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ABSTRACT

Flow and diffusion models are typically pre-trained on limited available data (e.g.,
molecular samples), covering only a fraction of the valid design space (e.g., the full
molecular space). As a consequence, they tend to generate samples from only a nar-
row portion of the feasible domain. This is a fundamental limitation for scientific
discovery applications, where one typically aims to sample valid designs beyond
the available data distribution. To this end, we address the challenge of leveraging
access to a verifier (e.g., an atomic bonds checker), to adapt a pre-trained flow
model so that its induced density expands beyond regions of high data availability,
while preserving samples validity. We introduce formal notions of strong and
weak verifiers and propose algorithmic frameworks for global and local flow
expansion via probability-space optimization. Then, we present Flow Expander
(FE), a scalable mirror descent scheme that provably tackles both problems by
verifier-constrained entropy maximization over the flow process noised state space.
Next, we provide a thorough theoretical analysis of the proposed method, and state
convergence guarantees under both idealized and general assumptions. Ultimately,
we empirically evaluate our method on both illustrative, yet visually interpretable
settings, and on a molecular design task showcasing the ability of FE to expand
a pre-trained flow model increasing conformer diversity while preserving validity.

1 INTRODUCTION

Figure 1: Limited coverage of the
valid design space leads to gen-
erating sub-optimal samples for
downstream optimization tasks.

Recent years have seen major progress in large-scale generative
modeling. In particular, flow (Lipman et al., 2022; 2024) and
diffusion models (Sohl-Dickstein et al., 2015; Song & Ermon,
2019; Ho et al., 2020) now produce high-fidelity samples
and have been applied successfully across domains such as
chemistry (Hoogeboom et al., 2022), biology (Corso et al.,
2022), and robotics (Chi et al., 2023). These models are
typically trained via divergence minimization objectives, such
as score (Song et al., 2020) or flow matching (Lipman et al.,
2022), to approximate the distribution induced by training data
(e.g., molecular samples) which typically only cover a tiny subset
of the full valid design space. As a consequence, pre-trained
generative models concentrate their density over a narrow region
of valid designs, and are unlikely to generate valid samples
beyond areas of high data availability. This is a fundamental limitation for scientific discovery tasks
such as material design and drug discovery, where one typically wishes to generate valid designs
beyond the data distribution. In particular, limited coverage of the valid design space leads to an
irreducible sub-optimality gap in generative optimization (De Santi et al., 2025b; Uehara et al.,
2024b; Li et al., 2024) problems, where one aims to generate samples maximizing a task-specific
utility function f : X → R (e.g., binding affinity for protein docking), as illustrated in Figure 1.

Prior work has addressed this issue through manifold-exploration schemes that re-balance a pre-
trained model’s density over diverse, promising modes (e.g., De Santi et al., 2025a;b; Celik et al.,
2025). However, the validity signal learned by a pre-trained flow model diminishes outside high-data
regions. Therefore, seemingly promising low-probability modes that such methods would further
explore, could turn out to be invalid. This highlights the need to inject further validity information
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into the exploration process via an external verifier (Botta et al., 2025; Wang et al., 2024): formally, a
function v : X → {0, 1} that provides data-specific validity signal. Luckily, there exists more-or-less
accurate verifiers for a wide variety of real-world discovery applications, such as atomic-bond check-
ers for drug discovery (e.g., O’Boyle et al., 2011), protein folding predictors for protein design (e.g.,
Jumper et al., 2021), as well as physics-based simulators for mechanical and material design (e.g.,
Kresse & Furthmüller, 1996). Motivated by these insights, in this work we advance flow and diffusion-
based design space exploration methods (De Santi et al., 2025a;b) by asking the following question:

How can we leverage a given verifier to adapt a flow or diffusion model to generate designs beyond
high data-availability regions while preserving validity?

Answering this would contribute to the algorithmic-theoretical foundations of generative exploration,
and enable applications of flow-based exploration schemes in diverse scientific discovery tasks.
Our approach We address this challenge by formally introducing two verifier types. A strong
verifier is a function v : X → {0, 1} that characterizes validity exactly (i.e., v(x) = 1 iff x is valid).
A weak verifier instead acts as a filter: it rejects certain invalid designs but misses others (formally
v(x) = 0 =⇒ x is invalid). While the former is arguably rare in scientific discovery applications,
the latter is ubiquitous. For instance, most molecular checkers examine specific constraints (e.g.,
atomic bonds, graph topology, or conformer geometry), ruling out certain invalid samples, but without
guaranteeing validity. We show that strong verifiers allow to adapt a pre-trained model to globally
expand over the entire valid design space. While this is not the case for weak verifiers, they can
also be leveraged for a more conservative, local expansion. To this end, we introduce mathematical
frameworks for global and local flow expansion via verifier-constrained entropy maximization (Sec.
3). Next, we propose Flow Expander (FE), a scalable mirror descent scheme acting over the flow
process noised state space that provably tackles both problems by sequentially alternating expansion
and projection steps (Sec. 4). We provide theoretical guarantees for FE, showing convergence results
under both idealized and general assumptions via mirror-flow theory (Sec. 5). Ultimately, we evaluate
our method on both illustrative, yet visually interpretable settings, and on a molecular design task,
showcasing the ability of FE to expand a pre-trained flow model to increase molecular conformer
diversity while better preserving validity than current flow-based exploration schemes (Sec. 6).
Our contributions In this work, we provide the following contributions:

• A formalization of Global and Local Flow Expansion via verifier-constrained entropy maximization,
which formally capture the practically relevant problem of expanding the coverage of a pre-trained
flow or diffusion model by integrating information from an available strong or weak verifier (Sec. 3).

• Flow Expander (FE), a principled probability-space optimization scheme that provably solves both
problems introduced via constrained entropy maximization over the flow noised state space (Sec. 4).

• A theoretical analysis of the proposed algorithm providing convergence guarantees under both
simplified and realistic assumptions via mirror-flow theory (Sec. 5).

• An experimental evaluation of FE, showcasing its practical relevance on both visually interpretable
illustrative settings, and on a molecular design task aiming to increase conformer diversity. (Sec. 6).

2 BACKGROUND AND NOTATION

Mathematical Notation. Using X ⊆ Rd to refer to the design space (an arbitrary set), we denote
the set of Borel probability measures on X with P (X ), and the set of functionals over the set of
probability measures P (X ) as F (X ). Given an integer N , we define [N ] := {1, . . . , N}.
Flow-based Generative Modeling. Generative models aim to approximately replicate and sample
from a data distribution pdata. Flow models tackle this problem by modeling a flow, which incre-
mentally transforms samples X0 = x0 from a source distribution p0 into samples X1 = x1 from
the target distribution pdata (Lipman et al., 2024; Farebrother et al., 2025). Formally, a flow is a
time-dependent map ψ : [0, 1]× Rd → R such that ψ : (t, x)→ ψt(x). A generative flow model is
then defined as a continuous-time Markov process {Xt}0≤t≤1 generated by applying a flow ψt to X0,
i.e. Xt = ψt(X0), t ∈ [0, 1] such that X1 = ψ1(X0) ∼ pdata. In the context of flow modeling, the
flow ψ is defined by a velocity field u : [0, 1]× Rd → Rd, which is a vector field implicitly defining
ψ via the following ordinary differential equation (ODE), typically referred to as flow ODE:

d

dt
ψt(x) = ut(ψt(x)) , ψ0(x) = 0 (1)

We write {pt}t∈[0,1 to refer to the probability path of marginal densities of the flow model, i.e.,
Xt = ψt(X0) ∼ pt, and denote by pu the probability path of marginal densities induced by the
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(a) Global flow expansion (b) Strong and weak verifier sets

Figure 2: (2a) Pre-trained and globally expanded flow model inducing densities ppre1 and optimal
density p∗1. (2b) Valid design space Ω, strong and weak verifiers Ωvi , i ∈ [3], and their compositions.

velocity field u. In practice, Flow Matching (FM) (Lipman et al., 2024) can be used to estimate a
velocity field uθ s.t. the probability path puθ satisfies puθ

0 = p0 and puθ
1 = pdata, where p0 denotes

the source distribution, and pdata the target data distribution. Typically FM is rendered tractable by
defining put as the marginal of a conditional density put (·|x0, x1), e.g.,:

Xt | X0, X1 = κtX0 + ωtX1 (2)

where κ0 = ω1 = 1 and κ1 = ω0 = 0 (e.g. κt = 1 − t and ωt = t). Then uθ can be learned by
regressing onto the conditional velocity field u(·|x1) (Lipman et al., 2022). Interestingly, diffusion
models (Song & Ermon, 2019) (DMs) admit an equivalent ODE-based formulation with identical
marginal densities to their original SDE dynamics (Lipman et al., 2024, Chapter 10). Consequently,
while in this work we adopt the notation of flow models, our contributions carry over directly to DMs.

