as a filter preventing the entropy term from driving exploration into
208 verifier-rejected regions. Since v cannot detect all invalid areas, expansion must remain conservative
209 and leverage the validity signal encoded in the prior model. This is achieved via the α -weighted KL
210 divergence between the density p_1^{π} induced by the fine-tuned model, and p_1^{pre} . Crucially, this term
211 enforces π^* to preserve prior validity signal, thus preventing π^* from allocating density in regions
212 unlikely according to π^{pre} , even if valid according to the weak verifier. For sufficiently large α , the
213 density induced by the expanded flow model π^* stays arbitrarily close to the prior in probability
214 space - hence *local* expansion. In practice, the choice of α should reflect the degree of risk-aversion
215 versus novelty-seeking toward the discovery task at hand, as well as the quality of the weak verifier
216 v (i.e., how tightly Ω_v approximates Ω). Interestingly, in the limit of $\Omega_v \rightarrow \Omega$, α should clearly be
217 set to 0, which naturally retrieves the presented global flow expansion Problem 5 as a sub-case.

216 **4 FLOW-EXPANDER : SCALABLE GLOBAL AND LOCAL EXPANSION VIA**
 217 **VERIFIER-CONSTRAINED NOISED SPACE ENTROPY MAXIMIZATION**
 218

219 In the following, we propose Flow Expander (FE), which provably solves the global and local flow
 220 expansion problems (see Eq. 5 and 7). To this end, we first lift their formulations from the probability
 221 space associated to the last time-step marginal p_1^π to the entire flow process $\mathbf{Q}^\pi = \{p_t^\pi\}_{t \in [0,1]}$.

222 **Flow Expansion via Verifier-Constrained Noised Space Entropy Maximization**

223

$$\pi^* \in \arg \max_{\pi: p_0^\pi = p_0^{\text{pre}}} \mathcal{L}(\mathbf{Q}^\pi) := \int_0^1 \lambda_t \mathcal{G}_t(p_t^\pi) dt \quad \text{subject to} \quad \mathbb{E}_{x \sim p_1^\pi} [v(x)] = 1 \quad (8)$$

224

225 Under this unifying formulation, $\mathcal{G}_t : \mathbf{P}(\mathcal{X}) \rightarrow \mathbb{R}$ is a functional over densities p_t^π induced by flow π .
 226 We note that under general regularity assumptions, an optimal policy π^* for Problem 8 is optimal also
 227 for the global and local flow expansion problems (see Eq. 5 and 7) if the functional \mathcal{G} is defined as:
 228

229

$$\mathcal{G}_t(p_t^\pi) = \mathcal{H}(p_t^\pi) \quad \underbrace{\mathcal{G}_t(p_t^\pi) = \mathcal{H}(p_t^\pi) - \alpha_t D_{\text{KL}}(p_t^\pi \| p_t^{\text{pre}})}_{\text{Local Flow Expansion } (\alpha_1 = \alpha)} \quad (9)$$

230

231 Before introducing FE, we first recall the standard notion of first variation of \mathcal{G} over a space of probability measures (cf. Hsieh et al., 2019). A functional $\mathcal{G} \in \mathbf{F}(\mathcal{X})$, where $\mathcal{G} : \mathbf{P}(\mathcal{X}) \rightarrow \mathbb{R}$, has first variation at $\mu \in \mathbf{P}(\mathcal{X})$ if there exists a function $\delta\mathcal{G}(\mu)$ over \mathcal{X} such that for all $\mu' \in \mathbf{P}(\mathcal{X})$ it holds that:

$$\mathcal{G}(\mu + \epsilon\mu') = \mathcal{G}(\mu) + \epsilon \langle \mu', \delta\mathcal{G}(\mu) \rangle + o(\epsilon).$$

232 where the inner product is an expectation. Given this concept of first variation, FE solves Problem 8 by
 233 computing a process \mathbf{Q}^k at each iteration $k \in [K]$, determined by the following mirror descent step:

234 **(MD Step) Constrained and Regularized Process Surprise Maximization**

235

$$\mathbf{Q}^k \in \arg \max_{\mathbf{Q}: p_0 = p_0^{k-1}} \langle \delta\mathcal{L}(\mathbf{Q}^{k-1}), \mathbf{Q} \rangle - \frac{1}{\gamma^k} D_{\text{KL}}(\mathbf{Q} \| \mathbf{Q}^{k-1}) \quad \text{s.t.} \quad \mathbb{E}_{x \sim p_1} [v(x)] = 1 \quad (10)$$

236

237 While the MD step in Eq. 10 might seem abstract, the following Lemma 4.1 hints at a more practical
 238 formulation of the above through the lens of stochastic optimal control (Fleming & Rishel, 2012).

239 **Lemma 4.1** (First Variation of Flow Process Functionals). *For objectives defined in the form of Eq.
 240 8, we have:*

241

$$\langle \delta\mathcal{L}(\mathbf{Q}^k), \mathbf{Q} \rangle = \int_0^1 \lambda_t \mathbb{E}_{\mathbf{Q}} [\delta\mathcal{G}_t(p_t^k)] dt. \quad (11)$$

242

243 Lemma 4.1 factorizes $\langle \delta\mathcal{L}(\mathbf{Q}^{k-1}), \mathbf{Q} \rangle$ into an integral over the flow process of terms $f_t(x) :=$
 244 $\lambda_t \delta\mathcal{G}_t(p_t^k)(x)$. Crucially, this time-decomposition allows to rewrite the MD step (Eq. 10) as the following standard constrained control-affine optimal control problem² (Domingo-Enrich et al., 2024):

245 **Constrained and Regularized Process Surprise Maximization via Fine-Tuning**

246

$$\min_{\pi} \mathbb{E} \left[\int_0^1 \frac{1}{2} \|\pi(X_t, t)\|^2 - f_t(X_t, t) dt \right] \text{s.t.} \quad \mathbb{E}_{x \sim p_1} [v(x)] = 1, \text{ with } f_t(X_t, t) = \gamma_t \delta\mathcal{G}_t(p_t^k)(x)$$

247

248 Concretely, we compute a flow π^k inducing \mathbf{Q}^k (Eq. 10) via EXPANDTHENPROJECT (see Alg. 1),
 249 which decouples constrained optimization into sequential expansion and projection steps:

250 **Expansion Step** The unconstrained expansion step is performed over the noised state space, which
 251 can be tackled by extending established control (or RL) based methods for fine-tuning with the
 252 running cost $f_t(X_t, t) = \gamma_t \delta\mathcal{G}_t(p_t^k)(x)$, effectively computing a process $\tilde{\mathbf{Q}}^k$ such that:

253

$$\tilde{\mathbf{Q}}^k \in \arg \max_{\mathbf{Q}: p_0 = p_0^{\text{pre}}} \langle \delta\mathcal{L}(\mathbf{Q}^{k-1}), \mathbf{Q} \rangle - \frac{1}{\gamma_k} D_{\text{KL}}(\mathbf{Q} \| \mathbf{Q}^{k-1}) \quad (12)$$

254

255 **Projection Step** Given $\tilde{\mathbf{Q}}^k$, the projection step adapts the flow $\tilde{\pi}^k$ to enforce the constraint in Eq.
 256 10 via reward-guided fine-tuning (e.g., Uehara et al., 2024a, Sec. 8.2):

257

$$\mathbf{Q}^k \in \arg \max_{\mathbf{Q}: p_0 = p_0^{\text{pre}}} \mathbb{E}_{x \sim p_1} [\log v(x)] - D_{\text{KL}}(\mathbf{Q} \| \tilde{\mathbf{Q}}^k) \quad (13)$$

258

259 This EXPANDTHENPROJECT scheme provably computes the optimal flow for the MD step in Eq. 10.

260

261 ²We leave standard dynamical system constraints (e.g., Equation 13 Domingo-Enrich et al., 2024) as implicit.

270

Algorithm 1 EXPANDTHENPROJECT

271

1: **Input:** π^{k-1} : current flow model, $\nabla_{x_t} \delta \mathcal{G}$: gradients of functional grad., γ_k : inverse update step-size, $\{\lambda_t\}_{t \in [0,1]}$: integral weighting coefficients, v : verifier, η_k : fine-tuning strength

2: **Expansion step:** $\tilde{\pi}^k \leftarrow \text{FINETUNINGSOLVER}(\pi^{k-1}, \nabla_{x_t} \delta \mathcal{G}_t, \lambda_t, \gamma_k)$ (16)

3: **Projection step:** $\pi^k \leftarrow \text{FINETUNINGSOLVER}(\pi^{k-1}, \log v, \eta_k)$ (17)

4: **Output:** Fine-tuned policy π^k

279

280

Algorithm 2 Flow Expander (FE)

281

1: **Input:** π^{pre} : pre-trained flow model, $\{\alpha_t\}_{t \in [0,1]}$: KL-regularization coefficients, $\{\gamma_k\}_{k=1}^K$: inverse update step-sizes, $\{\lambda_t\}_{t \in [0,1]}$: integral weighting coefficients, v : verifier, $\{\eta_k\}_{k=1}^K$: projection strength schedule

2: **Init:** $\pi_0 := \pi^{pre}$

3: **for** $k = 1, 2, \dots, K$ **do**

4: Set:

$$\nabla_{x_t} \delta \mathcal{G}_t(p_t^{k-1}) = \begin{cases} -s_t^{\pi^{k-1}} & \text{Global FE (G-FE)} \\ -s_t^{\pi} - \alpha_t (s_t^{\pi} - s_t^{pre}) & \text{Local FE (L-FE)} \end{cases} \quad (18)$$

5: Fine-tune π_{k-1} into π_k via Algorithm 1:
 $\pi_k \leftarrow \text{EXPANDTHENPROJECT}(\pi^{k-1}, \nabla_{x_t} \delta \mathcal{G}_t, \gamma_k, \{\lambda_t\}_{t \in [0,1]}, v, \eta_k)$

6: **end for**

7: **Output:** policy $\pi := \pi_K$

293

294

Proposition 1. The EXPANDTHENPROJECT scheme in Alg. 1 solves optimization problem 10, i.e., it returns a flow model π^k inducing a process \mathbf{Q}^k that is a solution to 10. Formally, the following holds:

297

298

$$\mathbf{Q}^k \in \arg \max_{\mathbf{Q}: p_0 = p_0^{k-1}} \langle \delta \mathcal{L}(\mathbf{Q}^{k-1}), \mathbf{Q} \rangle - \frac{1}{\gamma^k} D_{KL}(\mathbf{Q} \parallel \mathbf{Q}^{k-1}) \text{ s.t. } \mathbb{E}_{x \sim p_1} [v(x)] = 1 \quad (14)$$

299

Finally we present Flow Expander (FE) in Alg. 2, which effectively approximates the mirror descent scheme presented above by iteratively applying EXPANDTHENPROJECT. FE operates using trajectory reward gradients $\nabla_{x_t} \delta \mathcal{G}_t(p_t^\pi)$. In fact, while such rewards are difficult to estimate, their gradients admit close-form expressions (De Santi et al., 2025a) that can be approximated via available quantities:

304

305

306

$$\underbrace{\nabla_{x_t} \delta \mathcal{H}(p_t^\pi)}_{\text{Global Flow Expansion}} = -s_t^\pi \quad \underbrace{\nabla_{x_t} \delta \mathcal{H}(p_t^\pi) - \alpha_t \nabla_{x_t} \delta D_{KL}(p_t^\pi \parallel p_t^{pre})}_{\text{Local Flow Expansion } (\alpha_1 = \alpha)} = -s_t^\pi - \alpha_t (s_t^\pi - s_t^{pre}) \quad (15)$$

307

308

309

310

and can simply be plugged into any first-order fine-tuning solver yielding a scalable method. The gradients in Eq. 15 are expressed in terms of the *score function* $s_t^\pi(x) = \nabla \log p_t^\pi(x)$, which can be approximated via the score network in the case of diffusion models (De Santi et al., 2025a), and expressed via a linear transformation of the learned velocity field for flows (Domingo-Enrich et al., 2024):

311

312

313

$$s_t^\pi(x) = \frac{1}{\kappa_t(\frac{\dot{\omega}_t}{\omega_t} \kappa_t - \dot{\kappa}_t)} \left(\pi(x, t) - \frac{\dot{\omega}_t}{\omega_t} x \right) \quad (19)$$

314

315

316

317

318

Prior work for flow-based exploration relies only on the terminal score s_1^π (De Santi et al., 2025a;b). Nonetheless, by Eq. 19 the score diverges as $t \rightarrow 1$, creating instabilities. While this can be partially managed by approximating $s_1^\pi \approx s_{1-\epsilon}^\pi$ for $\epsilon > 0$, determining the correct ϵ can be challenging in practice. Our algorithm, by leveraging score information along the entire flow process, offers a natural and principled solution to this issue by choosing small λ_t (e.g., $\lambda_t = 0$, see Eq. 8) for $t \rightarrow 1$.

