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Abstract

Molecular representation learning (MRL) has gained tremendous attention due1

to its critical role in learning from limited supervised data for applications like2

drug design. In most MRL methods, molecules are treated as 1D sequential tokens3

or 2D topology graphs, limiting their ability to incorporate 3D information for4

downstream tasks and, in particular, making it almost impossible for 3D geometry5

prediction or generation. Herein, we propose Uni-Mol, a universal MRL framework6

that significantly enlarges the representation ability and application scope of MRL7

schemes. Uni-Mol is composed of two models with the same SE(3)-equivariant8

transformer architecture: a molecular pretraining model trained by 209M molecular9

conformations; a pocket pretraining model trained by 3M candidate protein pocket10

data. The two models are used independently for separate tasks, and are combined11

when used in protein-ligand binding tasks. By properly incorporating 3D infor-12

mation, Uni-Mol outperforms SOTA in 14/15 molecular property prediction tasks.13

Moreover, Uni-Mol achieves superior performance in 3D spatial tasks, including14

protein-ligand binding pose prediction, molecular conformation generation, etc.15

Finally, we show that Uni-Mol can be successfully applied to the tasks with16

few-shot data like pocket druggability prediction. The model and data will be17

made publicly available at https://github.com/dptech-corp/Uni-Mol.18

1 Introduction19

Recently, representation learning (or pretraining, self-supervised learning) [1, 2, 3] has been prevailing20

in many applications, such as BERT [4] and GPT [5, 6, 7] in Natural Language Processing (NLP),21

ViT [8] in Computer Vision (CV), etc. These applications have a common characteristic: unlabeled22

data is abundant, while labeled data is limited. As a solution, in a typical representation learning23

method, one first adopts a pretraining procedure to learn a good representation from large-scale24

unlabeled data, and then a finetuning scheme is followed to extract more information from limited25

supervised data.26

Applications in the field of drug design share the characteristic that calls for representation learning27

schemes. The chemical space that a drug candidate lies in is vast, while drug-related labeled data is28

limited. Not surprisingly, compared with traditional molecular fingerprint based models [9, 10], recent29

molecular representation learning (MRL) models perform much better in most property prediction30

tasks [11, 12, 13]. However, to further improve the performance and extend the application scope31

of existing MRL models, one is faced with a critical issue. From the perspective of life science, the32

properties of molecules and the effects of drugs are mostly determined by their 3D structures [14,33

15]. In most current MRL methods, one starts with representing molecules as 1D sequential strings,34

such as SMILES [16, 17, 18] and InChI [19, 20, 21], or 2D graphs [22, 11, 23, 12, 24]. This may35

limit their ability to incorporate 3D information for downstream tasks. In particular, this makes it36

almost impossible for 3D geometry prediction or generation, such as, e.g., the prediction of protein-37
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Figure 1: Schematic illustration of the Uni-Mol framework. Uni-Mol is composed of two models:
a molecular pretraining model trained by 209M molecular 3D conformations; a pocket pretraining
model trained by 3M candidate protein pocket data. The two models are used independently for
separate tasks, and are combined when used in protein-ligand binding tasks.

ligand binding pose [25]. Even though there have been some recent attempts trying to leverage 3D38

information in MRL [26, 27], the performance is less than optimal, possibly due to the small size of39

3D datasets, and 3D positions can not be used as inputs/outputs during finetuning, since they only40

serve as auxiliary information.41

In this work, we propose Uni-Mol, to our best knowledge, the first universal 3D molecular pretraining42

framework, which is derived from large-scale unlabeled data and is able to directly take 3D positions43

as both inputs and outputs. Uni-Mol consists of 3 parts. 1) Backbone. Based on Transformer, the44

invariant spatial positional encoding and pair level representation are added to better capture the 3D45

information. Moreover, an equivariant head is used to directly predict 3D positions. 2) Pretraining.46

We create two large-scale datasets, a 209M molecular conformation dataset and a 3M candidate47

protein pocket dataset, for pretraining 2 models on molecules and protein pockets, respectively.48

For the pretraining tasks, besides masked atom prediction, a 3D position denoising task is used49

for learning 3D spatial representation. 3) Finetuning. According to specific downstream tasks, the50

used pretraining models are different. For example, in molecular property prediction tasks, only the51

molecular pretraining model is used; in protein-ligand binding pose prediction, both two pretraining52

models are used. We refer to Fig. 1 for an overall schematic illustration of the Uni-Mol framework.53

To demonstrate the effectiveness of Uni-Mol, we conduct experiments on a series of downstream54

tasks. In the molecular property prediction tasks, Uni-Mol outperforms SOTA on 14/15 datasets on55

the MoleculeNet benchmark. In 3D geometric tasks, Uni-Mol also achieves superior performance.56