Continuous-time Reinforcement Learning. We formulate continuous-time reinforcement learning
(RL) as a specific class of finite-horizon optimal control problems (Wang et al., 2020; Jia & Zhou,
2022; Treven et al., 2023; Zhao et al., 2024). Given a state space X and an action space A, we
consider the transition dynamics governed by the following ODE:

d

dt
ψt(x) = at(ψt(x)) (3)

where at ∈ A is a selected action. We consider a state space X := Rd × [0, 1], and denote by
(Markovian) deterministic policy a function πt(Xt) := π(Xt, t) ∈ A mapping a state (x, t) ∈ X to
an action a ∈ A such that at = π(Xt, t), and denote with pπt the marginal density at time t induced
by policy π. Considering the continuous-time reinforcement learning formulation above, a velocity
field upre can be interpreted as an action process apret := upre(Xt, t), where apret is determined by a
continuous-time RL policy via apret = πpre(Xt, t) (De Santi et al., 2025a). Therefore, we can express
the flow ODE induced by a pre-trained flow model by replacing at with apre in Eq. 3, and denote the
pre-trained model by its policy πpre, which induces a density ppre1 := pπ

pre

1 approximating pdata.

3 PROBLEM STATEMENT: GLOBAL AND LOCAL FLOW EXPANSION

Given a pre-trained flow model πpre inducing a density ppre1 that covers sufficiently only a limited
region of the valid design space1 Ω ⊆ Rd (e.g., a molecular space, see Fig. 1), we aim to adapt it
by leveraging a verifier (e.g., an atomic bonds checker) to compute a model π∗, inducing a process:

d

dt
ψt(x) = a∗t (ψt(x)) with a∗t = π∗(x, t), (4)

such that its density p∗1 := pπ
∗

1 is more uniformly distributed over the valid design space than
ppre1 . To this end, we first denote by verifier a scalar function v : X → {0, 1}, and indicate by
Ωv = {x ∈ X : v(x) = 1} the verifier-set induced by v. Next, we classify any verifier v as strong
or weak depending on the relationship between its verifier-set Ωv and the valid design space Ω.

Definition 1 (Strong Verifier). We denote by strong verifier a function v : X → {0, 1} s.t. Ωv = Ω.

By Def. 1, v(x) = 1 ⇐⇒ x ∈ Ω, hence a strong verifier fully characterizes the valid design space Ω.

1In this work, we consider the valid design space to be an unknown, yet bounded set.
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3.1 AN IDEALIZED PROBLEM: GLOBAL FLOW EXPANSION VIA STRONG VERIFIERS

Given a pre-trained flow model πpre and a strong verifier v : X → {0, 1} as defined within Def.
1, one can capture the problem of computing a new flow model π∗ such that its marginal density
p∗1 := pπ

∗

1 covers Ω uniformly via the following verifier-constrained entropy maximization problem.

Global Flow Expansion via Verifier-Constrained Entropy Maximization

π∗ ∈ argmax
π:p∗

0=ppre
0

H(pπ1 ) subject to s.t. pπ1 ∈ P (Ωv) (5)

In this formulation, the constraint pπ0 = ppre0 enforces that the marginal density at t = 0 matches the
pre-trained model marginal, andH ∈ F (Ωv) denotes the differential entropy functional expressed as:

H(µ) = −
∫

dµ log
dµ

dx
, µ ∈ P (Ωv) (6)

where Ωv is the bounded verifier-set induced by v. Crucially, Problem 5 computes a flow model π∗

inducing the density pπ
∗

1 with maximum entropy among all densities supported on Ωv . Therefore, the
optimal density pπ

∗

1 according to Problem 5 corresponds to the uniform density over the entire valid
design space Ω, i.e., pπ

∗

1 = U(Ω) - as uniforms are the entropy-maximizing densities on bounded
sets and Ωv = Ω due to v being a strong verifier. Notably, Problem 5 does not depend on the prior
generative model πpre. In fact, since the strong verifier v fully characterizes the valid design space
Ω, prior information is not required to compute the maximally explorative, yet valid flow model π∗.

Problem 5 provides a sharp data-free objective for verifier-based flow/diffusion model learning, well
capturing the ideal goal of a uniform prior over the valid design space for subsequent use in down-
stream tasks. Nonetheless, as discussed in Sec. 1, strong verifiers are arguably rare in most scientific
discovery applications (e.g., material design, drug discovery). Towards overcoming such limitation, in
the following we sharpen our notion of verifier to one that is ubiquitous in real-world discovery tasks.

3.2 A REALISTIC FRAMEWORK: LOCAL FLOW EXPANSION VIA WEAK VERIFIERS

We first relax the notion of strong verifier introduced in Def. 1 to the following one of weak verifier.
Definition 2 (Weak Verifier). We denote by weak verifier a function v : X → {0, 1} s.t. Ωv ⊃ Ω.

As Fig. 2b illustrates, Def. 2 requires only the one-sided condition v(x) = 0 =⇒ x /∈ Ω; unlike
strong verifiers, it does not guarantee v(x) = 1 =⇒ x ∈ Ω (i.e., v cannot certify membership
in Ω). Instead, it represents a superset Ωv ⊃ Ω and effectively acts as a filter. Moreover, multiple
weak verifiers {vi} can be combined, yielding Ωv =

⋂
i Ωvi , which is typically tighter to Ω for more

diverse verifiers vi, e.g., checking atomic bonds, molecular graph topology, and conformer geometry.

Given this new realistic notion of verifier, the global flow expansion Problem 5 would evidently
no longer compute the desired flow model. In fact, for a weak verifier v it holds Ωv ⊃ Ω, therefore
the optimal flow density p∗ = U(Ωv) would generate invalid designs over Ωv \ Ω, as shown in Fig.
2b. Moreover, weak verifiers typically induce unbounded verifier sets, which would even render
Problem 5 ill-posed. To address these issues, we introduce the local flow expansion problem, which
aims to locally expand the prior flow model πpre by integrating information from both v and πpre.

Local Flow Expansion via KL-regularized Verifier-Constrained Entropy Maximization

π∗ ∈ argmax
π:p∗

0=ppre
0

H(pπ1 )− αDKL(p
π
1∥p

pre
1 ) subject to s.t. pπ1 ∈ P (Ωv) (7)

Here, the weak verifier v acts as a filter preventing the entropy term from driving exploration into
verifier-rejected regions. Since v cannot detect all invalid areas, expansion must remain conservative
and leverage the validity signal encoded in the prior model. This is achieved via the α-weighted KL
divergence between the density pπ1 induced by the fine-tuned model, and ppre1 . Crucially, this term
enforces π∗ to preserve prior validity signal, thus preventing π∗ from allocating density in regions
unlikely according to πpre, even if valid according to the weak verifier. For sufficiently large α, the
density induced by the expanded flow model π∗ stays arbitrarily close to the prior in probability
space - hence local expansion. In practice, the choice of α should reflect the degree of risk-aversion
versus novelty-seeking toward the discovery task at hand, as well as the quality of the weak verifier
v (i.e., how tightly Ωv approximates Ω). Interestingly, in the limit of Ωv → Ω, α should clearly be
set to 0, which naturally retrieves the presented global flow expansion Problem 5 as a sub-case.