319

320

321

322

323

Beyond verifier-constrained settings, the algorithmic idea of noised space exploration introduced above also yields an improved *unconstrained* exploration scheme. We denote by Noised Space Exploration (NSE) the unconstrained algorithm obtained from FE by simply removing the projection step (line 17 of Alg. 1). For completeness, we report the pseudocode of NSE in Alg. 3. As shown empirically in Sec. 6, NSE stabilizes diffusion and flow-based exploration in higher-dimensional settings, leading to significantly better performance than existing methods e.g., (De Santi et al., 2025b).

Algorithm 3 Noised Space Exploration (NSE)

- 1: **Input:** π^{pre} : pre-trained flow model, $\{\alpha_t\}_{t \in [0,1]}$: KL-regularization coefficients, $\{\gamma_k\}_{k=1}^K$: inverse update step-sizes, $\{\lambda_t\}_{t \in [0,1]}$: integral weighting coefficients
- 2: **Init:** $\pi_0 := \pi^{pre}$
- 3: **for** $k = 1, 2, \dots, K$ **do**
- 4: Set:
$$\nabla_{x_t} \delta \mathcal{G}_t(p_t^{k-1}) = -s_t^\pi - \alpha_t (s_t^\pi - s_t^{pre}) \quad (20)$$
- 5: **Expansion step**, fine-tune π_{k-1} into π_k via:
- 6:
$$\pi^k \leftarrow \text{FINETUNINGSOLVER}(\pi^{k-1}, \nabla_{x_t} \delta \mathcal{G}_t, \lambda_t, \gamma_k) \quad (21)$$
- 7: **end for**
- 8: **Output:** policy $\pi := \pi_K$

5 GUARANTEES FOR FLOW-EXPANDER

We aim to show that FE admits *provable guarantees* ensuring reliable behavior in practice. To this end, we leverage the flexible framework of *constrained mirror descent*, a classical optimization method that has recently found successful applications in sampling and generative modeling (Karimi et al., 2024; De Santi et al., 2025a;b). We analyze two regimes. First, an **idealized setting**, where each step of Eq. 10 can be computed *exactly* - leading to sharp step-size prescriptions and fast, polynomial convergence rates. Then, a **realistic setting**, where each MD step can only be solved *approximately* - for which we show asymptotic convergence to the optimal solution under mild noise and bias assumptions.

Idealized setting. We state that the exact updates case admits finite-time convergence guarantee:

Theorem 5.1 (Convergence guarantee in the idealized process-level setting). *Consider the objective \mathcal{L} defined in Equation (8), and let $\lambda^* := \int_0^1 \lambda_t dt$. Let $\{\mathbf{Q}^k\}$ be the iterates generated by Equation (10) with $\gamma_k = 1/\lambda^*$ for all $k \in [K]$. Then*

$$\mathcal{L}(\mathbf{Q}^*) - \mathcal{L}(\mathbf{Q}^K) \leq \frac{\lambda^*}{K} D_{KL}(\mathbf{Q}^* \parallel \mathbf{Q}^{pre}), \quad (22)$$

where $\mathbf{Q}^* \in \arg \max_{\mathbf{Q}} \mathcal{L}(\mathbf{Q})$.

General setting. Recall that \mathbf{Q}^k is the k -th iterate of FE. In realistic scenarios, however, Eq. 10 can only be solved approximately, so we interpret the update as *approximating* the idealized iteration:

$$\mathbf{Q}_{\sharp}^k \in \arg \max_{\substack{\mathbf{Q}: p_{\sharp} = p_{\sharp}^{k-1}}} \langle \delta \mathcal{L}(\mathbf{Q}^{k-1}), \mathbf{Q} \rangle - \frac{1}{\gamma^k} D_{KL}(\mathbf{Q} \parallel \mathbf{Q}^{k-1}) \quad \text{s.t.} \quad \mathbb{E}_{x \sim p_1} [v(x)] = 1. \quad (23)$$

To measure deviations from these idealized iterates, let \mathcal{T}_k be the filtration up to step k , and decompose the oracle into its *bias* and *noise* components:

$$b_k \coloneqq \mathbb{E} \left[\delta \mathcal{L}(\mathbf{Q}^k) - \delta \mathcal{L}(\mathbf{Q}_*^k) \mid \mathcal{T}_k \right]. \quad (24)$$

$$U_k \coloneqq \delta\mathcal{L}(\mathbf{Q}^k) - \delta\mathcal{L}(\mathbf{Q}_*^k) - b_k. \quad (25)$$

Here, b_k captures systematic error while U_k is conditionally mean-zero. Under mild assumptions on noise and bias (see Assumptions E.1 to E.2), we obtain the following guarantee.

Theorem 5.2 (Convergence guarantee in the general process-level setting (informal)). *Suppose the oracle satisfies finite-variance noise and vanishing bias, and let the step-sizes $\{\gamma_k\}$ follow the Robbins–Monro rule ($\sum_k \gamma_k = \infty$, $\sum_k \gamma_k^2 < \infty$). Then the iterates $\{\mathbf{Q}^k\}$ generated by FE satisfy*

$$\mathbf{Q}^k \rightharpoonup \mathbf{Q}^* \quad \text{a.s.} \quad (26)$$

where $\mathbf{Q}^* \in \arg \max_{\mathbf{Q}} \mathcal{L}(\mathbf{Q})$.

6 EXPERIMENTAL EVALUATION

We analyze the ability of **Global FE** (G-FE) and **Local FE** (L-FE) to expand flow model densities while preserving validity of generated samples, and compare their performance against recent

Figure 3: (top) **Global FE** (G-FE) expands the pre-trained flow model π^{pre} (3a) into π^* (violet, 3b), increasing coverage (i.e., entropy), while preserving validity (i.e., red ellipse interior). Compared with the unconstrained exploration S-MEME method, and constrained generation (CONSTR), **Global FE** (G-FE) shows best-of-both-worlds behaviour: achieving near-optimal entropy and validity (Fig. 3d).

flow-based exploration methods, namely FDC (De Santi et al., 2025b), and S-MEME (De Santi et al., 2025a), as well as a standard constrained generation scheme, denoted by CONSTR (Sec. 8.2 Uehara et al., 2024a). We present experiments on two visually interpretable settings, followed by a molecular design task aiming to increase conformer diversity (more details are provided in Apx. G).

Global Flow Expansion via Strong Verifier. We run G-FE on a pre-trained model π^{pre} to globally expand its density p_1^{pre} over the valid design space (red ellipse in Figs. 3a-3c, 3e-3f). As shown in Fig. 3b and 3c, G-FE (violet) run with $\eta = 2$ and $K = 10$, expands into previously uncovered areas (lower right), staying within the valid region. In comparison, S-MEME (black, Fig. 3b) predictably fails to restrict density to the valid region (light red area). Symmetrically, CONSTR (see Fig. 3c, orange) confines density to the valid space but fails to expand it. Fig. 3d shows that G-FE explores nearly as much as S-MEME (i.e., 1.97 vs. 2.17 entropy), while retaining significantly higher validity: 0.99 against 0.73 of S-MEME. Remarkably, G-FE preserves the same degree of validity of CONSTR while exploring significantly more (1.97 versus 0.72 entropy). Figs. 3e-3f show the first expand-then-project steps of G-FE and Figs. 3g-3h show entropy and validity estimates with 95% CI over 5 seeds for G-FE and all baselines. In summary, G-FE achieves both near-optimal exploration and validity.

Local Flow Expansion via Weak Verifier. We consider a pre-trained flow model π^{pre} whose density p_1^{pre} is concentrated in a central high-density region, with low-probability *promising* modes on either side (see Fig. 5a). Crucially, while the two right-most modes are valid, the left one is not. We fine-tune π^{pre} via L-FE for $K = 8$ iterations and $\alpha = 0.99$ to expand its induced density over diverse modes - i.e., perform *mode discovery* (De Santi et al., 2025b; Morshed & Boddeti, 2025). As shown in Fig. 5b FDC, a KL-regularized entropy maximization scheme, predictably increases diversity over plausible modes by redistributing density to the invalid left one. L-FE, however, leverages a weak verifier (gray circled area in Fig. 5c) to prevent allocating more density to that invalid region, and even removes density from that region. 5a, top). Effectively, L-FE uses the weak verifier to perform a form of mode selection, i.e., filtering out invalid modes during the expansion process. As shown in Fig. 4, **Local FE** (L-FE) achieves high entropy (i.e., 1.67 versus 1.17 and 1.58 of L-FE), while preserving high validity, namely 0.89 compared to 0.74 of FDC, almost fully preserving the prior model’s validity of 0.9.

L-FE increases molecular conformer diversity for De-Novo Design on QM9. In this experiment, we aim to increase diversity of molecular conformers in a molecular design task. We run FE on FlowMol CTMC (Dunn & Koes, 2024) pre-trained on QM9 dataset (Ramakrishnan et al., 2014). Our weak verifier is a filter excluding molecules for which any two atoms are closer than 0.975 Ångstroms (Å), and validity is evaluated via RDKit (RDKit) sanitization paired with the aforementioned check. We evaluate diversity of molecular conformers by a *conformer* VENDI (Friedman & Dieng, 2022) metric (see Apx. G.2) capturing diversity over sampled conformers via their fingerprints. L-FE, run for $K = 5$ iterations and $\alpha = 9$, quantitatively increases diversity compared to the pretrained

Figure 4: Entropy-Validity

Figure 5: (top) L-FE (yellow, 5c) expands the pre-trained flow model π^{pre} (green, 5a) over promising yet verifier-filtered modes, while FDC (blue, 5b) expands π^{pre} over all plausible modes leading to increased density in invalid regions (left mode in Fig. 5b). (bottom) FE increases visual (5d), and quantitative diversity (5f), while preserving higher validity than FDC (5e-5g)

model (Fig 5e, VENDI of 100 vs 89). This is visually shown in Fig 5d, a histogram plot of a 1-dim PCA projection of molecular fingerprints (see Apx. G for further details). In particular, L-FE (violet) expands the pre-trained flow model to explore promising and verifier-certified modes of the pre-trained model density (see Fig. 5d). Crucially, L-FE achieves a similar degree of conformer diversity (100 vs 103) to FDC, an unconstrained exploration scheme, while preserving significantly higher sample validity, i.e., 81% vs 69%, as shown in Figs. 5e, 5f, and 5g.

L-FE increases molecular conformer diversity for De-Novo Design on GEOM-Drugs. In this experiment, we aim to increase the diversity of generated molecular conformers in a molecular design task. We run FE on FlowMol CTMC (Dunn & Koes, 2024) pre-trained on GEOM-Drugs (Axelrod & Gomez-Bombarelli, 2022). As in the previous experimental setting, the weak verifier employed is a filter excluding molecules for which any two atoms are closer than 0.975 Ångstroms (Å), and validity is evaluated via the RDKit (RDKit) sanitization operation paired with the aforementioned check. We evaluate diversity of molecular conformers by a *conformer* VENDI (Friedman & Dieng, 2022) metric (see Apx. G.2) capturing diversity over sampled conformers via their fingerprints. L-FE, run for $K = 3$ iterations, $\alpha = 1/9$, and $\eta = 5$, achieves higher diversity (529 vs 476) and validity (82% vs 72%) than the pre-trained model, as shown in Fig. 6a. Similarly, L-FE induces higher diversity (529 vs 508) than FDC, a recent diffusion-based unconstrained exploration method (De Santi et al., 2025b), while preserving significantly higher sample validity, i.e., 82% vs 66%, as shown in Fig. 6a.

Moreover, within Apx. G.5.4, we report an ablation study for the proposed method parameters. Note that L-FE performs consistently better than NSE. Since NSE corresponds to L-FE with $\eta = 0$, this result illustrates the working mechanism and importance of the projection step (i.e., $\eta > 0$). Interestingly, G-FE, which is equal to L-FE with $\alpha_t = 0$, shows performance on par with L-FE for very conservative parameters ($\gamma = 0.0002$, $K = 3$), while gradually degrading for less conservative parametrizations. This behaviour is likely due to the implicit KL-regularization between iterates within the mirror descent update step (see Eq. 10), which implies prior regularization for small K .