For the pose prediction of protein-ligand complexes, Uni-Mol predicts 88.07% binding poses with57

RMSD <= 2Å, 22.81% more than popular docking methods, and ranks 1st in the docking power test58

on CASF-2016 [28] benchmark. Regarding molecular conformation generation, Uni-Mol achieves59

SOTA for both Coverage and Matching metrics on GEOM-QM9 and GEOM-Drugs [29]. Moreover,60

Uni-Mol can be successfully applied to tasks with very limited data like pocket druggability prediction.61

62

2 Uni-Mol Framework63

In this section, we introduce the Uni-Mol framework by showing the details of the backbone, the64

pretraining scheme, and the finetuning scheme. We refer to Fig. 2 for a schematic illustration of the65

model architecture.66
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Figure 2: Left: the overall pretraining architecture. Middle: the model inputs, including atoms and
spatial positional encoding created by pair Euclidean distance. Right: pair representation and its
update process.

2.1 Backbone67

Transformer [30] is widely used as a backbone model in representation learning. However, Trans-68

former was originally designed for NLP tasks and cannot handle 3D spatial data directly. To tackle69

this, based on the standard Transformer with Pre-LayerNorm [31] backbone, we introduce several70

modifications.71

Invariant spatial positional encoding Due to its permutationally invariant property, Transformer72

cannot distinguish the positions of inputs without positional encoding. Different with the discrete73

(ordinal) positions used in NLP/CV [32, 33], the positions in 3D space, i.e. coordinates, are continuous74

values. Besides, the positional encoding procedure needs to be invariant under global rotation and75

translation. To achieve that, similar to the relative positional encoding, we simply use Euclidean76

distances of all atom pairs, as well as pair-type aware Gaussian kernels [34]. Formally, the D-channel77

positional encoding of atom pair ij is denoted as78

pij = {G(A(dij , tij ;a, b), µ
k, σk)|k ∈ [1, D]}, A(d, r;a, b) = ard+ br, (1)

where G(d, µ, σ) = 1
σ
√
2π

e−
(d−µ)2

2σ2 is a Gaussian density function with parameters µ and σ, dij is the79

Euclidean distance of atom pair ij, and tij is the pair-type of atom pair ij. Please note the pair-type80

here is not the chemical bond, and it is determined by the atom types of pair ij. A(dij , tij ;a, b) is81

the affine transformation with parameters a and b, it affines dij corresponding to its pair-type tij .82

Except dij and tij , all remaining parameters are trainable and randomly initialized.83

Pair representation By default, Transformer maintains the token(atom) level representation, which84

is later used in finetuning downstream tasks. Nevertheless, as the spatial positions are encoded at85

pair-level, we also maintain the pair-level representation, to better learn the 3D spatial representation.86

Specifically, the pair representation is initialized as the aforementioned spatial positional encoding.87

Then, to update pair representation, we use the atom-to-pair communication via the multi-head Query-88

Key product results in self-attention. Formally, the update of ij pair representation is denoted as89

q0
ij = pijM , ql+1

ij = ql
ij + {

Ql,h
i (Kl,h

j )T
√
d

|h ∈ [1, H]}, (2)

where ql
ij is the pair representation of atom pair ij in l-th layer, H is the number of attention heads,90

d is the dimension of hidden representations, Ql,h
i (Kl,h

j ) is the Query (Key) of the i-th (j-th) atom91

in the l-th layer h-th head, and M ∈ RD×H is the projection matrix to make the representation the92

same shape as multi-head Query-Key product results.93

Besides, to leverage 3D information in the atom representation, we also introduce the pair-to-atom94

communication, by using the pair representation as the bias term in self-attention. Formally, the95
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self-attention with pair-to-atom communication is denoted as96

Attention(Ql,h
i ,Kl,h

j ,V l,h
j ) = softmax(

Ql,h
i (Kl,h

j )T
√
d

+ ql−1,h
ij )V l,h

j , (3)

where V l,h
j is the Value of the j-th atom in the l-th layer h-th head. The pair representation and97

atom-pair communication are firstly proposed in the Evoformer in AlphaFold [35], but the cost of98

