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Abstract001

Large Language Models (LLMs) are typically002
trained to predict the next token in a sequence.003
However, their internal representations often004
encode signals that go beyond immediate next-005
token prediction. In this work, we investigate006
whether these hidden states also carry infor-007
mation about the remaining length of the gen-008
erated output—an implicit form of foresight009
(Pal et al., 2023). Accurately estimating how010
many tokens are left in a response has both011
theoretical and practical relevance. From an012
interpretability perspective, it reveals that the013
model may internally track its progress through014
a generation. From a systems perspective,015
it enables more efficient inference strategies,016
such as LLM inference via output-length-aware017
scheduling(Shahout et al., 2024).018

1 Introduction019

Large Language Models (LLMs) have demon-020

strated remarkable ability to generate coherent text,021

but understanding what latent information they022

maintain during generation remains a challenge. A023

key question is whether an LLM internally tracks024

how much output remains to be produced. This is025

relevant both for interpretability—understanding026

a model’s sense of progression—and for practical027

systems such as efficient request scheduling (Qiu028

et al., 2024; Zheng et al., 2023).029

Prior work suggests that transformer hidden030

states may encode signals beyond immediate next-031

token prediction. For instance, Pal et al. (2023)032

showed that a single hidden state can predict sev-033

eral future tokens with notable accuracy, indicating034

that models internalize aspects of future output.035

Building on this, Shahout et al. (2024) used inter-036

mediate layer embeddings to estimate the number037

of tokens remaining in a response, identifying lay-038

ers 10–15 as especially informative.039

Accurately estimating the remaining output040

length offers practical benefits. It enables strate-041

gies like adaptive early stopping and intelligent 042

scheduling in multi-user environments. A particu- 043

larly promising use case is integration with Short- 044

est Job First (SJF) scheduling (Akhtar et al., 2015; 045

Fu et al., 2024), which minimizes latency by pri- 046

oritizing shorter tasks. In the LLM setting, this 047

allows systems like Orca (Mukherjee et al., 2023) 048

or vLLM (Kwon et al., 2023) to reorder token gen- 049

eration queues dynamically to improve throughput 050

and responsiveness. 051

Our contributions are: 052

• An aggregation-based predictor that com- 053

bines hidden states from multiple transformer 054

layers using element-wise operations (e.g., 055

mean, sum) and predicts token-wise output 056

length via a shallow feedforward network. 057

• A Layerwise Graph Regressor that treats 058

each layer’s hidden state as a node in a token- 059

specific graph, using a GNN to model inter- 060

layer dependencies for remaining token count 061

prediction. 062

• An experimental evaluation on an 063

instruction-following dataset using a 064

state-of-the-art LLM. 065

• An analysis of prediction accuracy as a func- 066

tion of a token’s position relative to the end of 067

the sequence. 068

We further connect our results to existing inter- 069

pretability work and discuss what they reveal about 070

internal transformer representations. 071

2 Method 072

To predict the number of remaining tokens at each 073

generation step, we consider the task as a regres- 074

sion problem. Let ht
ℓ ∈ Rd denote the hidden state 075

(embedding vector) from the ℓ-th layer of the LLM 076

at generation step t, where ℓ ∈ {8, 9, . . . , 15}. The 077
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prediction target is defined as yt = T − t, where078