NSE achieves higher exploration performance against current methods. We evaluate NSE, the unconstrained exploration variant of L-FE obtained by removing the projection step (see Alg. 3 in Sec. 4 for further details), to perform flow-based design space (unconstrained) exploration. We consider FlowMol CTMC (Dunn & Koes, 2024) pre-trained on GEOM-Drugs dataset (Axelrod & Gomez-Bombarelli, 2022), and report in Fig. 6b the results for NSE with $K = 3$, $\alpha = 0$. We observe that NSE achieves consistently higher diversity (i.e., 519 vs 508) and validity (i.e., 74% vs 66%) against FDC (De Santi et al., 2025b), a state-of-the-art method for flow-based unconstrained exploration.

Figure 6: (6a) L-FE (violet) achieves higher diversity and validity than FDC on GEOM-Drugs. (6b) NSE, the unconstrained variant of L-FE, exhibits superior performance compared with FDC, a state-of-the-art diffusion-based unconstrained exploration method. (6c) Computational cost comparison of L-FE, FDC, and NSE. (6d) Representative drug-like molecule generated via L-FE.

L-FE and NSE have computational costs comparable to current exploration schemes. We report in Fig. 6c a comparison of computational cost, measured via the method runtime (seconds [s]) of L-FE and NSE compared against FDC (De Santi et al., 2025b). One can notice that although the schemes proposed within this work (i.e., L-FE and NSE) perform exploration over the entire flow process noised state space, they do not incur in significantly higher computational cost compared with FDC.

7 RELATED WORK

Diffusion and flow based design space exploration Recent works introduced methods for flow based design space exploration via maximization of entropy functionals (De Santi et al., 2025a;b) or approximations (Celik et al., 2025). While these methods explore by leveraging information from a prior model, FE directs exploration either (i) exclusively via a verifier (i.e., global expansion, see 5), or (ii) combining verifier information with prior validity cues (i.e., local expansion, see 7). Moreover, while current schemes explore only the last time-step state space, we lift the exploration task to the entire flow process, providing a principled solution to the score divergence problem mentioned in Sec. 4.

Maximum State Entropy Exploration. Maximum state entropy exploration, introduced by Hazan et al. (2019), tackles the pure-exploration problem of maximizing the entropy of the state distribution induced by a policy over a dynamical system’s state space (e.g., Lee et al., 2019; Mutti et al., 2021; Guo et al., 2021; De Santi et al., 2024a). The flow expansion problems (Eq. 5 and 7) are closely related, with p_1^π representing the state distribution induced by policy π over a subset of the flow process state space (i.e., for time-step $t = 1$). Recent studies have tackled maximum entropy exploration with finite sample budgets (e.g., Mutti et al., 2022b;a; 2023; Prajapat et al., 2023; De Santi et al., 2024b), which could be relevant for future work, e.g., design space exploration under a limited samples constraint.

Sample diversity in diffusion models generation. A well-known limitation of flow-based generation is limited sample diversity. This problem has been recently addressed by numerous studies (e.g., Corso et al., 2023; Um et al., 2023; Kirchhof et al., 2024; Sadat et al., 2024; Um & Ye, 2025). Crucially, such methods are complementary to ours. In fact, they can be applied to promote diverse sampling from the expanded model produced by FE. In particular, whereas these works aim to maximize diversity of a fixed diffusion model or flow model, we aim to sequentially fine-tune a pre-trained flow model so that its induced density is permanently expanded over the valid design space. Moreover, our formulations (Eq. 5, 7) and FE scheme increase diversity while integrating validity signal from a chosen verifier.

8 CONCLUSION

This work tackles the fundamental challenge of leveraging a verifier (e.g., an atomic bonds checker), to expand a pre-trained model’s density beyond regions of high data availability, while preserving validity of the generated samples. To this end, we introduce notions of *strong* and *weak* verifiers and cast *global* and *local flow expansion* as probability-space optimization problems. We present **Flow Expander** (FE), a scalable mirror-descent scheme that *provably* solves both problems via verifier-constrained entropy maximization over the flow process noised state space. We provide a thorough analysis showing convergence guarantees for FE under idealized and general assumptions by employing recent mirror-flow theory. Ultimately, we empirically evaluate our method on both illustrative settings, and a molecular design task showcasing the ability of FE to increase molecular conformer diversity while preserving better levels of validity than current flow and diffusion-based exploration methods.

540

9 REPRODUCIBILITY STATEMENT

541
 542 We acknowledge that our work is documented sufficiently to ensure reproducibility of our results.
 543 We provide implementation details of all algorithms and procedures, such as: complete pseudocode
 544 in Appendix F, as well as hyperparameter choices and hardware requirements in Appendix Section G.
 545 We also give a detailed account of our experimental setup in Section 6, including explanations of
 546 metrics and procedures used to evaluate our algorithms in Appendix G. Finally, our implemented
 547 version of FE, leverages the well-established Adjoint Matching (Domingo-Enrich et al., 2024) method
 548 as an oracle.

550

REFERENCES

551
 552 Simon Axelrod and Rafael Gomez-Bombarelli. Geom, energy-annotated molecular conformations
 553 for property prediction and molecular generation. *Scientific Data*, 9(1):185, 2022.

554 Heinz H Bauschke, Jérôme Bolte, and Marc Teboulle. A descent lemma beyond lipschitz gradient
 555 continuity: first-order methods revisited and applications. *Mathematics of Operations Research*,
 556 42(2):330–348, 2017.

557 Michel Benaïm. Dynamics of stochastic approximation algorithms. In *Seminaire de probabilités*
 558 XXXIII, pp. 1–68. Springer, 2006.

559 Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion models
 560 with reinforcement learning. *arXiv preprint arXiv:2305.13301*, 2023.

561 Edoardo Botta, Yuchen Li, Aashay Mehta, Jordan T Ash, Cyril Zhang, and Andrej Risteski. On the
 562 query complexity of verifier-assisted language generation. *arXiv preprint arXiv:2502.12123*, 2025.

563 Onur Celik, Zechu Li, Denis Blessing, Ge Li, Daniel Palenicek, Jan Peters, Georgia Chalvatzaki,
 564 and Gerhard Neumann. Dime: Diffusion-based maximum entropy reinforcement learning. *arXiv*
 565 *preprint arXiv:2502.02316*, 2025.

566 Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-
 567 ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *arXiv preprint*
 568 *arXiv:2303.04137*, 2023.

569 Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock:
 570 Diffusion steps, twists, and turns for molecular docking. *arXiv preprint arXiv:2210.01776*, 2022.

571 Gabriele Corso, Yilun Xu, Valentin De Bortoli, Regina Barzilay, and Tommi Jaakkola. Particle
 572 guidance: non-iid diverse sampling with diffusion models. *arXiv preprint arXiv:2310.13102*, 2023.

573 Riccardo De Santi, Federico Arangath Joseph, Noah Liniger, Mirco Mutti, and Andreas Krause.
 574 Geometric active exploration in markov decision processes: the benefit of abstraction. *arXiv*
 575 *preprint arXiv:2407.13364*, 2024a.

576 Riccardo De Santi, Manish Prajapat, and Andreas Krause. Global reinforcement learning: Beyond lin-
 577 ear and convex rewards via submodular semi-gradient methods. *arXiv preprint arXiv:2407.09905*,
 578 2024b.

579 Riccardo De Santi, Marin Vlastelica, Ya-Ping Hsieh, Zebang Shen, Niao He, and Andreas Krause.
 580 Provable maximum entropy manifold exploration via diffusion models. In *International Conference*
 581 *on Machine Learning*, 2025a.

582 Riccardo De Santi, Marin Vlastelica, Ya-Ping Hsieh, Zebang Shen, Niao He, and Andreas Krause.
 583 Flow density control: Generative optimization beyond entropy-regularized fine-tuning. In *The*
 584 *Exploration in AI Today Workshop at ICML 2025*, 2025b.

585 Carles Domingo-Enrich, Michal Drozdza, Brian Karrer, and Ricky TQ Chen. Adjoint matching:
 586 Fine-tuning flow and diffusion generative models with memoryless stochastic optimal control.
 587 *arXiv preprint arXiv:2409.08861*, 2024.

594 Ian Dunn and David Ryan Koes. Mixed continuous and categorical flow matching for 3d de novo
 595 molecule generation. *ArXiv*, pp. arXiv–2404, 2024.
 596

597 Ying Fan, Olivia Watkins, Yuqing Du, Hao Liu, Moonkyung Ryu, Craig Boutilier, Pieter Abbeel,
 598 Mohammad Ghavamzadeh, Kangwook Lee, and Kimin Lee. Dpok: Reinforcement learning for
 599 fine-tuning text-to-image diffusion models. *Advances in Neural Information Processing Systems*,
 600 36:79858–79885, 2023.

601 Jesse Farbrother, Matteo Pirotta, Andrea Tirinzoni, Rémi Munos, Alessandro Lazaric, and Ahmed
 602 Touati. Temporal difference flows. *arXiv preprint arXiv:2503.09817*, 2025.
 603

604 Wendell H Fleming and Raymond W Rishel. *Deterministic and stochastic optimal control*, volume 1.
 605 Springer Science & Business Media, 2012.

606 Dan Friedman and Adji Boussou Dieng. The vendi score: A diversity evaluation metric for machine
 607 learning. *arXiv preprint arXiv:2210.02410*, 2022.
 608

609 Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Alaa Saade, Shantanu Thakoor, Bilal Piot,
 610 Bernardo Avila Pires, Michal Valko, Thomas Mesnard, Tor Lattimore, and Rémi Munos. Geometric
 611 entropic exploration. *arXiv preprint arXiv:2101.02055*, 2021.

612 Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
 613 exploration. In *International Conference on Machine Learning*, 2019.
 614

615 Jean-Baptiste Hiriart-Urruty and Claude Lemaréchal. *Fundamentals of convex analysis*. Springer
 616 Science & Business Media, 2004.
 617

618 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in
 619 neural information processing systems*, 33:6840–6851, 2020.

620 Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
 621 for molecule generation in 3d. In *International conference on machine learning*, pp. 8867–8887.
 622 PMLR, 2022.
 623

624 Ya-Ping Hsieh, Chen Liu, and Volkan Cevher. Finding mixed nash equilibria of generative adversarial
 625 networks. In *International Conference on Machine Learning*, pp. 2810–2819. PMLR, 2019.

626 Yanwei Jia and Xun Yu Zhou. Policy evaluation and temporal-difference learning in continuous time
 627 and space: A martingale approach. *Journal of Machine Learning Research*, 23(154):1–55, 2022.
 628

629 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 630 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
 631 protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.

632

633 Mohammad Reza Karimi, Ya-Ping Hsieh, and Andreas Krause. Sinkhorn flow as mirror flow: A
 634 continuous-time framework for generalizing the sinkhorn algorithm. In *International Conference
 635 on Artificial Intelligence and Statistics*, pp. 4186–4194. PMLR, 2024.

636 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio
 637 and Yann LeCun (eds.), *ICLR (Poster)*, 2015. URL [http://dblp.uni-trier.de/db/
 638 conf/iclr/iclr2015.html#KingmaB14](http://dblp.uni-trier.de/db/conf/iclr/iclr2015.html#KingmaB14).

639

640 Michael Kirchhof, James Thornton, Pierre Ablin, Louis Béthune, Eugene Ndiaye, and Marco Cuturi.
 641 Sparse repellency for shielded generation in text-to-image diffusion models. *arXiv preprint
 642 arXiv:2410.06025*, 2024.

643 G. Kresse and J. Furthmüller. Efficient iterative schemes for ab initio total-energy calculations using
 644 a plane-wave basis set. *Physical Review B*, 54(16):11169–11186, 1996. doi: 10.1103/PhysRevB.
 645 54.11169.

646

647 Lisa Lee, Benjamin Eysenbach, Emilio Parisotto, Eric Xing, Sergey Levine, and Ruslan Salakhutdinov.
 648 Efficient exploration via state marginal matching. *arXiv preprint arXiv:1906.05274*, 2019.

648 Zihao Li, Hui Yuan, Kaixuan Huang, Chengzhuo Ni, Yinyu Ye, Minshuo Chen, and Mengdi Wang.
 649 Diffusion model for data-driven black-box optimization. *arXiv preprint arXiv:2403.13219*, 2024.
 650

651 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 652 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

653 Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian Karrer, Ricky TQ Chen,
 654 David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow matching guide and code. *arXiv preprint*
 655 *arXiv:2412.06264*, 2024.

656

657 Haihao Lu, Robert M Freund, and Yurii Nesterov. Relatively smooth convex optimization by
 658 first-order methods, and applications. *SIAM Journal on Optimization*, 28(1):333–354, 2018.

