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Abstract

Existing domain adaptation literature comprises multi-
ple techniques that align the labeled source and unlabeled
target domains at different stages, and predict the target
labels. In a source-free domain adaptation setting, the
source data is not available for alignment. We present a
source-free generative paradigm that captures the relations
between the source categories and enforces them onto the
unlabeled target data, thereby circumventing the need for
source data without introducing any new hyper-parameters.
The adaptation is performed through the adversarial align-
ment of the posterior probabilities of the source and target
categories. The proposed approach demonstrates compet-
itive performance against other source-free domain adap-
tation techniques and can also be used for source-present
settings.

1. Introduction

A classifier model trained on one dataset (source), gen-
erally underperforms when tested on data from a different
dataset (target). This is due to the distribution difference
between the two datasets [3]. Unsupervised domain adapta-
tion aims to adapt the classifier to the target dataset without
using target labels. It has been studied extensively over the
past few years [39, 42].

Unsupervised domain adaptation requires both the
labeled source dataset and the unlabeled target dataset
when learning a classifier for the target. Access to a
source dataset may not be available owing to security
and privacy constraints. Source-free domain adaptation
assumes only the presence of a pre-trained source classifier
and the unlabeled target dataset [21]. Unsupervised domain
adaptation uses source-target alignment approaches like
feature alignment [10, 30, 37, 8, 35] and pixel alignment
[13, 4, 33] to perform domain adaptation. These approaches
are generally not possible in the source-free setting.

In this paper, we propose a novel approach that mod-
els a generative paradigm governed by a joint probability
p(x,y) where x is the visible data and y are latent (la-
bels) variables. We propose an approximation qθ(y|x) to
the unknown posterior probabilities p(y|x). We demon-
strate that a good approximation of the posterior probability
qθ(y|x) ≈ p(y|x) can be learned by aligning the predicted
posterior distribution qθ(y|x) with the class prior p(y). We
present arguments to establish that the generative paradigm
is equivalent to the source-free domain alignment setting
when we align the source and target posterior probabilities
using adversarial alignment. Specifically, we circumvent
the need for source data by generating the source category
distribution p̂s(y) using a conditional generative adversar-
ial framework. Domain adaptation is achieved by enforcing
the target posterior distribution to align with the source cat-
egory distribution using adversarial alignment. In place of
the traditional image or feature alignment, we proceed with
alignment in the label space.
We present a Generative model for the Alignment of
Posterior probabilities (GAP) of the source and target to
perform source-free and unsupervised domain adaptation.
Some of the highlights of the GAP model are: (1) GAP does
not introduce any new hyper-parameters and hence, does
not require any additional hyperparameter tuning; (2) GAP
is robust to variations in batch size (3) GAP can effectively
exploit source data (when present) to enforce inter-class re-
lationships through knowledge distillation. [12].

2. Related Work
2.1. Unsupervised Domain Adaptation

Most unsupervised domain adaptation methods attempt
to reduce the misalignment between the source and target
domains while training a common classifier for classifying
the source and target data. Domain alignment is achieved
by aligning the source and target features extracted using
a deep neural network. Adversarial alignment using
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Generative Adversarial Networks is the most popular
approach for feature alignment [10, 37, 23]. Otherwise,
distance metrics like Maximum Mean Discrepancy [38],
Wasserstein distance [35, 20], and Moment matching [47]
are used for feature alignment. Pixel-based approaches
translate images from one domain into another and then
train a common classifier for the domains [13, 4]. A
combination of these approaches has also been proposed in
[24, 13, 9, 46].

2.2. Source-free Domain Adaptation

Unsupervised domain adaptation methods require access
to source and target data at the same time to perform domain
alignment. Source-free domain adaptation estimates labels
for the target data without using source data.

Popular approaches include a combination of entropy
minimization and diversity maximization in addition to
other objective functions during training. Entropy mini-
mization ensures that the posterior probabilities predicting
the label for the target have low entropy. While minimiz-
ing posterior entropy is necessary, it can result in a triv-
ial solution where all the target samples are assigned to
one class alone. Therefore entropy minimization is ac-
companied by diversity maximization, which ensures that
the average posterior probability for a random subset of
target samples is uniformly distributed. [21] used en-
tropy minimization+diversity maximization loss along with
a pseudo-labeling procedure to adapt the network to the
target domain. [16] adjusted the deep features of the tar-
get data to match the stored source batch-norm parameters
along with entropy minimization+diversity maximization
loss. [1] used virtual adversarial training [27] and K-means
over the target pseudo labels along with entropy minimiza-
tion+diversity maximization loss.

Other approaches like [14] generate images translates the
target image to source style using batch norm statistics. [18]
generates target like image with low entropy on the source-
trained model.

3. Method
3.1. Problem Statement

Let Ds = {x(i)
s ,y

(i)
s }ns

i=1 be the source dataset where
ns represents the number of labelled training samples and
ys is the one-hot representation of the source label with K

categories. The unlabeled target dataset is Dt = {x(i)
t }nt

i=1

with nt samples. The datasets Ds and Dt are drawn from
distributions ps and pt with ps(x,y) ̸= pt(x,y), but they
share the same label space with identical K categories. The
goal of unsupervised domain adaptation is to estimate the
labels {ŷ(i)

t }nt
i=1 corresponding to elements in Dt. Source-

free domain adaptation is a more restricted setup where the

source and target data are not accessible at the same time.
In source-free domain adaptation, once the source classifier
fθ(.) has been trained using Ds, we loose access to Ds.
We propose to predict target labels using Dt and the source
classifier fθ(.).