T is the total number of tokens in the generated se-079

quence and t is the current position. The objective080

is to learn a function f such that:081

ŷt = f(ht
8, . . . ,h

t
15)082

We choose to use hidden states from layers 8083

to 15 based on empirical findings from TRAIL084

(Shahout et al., 2024), which showed that these in-085

termediate layers achieve the lowest mean absolute086

error in output length prediction tasks.087

We explore two model architectures for this task:088

• Aggregation. This baseline follows the089

TRAIL methodology by leveraging internal090

hidden states from a large language model091

(LLM) to predict output lengths. Specifically,092

we extract token-level hidden states ht
ℓ from093

a selected set of layers ℓ ∈ {8, . . . , 15} and094

aggregate them using a configurable element-095

wise operation such as mean, sum, or concate-096

nation:097

zt = Aggregate(ht
ℓ1 , . . . ,h

t
ℓk
) ∈ Rd098

The aggregated vector zt is passed through a099

lightweight feedforward network ϕ to produce100

a categorical prediction over discretized bins101

representing the number of remaining output102

tokens:103

ŷt = ϕ(zt)104

The model is trained using a cross-entropy105

loss over these bins as in orig. During evalu-106

ation, we compute the expected value of the107

predicted length by weighting bin midpoints108

with softmax probabilities. This approach mir-109

rors the core idea of TRAIL (Shahout et al.,110

2024) by reusing internal representations of111

the LLM without requiring end-to-end fine-112

tuning. The implementation supports aggre-113

gation modes including mean and sum. It114

operates purely on precomputed embeddings,115

ensuring low inference overhead.116

• Layerwise Graph Regressor. We propose a117

graph-based regression model for predicting118

the number of remaining output tokens for119

each generated token. The model leverages120

the layerwise structure of transformer hidden121

states by constructing a token-specific graph122

where each node corresponds to the hidden123

embedding ht
ℓ ∈ Rd from a selected trans- 124

former layer ℓ = 8, . . . , 15. 125

These embeddings form the node features 126

x ∈ RL×d, where L is the number of lay- 127

ers. Nodes are connected using a fully con- 128

nected topology, resulting in an adjacency ma- 129

trix A that captures all pairwise relationships 130

between layers. 131

A two-layer Graph Convolutional Network 132

(GCN) is applied to this token-specific graph: 133

x(1) = ReLU(GCN1(x,A)) 134

135
x(2) = ReLU(GCN2(x

(1),A)) 136

The final node representations x(2) are aggre- 137

gated using global mean pooling to obtain a 138

compact vector vt ∈ Rd′ : 139

vt = MeanPool(x(2)) 140

A fully connected regressor ψ then produces 141

the predicted remaining length: 142

ŷt = ψ(vt) 143

This architecture captures inter-layer struc- 144

tural relationships without relying on attention 145

mechanisms, offering a compact and expres- 146

sive summary of a token’s transformer-depth 147

context. The model is trained using the Mean 148

Absolute Error (MAE) loss between predic- 149

tions ŷt and ground truth yt. 150

Experimental Setup 151

Dataset For our experiments, we use the Stan- 152

ford Alpaca instruction-following dataset (Taori 153

et al., 2023), focusing on the first 1,000 examples 154

from the training split. Each example contains a 155

user-issued prompt designed to elicit coherent and 156

aligned responses from instruction-tuned models. 157

Using the Meta-LLaMA-3-8B-Instruct model, we 158

generate responses to these prompts and extract 159

hidden states from selected transformer layers dur- 160

ing generation. These hidden representations serve 161

as features for downstream models, allowing us to 162

investigate how internal model dynamics correlate 163

with output sequence length. 164

Model We use the LLaMA-8B-Instruct model 165

in inference mode to regenerate outputs for the 166

selected prompts. 167
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Training Details We train all models for up168