659

660 Panayotis Mertikopoulos, Ya-Ping Hsieh, and Volkan Cevher. A unified stochastic approximation
 661 framework for learning in games. *Mathematical Programming*, 203(1):559–609, 2024.

662

663 Alexander Mielke and Jia-Jie Zhu. Hellinger-kantorovich gradient flows: Global exponential decay
 664 of entropy functionals. *arXiv preprint arXiv:2501.17049*, 2025.

665

666 Mashrur M Morshed and Vishnu Boddeti. Diverseflow: Sample-efficient diverse mode coverage in
 667 flows. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 23303–
 23312, 2025.

668

669 Mirco Mutti, Lorenzo Pratissoli, and Marcello Restelli. Task-agnostic exploration via policy gradient
 670 of a non-parametric state entropy estimate. In *Proceedings of the AAAI Conference on Artificial
 671 Intelligence*, volume 35, pp. 9028–9036, 2021.

672

673 Mirco Mutti, Riccardo De Santi, Piersilvio De Bartolomeis, and Marcello Restelli. Challenging com-
 674 mon assumptions in convex reinforcement learning. *Advances in Neural Information Processing
 675 Systems*, 35:4489–4502, 2022a.

676

677 Mirco Mutti, Riccardo De Santi, and Marcello Restelli. The importance of non-markovianity in
 678 maximum state entropy exploration. In *International Conference on Machine Learning*, pp.
 16223–16239. PMLR, 2022b.

679

680 Mirco Mutti, Riccardo De Santi, Piersilvio De Bartolomeis, and Marcello Restelli. Convex reinforce-
 681 ment learning in finite trials. *Journal of Machine Learning Research*, 24(250):1–42, 2023.

682

683 Noel M O’Boyle, Michael Banck, Craig A James, Chris Morley, Tim Vandermeersch, and Geoffrey R
 684 Hutchison. Open Babel: An open chemical toolbox. *Journal of Cheminformatics*, 3(1):33, 2011.
 doi: 10.1186/1758-2946-3-33.

685

686 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
 687 hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
 688 E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*,
 12:2825–2830, 2011.

689

690 Manish Prajapat, Mojmir Mutný, Melanie N Zeilinger, and Andreas Krause. Submodular reinfor-
 691 cement learning. *arXiv preprint arXiv:2307.13372*, 2023.

692

693 Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp, and O Anatole Von Lilienfeld. Quantum
 694 chemistry structures and properties of 134 kilo molecules. *Scientific data*, 1(1):1–7, 2014.

695

696 RDKit. Rdkit: Open-source cheminformatics. <https://www.rdkit.org>. Accessed: YYYY-
 697 MM-DD.

698

699 Herbert Robbins and Sutton Monro. A stochastic approximation method. *The annals of mathematical
 700 statistics*, pp. 400–407, 1951.

701 Seyedmorteza Sadat, Jakob Buhmann, Derek Bradley, Otmar Hilliges, and Romann M. Weber. Cads:
 702 Unleashing the diversity of diffusion models through condition-annealed sampling, 2024. URL
<https://arxiv.org/abs/2310.17347>.

702 Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
 703 learning using nonequilibrium thermodynamics. In *International conference on machine learning*,
 704 pp. 2256–2265. PMLR, 2015.

705

706 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
 707 *Advances in neural information processing systems*, 32, 2019.

708

709 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 710 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint*
 711 *arXiv:2011.13456*, 2020.

712

713 Lenart Treven, Jonas Hübotter, Bhavya Sukhija, Florian Dorfler, and Andreas Krause. Efficient ex-
 714 ploration in continuous-time model-based reinforcement learning. *Advances in Neural Information
 Processing Systems*, 36:42119–42147, 2023.

715

716 Masatoshi Uehara, Yulai Zhao, Tommaso Biancalani, and Sergey Levine. Understanding rein-
 717 force learning-based fine-tuning of diffusion models: A tutorial and review, 2024a. URL
 718 <https://arxiv.org/abs/2407.13734>.

719

720 Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
 721 Diamant, Alex M Tseng, Sergey Levine, and Tommaso Biancalani. Feedback efficient online
 722 fine-tuning of diffusion models. *arXiv preprint arXiv:2402.16359*, 2024b.

723

724 Soobin Um and Jong Chul Ye. Self-guided generation of minority samples using diffusion models.
 725 In *European Conference on Computer Vision*, pp. 414–430. Springer, 2025.

726

727 Soobin Um, Suhyeon Lee, and Jong Chul Ye. Don’t play favorites: Minority guidance for diffusion
 728 models. *arXiv preprint arXiv:2301.12334*, 2023.

729

730 Haoran Wang, Thaleia Zariphopoulou, and Xun Yu Zhou. Reinforcement learning in continuous time
 731 and space: A stochastic control approach. *Journal of Machine Learning Research*, 21(198):1–34,
 732 2020.

733

734 Zihan Wang, Yunxuan Li, Yuexin Wu, Liangchen Luo, Le Hou, Hongkun Yu, and Jingbo Shang.
 735 Multi-step problem solving through a verifier: An empirical analysis on model-induced process
 736 supervision. *arXiv preprint arXiv:2402.02658*, 2024.

737

738 David Weininger. Smiles, a chemical language and information system. 1. introduction to methodol-
 739 ogy and encoding rules. *J. Chem. Inf. Comput. Sci.*, 28(1):31–36, 1988.

740

741 Hanyang Zhao, Haoxian Chen, Ji Zhang, David D Yao, and Wenpin Tang. Scores as actions: a
 742 framework of fine-tuning diffusion models by continuous-time reinforcement learning. *arXiv*
 743 *preprint arXiv:2409.08400*, 2024.

744

745

746

747

748

749

750

751

752

753

754

755

756	A APPENDIX	
757		
758	CONTENTS	
759		
760		
761	B Derivation of Gradients of First Variation	16
762		
763	C Proof of Proposition 1	17
764		
765	D Proof for Theorem 5.1	19
766		
767	E Proof for Theorem 5.2	20
768		
769		
770	F Detailed Example of Algorithm Implementation	23
771		
772	G Experimental Details	24
773	G.1 Illustrative Examples Experimental Details	24
774		
775	G.2 Conformer VENDI	24
776		
777	G.3 PCA Projection for Fig. 5d	24
778		
779	G.4 Validity Computation in Molecular Experiments	25
780		
781	G.5 Practical Details for Experiments on Molecules	25
782		
783	H Update Step Reparametrization	32
784		
785		
786		
787		
788		
789		
790		
791		
792		
793		
794		
795		
796		
797		
798		
799		
800		
801		
802		
803		
804		
805		
806		
807		
808		
809		

810 B DERIVATION OF GRADIENTS OF FIRST VARIATION

812 In this section we present derivations of the results in equation 18 relating the gradient of the first
 813 variation of the trajectory rewards to the score function. We derive the result for L-FE, the result for
 814 G-FE follows as a subcase.

815 First, recall the trajectory rewards for L-FE:

$$818 \quad \nabla_{x_t} \delta \mathcal{G}_t(p_t^\pi) = \nabla_{x_t} \delta (\mathcal{H}(p_t^\pi) - \alpha_t \mathcal{D}_{\text{KL}}(p_t^\pi || p_t^{\text{pre}})) \quad (27)$$

$$819 \quad = \nabla_{x_t} \delta \mathcal{H}(p_t^\pi) - \alpha_t \nabla_{x_t} \delta \mathcal{D}_{\text{KL}}(p_t^\pi || p_t^{\text{pre}}). \quad (\text{by linearity}) \quad (28)$$

821 Thus it suffices to show derivations for $\nabla_{x_t} \delta \mathcal{H}(p_t^\pi)$ and $\nabla_{x_t} \delta \mathcal{D}_{\text{KL}}(p_t^\pi || p_t^{\text{pre}})$. Starting with the entropy
 822 functional, recalling its definition as $\mathcal{H}(p_t^\pi) = -\int_0^1 p_t^\pi(x) \log p_t^\pi(x) dx$ we have:

$$826 \quad \nabla_{x_t} \delta \mathcal{H}(p_t^\pi) = \nabla_{x_t} (1 - \log p_t^\pi) \quad (29)$$

$$827 \quad = -\nabla_{x_t} \log p_t^\pi \quad (30)$$

$$828 \quad = -s_t^\pi \quad (31)$$

830 Similarly for the second term:

$$833 \quad \nabla_{x_t} \delta \mathcal{D}_{\text{KL}}(p_t^\pi || p_t^{\text{pre}}) = \nabla_{x_t} \delta \int p_t^\pi \log p_t^\pi - p_t^\pi \log p_t^{\text{pre}} \quad (32)$$

$$835 \quad = \nabla_{x_t} (\log p_t^\pi - 1 - \log p_t^{\text{pre}}) \quad (33)$$

$$836 \quad = s_t^\pi - s_t^{\text{pre}} \quad (34)$$

838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 **C PROOF OF PROPOSITION 1**
 865

866 In this section we show that the optimization problem in 10 can be decomposed into an unconstrained
 867 expansion step followed by a projection into the constrained set. We start by defining the following
 868 processes:
 869

$$870 \mathbf{Q}^k \in \arg \max_{\mathbf{Q}: p_0 = p_0^{k-1}} \langle \delta \mathcal{L}(\mathbf{Q}^{k-1}), \mathbf{Q} \rangle - \frac{1}{\gamma_k} \mathcal{D}_{\text{KL}}(\mathbf{Q} \parallel \mathbf{Q}^{k-1}) \quad \text{s.t.} \quad \mathbb{E}_{x \sim q_1} [v(x)] \quad (35)$$

$$873 \tilde{\mathbf{Q}}^k \in \arg \max_{\mathbf{Q}: p_0 = p_0^{k-1}} \langle \delta \mathcal{L}(\mathbf{Q}^{k-1}), \mathbf{Q} \rangle - \frac{1}{\gamma_k} \mathcal{D}_{\text{KL}}(\mathbf{Q} \parallel \mathbf{Q}^{k-1}) \quad (36)$$

$$876 \bar{\mathbf{Q}}^k \in \arg \min_{\mathbf{Q}: p_0 = p_0^{k-1}} \mathcal{D}_{\text{KL}}(\mathbf{Q} \parallel \tilde{\mathbf{Q}}^k) \quad \text{s.t.} \quad \mathbb{E}_{x \sim p_1} [v(x)] = 1 \quad (37)$$

$$879 \hat{\mathbf{Q}}^k \in \arg \max_{\mathbf{Q}: p_0 = p_0^{k-1}} \mathbb{E}_{x \sim p_1} [\log v(x)] - \frac{1}{\gamma_k} \mathcal{D}_{\text{KL}}(\mathbf{Q} \parallel \mathbf{Q}^{k-1}) \quad (38)$$

882 letting $p_t^k, \tilde{p}_t^k, \bar{p}_t^k, \hat{p}_t^k$ refer to their respective marginal densities a time t . Note that $\tilde{\mathbf{Q}}^k$ is the output
 883 of the projection step in 12, and that $\hat{\mathbf{Q}}^k$ is the output of the projection step in 13. The following
 884 Lemma asserts that solving the optimization problem in equation 10 is equivalent to solving the
 885 expansion step of 36 followed by the formal information projection step of 37.