Evoformer is extremely large. In Uni-Mol, as we keep them as simple as possible, the extra cost of99

maintaining pair representation is negligible.100

SE(3)-Equivariance coordinate head With 3D spatial positional encoding and pair representation,101

the model can learn a good 3D representation. However, it still lacks the ability to directly output co-102

ordinates, which is essential in 3D spatial tasks. To this end, we add a simple SE(3)-equivariance head103

to Uni-Mol. Following the idea of EGNN [36], the design of SE(3)-equivariance head is denoted as104

x̂i = xi +

n∑
j=1

(xi − xj)cij
n

, cij = ReLU((qL
ij − q0

ij)U)W , (4)

where n is the number of total atoms, L is the number of layers in model, xi ∈ R3 is the input105

coordinate of i-th atom, and x̂i ∈ R3 is the output coordinate of i-th atom, ReLU(y) = max(0, y)106

is Rectified Linear Unit [37], U ∈ RH×H and W ∈ RH×1 are the projection matrices to convert107

pair representation to scalar.108

2.2 Pretraining109

For the purpose of pretraining, we generate two large-scale datasets, one composed of 3D structures110

of organic molecules, and another composed of 3D structures of candidate protein pockets. Then,111

two models are pretrained using these two datasets, respectively. As pockets are directly involved112

in many drug design tasks, intuitively, the pretraining on candidate protein pockets can boost the113

performance of tasks related to protein-ligand structures and interactions.114

The molecular pretraining dataset is based on multiple public datasets (See Appendix ?? for more115

information). After normalizing and deduplicating, it contains about 19M molecules. To generate116

3D conformations, we use ETKGD [38] with Merck Molecular Force Field [39] optimization117

in RDKit [40] to randomly generate 10 conformations for each molecule. We also generate an118

additional 2D conformation (based on the molecular graph), to avoid some rare cases that fail to119

generate 3D conformations.120

The protein pocket pretraining dataset is derived from the Protein Data Bank (RCSB PDB 1) [41], a121

collection of 180K 3D structures of proteins. To extract candidate pockets, we first clean the data122

by adding the missing side chains and hydrogen atoms; then we use Fpocket [42] to detect possible123

binding pockets of the proteins; and finally, we filter pockets by the number of residues in contact124

with and retains water molecules in the pocket. In this way, We collect a dataset composed of 3.2M125

candidate pockets for pretraining.126

Self-supervised task is vitally important for effective learning from large-scale unlabeled data.127

For example, the masked token prediction task in BERT [4] encourages the model to learn the128

contextual information. Similar to BERT, the masked atom prediction task is used in Uni-Mol.129

For each molecule/pocket, we add a special atom [CLS], whose coordinate is the center of all130

atoms, to represent the whole molecule/pocket. However, as 3D spatial positional encoding leaks131

chemical bonds, atom types could be inferred easily, and therefore, the masked atom prediction132

cannot encourage the model to learn useful information. To tackle this, as well as learning from 3D133

information, we design a 3D position denoising task. Particularly, uniform noises of [-1 Å, 1 Å] are134

added to the random 15% atom coordinates, then the spatial positional encoding is calculated based135

on corrupted coordinates. In this way, the masked atom prediction task becomes non-trivial. Besides,136

two additional heads are used to recover the correct spatial positions. 1) Pair-distance prediction.137

Based on pair-representation, the model needs to predict the correct Euclidean distances of the atoms138

pairs with corrupted coordinates. 2) Coordinate prediction. Based on SE(3)-Equivariance coordinate139

head, the model needs to predict the correct coordinates for the atoms with corrupted coordinates.140

1http://www.rcsb.org/
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Both 2 pretraining models use the same self-supervised tasks described above, and Figure 2 is the141

illustration of the overall pretraining framework. For the detailed configurations of pretraining, please142

refer to Appendix ??.143

2.3 Finetuning144

To be consistent with pretraining, we use the same data prepossessing pipeline during finetuning.145

For molecules, as multiple random conformations can be generated in a short time, we can use them146

as data augmentation in finetuning to improve performance and robustness. Some molecules may fail147

to generate 3D conformations, and we use their molecular graph as 2D conformation. For tasks that148

provide atom coordinates, we use them directly and skip the 3D conformation generation process.149

As there are 2 pretraining models and several types of downstream tasks, we should properly use150

them in the finetuning stage. According to the task types, and the involvement of protein or ligand,151

we can categorize them as follow.152

Non-3D prediction tasks These tasks do not need to output 3D conformations. Examples include153

molecular property prediction, molecule similarity, pocket druggability prediction, protein-ligand154

binding affinity prediction, etc. Similar to NLP/CV, we can simply use the representation of [CLS]155

which represents the whole molecule/pocket, or the mean representation of all atoms, with a linear156

head to finetune on downstream tasks. In the tasks with pocket-molecule pair, we can concatenate157

their [CLS] representations, and then finetune with linear head.158

3D prediction tasks of molecules or pockets These tasks need to predict a 3D conformation159

of the input, such as molecular conformation generation. Different with the fast conformation160

generation method used in Uni-Mol, molecular conformation generation task usually requires running161

advanced sampling and semi-empirical density functional theory (DFT) to account for the ensemble162

of 3D conformers that are accessible to a molecule, and this is very time-consuming. Therefore,163

there are many recent works that train the model to fast generate conformations from molecular164

graph [43, 44, 45, 46]. While in Uni-Mol, this task straightforwardly becomes a conformation165

optimization task: generate a new conformation based on a different input conformation. Specifically,166

in finetuning, the model supervised learns the mapping from Uni-Mol generated conformations to167

the labeled conformations. Moreover, the optimized conformations can be generated end-to-end by168