4
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4 FLOW-EXPANDER : SCALABLE GLOBAL AND LOCAL EXPANSION VIA
VERIFIER-CONSTRAINED NOISED SPACE ENTROPY MAXIMIZATION

In the following, we propose Flow Expander (FE), which provably solves the global and local flow
expansion problems (see Eq. 5 and 7). To this end, we first lift their formulations from the probability
space associated to the last time-step marginal pπ1 to the entire flow process Qπ = {pπt }t∈[0,1].

Flow Expansion via Verifier-Constrained Noised Space Entropy Maximization

π∗ ∈ argmax
π:pπ

0=ppre
0

L (Qπ) :=

∫ 1

0

λtGt(pπt ) dt subject to E
x∼pπ

1

[v(x)] = 1 (8)

Under this unifying formulation, Gt : P (X )→ R is a functional over densities pπt induced by flow π.
We note that under general regularity assumptions, an optimal policy π∗ for Problem 8 is optimal also
for the global and local flow expansion problems (see Eq. 5 and 7) if the functional G is defined as:

Gt(pπt ) = H(pπt )︸ ︷︷ ︸
Global Flow Expansion

Gt(pπt ) = H(pπt )− αt DKL

(
pπt ∥ p

pre
t

)︸ ︷︷ ︸
Local Flow Expansion (α1 = α)

(9)

Before introducing FE, we first recall the standard notion of first variation of G over a space of proba-
bility measures (cf. Hsieh et al., 2019). A functional G ∈ F (X ), where G : P (X )→ R, has first vari-
ation at µ ∈ P (X ) if there exists a function δG(µ) ∈ F (X ) such that for all µ′ ∈ P (X ) it holds that:

G(µ+ ϵµ′) = G(µ) + ϵ⟨µ′, δG(µ)⟩+ o(ϵ).

where the inner product is an expectation. Given this concept of first variation, FE solves Problem 8 by
computing a process Qk at each iteration k ∈ [K], determined by the following mirror descent step:

(MD Step) Constrained and Regularized Process Surprise Maximization

Qk ∈ argmax
Q:p0=pk−1

0

⟨δL(Qk−1),Q⟩ − 1

γk
DKL

(
Q∥Qk−1

)
s.t. E

x∼p1

[v(x)] = 1 (10)

While the MD step in Eq. 10 might seem abstract, the following Lemma 4.1 hints at a more practical
formulation of the above through the lens of stochastic optimal control (Fleming & Rishel, 2012).
Lemma 4.1 (First Variation of Flow Process Functionals). For objectives defined in the form of Eq.
8, we have:

⟨δL(Qk),Q⟩ =
∫ 1

0

λt E
Q

[
δGt(pkt )

]
dt. (11)

Lemma 4.1 factorizes ⟨δL(Qk−1),Q⟩ into an integral over the flow process of terms ft(x) :=
λtδGt(pkt )(x). Crucially, this time-decomposition allows to rewrite the MD step (Eq. 10) as the fol-
lowing standard constrained control-affine optimal control problem2 (Domingo-Enrich et al., 2024):

Constrained and Regularized Process Surprise Maximization via Fine-Tuning

min
π

E
[∫ 1

0

1

2
∥π(Xt, t)∥2 − ft(Xt, t) dt

]
s.t. E

x∼p1

[v(x)] = 1, with ft(Xt, t) = γtδGt(pkt )(x)

Concretely, we compute a flow πk inducing Qk (Eq. 10) via EXPANDTHENPROJECT (see Alg. 4),
which decouples constrained optimization into sequential expansion and projection steps:
Expansion Step The unconstrained expansion step is performed over the noised state space, which
can be tackled by extending established control (or RL) based methods for fine-tuning with the
running cost ft(Xt, t) = γtδGt(pkt )(x), effectively computing a process Q̃k such that:

Q̃k ∈ argmax
Q:p0=ppre

0

⟨δL(Qk−1),Q⟩ − 1

γk
DKL(Q||Qk−1) (12)

Projection Step Given Q̃k, the projection step adapts the flow π̃k to enforce the constraint in Eq.
10 via reward-guided fine-tuning (e.g., Uehara et al., 2024a, Sec. 8.2):

Qk ∈ argmax
Q:p0=ppre

0

E
x∼p1

[log v(x)]−DKL(Q||Q̃k) (13)

This EXPANDTHENPROJECT scheme provably computes the optimal flow for the MD step in Eq. 10.
2We leave standard dynamical system constraints (e.g., Equation 13 Domingo-Enrich et al., 2024) as implicit.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 EXPANDTHENPROJECT

1: Input: πk−1: current flow model,∇xt
δG: gradients of functional grad., γk: inverse update

step-size, {λt}t∈[0,1]: integral weighting coefficients , v: verifier, ηk: fine-tuning strength
2: Expansion step:

π̃k ← FINETUNINGSOLVER(πk−1,∇xt
δGt, λt, γk) (16)

3: Projection step:
πk ← FINETUNINGSOLVER(πk−1, log v, ηk) (17)

4: Output: Fine-tuned policy πk

Algorithm 2 Flow Expander (FE)

1: Input: πpre : pre-trained flow model, {αt}t∈[0,1] : KL-regularization coefficients, {γk}Kk=1 : inverse
update step-sizes, {λt}t∈[0,1] : integral weighting coefficients, v: verifier, {ηk}Kk=1: projection strength
schedule

2: Init: π0 := πpre

3: for k = 1, 2, . . . ,K do
4: Set:

∇xtδGt(p
k−1
t ) =

{
− sπ

k−1

t Global FE (G-FE)

− sπt − αt (s
π
t − spre

t ) Local FE (L-FE)
(18)

5: Fine-tune πk−1 into πk via Algorithm 4:

πk ← EXPANDTHENPROJECT(πk−1,∇xtδGt, γk, {λt}t∈[0,1], v, ηk)

6: end for
7: Output: policy π := πK

Proposition 1. The EXPANDTHENPROJECT scheme in Alg. 4 solves optimization problem 10, i.e., it
returns a flow model πk inducing a process Qk that is a solution to 10. Formally, the following holds:

Qk ∈ argmax
Q:p0=pk−1

0

⟨δL(Qk−1),Q⟩ − 1

γk
DKL

(
Q∥Qk−1

)
s.t. E

x∼p1

[v(x)] = 1 (14)

Finally we present Flow Expander (FE) in Alg. 2, which effectively approximates the mirror descent
scheme presented above by iteratively applying EXPANDTHENPROJECT. FE operates using trajectory
reward gradients ∇xtδGt(pπt ). In fact, while such rewards are difficult to estimate, their gradients
admit close-form expressions (De Santi et al., 2025a) that can be approximated via available quantities:

∇xδH(pπt ) = −sπt︸ ︷︷ ︸
Global Flow Expansion

∇xtδH(pπt )− αt∇xδDKL

(
pπt ∥ p

pre
t

)
= −sπt − αt

(
sπt − s

pre
t

)︸ ︷︷ ︸
Local Flow Expansion (α1 = α)

(15)

and can simply be plugged into any first-order fine-tuning solver yielding a scalable method. The gradi-
ents in Eq. 15 are expressed in terms of the score function sπt (x) = ∇ log pπt (x), which can be approx-
imated via the score network in the case of diffusion models (De Santi et al., 2025a), and expressed
via a linear transformation of the learned velocity field for flows (Domingo-Enrich et al., 2024):

sπt (x) =
1

κt(
ω̇t

ωt
κt − κ̇t)

(
π(x, t)− ω̇t

ωt
x

)
(19)

Prior work for flow-based exploration relies only on the terminal score sπ1 (De Santi et al., 2025a;b).
Nonetheless, by Eq. 19 the score diverges as t→ 1, creating instabilities. While this can be partially
managed by approximating sπ1 ≈ sπ1−ϵ for ϵ > 0, determining the correct ϵ can be challenging in
practice. Our algorithm, by leveraging score information along the entire flow process, offers a
natural and principled solution to this issue by choosing small λt (e.g., λt = 0, see Eq. 8) for t→ 1.