887 **Lemma C.1.** *Let \mathbf{Q}^{k-1} be the process associated with the previous iterate π^{k-1} , and let $\tilde{\mathbf{Q}}^k$ and
 888 $\bar{\mathbf{Q}}^k$ be defined as above. Then $\mathbf{Q}^k = \tilde{\mathbf{Q}}^k$.*

889 *Proof.* First, note that the processes \mathbf{Q}^{k-1} and $\tilde{\mathbf{Q}}^k$ satisfy the following relationship (see e.g.
 890 Domingo-Enrich et al. (2024) equation 22):
 891

$$893 \log \frac{d\tilde{\mathbf{Q}}^k}{d\mathbf{Q}^{k-1}}(X) = \gamma_k \delta \mathcal{L}(\mathbf{Q}^{k-1})(X) + \text{const.} \quad (39)$$

895 which implies the following equality for an arbitrary process q (taking the expectation and rearranging):
 896

$$899 \langle \delta \mathcal{L}(\mathbf{Q}^{k-1}), q \rangle - \gamma_k D_{\text{KL}}(\mathbf{Q} \parallel \mathbf{Q}^{k-1}) = \gamma_k D_{\text{KL}}(\mathbf{Q} \parallel \tilde{\mathbf{Q}}^k) - \text{const.} \quad (40)$$

900 Therefore the equation below holds for any arbitrary set of processes A :
 901

$$903 \arg \max_{\mathbf{Q} \in A} \langle \delta \mathcal{L}(\mathbf{Q}^{k-1}), q \rangle - \frac{1}{\gamma_k} D_{\text{KL}}(\mathbf{Q} \parallel \mathbf{Q}^{k-1}) = \arg \min_{q \in A} D_{\text{KL}}(\mathbf{Q} \parallel \tilde{\mathbf{Q}}^k) \quad (41)$$

905 and thus also holds for the set $A = \{\mathbf{Q} \text{ s.t. } p_0 = p_0^{k-1} \text{ and } \mathbb{E}_{x \sim p_1} [v(x)] = 1\}$: the set of feasible
 906 solutions to 10. □
 907

910 Finally, the following Lemma reformulates the information projection step in 37 as the fine-tuning
 911 objective in 36:
 912

Lemma C.2. *Let $\hat{\mathbf{Q}}^k$ and $\bar{\mathbf{Q}}^k$ be defined as above. Then $\hat{\mathbf{Q}}^k = \bar{\mathbf{Q}}^k$*

914 *Proof.* Recall the definition of $\hat{\mathbf{Q}}^k$:
 915

$$916 \hat{\mathbf{Q}}^k \in \arg \max_{\mathbf{Q}: p_0 = p_0^{k-1}} \mathbb{E}_{x \sim p_1} [\log v(x)] - \frac{1}{\gamma_k} \mathcal{D}_{\text{KL}}(\mathbf{Q} \parallel \mathbf{Q}^{k-1}) \quad (42)$$

918 and note that the expectation in the first term is finite only if $v(x) \neq 0$, p_1 – a.s., in which case it
919 vanishes. Thus the maximizer must belong to the set $\{\mathbf{Q} : p_0 = p_0^{k-1}, \mathbb{E}_{x \sim p_1}[v(x)] = 1\}$ effectively
920 turning the first term into a constraint. \square

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972 D PROOF FOR THEOREM 5.1
973

974 **Theorem 5.1** (Convergence guarantee in the idealized process-level setting). *Consider the objective*
975 *\mathcal{L} defined in Equation (8), and let $\lambda^* := \int_0^1 \lambda_t dt$. Let $\{\mathbf{Q}^k\}$ be the iterates generated by Equation (10)*
976 *with $\gamma_k = 1/\lambda^*$ for all $k \in [K]$. Then*

$$978 \quad \mathcal{L}(\mathbf{Q}^*) - \mathcal{L}(\mathbf{Q}^K) \leq \frac{\lambda^*}{K} D_{KL}(\mathbf{Q}^* \parallel \mathbf{Q}^{pre}), \quad (22)$$

979 where $\mathbf{Q}^* \in \arg \max_{\mathbf{Q}} \mathcal{L}(\mathbf{Q})$.

981 *Proof.* Fix an initial reference measure $\bar{\mathbf{Q}} := \mathbf{Q}^0$, and define the function

$$983 \quad \mathcal{Q}(\mathbf{Q}) := D_{KL}(\mathbf{Q} \parallel \bar{\mathbf{Q}}), \quad (43)$$

984 which measures the Kullback–Leibler divergence of \mathbf{Q} from this reference. This choice of \mathcal{Q} will
985 serve as the *reference function* in the framework of *mirror descent with relative smoothness* (Bauschke
986 et al., 2017; Lu et al., 2018). The key point is that the objective \mathcal{L} in Equation (8) is not necessarily
987 smooth in the classical sense, but it is λ^* -smooth relative to \mathcal{Q} .

988 To formalize this, let $D_{\mathcal{Q}}(\mathbf{Q}, \mathbf{Q}')$ denote the *Bregman divergence* generated by \mathcal{Q} . By definition,

$$989 \quad D_{\mathcal{Q}}(\mathbf{Q}, \mathbf{Q}') = \mathcal{Q}(\mathbf{Q}) - \mathcal{Q}(\mathbf{Q}') - \langle \delta \mathcal{Q}(\mathbf{Q}'), \mathbf{Q} - \mathbf{Q}' \rangle.$$

990 A direct computation shows that when \mathcal{Q} is the KL divergence from a fixed reference measure, the
991 Bregman divergence reduces exactly to another KL divergence:

$$992 \quad D_{\mathcal{Q}}(\mathbf{Q}, \mathbf{Q}') = D_{KL}(\mathbf{Q} \parallel \mathbf{Q}').$$

993 This equivalence will allow us to leverage classical properties of relative entropy in the convergence
994 analysis.

996 Next, consider the mirror descent iterates $\{\mathbf{Q}^k\}$ for minimizing $(-\mathcal{L})$ ³. By the definition of relative
997 smoothness, we have

$$998 \quad (-\mathcal{L})(\mathbf{Q}^k) \leq (-\mathcal{L})(\mathbf{Q}^{k-1}) + \langle \delta(-\mathcal{L})(\mathbf{Q}^{k-1}), \mathbf{Q}^k - \mathbf{Q}^{k-1} \rangle + \lambda^* D_{\mathcal{Q}}(\mathbf{Q}^k, \mathbf{Q}^{k-1}). \quad (44)$$

999 Here, the first inequality follows directly from the λ^* -smoothness of $(-\mathcal{L})$ relative to \mathcal{Q} , as defined
1000 in Equation (43). Intuitively, this is a generalization of the standard quadratic upper bound used in
1001 classical smooth optimization, but with the Bregman divergence replacing the squared Euclidean
1002 norm.

1003 We can refine this bound further by applying the *three-point inequality* of the Bregman divergence (Lu
1004 et al., 2018, Lemma 3.1). Let us define a linearized function

$$1006 \quad \phi(\mathbf{Q}) := \frac{1}{\lambda^*} \langle \delta(-\mathcal{L})(\mathbf{Q}^{k-1}), \mathbf{Q} - \mathbf{Q}^{k-1} \rangle,$$

1007 and let $z = \mathbf{Q}^{k-1}$, $z^+ = \mathbf{Q}^k$. Then the three-point identity gives

$$1009 \quad \langle \delta(-\mathcal{L})(\mathbf{Q}^{k-1}), \mathbf{Q}^k - \mathbf{Q}^{k-1} \rangle \leq \langle \delta(-\mathcal{L})(\mathbf{Q}^{k-1}), \mu - \mathbf{Q}^{k-1} \rangle + \lambda^* D_{\mathcal{Q}}(\mu, \mathbf{Q}^{k-1}) - \lambda^* D_{\mathcal{Q}}(\mu, \mathbf{Q}^k), \quad (45)$$

1011 for any reference point μ . Combining Equation (44) and Equation (45) yields

$$1012 \quad (-\mathcal{L})(\mathbf{Q}^k) \leq (-\mathcal{L})(\mathbf{Q}^{k-1}) + \langle \delta(-\mathcal{L})(\mathbf{Q}^{k-1}), \mu - \mathbf{Q}^{k-1} \rangle + \lambda^* D_{\mathcal{Q}}(\mu, \mathbf{Q}^{k-1}) - \lambda^* D_{\mathcal{Q}}(\mu, \mathbf{Q}^k). \quad (46)$$

1015 Finally, we can telescope this inequality over $k = 1, \dots, K$. Using the monotonicity of $(-\mathcal{L})(\mathbf{Q}^k)$
1016 along the iterates and the non-negativity of the Bregman divergence $D_{\mathcal{Q}}$, we obtain (Lu et al., 2018):

$$1017 \quad \sum_{k=1}^K ((-\mathcal{L})(\mathbf{Q}^k) - (-\mathcal{L})(\mu)) \leq \lambda^* D_{\mathcal{Q}}(\mu, \mathbf{Q}^0) - \lambda^* D_{\mathcal{Q}}(\mu, \mathbf{Q}^K) \leq \lambda^* D_{\mathcal{Q}}(\mu, \mathbf{Q}^0), \quad (47)$$

1020 for any \mathbf{Q} . Dividing both sides by K and rearranging gives a simple *ergodic convergence rate*:

$$1021 \quad (-\mathcal{L})(\mathbf{Q}^K) - (-\mathcal{L})(\mathbf{Q}) \leq \frac{\lambda^* D_{\mathcal{Q}}(\mathbf{Q}, \mathbf{Q}^0)}{K}, \quad (48)$$

1023 which shows that the iterates converge at an $O(1/K)$ rate in terms of the relative entropy. \square

1025 ³We adopt the standard convention of convex *minimization* rather than concave maximization, which explains
the negative sign in the formulation.

1026 **E PROOF FOR THEOREM 5.2**
 1027

1028 To establish our main convergence theorem, we impose a few auxiliary assumptions that are widely
 1029 used in the analysis of stochastic approximation and gradient flows. These assumptions are mild and
 1030 typically satisfied in practical applications.

1031 **Assumption E.1** (Precompactness of Dual Iterates). *The sequence of dual variables $\{\delta\mathcal{Q}(\mathbf{Q}^k)\}_k$ is
 1032 precompact in the L_∞ topology.*
 1033

1034 Precompactness ensures that the interpolated trajectories of the dual iterates remain within a bounded
 1035 region in function space. This property is crucial for applying convergence results based on asymptotic
 1036 pseudotrajectories, and similar precompactness assumptions have appeared in the literature on
 1037 stochastic approximation and continuous-time interpolations of discrete dynamics (Benaïm, 2006;
 1038 Hsieh et al., 2019; Mertikopoulos et al., 2024).

1039 In our finite-dimensional parameter space, (E.1) essentially requires that the sequence of iterates
 1040 produced by the solver remains in a bounded set. This is a very mild requirement: it is satisfied
 1041 as soon as the solver does not diverge numerically (e.g., no exploding parameters or NaNs), which
 1042 is exactly what we observe in all our experiments. Moreover, standard practices such as bounded
 1043 initialization, weight decay, and gradient clipping can be viewed as explicit mechanisms that enforce
 1044 this boundedness.

1045 **Assumption E.2** (Noise and Bias Control). *The stochastic approximations in the updates satisfy,
 1046 almost surely, the following conditions:*

1047 $\|b_k\|_\infty \rightarrow 0,$ (49)
 1048

1049 $\sum_k \mathbb{E}[\gamma_k^2 (\|b_k\|_\infty^2 + \|U_k\|_\infty^2)] < \infty,$ (50)
 1050

1051 $\sum_k \gamma_k \|b_k\|_\infty < \infty.$ (51)
 1052

1053 These conditions are standard in the Robbins–Monro framework (Robbins & Monro, 1951; Benaïm,
 1054 2006; Hsieh et al., 2019). They guarantee that the bias of the stochastic updates vanishes asymptotically,
 1055 and that the cumulative effect of the noise remains controlled. Together, they ensure that
 1056 the stochastic perturbations do not prevent convergence of the iterates to the optima of the target
 1057 objective.

1058 With these assumptions in place, we are ready to restate the main result and present its proof.

1059 **Theorem E.1** (Convergence guarantee in the general trajectory setting (rigorous)). *Suppose the
 1060 oracle satisfies Assumptions E.1 to E.2, and let the step-sizes $\{\gamma_k\}$ follow the Robbins–Monro rule
 1061 ($\sum_k \gamma_k = \infty$, $\sum_k \gamma_k^2 < \infty$). Then the iterates $\{\mathbf{Q}^k\}$ generated by FE satisfy*

1062 $\mathbf{Q}^k \rightarrow \mathbf{Q}^* \quad a.s.,$ (52)
 1063

1064 where $\mathbf{Q}^* \in \arg \max_{\mathbf{Q}} \mathcal{L}(\mathbf{Q}).$

1065 *Proof.* As in the proof of Theorem 5.1, fix an initial reference measure

1066 $\bar{\mathbf{Q}} := \mathbf{Q}^0,$

1067 and define the relative entropy functional

1068 $\mathcal{Q}(\mathbf{Q}) := D_{\text{KL}}(\mathbf{Q} \parallel \bar{\mathbf{Q}}).$ (53)

1069 Correspondingly, we introduce the initial dual variable

1070 $\mathbf{h}_0 := \delta\mathcal{Q}(\mathbf{Q}^0) = -\log \frac{d\mathbf{Q}^0}{d\bar{\mathbf{Q}}},$

1071 where $\frac{d\mathbf{Q}}{d\bar{\mathbf{Q}}}$ denotes the Radon–Nikodym derivative of \mathbf{Q} with respect to $\bar{\mathbf{Q}}$. This dual representation
 1072 encodes the convex geometry of the problem.