SE(3)-Equivariance coordinate head.169

3D prediction tasks of protein-ligand pairs This is one of the most important tasks in structure-170

based drug design. The task is to predict the complex structure of a protein binding site and a171

molecular ligand. Besides the conformation changes of the pocket and the molecule themselves, we172

also need to consider how the molecule lays in the pocket, that is, the additional 6 degrees (3 rotations173

and 3 translations) of freedom of a rigid movement. In principle, with Uni-Mol, we can predict the174

complex conformation by the SE(3)-Equivariant coordinate head in an end-to-end fashion. However,175

this is unstable as it is very sensitive to the initial docking positions of molecular ligand. Herein, to176

get rid of the initial positions, we use a scoring function based optimization method in this paper. In177

particular, the molecular representation and pocket representation are firstly obtained from their own178

pretraining models by their own conformations; then, their representations are concatenated as the179

input of an additional 4-layer Uni-Mol decoder, which is finetuned to learn the pair distances of all180

atoms in molecule and pocket. With the predicted pair-distance matrix as the scoring function, we181

use a simple differential evolution algorithm [47] to sample and optimize the complex conformations.182

More details can be found in Appendix ??.183

3 Experiments184

To verify the effectiveness of our proposed Uni-Mol model, we conduct extensive experiments185

on multiple downstream tasks, including molecular property prediction, molecular conformation186

generation, pocket property prediction, and protein-ligand binding pose prediction. Besides, we also187

conduct several ablation studies. Due to space restrictions, we leave the detailed experimental settings188

and ablation studies to Appendix ??.189

3.1 Molecular property prediction190

Datasets and setup MoleculeNet [48] is a widely used benchmark for molecular property191

prediction, including datasets focusing on different levels of properties of molecules, from quantum192
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Table 1: Uni-Mol performance on molecular property prediction classification tasks
Classification (ROC-AUC %, higher is better ↑)

Datasets BBBP BACE ClinTox Tox21 ToxCast SIDER HIV PCBA MUV
# Molecules 2039 1513 1478 7831 8575 1427 41127 437929 93087
# Tasks 1 1 2 12 617 27 1 128 17

D-MPNN 71.0(0.3) 80.9(0.6) 90.6(0.6) 75.9(0.7) 65.5(0.3) 57.0(0.7) 77.1(0.5) 86.2(0.1) 78.6(1.4)
Attentive FP 64.3(1.8) 78.4(0.022) 84.7(0.3) 76.1(0.5) 63.7(0.2) 60.6(3.2) 75.7(1.4) 80.1(1.4) 76.6(1.5)
N-GramRF 69.7(0.6) 77.9(1.5) 77.5(4.0) 74.3(0.4) - 66.8(0.7) 77.2(0.1) - 76.9(0.7)
N-GramXGB 69.1(0.8) 79.1(1.3) 87.5(2.7) 75.8(0.9) - 65.5(0.7) 78.7(0.4) - 74.8(0.2)
PretrainGNN 68.7(1.3) 84.5(0.7) 72.6(1.5) 78.1(0.6) 65.7(0.6) 62.7(0.8) 79.9(0.7) 86.0(0.1) 81.3(2.1)
GROVERbase 70.0(0.1) 82.6(0.7) 81.2(3.0) 74.3(0.1) 65.4(0.4) 64.8(0.6) 62.5(0.9) 76.5(2.1) 67.3(1.8)
GROVERlarge 69.5(0.1) 81.0(1.4) 76.2(3.7) 73.5(0.1) 65.3(0.5) 65.4(0.1) 68.2(1.1) 83.0(0.4) 67.3(1.8)
GraphMVP 72.4(1.6) 81.2(0.9) 79.1(2.8) 75.9(0.5) 63.1(0.4) 63.9(1.2) 77.0(1.2) - 77.7(0.6)
MolCLR 72.2(2.1) 82.4(0.9) 91.2(3.5) 75.0(0.2) - 58.9(1.4) 78.1(0.5) - 79.6(1.9)
GEM 72.4(0.4) 85.6(1.1) 90.1(1.3) 78.1(0.1) 69.2(0.4) 67.2(0.4) 80.6(0.9) 86.6(0.1) 81.7(0.5)