to 30 epochs using early stopping and adaptive169

learning rate scheduling. The optimizer used is170

AdamW with a learning rate of 1e-3 and a batch171

size of 16. All training is performed with mixed172

precision (AMP) to improve computational effi-173

ciency. We evaluate models using standard re-174

gression metrics, including Mean Absolute Er-175

ror (MAE) and Normalized MAE (NMAE). For176

classification-based approaches, we additionally177

compute the expected value of the predicted output178

length from the softmax-weighted bin midpoints.179

Evaluation Metrics We report the Mean Ab-180

solute Error (MAE) as our primary evaluation181

metric. MAE measures the average absolute differ-182

ence between predicted and true values, providing183

an interpretable and scale-consistent indication of184

prediction accuracy:185

MAE =
1

N

N∑
i=1

|ŷi − yi|186

where ŷi and yi represent the predicted and ground-187

truth number of remaining tokens at generation step188

i, respectively.This approach has also been adopted189

in previous studies, and we regard it as a valuable190

point of reference. (Shahout et al., 2024) (Qiu191

et al., 2024) To complement MAE, we also report192

the Normalized Mean Absolute Error (NMAE):193

NMAE =
1

N

N∑
i=1

|ŷi − yi|
yi

194

This metric captures relative error, which is par-195

ticularly informative when the target values (i.e.,196

the number of remaining tokens) vary widely. To197

avoid division by zero, we exclude instances where198

yi = 0.199

NMAE is especially well-suited for length pre-200

diction tasks because it accounts for the scale of the201

target values. While MAE treats all errors equally,202

regardless of the true value’s magnitude, NMAE203

penalizes errors relative to the ground truth. For204

example, an error of 5 tokens is more severe when205

the true value is 10 than when it is 100. By normal-206

izing the errors, NMAE offers a more nuanced and207

scale-sensitive evaluation of model performance.208

This is particularly important in settings where209

the target lengths span a wide range — from very210

short to very long continuations. In such cases,211

MAE tends to be dominated by absolute errors on212

longer sequences, potentially masking poor perfor- 213

mance on shorter ones. In contrast, NMAE high- 214

lights proportional mistakes, which are often more 215

meaningful in practical applications. For instance, 216

overestimating by 5 tokens when only 10 remain 217

may indicate a critical failure in generation con- 218

trol, while the same absolute error on a 100-token 219

continuation is less problematic. We therefore hy- 220

pothesize that NMAE provides a more balanced 221

and interpretable signal for evaluating length pre- 222

diction, especially when precise control over short 223

outputs is important. 224

3 Results 225

The Graph model consistently achieves lower nor- 226

malized mean absolute error (NMAE) compared 227

to single-layer and aggregation-based baselines 228

across all tested hidden dimensions. For example, 229

at dimension 128, it reduces NMAE by 59% rela- 230

tive to the best baseline (from 0.9442 to 0.3871), 231

and by 26% and 9.5% at dimensions 256 and 512, 232

respectively. 233

Performance gains persist across different token 234

thresholds. Notably, for sequences with 240 or 235

more remaining tokens, the Graph model reduces 236

NMAE from 0.0635 to 0.0271. In shorter ranges 237

(e.g., [120, 240) and [80, 120)), the reduction is 238

similarly substantial. Even in the most challenging 239

short-token setting ([0, 40)), where MAE is com- 240

parable, NMAE drops by over 50%, suggesting im- 241

proved proportional accuracy. These results high- 242

light the model’s robustness across the sequence 243

space. 244

4 Discussion 245

Our results reinforce that hidden states in trans- 246

former models encode information not only about 247

the next token but also about the overall progress 248

of the generation process. The consistent advan- 249

tage of the Graph model indicates that combining 250

information across layers captures this signal more 251

effectively than single-layer or pooled representa- 252

tions. 253

These findings empirically validate the hypothe- 254

sis posed by Shahout et al. (Shahout et al., 2024), 255

who suggested that integrating multiple layers 256

could enhance predictions. Our model, by lever- 257

aging mid-layer embeddings, demonstrates that 258

length-related information is distributed across 259

depth and benefits from structured modeling. 260

This aligns with broader themes in interpretabil- 261
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Method MAE NMAE Hidden Dim LTT UTT
Graph (ours) 27.04 0.3871 128 0 512
TRAIL 30.98 0.9442 128 0 512
Hidden state aggregation 32.79 1.0374 128 0 512
Proxy Model 110.63 – 128 0 512
Graph (ours) 23.11 0.6754 256 0 512
TRAIL 28.30 0.9130 256 0 512
Hidden state aggregation 30.62 0.980 256 0 512
Proxy Model 111.96 – 256 0 512
Graph (ours) 21.13 0.7847 512 0 512
TRAIL 26.94 0.8675 512 0 512
Hidden state aggregation 28.24 0.9574 512 0 512
Proxy Model 110.37 – 512 0 512
Graph (ours) 32.43 0.0271 512 ≥ 240 400
TRAIL 19.31 0.0635 512 ≥ 240 400
Graph (ours) 21.47 0.0133 512 ≥ 120 240
TRAIL 11.84 0.0869 512 ≥ 120 240
Graph (ours) 29.05 0.0896 512 ≥ 80 120
TRAIL 18.19 0.1836 512 ≥ 80 120
Graph (ours) 17.10 1.1093 512 ≥ 0 40
TRAIL 14.17 2.3888 512 ≥ 0 40

Table 1: Prediction results across model types and hidden dimensions. (LTT) Lower Token Threshold is the
minimum number of tokens remaining; (UTT) is the upper bound.