1080 **Continuous-time mirror flow.** We now consider the continuous-time mirror flow dynamics
 1081

$$\begin{cases} \dot{\mathbf{h}}_t = \delta(-\mathcal{L})(\mathbf{Q}_t), \\ \mathbf{Q}_t = \delta\mathcal{Q}^*(\mathbf{h}_t), \end{cases} \quad (\text{MF})$$

1082 where \mathcal{Q}^* denotes the Fenchel conjugate of the relative entropy functional. Explicitly, we recall that
 1083

$$\mathcal{Q}^*(\mathbf{h}) = \log_{\bar{\mathbf{Q}}} \mathbb{E}[e^{\mathbf{h}}],$$

1084 which follows from the variational characterization of the Kullback–Leibler divergence (Hsieh et al.,
 1085 2019; Hiriart-Urruty & Lemaréchal, 2004).

1086 **Discrete-to-continuous interpolation.** To connect the discrete algorithm with the flow equation **MF**,
 1087 we introduce an interpolation of the iterates. Define the linearly interpolated process $\mathbf{h}(t)$ by
 1088

$$\mathbf{h}(t) = \mathbf{h}^k + \frac{t - \tau^k}{\tau^{k+1} - \tau^k} (\mathbf{h}^{k+1} - \mathbf{h}^k), \quad \mathbf{h}^k = \delta\mathcal{Q}(\mathbf{Q}^k), \quad \tau^k = \sum_{r=0}^k \alpha_r, \quad (\text{Int})$$

1089 where α_r are the step sizes. This construction yields a continuous-time trajectory $\{\mathbf{h}(t)\}_{t \geq 0}$ that
 1090 faithfully tracks the discrete iterates in the limit of vanishing step sizes.
 1091

1092 **Asymptotic pseudotrajectories.** We recall the notion of an asymptotic pseudotrajectory (APT),
 1093 which provides the precise mathematical bridge between discrete stochastic processes and determin-
 1094 istic flows.

1095 Let Θ denote the flow map associated with equation **MF**; that is, $\Theta_h(\mathbf{f})$ is the solution of equation **MF**
 1096 at time h when initialized at \mathbf{f} .

1097 **Definition 3** (Asymptotic Pseudotrajectory (APT)). *A trajectory $\mathbf{h}(t)$ is called an asymptotic pseu-
 1098 dotrajectory (APT) of equation **MF** if, for every finite horizon $T > 0$,*

$$\lim_{t \rightarrow \infty} \sup_{0 \leq h \leq T} \|\mathbf{h}(t + h) - \Theta_h(\mathbf{h}(t))\|_\infty = 0.$$

1099 Intuitively, this condition requires that the interpolated sequence asymptotically shadows the exact
 1100 flow on every bounded time interval.
 1101

1102 **Limit set characterization.** The central result of Benäim (2006) asserts that the long-term behavior
 1103 of an APT is governed by the internally chain transitive (ICT) sets of the limiting flow.
 1104

1105 **Theorem E.2** (APT Limit Set Theorem (Benäim, 2006, Thm. 4.2)). *If $\mathbf{h}(t)$ is a precompact APT of
 1106 equation **MF**, then almost surely its limit set lies within the set of internally chain-transitive (ICT)
 1107 points of the flow.*

1108 **Reduction of the convergence proof.** With these tools, the convergence analysis reduces to
 1109 verifying two key claims:
 1110

1111 (C1) Under Assumptions E.1 to E.2, the interpolated sequence $\{\mathbf{h}(t)\}$ indeed forms a precompact
 1112 APT of equation **MF**.
 1113

1114 (C2) The set of ICT points of the flow equation **MF** coincides with the set of stationary points of
 1115 \mathcal{L} .
 1116

1117 **Verification of Claim (C1).** Precompactness follows directly from Assumption E.1, which guaran-
 1118 tees uniform tightness of the sequence of measures and hence compactness of their trajectories in the
 1119 weak topology. In addition, standard arguments from stochastic approximation (Hsieh et al., 2019;
 1120 Benäim, 2006; Mertikopoulos et al., 2024) yield the following quantitative estimate: for every finite
 1121 horizon $T > 0$, there exists a constant $C(T) > 0$ such that
 1122

$$\sup_{0 \leq h \leq T} \|\mathbf{h}(t + h) - \Theta_h(\mathbf{h}(t))\| \leq C(T) [\Delta(t - 1, T + 1) + b(T) + \gamma(T)],$$

1134 where $\Delta(t-1, T+1)$ denotes the cumulative effect of noise over the interval $[t-1, t+T+1]$,
 1135 while $b(T)$ and $\gamma(T)$ capture, respectively, the bias and step-size contributions. This bound quantifies
 1136 the deviation of the interpolated process from the deterministic mirror flow equation [MF](#).
 1137

1138 **APT approximation.** Under the noise and bias conditions of [Assumption E.2](#), both perturbations
 1139 vanish asymptotically:

$$\lim_{t \rightarrow \infty} \Delta(t-1, T+1) = \lim_{t \rightarrow \infty} b(T) = 0,$$

1140 uniformly over bounded horizons T . Consequently, the discrepancy in the above bound vanishes in
 1141 the limit, and the interpolated process $\mathbf{h}(t)$ shadows the continuous-time flow arbitrarily well.
 1142

1143 Altogether, these arguments show that $\mathbf{h}(t)$ is indeed a precompact asymptotic pseudotrajectory of
 1144 the mirror flow.
 1145

1146 **Verification of Claim (C2).** The flow equation [MF](#) is precisely the continuous-time mirror de-
 1147 scent dynamics associated with $(-\mathcal{L})$, which is known to be a *gradient flow* in the spherical
 1148 Hellinger–Kantorovich geometry ([Mielke & Zhu, 2025](#)). As such, $(-\mathcal{L})$ acts as a strict Lyapunov
 1149 function for the system: along any non-stationary trajectory, $\frac{d}{dt}(-\mathcal{L})(\mathbf{Q}_t) < 0$. By ([Benaïm, 2006](#),
 1150 [Corollary 6.6](#)), every precompact APT converges to the set of stationary points of the Lyapunov
 1151 function. Since the objective function \mathcal{L} is the relative entropy, and hence strictly convex, its stationary
 1152 point coincide with its global minimizer.
 1153

1154 **Conclusion.** Combining (C1) and (C2) with [Theorem E.2](#), we deduce that the interpolated process
 1155 $\mathbf{h}(t)$ converges almost surely to the set of minimizers of $(-\mathcal{L})$, which readily implies that the original
 1156 sequence $\{\mathbf{Q}^k\}$ inherits the same convergence guarantee. \square
 1157

1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188 F DETAILED EXAMPLE OF ALGORITHM IMPLEMENTATION
1189

1190 In this section we provide comprehensive pseudocode of an example implementation for the two
1191 FINETUNINGSOLVER subprocedure in Alg. 1. It is implemented using a variation of Adjoint Matching
1192 (AM) which is introduced comprehensively in Domingo-Enrich et al. (2024), although we provide
1193 pseudocode below for completeness. We note that in principle one could substitute for any other
1194 linear fine-tuning method.

1195 Before presenting the implementations, we shortly clarify some relevant notation. The algorithm
1196 makes explicit use of the interpolant schedules κ_t and ω_t introduced in equation 1. We note that
1197 in flow model literature they are more commonly known as α_t and β_t . We denote by u^{pre} the
1198 velocity field corresponding to the pre-trained policy π^{pre} , and likewise use u^{fine} for the velocity field
1199 corresponding to the fine-tuned policy. In short, FINETUNINGSOLVER first samples trajectories, which
1200 are then used to approximate the solution of a surrogate ODE whose marginals are used as regression
1201 targets for the control policy (see Domingo-Enrich et al. (2024) Section 5 for a full discussion). We
1202 note that FINETUNINGSOLVER can be used for objectives with and without trajectory rewards, simply
1203 by setting trajectory rewards to zero.

1204

1205 **Algorithm 4** Adjoint Matching for fine-tuning Flow Matching models (FINETUNINGSOLVER)

1206 **Require:** u^{pre} : pre-trained FM velocity field, $\{\nabla f_t\}_{t \in [0,1]}$: gradients of trajectory
1207 rewards, $\{\lambda_t\}_{t \in [0,1]}$: (optional) trajectory reward weights, γ : fine-tuning strength

1208 1: Initialize fine-tuned vector fields: $u^{\text{finetune}} = u^{\text{pre}}$ with parameters θ .

1209 2: **for** $n \in \{0, \dots, N-1\}$ **do**

1210 3: Sample m trajectories $\mathbf{X} = (X_t)_{t \in \{0, \dots, 1\}}$ with memoryless noise schedule $\sigma(t) =$
1211 $\sqrt{2\kappa_t \left(\frac{\dot{\omega}_t}{\omega_t} \kappa_t - \dot{\kappa}_t \right)}$, e.g.:

1212
$$X_{t+h} = X_t + h \left(2u_\theta^{\text{finetune}}(X_t, t) - \frac{\dot{\omega}_t}{\omega_t} X_t \right) + \sqrt{h} \sigma(t) \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, I), \quad X_0 \sim \mathcal{N}(0, I). \quad (51)$$

1213 4: For each trajectory, solve the *lean adjoint ODE* backwards in time from $t = 1$ to 0 , e.g.:

1214
$$\tilde{a}_{t-h} = \tilde{a}_t + h \tilde{a}_t^\top \nabla_{X_t} \left(2v^{\text{base}}(X_t, t) - \frac{\dot{\omega}_t}{\omega_t} X_t \right) - h\gamma \lambda_t \nabla_{X_t} f_t(X_t), \quad \tilde{a}_1 = \gamma \lambda_1 \nabla_{X_1} f_1(X_1). \quad (52)$$

1215 5: Note that X_t and \tilde{a}_t should be computed without gradients, i.e., $X_t = \text{stopgrad}(X_t)$, $\tilde{a}_t =$
1216 $\text{stopgrad}(\tilde{a}_t)$.

1217 6: For each trajectory, compute the following Adjoint Matching objective:

1218
$$\mathcal{L}_{\text{Adj-Match}}(\theta) = \sum_{t \in \{0, \dots, 1-h\}} \left\| \frac{2}{\sigma(t)} \left(v_\theta^{\text{finetune}}(X_t, t) - u^{\text{base}}(X_t, t) \right) + \sigma(t) \tilde{a}_t \right\|^2. \quad (53)$$

1219 7: Compute the gradient $\nabla_\theta \mathcal{L}(\theta)$ and update θ using favorite gradient descent algorithm.

1220 8: **end for**

1221 **Output:** Fine-tuned vector field v^{finetune}

1222 Crucially, we employ the fine-tuning oracle in Alg. 8 also to implement the projection step within Sec.
1223 4, as indicated within Alg. 1. Moreover, in the case of a non-differentiable (weak or strong) verifier,
1224 the projection step can be implemented via a 0-th order RL-based fine-tuning method, e.g., (Fan et al.,
1225 2023; Black et al., 2023), which induce the same closed-form solution as Alg. 8.

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

1242 **G EXPERIMENTAL DETAILS**
 1243

1244 **G.1 ILLUSTRATIVE EXAMPLES EXPERIMENTAL DETAILS**
 1245

1246 Numerical values in all plots shown within Sec. 6 are means computed over diverse runs of FE via 5
 1247 different seeds. Error bars correspond to 95% Confidence Intervals. For the following comparisons,
 1248 we aimed to tune each algorithm parameters so that the method would work well in the specific
 1249 illustrative example.

1250 **Pre-trained models.** The pre-trained models appearing in Sec. 6, in the context of illustrative
 1251 examples, are learned on synthetically generated data, via standard learning procedures. In particular,
 1252 in Sec. 6 we always show samples generated by such pre-trained models.

1253 **Global Flow Expansion.**
 1254

- 1255 • For G-FE, we use $\lambda_t = 0$ if $t > 1 - 0.05$, and $\lambda_t = 1.2$ otherwise, $\gamma_k = \frac{1.5}{(1+3(k-1))}$, $\eta = 2$
 1256 and $K = 10$.
- 1257 • For CONSTR we employ $\eta = 2$.
- 1258 • For S-MEME we employ $\gamma_k = \frac{0.345}{(1+3(k-1))}$ and $K = 10$ and use $s_1^\pi(x) = s_{1-\epsilon}^\pi(x)$ with
 1259 $\epsilon = 0.02$ as discussed in Sec. 4.