Uni-Mol 72.9(0.6) 85.7(0.2) 91.9(1.8) 79.6(0.5) 69.6(0.1) 65.9(1.3) 80.8(0.3) 88.5(0.1) 82.1(1.3)

Table 2: Uni-Mol performance on molecular property prediction regression tasks
Regression (lower is better ↓)

RMSE MAE

Datasets ESOL FreeSolv Lipo QM7 QM8 QM9
# Molecules 1128 642 4200 6830 21786 133885
# Tasks 1 1 1 1 12 3

D-MPNN 1.050(0.008) 2.082(0.082) 0.683(0.016) 103.5(8.6) 0.0190(0.0001) 0.00814(0.00001)
Attentive FP 0.877(0.029) 2.073(0.183) 0.721(0.001) 72.0(2.7) 0.0179(0.001) 0.00812(0.00001)
N-GramRF 1.074(0.107) 2.688(0.085) 0.812(0.028) 92.8(4.0) 0.0236(0.0006) 0.01037(0.00016)
N-GramXGB 1.083(0.082) 5.061(0.744) 2.072(0.030) 81.9(1.9) 0.0215(0.0005) 0.00964(0.00031)
PretrainGNN 1.100(0.006) 2.764(0.002) 0.739(0.003) 113.2(0.6) 0.0200(0.0001) 0.00922(0.00004)
GROVERbase 0.983(0.090) 2.176(0.052) 0.817(0.008) 94.5(3.8) 0.0218(0.0004) 0.00984(0.00055)
GROVERlarge 0.895(0.017) 2.272(0.051) 0.823(0.010) 92.0(0.9) 0.0224(0.0003) 0.00986(0.00025)
GraphMVP 1.029(0.033) - 0.681(0.010) - - -
MolCLR 1.271(0.040) 2.594(0.249) 0.691(0.004) 66.8(2.3) 0.0178(0.0003) -
GEM 0.798(0.029) 1.877(0.094) 0.660(0.008) 58.9(0.8) 0.0171(0.0001) 0.00746(0.00001)

Uni-Mol 0.788(0.029) 1.620(0.035) 0.603(0.010) 41.8(0.2) 0.0156(0.0001) 0.00467(0.00004)

mechanics and physical chemistry to biophysics and physiology. Following previous work GEM [13],193

we use scaffold splitting for the dataset and report the mean and standard deviation of the results194

for three random seeds.195

Baselines We compare Uni-Mol with multiple baselines, including supervised and pretraining196

baselines. D-MPNN [49] and AttentiveFP [50] are supervised GNNs methods. N-gram [51],197

PretrainGNN [22], GROVER [11], GraphMVP [26], MolCLR [12], and GEM [13] are pretraining198

methods. N-gram embeds the nodes in the graph and assembles them in short walks as the graph199

representation. Random Forest and XGBoost [52] are used as the predictor for downstream tasks.200

Results Table 1 and Table 2 show the experiment results of Uni-Mol and competitive baselines,201

where the best results are marked in bold. Most baseline results are from the paper of GEM, except for202

the recent works GraphMVP and MolCLR. The results of GraphMVP are from its paper. As MolCLR203

uses a different data split setting (without considering chirality), we rerun it with the same data split204

setting as other baselines. From the results, we can summarize them as follows: 1) overall, Uni-Mol205

outperforms baselines on almost all downstream datasets. 2) In solubility (ESOL, Lipo), free energy206

(FreeSolv), and quantum mechanical (QM7, QM8, QM9) properties prediction tasks, Uni-Mol is207

significantly better than baselines. As 3D information is critical in these properties, it indicates that208

Uni-Mol can learn a better 3D representation than other baselines. 3) Uni-Mol fails to beat SOTA on209

the SIDER dataset. After investigation, we find Uni-Mol fails to generate 3D conformations (and210

rollbacks to 2D graphs) for many molecules (like natural products and peptides) in SIDER. Therefore,211

due to the missing 3D information, it is reasonable that Uni-Mol cannot outperform others.212

In summary, by better utilizing 3D information in pretraining, Uni-Mol outperforms all previous213

MRL models in almost all property prediction tasks.214
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Table 3: Uni-Mol performance on molecular conformation generation
Dataset QM9 Drugs

Methods COV(↑, %) MAT(↓, Å) COV(↑, %) MAT(↓, Å)
Mean Median Mean Median Mean Median Mean Median