5 GUARANTEES FOR FLOW-EXPANDER

We aim to show that FE admits provable guarantees ensuring reliable behavior in practice. To this end,
we leverage the flexible framework of constrained mirror descent, a classical optimization method that

6
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(a) Pre-trained samples (b) G-FE vs S-MEME (c) G-FE vs CONSTR (d) Entropy-Validity

(e) G-FE Expansion K=1 (f) G-FE Projection K=1 (g) Entropy evaluation (h) Validity evaluation

Figure 3: (top) Global FE (G-FE) expands the pre-trained flow model πpre(3a) into π∗ (violet, 3b),
increasing coverage (i.e., entropy), while preserving validity (i.e., red ellipse interior). Compared with
the unconstrained exploration S-MEME method, and constrained generation (CONSTR), Global FE
(G-FE) shows best-of-both-worlds behaviour: achieving near-optimal entropy and validity (Fig. 3d).

has recently found successful applications in sampling and generative modeling (Karimi et al., 2024;
De Santi et al., 2025a;b). We analyze two regimes. First, an idealized setting, where each step of Eq.
10 can be computed exactly - leading to sharp step-size prescriptions and fast, polynomial convergence
rates. Then, a realistic setting, where each MD step can only be solved approximately - for which
we show asymptotic convergence to the optimal solution under mild noise and bias assumptions.

Idealized setting. We state that the exact updates case admits finite-time convergence guarantee:

Theorem 5.1 (Convergence guarantee in the idealized process-level setting). Consider the ob-
jective L defined in Equation (8), and let λ⋆ :=

∫ 1

0
λtdt. Let {Qk} be the iterates generated by

Equation (10) with γk = 1/λ⋆ for all k ∈ [K]. Then

L(Q∗)− L(QK) ≤ λ⋆

K
DKL(Q

∗ ∥Qpre) , (20)

where Q∗ ∈ argmaxQ L(Q).

General setting. Recall that Qk is the k-th iterate of FE. In realistic scenarios, however, Eq. 10 can
only be solved approximately, so we interpret the update as approximating the idealized iteration:

Qk
♯ ∈ argmax

Q:p0=pk−1
0

⟨δL(Qk−1),Q⟩ − 1
γkDKL

(
Q ∥Qk−1

)
s.t. E

x∼p1

[v(x)] = 1. (21)

To measure deviations from these idealized iterates, let Tk be the filtration up to step k, and decompose
the oracle into its bias and noise components:

bk := E
[
δL(Qk)− δL(Qk

♯ )
∣∣ Tk] , (22)

Uk := δL(Qk)− δL(Qk
♯ )− bk. (23)

Here, bk captures systematic error while Uk is conditionally mean-zero. Under mild assumptions on
noise and bias (see Assumptions E.1 to E.2), we obtain the following guarantee.

Theorem 5.2 (Convergence guarantee in the general process-level setting (informal)). Suppose
the oracle satisfies finite-variance noise and vanishing bias, and let the step-sizes {γk} follow
the Robbins–Monro rule (

∑
k γk =∞,

∑
k γ

2
k <∞). Then the iterates {Qk} generated by FE

satisfy
Qk ⇀ Q∗ a.s., (24)

where Q∗ ∈ argmaxQ L(Q).
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Figure 4: (top) L-FE (yellow, 4c) expands the pre-trained flow model πpre (green, 4a) over promising
yet verifier-filtered modes, while FDC (blue, 4b) expands πpre over all plausible modes leading to
increased density in invalid regions (left mode in Fig. 4b). (bottom) FE increases visual (4d), and
quantitative diversity (4f), while preserving higher validity than FDC (4e-4g)

6 EXPERIMENTAL EVALUATION

We analyze the ability of Global FE (G-FE) and Local FE (L-FE) to expand flow model densities
while preserving validity of generated samples, and compare their performance against recent
flow-based exploration methods, namely FDC (De Santi et al., 2025b), and S-MEME (De Santi et al.,
2025a), as well as a standard constrained generation scheme, denoted by CONSTR (Sec. 8.2 Uehara
et al., 2024a). We present experiments on two visually interpretable settings, followed by a molecular
design task aiming to increase conformer diversity (more details are provided in Apx. G).

Global Flow Expansion via Strong Verifier. We run G-FE on a pre-trained model πpre to globally
expand its density ppre1 over the valid design space (red ellipse in Figs. 3a-3c, 3e-3f). As shown in
Fig. 3b and 3c, G-FE (violet) run with η = 2 and K = 10 , expands into previously uncovered areas
(lower right), staying within the valid region. In comparison, S-MEME (black, Fig. 3b) predictably
fails to restrict density to the valid region (light red area). Symmetrically, CONSTR (see Fig. 3c,
orange) confines density to the valid space but fails to expand it. Fig. 3d shows that G-FE explores
nearly as much as S-MEME (i.e., 1.97 vs. 2.17 entropy), while retaining significantly higher validity:
0.99 against 0.73 of S-MEME. Remarkably, G-FE preserves the same degree of validity of CONSTR
while exploring significantly more (1.97 versus 0.72 entropy). Figs. 3e-3f show the first expand-then-
project steps of G-FE and Figs. 3g-3h show entropy and validity estimates with 95% CI over 5 seeds
for G-FE and all baselines. In summary, G-FE achieves both near-optimal exploration and validity.

Local Flow Expansion via Weak Verifier. We consider a pre-trained flow model πpre whose
density ppre1 is concentrated in a central high-density region, with low-probability promising modes
on either side (see Fig. 4a). Crucially, while the two right-most modes are valid, the left one is not.

Figure 5: Entropy-Validity

We fine-tune πpre via L-FE for K = 8 iterations and α = 0.99 to
expand its induced density over diverse modes - i.e., perform mode
discovery (De Santi et al., 2025b; Morshed & Boddeti, 2025). As
shown in Fig. 4b FDC, a KL-regularized entropy maximization scheme,
predictably increases diversity over plausible modes by redistributing
density to the invalid left one. L-FE, however, leverages a weak verifier
(gray circled area in Fig. 4c) to prevent allocating more density to that
invalid region, and even removes density from that region. 4a, top).
Effectively, L-FE uses the weak verifier to perform a form of mode
selection, i.e., filtering out invalid modes during the expansion process. As shown in Fig. 5, Local FE

8
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(L-FE) achieves high entropy (i.e., 1.67 versus 1.17 and 1.58 of L-FE), while preserving high validity,
namely 0.89 compared to 0.74 of FDC, almost fully preserving the prior model’s validity of 0.9.

Increased Molecular Conformer Diversity for De-Novo Design. In this experi-
ment, we aim to increase diversity of molecular conformers in a molecular design task.