1261 **Local Flow Expansion.** The models used act on a 2-dim state (x_1, x_2) , of which is shown only the x_1
 1262 coordinate in the process-level figures reported in Sec. 6. Since we use as oracle AM, which requires
 1263 differentiable gradient, we consider a binary verifier (shown in Fig. 5c in grey), which we smoothen,
 1264 thus rendering it differentiable and approximate. Notice that differentiability is not required by FE,
 1265 but is rather an implementation detail due to the specific oracle used (i.e., AM (Domingo-Enrich
 1266 et al., 2024), see Sec. F for further details). In particular, there exist several analogous oracles that do
 1267 not require function differentiability (e.g., Fan et al., 2023).

- 1269 • For L-FE we employ $K = 8$, $\lambda_t = 0$ if $t > 1 - 0.015$, and proportional with the process
 1270 variance, i.e., $\lambda_t = \sqrt{2(\kappa_t(\frac{\dot{\omega}_t}{\omega_t}\kappa_t - \dot{\kappa}_t))}$, otherwise; $\gamma_k = 0.3$, $\eta_k = 0.1$.
- 1271 • For FDC we use $K = 8$, $\gamma_k = 0.06$ and use $s_1^\pi(x) = s_{1-\epsilon}^\pi(x)$ with $\epsilon = 0.02$ as discussed in
 1272 Sec. 4.

1274 **G.2 CONFORMER VENDI**
 1275

1276 We begin with a detailed explanation of our diversity metric: conformer VENDI. In general, VENDI
 1277 (Friedman & Dieng, 2022) is a diversity metric operating on arbitrary inputs based on a pairwise
 1278 distance kernel $k : \mathcal{X} \times \mathcal{X} \rightarrow [0, 1]$. For a list of inputs x_1, \dots, x_n and a symmetric pairwise distance
 1279 kernel k , VENDI is defined as:

$$1281 \quad 1282 \quad 1283 \quad 1284 \quad VS(x_1, \dots, x_n) = \exp \left(- \sum_{i=1}^n \lambda_i \log \lambda_i \right) \quad (54)$$

1285 where λ_i are eigenvalues of the distance matrix K with $K_{ij} = k(x_i, x_j)$. In our work, we use a
 1286 molecular fingerprinting method combined with a kernel simply defined as the Euclidean distance
 1287 between fingerprints, thereby inducing a kernel on molecules themselves. The particular fingerprinting
 1288 method is defined as the sorted list of pairwise atomic distances. Formally, for a molecule with
 1289 N atoms at positions a_1, \dots, a_N we first compute the matrix of pairwise distances $A_{ij} = \|a_i -$
 1290 $a_j\|_2$, $1 \leq i < j \leq N$, which is then sorted as $\tilde{A}_{i_1 j_1} \dots \tilde{A}_{i_{N(N-1)/2} j_{N(N-1)/2}}$ yielding the fingerprint
 1291 $\tilde{A} \in \mathbb{R}^{N(N-1)/2}$.

1292 **G.3 PCA PROJECTION FOR FIG. 5D**
 1293

1294 In this section we explain the dimensionality reduction method used to generate the plot in 5d. We first
 1295 generated 25000 molecules from both the pre-trained model π^{pre} (yielding D^{pre}) and the fine-tuned

1296 model π^K (yielding $D^{\text{finetuned}}$), which was computed by the L-FE algorithm on π^{pre} for $K = 5$
 1297 iterations with $\alpha = 9$. We then fingerprinted each set of molecules using the method described above,
 1298 and fit a 1-dim PCA on the fingerprints for D^{pre} using SCIKIT-LEARN (Pedregosa et al., 2011), which
 1299 was then used to transform both D^{pre} and $D^{\text{finetuned}}$ into 1-dimensional vectors. Fig. 5d corresponds
 1300 to a histogram plot of each of the resulting sets of vectors.
 1301

1302 G.4 VALIDITY COMPUTATION IN MOLECULAR EXPERIMENTS

1303 In the context of our experiments on molecules the concept of validity is defined through a pipeline of
 1304 several checks, defined below. Our validity function passes through each one sequentially, returning
 1305 an invalid result if any fail, and a valid result only if all checks pass.
 1306

- 1307 1. First, we attempt to sanitize each molecule using RDKit’s (RDKit) CHEM.SANITIZEMOL
 1308 function. As an added check, we test if it is possible to convert the molecule to and back
 1309 from SMILES (Weininger, 1988) notation.
- 1310 2. We then iterate over each atom in the molecule, checking for any implicit hydrogens (our
 1311 model must generate explicit hydrogens as FlowMol (Dunn & Koes, 2024) does) or any
 1312 radical electrons which would make the molecule invalid.
- 1313 3. Finally we perform our weak verifier check, filtering out molecules for which any two atoms
 1314 are closer than 0.975Å. Details on this weak verifier are explained below.
 1315

1316 The final validity check is evaluate the weak verifier on molecules that pass the previous steps. The
 1317 weak verifier itself is evaluated by first computing the vector of pairwise distances between atoms
 1318 \tilde{A} (see discussion in Section G.2 above), then taking the minimum element \tilde{A}_0 and checking if it
 1319 is lower than 0.975Å, in which case a molecule is classified as invalid. Including this check in the
 1320 validity function guarantees by construction that the weak verifier satisfies Definition 2, since failing
 1321 the weak verifier check implies failing the validity check as well.
 1322

1323 G.5 PRACTICAL DETAILS FOR EXPERIMENTS ON MOLECULES

1324 In this section we discuss the practical choices behind the molecular design experiments discussed in
 1325 Section 6. We start with a discussion of hyperparameter settings, followed by some implementation
 1326 techniques adapting the verifier feedback for a first-order solver, and finally discuss hardware and
 1327 platform used for training.
 1328

1329 G.5.1 HYPERPARAMETER CHOICES FOR EXPERIMENTS ON QM9

1330 For our experiments on small molecules from the QM9 dataset, we first use the FlowMol CTMC
 1331 model from Dunn & Koes (2024) trained on the QM9 dataset as a pre-trained model. We run each
 1332 algorithm (L-FE and FDC) with the following parameters:
 1333

- 1334 • $K = 5$ iterations
- 1335 • Regularization strength of $\alpha = 9$
- 1336 • Decreasing stepsize of $\gamma_k = \frac{\gamma_0}{1+k}$ with $\gamma_0 = 0.00001$
- 1337 • For the trajectory reward weighting (L-FE only) we use $\lambda_t = \sigma_t = \sqrt{2\kappa_t(\frac{\omega}{\omega}\kappa_t - \dot{\kappa}_t)}$,
 1338 ensuring $\lambda_t \rightarrow 0$ as $t \rightarrow 1$ for stability as discussed at the end of section 4
- 1339 • For both, we clip the score near the end of the trajectory as $s_t^\pi = s_{\min\{t,1-\epsilon\}}^\pi$ for $\epsilon = 0.005$.
- 1340 • We fix the number of atoms in generated molecules (for model training and metric calcula-
 1341 tion) to 10, in order to simplify metric calculations.
- 1342
- 1343
- 1344

1345 When using Adjoint Matching (AM) (Domingo-Enrich et al., 2024) to implement the subroutines of
 1346 any algorithm using the QM9 FlowMol model we use $N = 4$ iterations, we sample a batch of $m = 4$
 1347 trajectories of length 40 at each iteration and update the parameters θ using Adam Kingma & Ba
 1348 (2015) with a learning rate of 0.000055. We note that since FlowMol CTMC is a mixed categorical and
 1349 continuous flow model, we only use AM to update the parameters corresponding to the continuous
 outputs of the model, i.e., the atom positions.

1350
1351**G.5.2 HYPERPARAMETER CHOICES FOR EXPERIMENTS ON GEOM**1352
1353
1354
1355
1356
1357
1358

In order to test the performance of our model in a more practical setting, we performed additional experiments using the GEOM dataset. We again use a FlowMol CTMC model from Dunn & Koes (2024) as a pre-trained model, however this time using checkpoints from training on the GEOM dataset. Note that for simpler hyperparameter search we use the reparametrization discussed in section H. The optimal parameter set for each algorithm (L-FE, G-FE, NSE, and FDC) is not identical in this setting, therefore we first report the hyperparameters in common before listing the differences for each algorithm below:

1359

Common hyperparameters for L-FE, G-FE, NSE, FDC:1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370

- $K = 3$ iterations
- Constant (adjusted) stepsize $\tilde{\gamma}_k = \tilde{\gamma}_0$, although the magnitude $\tilde{\gamma}_0$ differs for each algorithm
- For the trajectory reward weighting (L-FE, G-FE and NSE) we use $\lambda_t = \sigma_t = \sqrt{2\kappa_t(\frac{\dot{\omega}}{\omega}\kappa_t - \dot{\kappa}_t)}$, ensuring $\lambda_t \rightarrow 0$ as $t \rightarrow 1$ for stability as discussed at the end of section 4
- For all methods, we clip the score near the end of the trajectory as $s_t^\pi = s_{\min\{t,1-\epsilon\}}^\pi$ for $\epsilon = 0.005$.
- We fix the number of atoms in generated molecules (for model training and metric calculation) to 30, in order to simplify metric calculations.

1371
1372**Per-algorithm hyperparameter variations:**1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384

- L-FE:
 - $\beta = 0.4$
 - $\tilde{\gamma}_k = 0.0005$ (constant)
 - $\eta_k = 5.0$ (constant)
- NSE:
 - $\beta = 0.0$
 - $\tilde{\gamma}_k = 0.0002$ (constant)
- FDC:
 - $\beta = 0.9$
 - $\tilde{\gamma}_k = 0.0005$ (constant)

1385
1386
1387
1388
1389
1390

When using Adjoint Matching (AM) (Domingo-Enrich et al., 2024) to implement the subroutines of any algorithm using the GEOM FlowMol model we use $N = 4$ iterations, we sample a batch of $m = 1$ trajectories of length 40 at each iteration and update the parameters θ using Adam Kingma & Ba (2015), with a learning rate of 0.0001. We note that since FlowMol CTMC is a mixed categorical and continuous flow model, we only use AM to update the parameters corresponding to the continuous outputs of the model, i.e., the atom positions.

1391
1392**G.5.3 SMOOTHING THE WEAK VERIFIER**1393
1394
1395
1396
1397

Since we use Adjoint Matching for all fine-tuning tasks we need all rewards to be differentiable. While our weak verifier is formally defined as $v(x) = 1 \iff x$ respects the minimum atom separation bound of 0.975Å, we use the following differentiable approximation using a sigmoid soft indicator function:

1398
1399
1400
1401

$$v(x) = \frac{1}{N(N-1)/2} \sum_{i=1}^{N(N-1)/2} \frac{\exp(\tilde{A}_i - 0.975)}{\exp(\tilde{A}_i - 0.975) + 1} \quad (55)$$

1402
1403

where \tilde{A}_i are the pairwise atomic distances introduced in Section G.2 above. This alternative verifier is differentiable and provides gradient feedback everywhere and therefore can be used in Adjoint Matching.

1404 **G.5.4 ABLATION STUDY**
1405

1406 We report an ablation study of the key hyperparameters α , γ_k , and η_k . Notice first that since L-FE is
1407 a generalisation of both NSE and G-FE, we recover NSE by setting $\eta_k = 0$, and recover G-FE by
1408 instead setting $\alpha = 0$. The following plot shows a comparison of the Pareto fronts for each method,
1409 all compared against FDC. Furthermore, at the end of this section, we report results of running the
1410 projection step alone (effectively setting $\gamma_k = 0$).
1411

1433
1434 **Figure 7: Comparison of different parametrization of L-FE, G-FE, NSE, FDC, for $K = 3$.** We
1435 compute Conformer Vendi and validity over 5000 samples, and average results over 8 runs for each
1436 parameterization with 8 different seeds.
1437

1438 In Fig. 7 we report all the Pareto dominant points chosen for each method evaluated in the following
1439 ranges of hyperparameters (using the reparametrized notation from Appendix H):
1440

- β : 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95
- $\tilde{\gamma}_k$ (constant): 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.001
- η_k (constant): 0.0, 0.1, 0.5, 1.0, 2.0, 5.0

1446 For each combination of the hyperparameters above, we run $K = 3$ iterations of each method
1447 (L-FE, G-FE and NSE) and average the results across 8 seeds. Conformer Vendi and validity are
1448 always computed for batches of 5000 samples. For all other hyperparameters refer to the previous
1449 section G.5.2 discussing general hyperparameter choices for the GEOM model. To build the plot
1450 above, we simply drop all points that are Pareto dominated (i.e. same/greater Conformer Vendi and
1451 same/greater validity) by some other point, and plot the remaining points. We also drop all points with
1452 Conformer Vendi lower than the pre-trained model. The results shown in Fig. 7 clearly demonstrate
1453 the ability of each method to trade off validity for higher diversity (measured by Conformer Vendi).
1454 However notice that only G-FE and L-FE can significantly increase validity due to their use of verifier
1455 information. Overall, notice that both L-FE and G-FE outperform all other methods almost uniformly,
1456 and NSE uniformly outperforms FDC (both unconstrained exploration algorithms). L-FE is especially
1457 effective at retaining or even increasing validity: it significantly dominates all other methods in terms
1458 of validity in the range of 475 to 550 Conformer Vendi (top left of Fig. 7).
1459

1458 **G.5.5 TABLES OF RESULTS**
1459

1460 We report the numerical results (value and confidence interval) for each point in Fig. 7 in the tables
 1461 below. For each method we report the mean and confidence interval corresponding to each point
 1462 from left to right, and report the parameterization (β , $\tilde{\gamma}_0$ and η if applicable) used to generate the
 1463 point. We acknowledge the size of the confidence intervals increases drastically in the regime of more
 1464 exploratory points (higher Conformer Vendi): increasing stability of exploration methods in that
 1465 regime remains an open problem. Still, we note that L-FE dominates other methods most significantly
 1466 when the Conformer Vendi increase is modest (less than 550 Conformer Vendi), and in that regime
 1467 the confidence intervals are reasonably concentrated.