RDKit 83.26 90.78 0.3447 0.2935 60.91 65.70 1.2026 1.1252
CVGAE 0.09 0.00 1.6713 1.6088 0.00 0.00 3.0702 2.9937
GraphDG 73.33 84.21 0.4245 0.3973 8.27 0.00 1.9722 1.9845
CGCF 78.05 82.48 0.4219 0.3900 53.96 57.06 1.2487 1.2247
ConfVAE 80.42 85.31 0.4066 0.3891 53.14 53.98 1.2392 1.2447
ConfGF 88.49 94.13 0.2673 0.2685 62.15 70.93 1.1629 1.1596
GeoMol 71.26 72.00 0.3731 0.3731 67.16 71.71 1.0875 1.0586
DGSM 91.49 95.92 0.2139 0.2137 78.73 94.39 1.0154 0.9980
DMCG 96.34 99.53 0.2065 0.2003 96.69 100.00 0.7223 0.7236
GeoDiff 90.07 93.39 0.2090 0.1988 89.13 97.88 0.8629 0.8529

Uni-Mol 98.68 100.00 0.1806 0.1510 92.69 100.00 0.6596 0.6215

3.2 Molecular conformation generation215

Datasets and setup Following the settings in previous works [44, 53], we use GEOM-QM9 and216

GEOM-Drugs [54] dataset to perform conformation generation experiments. As described in Sec. 2.3,217

in this task, Uni-Mol optimizes its generative conformations to the labeled ones. To construct the218

finetuning data, we first randomly generate 10 conformations. Then, for each of them, we calculate219

the RMSD between it and labeled conformations, and choose the one with minimal RMSD as its220

optimizing target. For the inference in the test set, we generate the same number of conformations221

(twice the number of labeled conformations) as previous works do. And we use the same metrics,222

Coverage (COV) and Matching (MAT). Higher COV means better diversity, while lower MAT means223

higher accuracy.224

Baselines We compare Uni-Mol with 10 competitive baselines. RDKit [38] is a traditional confor-225

mation generation method based on distance geometry. The rest baseline can be categorized into two226

classes. GraphDG [43], CGCF[44], ConfVAE [55], ConfGF [53], and DGSM [56] combine gener-227

ative models with distance geometry, which first generates interatomic distance matrices and then228

iteratively generates atomic coordinates. CVGAE [45], GeoMol [46], DMCG [57], and GeoDiff [58]229

directly generate atomic coordinates.230

Results The results are shown in Table 3. We report the mean and median of COV and MAT on231

GEOM-QM9 and GEOM-Drugs datasets. ConfVAE [55], GeoMol[46], DGSM [56], DMCG [57],232

GeoDiff’s [58] results are from their papers, respectively. Other baseline results are from ConfGF’s233

paper. As shown in Table 3, Uni-Mol exceeds existing baselines in both COV and MAT metrics on234

both datasets. Although Uni-Mol outperforms SOTA, we suspect that the above benchmark cannot235

satisfy the real-world demand of conformation generation tasks in the field of drug design. Since236

the ensemble of molecular conformations in biological systems is different from that in a vacuum or237

general solution environment, the ensemble of bioactive conformation must be considered in order to238

apply the conformation generation model in the context of drug design, while the GEOM dataset just239

ignores this. Establishing a reasonable benchmark will be crucial in this research direction.240

3.3 Pocket property prediction241

Datasets and setup Druggability, the ability of a candidate protein pocket to produce stable242

binding to a specific molecular ligand, is one of the most critical properties of a candidate protein243

pocket. However, this task is very challenging due to the very limited supervised data. For example,244

NRDLD [59], a commonly used dataset, only contains 113 data samples. Therefore, besides245

NRDLD, we construct a regression dataset for benchmarking pocket property prediction performance.246

Specifically, based on Fpocket tool, we calculate Fpocket Score, Druggability Score, Total SASA,247

and Hydrophobicity Score for the selected 164,586 candidate pockets. Model is trained to predict248

these scores. To avoid leaking, the selected pockets are not overlapped with the candidate protein249

pocket dataset used in Uni-Mol pretraining.250

Baselines On the NRDLD dataset, we compare Uni-Mol with 6 previous methods evaluated in [60].251

Accuracy, recall, precision, and F1-score are used as metrics for this classification task. On our252

created benchmark dataset, as there are no appropriate baselines, we use an additional Uni-Mol model253
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Table 4: Uni-Mol performance on pocket property prediction
Classification (higher is better ↑) Regression (lower is better ↓)

Dataset NRDLD Fpocket Scores

Methods Cavity-DrugScore Volsite DrugPred PockDrug TRAPP-CNN Uni-Mol Methods Uni-Molrandom Uni-Mol