Figure 6: L-FE sam-
pled small molecules

We run FE on FlowMol CTMC (Dunn & Koes, 2024) pre-trained on QM9
dataset (Ramakrishnan et al., 2014). Our weak verifier is a filter excluding
molecules for which any two atoms are closer than 0.97 Ångstroms (Å),
and validity is evaluated via RDKit (RDKit) sanitization paired with the
aforementioned check. We evaluate diversity of molecular conformers by
a conformer VENDI (Friedman & Dieng, 2022) metric (see Apx. G.2)
capturing diversity over sampled conformers via their fingerprints. L-FE,
run for K = 5 iterations and α = 9, quantitatively increases diversity
compared to the pretrained model (Fig 4e, VENDI of 100 vs 89). This
is visually shown in Fig 4d, a histogram plot of a 1-dim PCA projection
of molecular fingerprints (see Apx. G for further details). In particular,
L-FE (violet) expands the pre-trained flow model to explore promising and
verifier-certified modes of the pre-trained model density (see Fig. 4d). Crucially, L-FE achieves a sim-
ilar degree of conformer diversity (100 vs 103) to FDC, an unconstrained exploration scheme, while
preserving significantly higher sample validity, i.e., 81% vs 69%, as shown in Figs. 4e, 4f, and 4g.

7 RELATED WORK

Diffusion and flow based design space exploration Recent works introduced methods for flow
based design space exploration via maximization of entropy functionals (De Santi et al., 2025a;b) or
approximations (Celik et al., 2025). While these methods explore by leveraging information from a
prior model, FE directs exploration either (i) exclusively via a verifier (i.e., global expansion, see 5),
or (ii) combining verifier information with prior validity cues (i.e., local expansion, see 7). Moreover,
while current schemes explore only the last time-step state space, we lift the exploration task to the en-
tire flow process, providing a principled solution to the score divergence problem mentioned in Sec. 4.

Maximum State Entropy Exploration. Maximum state entropy exploration, introduced by Hazan
et al. (2019), tackles the pure-exploration problem of maximizing the entropy of the state distribution
induced by a policy over a dynamical system’s state space (e.g., Lee et al., 2019; Mutti et al., 2021;
Guo et al., 2021; De Santi et al., 2024a). The flow expansion problems (Eq. 5 and 7) are closely related,
with pπ1 representing the state distribution induced by policy π over a subset of the flow process state
space (i.e., for time-step t = 1). Recent studies have tackled maximum entropy exploration with finite
sample budgets (e.g., Mutti et al., 2022b;a; 2023; Prajapat et al., 2023; De Santi et al., 2024b), which
could be relevant for future work, e.g., design space exploration under a limited samples constraint.

Sample diversity in diffusion models generation. A well-known limitation of flow-based generation
is limited sample diversity. This problem has been recently addressed by numerous studies (e.g., Corso
et al., 2023; Um et al., 2023; Kirchhof et al., 2024; Sadat et al., 2024; Um & Ye, 2025). Crucially, such
methods are complementary to ours. In fact, they can be applied to promote diverse sampling from the
expanded model produced by FE. In particular, whereas these works aim to maximize diversity of a
fixed diffusion model or flow model, we aim to sequentially fine-tune a pre-trained flow model so that
its induced density is permanently expanded over the valid design space. Moreover, our formulations
(Eq. 5, 7) and FE scheme increase diversity while integrating validity signal from a chosen verifier.

8 CONCLUSION

This work tackles the fundamental challenge of leveraging a verifier (e.g., an atomic bonds checker), to
expand a pre-trained model’s density beyond regions of high data availability, while preserving validity
of the generated samples. To this end, we introduce notions of strong and weak verifiers and cast global
and local flow expansion as probability-space optimization problems. We present Flow Expander
(FE), a scalable mirror-descent scheme that provably solves both problems via verifier-constrained
entropy maximization over the flow process noised state space. We provide a thorough analysis
showing convergence guarantees for FE under idealized and general assumptions by employing recent
mirror-flow theory. Ultimately, we empirically evaluate our method on both illustrative settings, and
a molecular design task showcasing the ability of FE to increase molecular conformer diversity while
preserving better levels of validity than current flow and diffusion-based exploration methods.
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9 REPRODUCIBILITY STATEMENT

We acknowledge that our work is documented sufficiently to ensure reproducibility of our results.
We provide implementation details of all algorithms and procedures, such as: complete pseudocode
in Appendix F, as well as hyperparameter choices and hardware requirements in Appendix Section G.
We also give a detailed account of our experimental setup in Section 6, including explanations of
metrics and procedures used to evaluate our algorithms in Appendix G. Finally, our implemented
version of FE, leverages the well-established Adjoint Matching (Domingo-Enrich et al., 2024) method
as an oracle.
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B DERIVATION OF GRADIENTS OF FIRST VARIATION

In this section we present derivations of the results in equation 18 relating the gradient of the first
variation of the trajectory rewards to the score function. We derive the result for L-FE, the result for
G-FE follows as a subcase.

First, recall the trajectory rewards for L-FE:

∇xt
δGt(pπt ) = ∇xt

δ
(
H(pπt )− αtDKL(p

π
t ||p

pre
t )

)
(25)

= ∇xt
δH(pπt )− αt∇xt

δDKL(p
π
t ||p

pre
t ) . (by linearity) (26)

Thus it suffices to show derivations for∇xt
δH(pπt ) and∇xt

δDKL(p
π
t ||p

pre
t ). Starting with the entropy

functional, recalling its definition asH(pπt ) = −
∫ 1

0
pπt (x) log p

π
t (x)dx we have:

∇xt
δH(pπt ) = ∇xt

(1− log pπt ) (27)
= −∇xt

log pπt (28)
= −sπt (29)

Similarly for the second term:

∇xt
δDKL(p

π
t ||p

pre
t ) = ∇xt

∫
pπt log p

π
t − (30)

= ∇xt
(log pπt − 1− log ppre

t ) (31)

= sπt − s
pre
t (32)
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C PROOF OF PROPOSITION 1

In this section we show that the optimization problem in 10 can be decomposed into an unconstrained
expansion step followed by a projection into the constrained set. We start by defining the following
processes:

Qk ∈ argmax
Q:p0=pk−1

0

⟨δL(Qk−1),Q⟩ − 1

γk
DKL(Q||Qk−1) s.t. E

x∼q1
[v(x)] (33)

Q̃k ∈ argmax
Q:p0=pk−1

0

⟨δL(Qk−1),Q⟩ − 1

γk
DKL(Q||Qk−1) (34)

Q̄k ∈ argmin
Q:p0=pk−1

0

DKL(Q||Q̃k) s.t. E
x∼p1

[v(x)] = 1 (35)

Q̂k ∈ argmax
Q:p0=pk−1

0

E
x∼p1

[log v(x)]− 1

γk
DKL(Q||Qk−1) (36)

letting pkt , p̃kt , p̄kt , p̂kt refer to their respective marginal densities a time t. Note that Q̃k is the output
of the projection step in 12, and that Q̂k is the output of the projection step in 13. The following
Lemma asserts that solving the optimization problem in equation 10 is equivalent to solving the
expansion step of 34 followed by the formal information projection step of 35.

Lemma C.1. Let Qk−1 be the process associated with the previous iterate πk−1, and let Q̃k and
Q̄k be defined as above. Then Q̄k = Qk.

Proof. First, note that the processes Qk−1 and Q̃k
t satisfy the following relationship (see e.g.

Domingo-Enrich et al. (2024) equation 22):

log
dQ̃k

dQk−1
(X) = γkδL(Qk−1)(X) + const . (37)

which implies the following equality for an arbitrary process q (taking the expectation and rearrang-
ing):

⟨δL(Qk−1),Q⟩ − γkDKL(Q||Qk−1) = γkDKL(Q||Q̃k)− const . (38)

Therefore the equation below holds for any arbitrary set of processes A:

argmax
Q∈A

⟨δL(Qk−1), q⟩ − 1

γk
DKL(Q||Qk−1) = argmin

q∈A
DKL(Q||Q̃k) (39)

and thus also holds for the set A = {Q s.t. p0 = pk−1
0 and Ex∼p1

[v(x)] = 1}: the set of feasible
solutions to 10.