1468 **Table 1: Values for L-FE reported in Fig 7 with 95% confidence intervals**
1469

β	$\tilde{\gamma}_0$	η_0	Mean Validity (95% CI)	Mean Conformer Vendi (95% CI)
0.3	0.0002	5.0	0.89 (0.87 to 0.91)	481.35 (460.24 to 500.42)
0.6	0.0005	5.0	0.85 (0.79 to 0.89)	500.11 (460.72 to 546.91)
0.4	0.0005	5.0	0.83 (0.76 to 0.89)	519.05 (454.45 to 585.99)
0.1	0.0004	5.0	0.82 (0.70 to 0.90)	529.47 (465.92 to 629.29)
0.2	0.0004	5.0	0.74 (0.53 to 0.88)	531.90 (452.14 to 633.92)
0.2	0.0005	5.0	0.70 (0.53 to 0.86)	563.75 (472.19 to 683.79)
0.2	0.0004	2.0	0.68 (0.50 to 0.83)	581.26 (467.44 to 728.66)
0.3	0.0005	5.0	0.68 (0.46 to 0.85)	796.64 (475.55 to 1371.21)
0.2	0.0005	2.0	0.65 (0.43 to 0.84)	831.91 (496.49 to 1423.91)
0.1	0.0004	2.0	0.62 (0.39 to 0.82)	900.08 (515.31 to 1591.61)
0.1	0.0005	5.0	0.60 (0.33 to 0.83)	1382.46 (516.37 to 2493.28)
0.4	0.0005	0.5	0.58 (0.31 to 0.81)	1682.32 (560.86 to 3320.25)
0.1	0.0005	2.0	0.37 (0.13 to 0.64)	1956.33 (684.10 to 3322.31)
0.1	0.0005	0.5	0.37 (0.12 to 0.64)	2068.02 (866.88 to 3366.56)

1485 Values are mean (95% confidence interval). Confidence intervals computed using bootstrapping and shown to
 1486 two decimal places.

1487 **Table 2: Values for G-FE reported in Fig 7 with 95% confidence intervals**
1488

$\tilde{\gamma}_0$	η_0	Mean Validity (95% CI)	Mean Conformer Vendi (95% CI)
0.0002	0.5	0.76 (0.69 to 0.83)	485.65 (442.52 to 524.71)
0.0005	5.0	0.69 (0.46 to 0.86)	890.19 (434.36 to 1731.52)
0.0004	0.5	0.57 (0.33 to 0.79)	1004.79 (531.74 to 1790.78)
0.0004	1.0	0.52 (0.27 to 0.77)	1125.94 (521.23 to 2182.77)
0.0004	0.1	0.48 (0.22 to 0.72)	1676.67 (533.47 to 2888.04)
0.0005	1.0	0.46 (0.22 to 0.71)	1706.53 (664.86 to 3100.05)
0.0005	2.0	0.35 (0.12 to 0.60)	1898.72 (796.05 to 3221.32)
0.0005	0.5	0.31 (0.08 to 0.56)	2245.62 (1135.37 to 3500.43)

1499 Values are mean (95% confidence interval). Confidence intervals computed using bootstrapping and shown to
 1500 two decimal places.

1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

1512 Table 3: Values for NSE reported in Fig 7 with 95% confidence intervals
1513

β	$\tilde{\gamma}_0$	Mean Validity (95% CI)	Mean Conformer Vendi (95% CI)
0.0	0.0002	0.74 (0.68 to 0.81)	518.92 (505.70 to 531.90)
0.4	0.0004	0.68 (0.58 to 0.77)	529.85 (484.34 to 580.24)
0.3	0.0004	0.68 (0.55 to 0.79)	537.83 (491.25 to 588.98)
0.1	0.0004	0.60 (0.42 to 0.77)	639.04 (501.23 to 857.00)
0.2	0.0004	0.57 (0.37 to 0.74)	902.23 (534.29 to 1559.95)
0.1	0.0005	0.48 (0.25 to 0.69)	1678.29 (669.60 to 3024.30)
0.0	0.0005	0.19 (0.02 to 0.40)	2151.14 (1256.65 to 3162.47)

1522 Values are mean (95% confidence interval). Confidence intervals computed using bootstrapping and shown to
1523 two decimal places.
15241525 Table 4: Values for FDC reported in Fig 7 with 95% confidence intervals
1526

β	$\tilde{\gamma}_0$	Mean Validity (95% CI)	Mean Conformer Vendi (95% CI)
0.4	0.0001	0.71 (0.67 to 0.74)	484.34 (461.47 to 506.75)
0.5	0.0002	0.71 (0.63 to 0.77)	496.06 (467.29 to 523.97)
0.7	0.0002	0.70 (0.64 to 0.75)	502.49 (483.86 to 526.78)
0.5	0.0001	0.69 (0.65 to 0.74)	505.84 (468.66 to 538.20)
0.2	0.0003	0.67 (0.58 to 0.77)	539.29 (504.70 to 585.65)
0.9	0.001	0.56 (0.49 to 0.62)	601.06 (531.19 to 699.07)
0.3	0.0004	0.54 (0.34 to 0.72)	664.45 (531.77 to 847.98)
0.5	0.0005	0.46 (0.30 to 0.66)	674.63 (544.65 to 824.76)
0.4	0.0005	0.41 (0.25 to 0.58)	768.98 (599.68 to 975.95)
0.1	0.0004	0.41 (0.24 to 0.56)	1084.21 (574.88 to 2062.43)
0.1	0.0005	0.40 (0.15 to 0.66)	1774.38 (828.37 to 2904.44)
0.2	0.0005	0.30 (0.07 to 0.56)	1948.54 (954.87 to 3004.34)

1540 Values are mean (95% confidence interval). Confidence intervals computed using bootstrapping and shown to
1541 two decimal places.
15421543

G.5.6 ABLATION: PURE EXPAND AND PROJECT STEPS

15441545 In order to isolate the effects of the EXPAND and PROJECT steps, we report the result of running
1546 each for $K = 3$ iterations in Fig. 8. Fig. 8 shows the Pareto optimal points of the following
1547 hyperparameter combinations:

1548 EXPAND step (NSE, black circles in Fig. 8)

1549

- β : 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95
- $\tilde{\gamma}_0$: 0.0001, 0.0002, 0.0003, 0.0004, 0.0005

1553 PROJECT step (green circles in Fig. 8)

1554

- $\eta_k = \eta_0$ constant set to: 0.0, 0.1, 0.5, 1.0, 2.0, 5.0

1556 We remark again that running only the EXPAND step without the PROJECT step is equivalent to
1557 running NSE. For each parameter combination above we average results over 8 seeds. Notice that the
1558 EXPAND and PROJECT steps have the reverse effect of each other: the EXPAND step trades off
1559 validity for increased diversity (Conformer Vendi) where as the PROJECT step increases validity at
1560 a cost of marginally reduced diversity.
15611562
1563
1564
1565

Figure 8: Illustrating the result of isolating the EXPAND step (NSE) and the PROJECT step

G.5.7 COMPARISON WITH INFERENCE TIME FILTERING

In this section, we consider an additional comparison of the proposed methods against a baseline corresponding to FDC plus inference-time filtering. We report the results in Fig. 9 below. In particular, we consider the following algorithms:

- FDC (De Santi et al., 2025b) + inference-time filtering (blue in Fig. 9)
- NSE (Alg. 3 + inference-time filtering (black in Fig. 9)
- L-FE

In particular, for the first two cases above, given a model fine-tuned using FDC or NSE, we filter the samples generated at inference time by using the same weak verifier employed by L-FE. We note that this schemes induce a closed-form solution formally mathematically equivalent to conditional sampling, with the condition that the samples are in Ω_v . Thus, this schemes effectively amounts to simulating a perfect projection step, albeit at the price of costly per-sample inference-time filtering (e.g., via rejection sampling). We calculate the Conformer Vendi and validity on each set of 5000 molecules, and report the results in Fig. 9 below. As one can notice, NSE + filtering shows superior performance compared against FDC + filtering, while L-FE shows slightly less validity than NSE + filtering, while being significantly cheaper at sampling time, which is a needed requirement for certain generative modeling applications. Compared with FDC + filtering, L-FE shows superior exploration capabilities and slightly lower validity. Nonetheless, it might be possible to parametrize L-FE to achieve lower diversity and higher validity, similarly to FDC + filtering. In particular, these two algorithms theoretically have the same closed-form solutions, and the concrete differences amount to the high per-sample cost of inference-time filtering, and the superior exploration capabilities of L-FE and NSE over FDC likely due to noised space exploration, as discussed in Sec. 2.

Each point in Fig. 9 corresponds to a different Pareto optimal parametrization (β , γ and η if applicable) for each method. Each method is run for $K = 3$ iterations, with results averaged across 8 seeds. See section G.5.2 for details about other hyperparameters.

Figure 9: L-FE compared to NSE and FDC with inference-time filtering for different parameterizations. We note that L-FE maintains competitive performance with both methods despite having no filter applied to the output samples, and NSE still outperforms FDC when both are corrected with an inference-time filter.

G.5.8 HARDWARE

We ran all of our experiments using a single NVIDIA RTX 2080Ti GPU per run (QM9 experiments) or a single NVIDIA RTX 4090 GPU per run (GEOM experiments).

1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

1674

H UPDATE STEP REPARAMETRIZATION

1675

1676 Recall the expression for the gradient of running costs in the Local Flow Expander algorithm (Alg. 2,
1677 equation 18):

1680
$$\lambda_t \nabla_{x_t} \delta \mathcal{G}(p_t^\pi) = \lambda_t \nabla_{x_t} \delta(\mathcal{H}(p_t^\pi) - \alpha_t \mathcal{D}_{\text{KL}}(p_t^\pi || p_t^{\text{pre}})) \quad (56)$$
1681

1682
$$= \lambda_t (-s_t^\pi + \alpha(s_t^\pi - s_t^{\text{pre}})) \quad (57)$$
1683

1684
$$= -\lambda_t ((\alpha + 1)s_t^\pi - \alpha s_t^{\text{pre}}) \quad (58)$$

1685 which are then multiplied by the stepsize γ_k at each iteration, resulting in the following expression
1686 being plugged into the Adjoint Matching algorithm as the gradient of the running cost:

1687
$$\nabla f_t = -\gamma_k \lambda_t ((\alpha + 1)s_t^\pi - \alpha s_t^{\text{pre}}). \quad (59)$$
1688

1689 While α has an intuitive interpretation as the regularization strength in objective 7, it has the
1690 unfortunate side-effect of scaling the magnitude of the running cost which could potentially have the
1691 opposite effect. Indeed, notice that as $\alpha \rightarrow \infty$ the running costs explode. For practical applications it
1692 seems more suitable to reparametrize the running cost as follows:

1693
$$\nabla f_t = -\tilde{\gamma}_k \lambda_t (s_t^\pi - \beta s_t^{\text{pre}}) \quad (60)$$
1694

1695 for $\beta = \frac{\alpha}{\alpha+1} \in [0, 1]$, absorbing a $(\alpha + 1)$ factor into the new stepsize $\tilde{\gamma}_k$:

1696
$$\tilde{\gamma}_k = (\alpha + 1)\gamma_k. \quad (61)$$
1697

1698 Note that this parametrization is as expressive as before but is easier to tune as it disentangles the
1699 effect of the stepsize and the regularization strength.

1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727