ity. Each layer may represent different levels of262

abstraction — from planning and discourse struc-263

ture to local coherence. Our results suggest that264

LLMs implicitly maintain a sense of “how much265

is left,” even though they are trained only to pre-266

dict the next token. Similar to the "Future Lens"267

findings by Pal et al. (Pal et al., 2023), this fore-268

sight can be abstracted as a scalar — the number269

of tokens remaining.270

We also observe that prediction quality varies271

with token position: the longer the remaining se-272

quence, the stronger the signal. This suggests a po-273

tential transition in internal representations through-274

out generation, which could be further explored in275

future work.276

Interestingly, we also observe cases where a277

single-layer baseline achieves a lower MSE (Mean278

Squared Error), while our Graph model yields279

better NMSE (Normalized MSE). This suggests280

that predictions based on single layer of hidden281

states may perform well in fixed-length continua-282

tions—e.g., being particularly good at forecasting283

a fixed offset like 40 tokens ahead—regardless of284

the total sequence length. In such cases, the layer285

appears to encode specific knowledge about short-286

term continuation length. 287

By contrast, our Graph model, though occasion- 288

ally less precise at very specific token horizons, 289

performs more consistently across a wide range 290

of sequence lengths. The likely reason is that it 291

integrates information from multiple layers—some 292

of which may contribute noise to local estimates 293

but improve the overall generalization. 294

The underlying cause might be the model’s fully 295

connected layerwise structure, which lacks a mech- 296

anism to weight or filter layer contributions dy- 297

namically. A more expressive mechanism such as 298

attention, or even layer-wise routing, could allow 299

the model to emphasize the most informative layers 300

on a per-token basis. In this sense, attention would 301

serve as a natural mechanism for layer selection, en- 302

abling more targeted use of useful depth-level sig- 303

nals while suppressing interference. Incorporating 304

such inductive bias remains an exciting direction 305

for future work. 306

Limitations 307

While our results are encouraging, our study has 308

several limitations that suggest caution and point 309

to directions for future work. 310
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Second, our method predicts the number of to-311

kens remaining, but not the content of those tokens.312

It is a coarse abstraction. There may be cases where313

the model’s internal state captures rich information314

about upcoming content (as evidenced by Future315

Lens (Pal et al., 2023)), but predicting an exact316

length remains difficult — for instance, when the317

model is planning a response of “about two sen-318

tences.” In such scenarios, our model may output319

only an approximate or average length. Addition-320

ally, we formulate length prediction as a regression321

problem; an alternative is to treat it as classification322

into length bins, as done by Shahout et al. (Sha-323

hout et al., 2024). While regression allows finer324

granularity, classification might yield more stable325

or interpretable outputs, especially in the presence326

of outliers.327

Third, the reliability of the predictor degrades328

at extreme sequence lengths. We observed less329

accurate predictions for particularly long or short330

outputs. A practical system may need to estimate331

and report its own uncertainty in such cases. We did332

not explore confidence calibration or uncertainty333

estimation, which could be useful in downstream334

applications such as LLM scheduling — e.g., de-335

ferring a prediction if uncertainty is high.336

In summary, while we demonstrated the feasibil-337

ity of predicting token-level output length from338

hidden states in one setting, further research is339

needed to test the generality of the approach, im-340

prove robustness, and integrate such predictors into341

practical LLM systems. We also acknowledge that342

the dataset used in our study is relatively small,343

which may limit the generalizability of our find-344

ings. We hope our findings and methodology serve345

as a starting point for more work on latent structural346

knowledge in large language models. We hope our347

findings and methodology serve as a starting point348

for more work on latent structural knowledge in349

large language models.350

Ethical Considerations351

This research primarily involves analyzing a pre-352

existing language model and does not directly raise353

severe ethical concerns. We worked with the Al-354

paca dataset (Taori et al., 2023), which consists355

of synthetic instruction-response pairs. Although356

the data was generated by a language model (Ope-357

nAI’s text-davinci-003) and may contain biases358

or inaccuracies, our use of it is limited to probing359

model behavior rather than making deployable pre-360

dictions that affect users. No personal or private 361

information is included in the prompts or outputs. 362

We note that predicting remaining output length 363

could be used in applications to allocate comput- 364

ing resources or moderate content (e.g., cutting off 365

excessively long answers). If misused, such mecha- 366

nisms might unfairly truncate or deprioritize certain 367

user inputs. However, in our controlled study, we 368

do not deploy any system — we only analyze per- 369

formance offline. All experiments were conducted 370

on a private compute environment; we did not in- 371

volve human subjects or gather new personal data. 372

In terms of broader impact, improving LLM effi- 373

ciency via length prediction could benefit users by 374

reducing latency and resource use. However, one 375

should ensure that scheduling based on length pre- 376

dictions does not inadvertently disadvantage com- 377

plex or long but important queries. There is a minor 378

environmental impact in training the predictors and 379

running the LLM for experiments, but we limited 380

our runs to a relatively small scale (1,000 prompts 381

on an 8B model). We encourage future work to 382

consider energy-efficient methods and to use re- 383

newable energy where possible. 384

Finally, we adhere to the ACL Ethics Policy: 385

we cite the sources of our model and dataset, re- 386

spect terms of use (LLaMA and Alpaca have appro- 387

priate licenses for research use), and open-source 388

our code for transparency. We do not foresee di- 389

rect harm from this specific research, but as al- 390

ways, further deployment of predictive systems 391

should be tested for fairness and bias (e.g., does 392

the model systematically underpredict lengths for 393

certain types of content, and could that cause harm 394

in a downstream application?). 395
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Figure 1: Mean Absolute Error (MAE) as a function of
distance from the end of the sequence.

Figure 1 illustrates how prediction accuracy im-442

proves as generation progresses. The Mean Ab-443

solute Error (MAE) decreases toward the end of444

the sequence, indicating that the model’s internal445

representations become increasingly informative446

for estimating the remaining length.447
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