Finally, the following Lemma reformulates the information projection step in 35 as the fine-tuning
objective in 34:

Lemma C.2. Let Q̂k and Q̄k be defined as above. Then Q̂k = Q̄k

Proof. Recall the definition of Q̂k:

Q̂k ∈ argmax
Q:p0=pk−1

0

E
x∼p1

[log v(x)]− 1

γk
DKL(Q||Qk−1) (40)
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and note that the expectation in the first term is finite only if v(x) ̸= 0, p1 − a.s., in which case it
vanishes. Thus the maximizer must belong to the set

{
Q : p0 = pk−1

0 , Ex∼p1
[v(x)] = 1

}
effectively

turning the first term into a constraint.

17
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D PROOF FOR THEOREM 5.1

Theorem 5.1 (Convergence guarantee in the idealized process-level setting). Consider the objective
L defined in Equation (8), and let λ⋆ :=

∫ 1

0
λtdt. Let {Qk} be the iterates generated by Equation (10)

with γk = 1/λ⋆ for all k ∈ [K]. Then

L(Q∗)− L(QK) ≤ λ⋆

K
DKL(Q

∗ ∥Qpre) , (20)

where Q∗ ∈ argmaxQ L(Q).

Proof. Fix an initial reference measure Q̄ := Q0, and define the function
Q(Q) := DKL

(
Q

∥∥ Q̄)
, (41)

which measures the Kullback–Leibler divergence of Q from this reference. This choice of Q will
serve as the reference function in the framework of mirror descent with relative smoothness (Bauschke
et al., 2017; Lu et al., 2018). The key point is that the objective L in Equation (8) is not necessarily
smooth in the classical sense, but it is λ⋆-smooth relative to Q.

To formalize this, let DQ(Q,Q
′) denote the Bregman divergence generated by Q. By definition,

DQ(Q,Q
′) = Q(Q)−Q(Q′)− ⟨δQ(Q′),Q−Q′⟩.

A direct computation shows that when Q is the KL divergence from a fixed reference measure, the
Bregman divergence reduces exactly to another KL divergence:

DQ(Q,Q
′) = DKL

(
Q

∥∥Q′) .
This equivalence will allow us to leverage classical properties of relative entropy in the convergence
analysis.

Next, consider the mirror descent iterates {Qk} for minimizing (−L)3. By the definition of relative
smoothness, we have

(−L)(Qk) ≤ (−L)(Qk−1) + ⟨δ(−L)(Qk−1),Qk −Qk−1⟩+ λ⋆DQ(Q
k,Qk−1). (42)

Here, the first inequality follows directly from the λ⋆-smoothness of (−L) relative to Q, as defined
in Equation (41). Intuitively, this is a generalization of the standard quadratic upper bound used in
classical smooth optimization, but with the Bregman divergence replacing the squared Euclidean
norm.

We can refine this bound further by applying the three-point inequality of the Bregman divergence (Lu
et al., 2018, Lemma 3.1). Let us define a linearized function

ϕ(Q) :=
1

λ⋆
⟨δ(−L)(Qk−1),Q−Qk−1⟩,

and let z = Qk−1, z+ = Qk. Then the three-point identity gives
⟨δ(−L)(Qk−1),Qk −Qk−1⟩ ≤ ⟨δ(−L)(Qk−1), µ−Qk−1⟩+ λ⋆DQ(µ,Q

k−1)− λ⋆DQ(µ,Q
k),

(43)
for any reference point µ. Combining Equation (42) and Equation (43) yields
(−L)(Qk) ≤ (−L)(Qk−1) + ⟨δ(−L)(Qk−1), µ−Qk−1⟩+ λ⋆DQ(µ,Q

k−1)− λ⋆DQ(µ,Q
k).
(44)

Finally, we can telescope this inequality over k = 1, . . . ,K. Using the monotonicity of (−L)(Qk)
along the iterates and the non-negativity of the Bregman divergence DQ, we obtain (Lu et al., 2018):

K∑
k=1

(
(−L)(Qk)− (−L)(µ)

)
≤ λ⋆DQ(µ,Q

0)− λ⋆DQ(µ,Q
K) ≤ λ⋆DQ(µ,Q

0), (45)

for any Q. Dividing both sides by K and rearranging gives a simple ergodic convergence rate:

(−L)(QK)− (−L)(Q) ≤ λ⋆DQ(Q,Q
0)

K
, (46)

which shows that the iterates converge at an O(1/K) rate in terms of the relative entropy.

3We adopt the standard convention of convex minimization rather than concave maximization, which explains
the negative sign in the formulation.
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E PROOF FOR THEOREM 5.2

To establish our main convergence theorem, we impose a few auxiliary assumptions that are widely
used in the analysis of stochastic approximation and gradient flows. These assumptions are mild and
typically satisfied in practical applications.
Assumption E.1 (Precompactness of Dual Iterates). The sequence of dual variables {δQ(Qk)}k is
precompact in the L∞ topology.

Precompactness ensures that the interpolated trajectories of the dual iterates remain within a bounded
region in function space. This property is crucial for applying convergence results based on asymptotic
pseudotrajectories, and similar precompactness assumptions have appeared in the literature on
stochastic approximation and continuous-time interpolations of discrete dynamics (Benaïm, 2006;
Hsieh et al., 2019; Mertikopoulos et al., 2024).
Assumption E.2 (Noise and Bias Control). The stochastic approximations in the updates satisfy,
almost surely, the following conditions:

∥bk∥∞ → 0, (47)∑
k

E
[
γ2k

(
∥bk∥2∞ + ∥Uk∥2∞

)]
<∞, (48)∑

k

γk∥bk∥∞ <∞. (49)

These conditions are standard in the Robbins–Monro framework (Robbins & Monro, 1951; Benaïm,
2006; Hsieh et al., 2019). They guarantee that the bias of the stochastic updates vanishes asymp-
totically, and that the cumulative effect of the noise remains controlled. Together, they ensure that
the stochastic perturbations do not prevent convergence of the iterates to the optima of the target
objective.

With these assumptions in place, we are ready to restate the main result and present its proof.

Theorem E.1 (Convergence guarantee in the general trajectory setting (rigorous)). Suppose the
oracle satisfies Assumptions E.1 to E.2, and let the step-sizes {γk} follow the Robbins–Monro rule
(
∑

k γk =∞,
∑

k γ
2
k <∞). Then the iterates {Qk} generated by FE satisfy

Qk ⇀ Q∗ a.s., (50)

where Q∗ ∈ argmaxQ L(Q).

Proof. As in the proof of Theorem 5.1, fix an initial reference measure
Q̄ := Q0,

and define the relative entropy functional
Q(Q) := DKL

(
Q

∥∥ Q̄)
. (51)

Correspondingly, we introduce the initial dual variable

h0 := δQ(Q0) = − log
dQ0

dQ̄
,

where dQ
dQ̄

denotes the Radon–Nikodym derivative of Q with respect to Q̄. This dual representation
encodes the convex geometry of the problem.

Continuous-time mirror flow. We now consider the continuous-time mirror flow dynamics{
ḣt = δ(−L)(Qt),

Qt = δQ⋆(ht),
(MF)

where Q⋆ denotes the Fenchel conjugate of the relative entropy functional. Explicitly, we recall that

Q⋆(h) = logQ̄ E
[
eh

]
,

which follows from the variational characterization of the Kullback–Leibler divergence (Hsieh et al.,
2019; Hiriart-Urruty & Lemaréchal, 2004).
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Discrete-to-continuous interpolation. To connect the discrete algorithm with the flow equation MF,
we introduce an interpolation of the iterates. Define the linearly interpolated process h(t) by

h(t) = hk +
t− τk

τk+1 − τk
(
hk+1 − hk

)
, hk = δQ(Qk), τk =

k∑
r=0

αr, (Int)

where αr are the step sizes. This construction yields a continuous-time trajectory {h(t)}t≥0 that
faithfully tracks the discrete iterates in the limit of vanishing step sizes.