Accuracy 0.82 0.89 0.89 0.865 0.946 0.946 MSEFpocket 0.621(0.004) 0.551(0.008)
Recall - - - 0.957 0.913 1.000 MSEDruggability 0.601(0.02) 0.499(0.007)
Precision - - - 0.846 1.000 0.920 MSETotal SASA 0.197(0.008) 0.129(0.005)
F1-score - - - 0.898 0.955 0.958 MSEHydrophobicity 0.0357(0.017) 0.0127(0.0005)

without pretraining, denoted as Uni-Molrandom, to check the performance brought by pretraining on254

pocket property prediction. MSE (mean square error) is used as the metric.255

Results As shown in Table 4, Uni-Mol shows the best accuracy, recall, and F1-score on NRDLD,256

the few-show dataset. In our created benchmark dataset, the pretraining Uni-Mol model largely257

outperforms the non-pretraining one on all four scores. This indicates that pretraining on candidate258

protein pockets indeed brings improvement in pocket property prediction tasks.259

Unlike Molecular property prediction, due to the very limited supervised data, pocket property260

prediction gained much less attention. Therefore, we also plan to release our created benchmark261

dataset, and hopefully, it can help future research.262

3.4 Protein-ligand binding pose prediction263

Datasets and setup As mentioned above, protein-ligand binding pose prediction is one of the most264

important tasks in drug design. And Uni-Mol combines both the molecular and pocket pretraining265

models to learn a distance matrix based scoring function, and then sample and optimize the complex266

conformations. For the benchmark dataset, referring to the previous works [28, 61], we use CASF-267

2016 as the test set. For the training data used in finetuning, we use PDBbind General set v.2020 [62]268

(19,443 protein-ligand complexes), excluding complexes that already exist in the CASF-2016.269

Two benchmarks are conducted: 1) Docking power, the default metric to benchmark the ability of a270

scoring function in CASF-2016. Specifically, it tests whether a scoring function can distinguish the271

ground truth binding pose from a set of decoys or not. For each ground truth, CASF-2016 provides272

50 100 decoy conformations of the same ligand. Scoring functions are applied to rank them, and the273

ground truth binding pose is expected to be the top 1. 2) Binding pose accuracy. Specifically, we use274

the semi-flexible docking setting: keep the pocket conformation fixed, while the conformation of the275

ligand is fully flexible. We evaluate the RMSD between the predicted binding pose and the ground276

truth. Following previous works, we use the percentage of results that are below predefined RMSD277

thresholds as metrics.278

Baselines For docking power benchmark, the baselines are DeepDock [61] and the top 10 scoring279

functions reported in [28], including both conventional scoring functions and machine learning-280

based ones. For the binding pose accuracy, the baselines are Autodock Vina [63, 64], Vinardo [65],281

Smina [66], and AutoDock4 [67].282

Results From the docking power benchmark results shown in Figure 3, Uni-Mol ranks the 1st,283

with the top 1 success rate of 91.6%. For comparison, the previous top scoring function AutoDock284

Vina [63, 64] achieves 90.2% of the top 1 success rate in this benchmark. From the binding pose285

accuracy results shown in Table 5, Uni-Mol also surpasses all other baselines. Notably, Uni-Mol286

outperforms the second best method by 22.81% under the threshold of 2Å. This result indicates that287

Uni-Mol can effectively learn the 3D information from both molecules and pockets, as well as the288

interaction in 3D space of them. Even without pretraining, Uni-Mol (denoted as Uni-Molrandom) is289

also better than other baselines. This demonstrates the effectiveness of Uni-Mol backbone, as it290

effectively learns the 3D information by limited data.291

In summary, by combining molecular and pocket pretraining models, Uni-Mol significantly outper-292

forms the widely used docking tools in the protein-ligand binding tasks.293

4 Related work294

Molecular representation learning Representation learning on large-scale unlabeled molecules295

attracts much attention recently. SMILES-BERT [18] is pretrained on SMILES strings of molecules296

using BERT [4]. Subsequent works are mostly pretraining on 2D molecular topological graphs [23,297

11]. MolCLR [12] applies data augmentation to molecular graphs at both node and graph levels, using298
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Figure 3: Docking power evaluation on
CASF-2016 (Top 10 methods)

Ligand RMSD
% Below Threshold ↑

Methods 0.5 Å 1.0 Å 1.5 Å 2.0 Å 3.0 Å 5.0 Å
Autodock Vina 23.86 44.21 57.54 64.56 73.68 84.56
Vinardo 23.51 41.75 57.54 62.81 69.82 76.84
Smina 23.51 47.37 59.65 65.26 74.39 82.11
Autodock4 7.02 21.75 31.58 35.44 47.02 64.56
Uni-Molrandom 14.04 49.47 65.26 75.44 87.02 98.60
Uni-Mol 24.91 70.53 84.21 88.07 94.74 98.95