Asymptotic pseudotrajectories. We recall the notion of an asymptotic pseudotrajectory (APT),
which provides the precise mathematical bridge between discrete stochastic processes and determin-
istic flows.

Let Θ denote the flow map associated with equation MF; that is, Θh(f) is the solution of equation MF
at time h when initialized at f .

Definition 3 (Asymptotic Pseudotrajectory (APT)). A trajectory h(t) is called an asymptotic pseu-
dotrajectory (APT) of equation MF if, for every finite horizon T > 0,

lim
t→∞

sup
0≤h≤T

∥h(t+ h)−Θh(h(t))∥∞ = 0.

Intuitively, this condition requires that the interpolated sequence asymptotically shadows the exact
flow on every bounded time interval.

Limit set characterization. The central result of Benaïm (2006) asserts that the long-term behavior
of an APT is governed by the internally chain transitive (ICT) sets of the limiting flow.

Theorem E.2 (APT Limit Set Theorem (Benaïm, 2006, Thm. 4.2)). If h(t) is a precompact APT of
equation MF, then almost surely its limit set lies within the set of internally chain-transitive (ICT)
points of the flow.

Reduction of the convergence proof. With these tools, the convergence analysis reduces to
verifying two key claims:

(C1) Under Assumptions E.1 to E.2, the interpolated sequence {h(t)} indeed forms a precompact
APT of equation MF.

(C2) The set of ICT points of the flow equation MF coincides with the set of stationary points of
L.

Verification of Claim (C1). Precompactness follows directly from Assumption E.1, which guaran-
tees uniform tightness of the sequence of measures and hence compactness of their trajectories in the
weak topology. In addition, standard arguments from stochastic approximation (Hsieh et al., 2019;
Benaïm, 2006; Mertikopoulos et al., 2024) yield the following quantitative estimate: for every finite
horizon T > 0, there exists a constant C(T ) > 0 such that

sup
0≤h≤T

∥h(t+ h)−Θh(h(t))∥ ≤ C(T )
[
∆(t− 1, T + 1) + b(T ) + γ(T )

]
,

where ∆(t − 1, T + 1) denotes the cumulative effect of noise over the interval [t − 1, t + T + 1],
while b(T ) and γ(T ) capture, respectively, the bias and step-size contributions. This bound quantifies
the deviation of the interpolated process from the deterministic mirror flow equation MF.

APT approximation. Under the noise and bias conditions of Assumption E.2, both perturbations
vanish asymptotically:

lim
t→∞

∆(t− 1, T + 1) = lim
t→∞

b(T ) = 0,

uniformly over bounded horizons T . Consequently, the discrepancy in the above bound vanishes in
the limit, and the interpolated process h(t) shadows the continuous-time flow arbitrarily well.

Altogether, these arguments show that h(t) is indeed a precompact asymptotic pseudotrajectory of
the mirror flow.
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Verification of Claim (C2). The flow equation MF is precisely the continuous-time mirror de-
scent dynamics associated with (−L), which is known to be a gradient flow in the spherical
Hellinger–Kantorovich geometry (Mielke & Zhu, 2025). As such, (−L) acts as a strict Lyapunov
function for the system: along any non-stationary trajectory, d

dt (−L)(Qt) < 0. By (Benaïm, 2006,
Corollary 6.6), every precompact APT converges to the set of stationary points of the Lyapunov
function. Since the objective function L is the relative entropy, and hence strictly convex, its stationary
point coincide with its global minimizer.

Conclusion. Combining (C1) and (C2) with Theorem E.2, we deduce that the interpolated process
h(t) converges almost surely to the set of minimizers of (−L), which readily implies that the original
sequence {Qk} inherits the same convergence guarantee.
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F DETAILED EXAMPLE OF ALGORITHM IMPLEMENTATION

In this section we provide comprehensive pseudocode of an example implementation for the two
FINETUNINGSOLVER subprocedure in Alg. 4. It is implemented using a variation of Adjoint Matching
(AM) which is introduced comprehensively in Domingo-Enrich et al. (2024), although we provide
pseudocode below for completeness. We note that in principle one could substitute for any other
linear fine-tuning method.

Before presenting the implementations, we shortly clarify some relevant notation. The algorithm
makes explicit use of the interpolant schedules κt and ωt introduced in equation 1. We note that
in flow model literature they are more commonly known as αt and βt. We denote by upre the
velocity field corresponding to the pre-trained policy πpre, and likewise use ufine for the velocity field
corresponding to the fine-tuned policy. In short, FINETUNINGSOLVER first samples trajectories, which
are then used to approximate the solution of a surrogate ODE whose marginals are used as regression
targets for the control policy (see Domingo-Enrich et al. (2024) Section 5 for a full discussion). We
note that FINETUNINGSOLVER can be used for objectives with and without trajectory rewards, simply
by setting trajectory rewards to zero.

Algorithm 3 Adjoint Matching for fine-tuning Flow Matching models (FINETUNINGSOLVER)

Require: upre: pre-trained FM velocity field, {∇ft}t∈[0,1]: gradients of trajectory
rewards,{λt}t∈[0,1]: (optional) trajectory reward weights, γ: fine-tuning strength

1: Initialize fine-tuned vector fields: ufinetune = upre with parameters θ.
2: for n ∈ {0, . . . , N − 1} do
3: Sample m trajectories X = (Xt)t∈{0,...,1} with memoryless noise schedule σ(t) =√

2κt

(
ω̇t

ωt
κt − κ̇t

)
, e.g.:

Xt+h = Xt + h
(
2ufinetune

θ (Xt, t)− ω̇t

ωt
Xt

)
+
√
hσ(t) εt, εt ∼ N (0, I), X0 ∼ N (0, I).

(51)
4: For each trajectory, solve the lean adjoint ODE backwards in time from t = 1 to 0, e.g.:

ãt−h = ãt + h ã⊤t ∇Xt

(
2vbase(Xt, t)− ω̇t

ωt
Xt

)
− hγλt∇Xtft(Xt), ã1 = γλ1∇X1f1(X1).

(52)
5: Note thatXt and ãt should be computed without gradients, i.e.,Xt = stopgrad(Xt), ãt =

stopgrad(ãt).
6: For each trajectory, compute the following Adjoint Matching objective:

LAdj-Match(θ) =
∑

t∈{0,...,1−h}

∥∥∥ 2
σ(t)

(
vfinetune
θ (Xt, t)− ubase(Xt, t)

)
+ σ(t) ãt

∥∥∥2 . (53)

7: Compute the gradient∇θL(θ) and update θ using favorite gradient descent algorithm.
8: end for

Output: Fine-tuned vector field vfinetune
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G EXPERIMENTAL DETAILS

G.1 ILLUSTRATIVE EXAMPLES EXPERIMENTAL DETAILS

Numerical values in all plots shown within Sec. 6 are means computed over diverse runs of FE via 5
different seeds. Error bars correspond to 95% Confidence Intervals. For the following comparisons,
we aimed to tune each algorithm parameters so that the method would work well in the specific
illustrative example.

Pre-trained models. The pre-trained models appearing in Sec. 6, in the context of illustrative
examples, are learned on synthetically generated data, via standard learning procedures. In particular,
in Sec. 6 we always show samples generated by such pre-trained models.

Global Flow Expansion.

• For G-FE, we use λt = 0 if t > 1− 0.05, and λt = 1.2 otherwise, γk = 1.5
(1+3(k−1)) , η = 2

and K = 10.

• For CONSTR we employ η = 2.

• For S-MEME we employ γk = 0.345
(1+3(k−1)) and K = 10 and use sπ1 (x) = sπ1−ϵ(x) with

ϵ = 0.02 as discussed in Sec. 4.