Table 5: Uni-Mol performance on binding pose prediction

a self-supervised contrastive learning strategy to learn molecular representations. Further, several299

recent works try to leverage the 3D spatial information of molecules, and focus on contrastive or300

transfer learning between 2D topology and 3D geometry of molecules. For example, GraphMVP [26]301

proposes a contrastive learning GNN-based framework between 2D topology and 3D geometry.302

GEM [13] uses bond angles and bond length as additional edge attributes to enhance 3D information.303

As aforementioned, due to the inability of handling 3D information, most previous representation304

learning models cannot be used in the important 3D prediction tasks.305

SE(3)-Equivariant models In many-body scenarios such as potential energy surface fitting, SE-(3)306

equivariance is usually required. A series of SE(3) models are proposed, such as SchNet [68], tensor307

field networks [69], SE(3) Transformer [70], DimmNet [71], equivariant graph neural networks308

(EGNN) [36], GemNet [72] and SphereNet [73]. Most of these models are used in supervised309

learning with energy and force. In Uni-Mol, based on the standard Transformer, we introduce several310

minor changes to make the model SE(3)-Equivariant.311

Pocket druggability prediction Druggability prediction of protein binding pockets is crucial for312

drug discovery as druggable pockets need to be identified at the beginning. Since proteins undergo313

conformation changes that might alter the druggability of pockets, it is necessary to utilize 3D314

spatial data beyond sequential information. Early methods, such as Volsite [74], DrugPred [59], and315

PockDrug [75], predict druggability based on the predefined descriptors of pockets’ static structures.316

Later, TRAPP-CNN [60], based on 3D-CNN, proposes the analysis of proteins’ conformation changes317

and the use of such information for druggability prediction.318

Protein-ligand binding pose prediction In structure-based drug design, it is crucial to understand319

the interactions between protein targets and ligands. The in vitro estimation of the binding pose320

and affinity, such as docking, allows for lead identification and guides molecular optimization. In321

particular, docking is one of the most important approaches in structure-based drug design and has322

been developed for the past decades. Tools such as AutoDock4 [67], AutoDock Vina [63, 64], and323

Smina [66] are among the most used docking programs. Also, machine learning-based docking324

methods, such as ∆V inaRF20 [76], DeepDock [61] and Equibind [77], have also been developed to325

predict protein-ligand binding poses and assess protein-ligand binding affinity.326

5 Conclusion327

In this paper, to enlarge the application scope and representation ability of molecular representation328

learning (MRL), we propose Uni-Mol, the first universal large-scale 3D MRL framework. Uni-Mol329

consists of 3 parts: a Transformer based backbone to handle 3D data; two large-scale pretraining330

models to learn molecular and pocket representations respectively; finetuning strategies for all kinds331

of downstream tasks. Experiments demonstrate that Uni-Mol can outperform existing SOTA in332

various downstream tasks, especially in 3D spatial tasks.333

There are 3 potential future directions. 1) Better interaction mechanisms for finetuning two pretraining334

models together. As the interaction between the pretraining pocket model and the pretraining335

molecular model is simple in the current version of Uni-Mol, we believe there is a large room for336

further improvement. 2) Large Uni-Mol models. As larger pretraining models often perform better, it337

is worthy of training a large Uni-Mol model on a bigger dataset. 3) More high-quality benchmarks.338

Although there have been many applications in the field of drug design, high-quality public datasets339

have been lacking. Many public datasets cannot satisfy real-world demand due to the low data quality.340

We believe the high-quality benchmarks will be the lighthouse of the entire field, and will significantly341

accelerate the development of drug design.342
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(a) If your work uses existing assets, did you cite the creators? [Yes] We discuss all the used539

datasets in the experiment section 3, datasets and setup part.540

(b) Did you mention the license of the assets? [Yes] We mention the license for the datasets used541

in Appendix.542

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]543

(d) Did you discuss whether and how consent was obtained from people whose data you’re544

using/curating? [N/A]545

(e) Did you discuss whether the data you are using/curating contains personally identifiable546

information or offensive content? [N/A]547

5. If you used crowdsourcing or conducted research with human subjects...548

(a) Did you include the full text of instructions given to participants and screenshots, if applica-549

ble? [N/A]550

(b) Did you describe any potential participant risks, with links to Institutional Review Board551

(IRB) approvals, if applicable? [N/A]552

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on553

participant compensation? [N/A]554
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