Local Flow Expansion. The models used act on a 2-dim state (x1, x2), of which is shown only the x1
coordinate in the process-level figures reported in Sec. 6. Since we use as oracle AM, which requires
differentiable gradient, we consider a binary verifier (shown in Fig. 4c in grey), which we smoothen,
thus rendering it differentiable and approximate. Notice that differentiability is not required by FE,
but is rather an implementation detail due to the specific oracle used (i.e., AM (Domingo-Enrich
et al., 2024), see Sec. F for further details). In particular, there exist several analogous oracles that do
not require function differentiability (e.g., Fan et al., 2023).

• For L-FE we employ K = 8, λt = 0 if t > 1 − 0.015, and proportional with the process

variance, i.e., λt =
√

2(κt(
ω̇t

ωt
κt − κ̇t)), otherwise; γk = 0.3, ηk = 0.1.

• For FDC we use K = 8, γk = 0.06 and use sπ1 (x) = sπ1−ϵ(x) with ϵ = 0.02 as discussed in
Sec. 4.

G.2 CONFORMER VENDI

We begin with a detailed explanation of our diversity metric: conformer VENDI. In general, VENDI
(Friedman & Dieng, 2022) is a diversity metric operating on arbitrary inputs based on a pairwise
distance kernel k : X ×X → [0, 1]. For a list of inputs x1, . . . , xn and a symmetric pairwise distance
kernel k, VENDI is defined as:

V S(x1, . . . , xn) = exp
(
−

n∑
i=1

λi log λi
)

(52)

where λi are eigenvalues of the distance matrix K with Kij = k(xi, xj). In our work, we use a
molecular fingerprinting method combined with a kernel simply defined as the Euclidean distance
between fingerprints, thereby inducing a kernel on molecules themselves. The particular fingerprinting
method is defined as the sorted list of pairwise atomic distances. Formally, for a molecule with
N atoms at positions a1, . . . aN we first compute the matrix of pairwise distances Aij = ∥ai −
aj∥2, 1 ≤ i < j ≤ N , which is then sorted as Ãi1j1 . . . ÃiN(N−1)/2jN(N−1)/2

yielding the fingerprint
Ã ∈ RN(N−1)/2.

G.3 PCA PROJECTION FOR FIG. 4D

In this section we explain the dimensionality reduction method used to generate the plot in 4d. We first
generated 25000 molecules from both the pre-trained model πpre (yielding Dpre and the fine-tuned
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model πK (yielding Dfinetuned), which was computed by the L-FE algorithm on πpre for K = 5
iterations with α = 9. We then fingerprinted each set of molecules using the method described above,
and fit a 1-dim PCA on the fingerprints for Dpre using SCIKIT-LEARN (Pedregosa et al., 2011), which
was then used to transform both Dpre and Dfinetuned into 1-dimensional vectors. Fig. 4d corresponds
to a histogram plot of each of the resulting sets of vectors.

G.4 VALIDITY COMPUTATION IN MOLECULAR EXPERIMENTS

In the context of our experiments on molecules the concept of validity is defined through a pipeline of
several checks, defined below. Our validity function passes through each one sequentially, returning
an invalid result if any fail, and a valid result only if all checks pass.

1. First, we attempt to sanitize each molecule using RDKit’s (RDKit) CHEM.SANITIZEMOL
function. As an added check, we test if it is possible to convert the molecule to and back
from SMILES (Weininger, 1988) notation.

2. We then iterate over each atom in the molecule, checking for any implicit hydrogens (our
model must generate explicit hydrogens as FlowMol (Dunn & Koes, 2024) does) or any
radical electrons which would make the molecule invalid.

3. Finally we perform our weak verifier check, filtering out molecules for which any two atoms
are closer than 0.9Å. Details on this weak verifier are explained below.

The final validity check is evaluate the weak verifier on molecules that pass the previous steps. The
weak verifier itself is evaluated by first computing the vector of pairwise distances between atoms
Ã (see discussion in Section G.2 above), then taking the minimum element Ã0 and checking if it is
lower than 0.9Å, in which case a molecule is classified as invalid. Including this check in the validity
function guarantees by construction that the weak verifier satisfies Definition 2, since failing the weak
verifier check implies failing the validity check as well.

G.5 PRACTICAL DETAILS FOR EXPERIMENTS ON MOLECULES

In this section we discuss the practical choices behind the molecular design experiments discussed in
Section 6. We start with a discussion of hyperparameter settings, followed by some implementation
techniques adapting the verifier feedback for a first-order solver, and finally discuss hardware and
platform used for training.

G.5.1 HYPERPARAMETER CHOICES

For our experiments on molecules we use the FlowMol CTMC model from Dunn & Koes (2024)
trained on the QM9 dataset as a pre-trained model. We run each algorithm (L-FE and FDC) with the
following parameters:

• K = 5 iterations
• Regularization strength of α = 9

• Decreasing stepsize of γk = γ0

1+k with γ0 = 0.00001

• For the trajectory reward weighting (L-FE only) we use λt = σt =
√
2κt

(
ω̇
ωκt − κ̇t

)
,

ensuring λt → 0 as t→ 1 for stability as discussed at the end of section 4
• For both, we clip the score near the end of the trajectory as sπt = sπ{min t,1−ϵ} for ϵ = 0.005.

• We fix the number of atoms in generated molecules (for model training and metric calcula-
tion) to 10, in order to simplify metric calculations.

When using Adjoint Matching (AM) (Domingo-Enrich et al., 2024) to implement the subroutines
of any algorithm we use N = 4 iterations, we sample a batch of m = 4 trajectories of length 40 at
each iteration and update the parameters θ using Adam Kingma & Ba (2015) with a learning rate of
0.00055. We note that since FlowMol CTMC is a mixed categorical and continuous flow model, we
only use AM to update the parameters corresponding to the continuous outputs of the model, i.e., the
atom positions.
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G.5.2 SMOOTHING THE WEAK VERIFIER

Since we use Adjoint Matching for all fine-tuning tasks we need all rewards to be differentiable.
While our weak verifier is formally defined as v(x) = 1 ⇐⇒ x respects the minimum atom
separation bound of 0.9Å, we use the following differentiable approximation using a sigmoid soft
indicator function:

v(x) =
1

N(N − 1)/2

N(N−1)/2∑
i=1

exp(Ãi − 0.9)

exp(Ãi − 0.9) + 1
(53)

where Ãi are the pairwise atomic distances introduced in Section G.2 above. This alternative verifier
is differentiable and provides gradient feedback everywhere and therefore can be used in Adjoint
Matching.

G.5.3 HARDWARE

We ran all of our experiments on a SLURM cluster using a single NVIDIA RTX 2080Ti GPU per
run.
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H UPDATE STEP REPARAMETRIZATION

Recall the expression for the gradient of running costs in the Local Flow Expander algorithm (Alg. 2,
equation 18):

λt∇xtδG(pπt ) = λt∇xtδ(H(pπt )− αtDKL(p
π
t ||p

pre
t )) (54)

= λt(−sπt + α(sπt − s
pre
t )) (55)

= −λt((α+ 1)sπt − αs
pre
t ) (56)

which are then multiplied by the stepsize γk at each iteration, resulting in the following expression
being plugged into the Adjoint Matching algorithm as the gradient of the running cost:

∇ft = −γkλt((α+ 1)sπt − αs
pre
t ) . (57)

While α has an intuitive interpretation as the regularization strength in objective 7, it has the
unfortunate side-effect of scaling the magnitude of the running cost which could potentially have the
opposite effect. Indeed, notice that as α→∞ the running costs explode. For practical applications it
seems more suitable to reparametrize the running cost as follows:

∇ft = −γ̃kλt(sπt − βs
pre
t ) (58)

for β = α
α+1 ∈ [0, 1], absorbing a (α+ 1) factor into the new stepsize γ̃k:

γ̃k = (α+ 1)γk . (59)

Note that this parametrization is as expressive as before but is easier to tune as it disentangles the
effect of the stepsize and the regularization strength.
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