3.2. Generative Model

We propose a generative paradigm to estimate the labels
for the target dataset. Let the images from the target dataset
be sampled from x ∈ X , where X is the space of images.
The corresponding labels are one-hot binary vectors of the
type y ∈ {0, 1}K , where

∑
k yk = 1. K is the number

of distinct categories in the target dataset. The images and
labels are sampled from an unknown target distribution
pt(x,y). Given a target sample x, we intend to estimate
the posterior pt(y|x) using which we arrive at the label y.
We propose to approximate pt(.) using a parametric model
qθ(.). In essence we seek to estimate parameter θ such that
pt(y|x) ≈ qθ(y|x).

In order to estimate θ, we begin with estimating the reverse
Kullback-Leibler (KL) divergence KL(qθ(y|x)||pt(y|x)),

KL(qθ(y|x)||pt(y|x)) =
= Eqθ(y|x)

[
logqθ(y|x)− logpt(y|x)

]
= Eqθ(y|x)

[
logqθ(y|x)− logpt(x|y)− logpt(y)

+ logpt(x)
]

= KL(qθ(y|x)||pt(y))− Eqθ(y|x)
[
logpt(x|y)

]
+ logpt(x)

KL(qθ(y|x)||pt(y|x)) ≤ KL(qθ(y|x)||pt(y))
− Eqθ(y|x)

[
logpt(x|y)

]
. (1)

In deriving Eq.1 we have used pt(y|x) = pt(x|y)pt(y)
pt(x)

and
Eqθ(y|x)[logpt(x)] = logpt(x) ≤ 0. The R.H.S in Eq.1
is an upper bound for the KL-divergence between the dis-
tributions qθ(y|x) and pt(y|x). The value of θ which will
minimize the R.H.S will align the two distributions. The 1st
term on the R.H.S is the measure of alignment between the
unknown prior distribution pt(y) and the generative model
qθ(y|x). The second term can be viewed as the expected
reconstruction error converting from y to x.

3.3. Model Assumptions

A few assumptions are made to further simplify the
model. pt(y) is unknown, but the source and the target
have the same label space. We assume ps(y) ≈ pt(y),
which is a reasonable assumption along the lines of assum-
ing covariate-shift (ps(y|x) ≈ pt(y|x)) [3] or concept-shift
(ps(x) ≈ pt(x)) [41, 32]. We model qθ(.) using a neu-
ral network which takes x as input and yields the posterior
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Figure 1. Variations in domain alignment. A. Pixel-level alignment: Adversarial image translation is applied to translate source images into
target images before using a common classifier. B. Feature-level alignment: The source and target features of a deep neural network are
aligned before applying a common classifier. The figure depicts an adversarial feature alignment architecture. C. Generative Alignment
of Posterior probabilities (GAP): We propose to align the posterior probabilities of the source and target classifiers using an adversarial
framework. Although the image indicates the presence of a source, the GAP model can be used for both source-free and unsupervised
domain adaptation.

qθ(y|x) as output. The proposed model has issues of iden-
tifiability. A model is identifiable when p(x) has a unique
decomposition in

∑
y p(x|y)p(y) [5]. If a swapping of la-

bels can yield the same marginal p(x), the problem setup is
not identifiable and the resulting solution is not consistent
(different assignment of labels under different initial condi-
tions). The 2nd term on the R.H.S of Eq. 1 can be viewed as
a reconstruction term that can ensure identifiability. How-
ever, pt(x|y) is unknown. We address both the problems
by dropping the 2nd term and initializing the parameters
in the network qθ(.) with the parameters of a pretrained
source classifier. This is a robust initialization mechanism
that will bias the model qθ(.) to yield a consistent mapping
between x and y. Under these assumptions, we minimize
KL(qθ(y|x)||ps(y)) in an attempt to align the distributions
qθ(y|x) and pt(y|x).

3.4. Source Replicator

In the absence of the source data, we cannot align the
probabilities for the source and target directly. Therefore,
we aim to replicate source prior probability vectors for tar-
get alignment. We perform this additional step of source
replication after training a source network. Specifically, we
design a conditional generative adversarial framework [26]
- a generator Gc(.;θc) that takes fake label (yf ∈ Y , where
Y = {0, 1}K) and noise (z ∈ N (0, I)) as input to gen-
erate a probability vector of K-dimensions (using softmax
activation at the last layer). The conditional discrimina-
tor Dc(.;ϕc) is trained to discriminate between generated
probabilities and source probabilities from the pre-trained
source classifier G(., θ). The conditional framework is pre-
ferred over a vanilla GAN primarily to avoid partial mode
collapse and also to have control over the prior class distri-
bution. We refer to the conditional generator as the Source
Replicator in this paper. On account of its stability, we train

the conditional GAN using the least squared loss function
[25],

min
ϕc

1

2
E(x,y)∼Ds

[(Dc(G(x;θ),y;ϕc)− 1)2]

+
1

2
E yf∼Y

z∈N(0,I)

[(Dc(Gc(z,yf ;θc),yf ;ϕc))
2],

min
θc

1

2
E yf∼Y

z∈N(0,I)

[(Dc(Gc(z,yf ;θc),yf ;ϕc)− 1)2]. (2)

The conditional framework captures the statistical varia-
tions of the source predictions and their inter-class rela-
tions. We use the trained conditional generator Gc to repli-
cate (generate) source probabilities ps(y) when minimizing
KL(qθ(y|x)||ps(y)). Figure 2A is the pre-trained source
classifier. Figure 2B depicts the training of the Source
Replicator Gc.

3.5. Source-free Domain Alignment

Domain adaptation approaches rely on the source data
to perform source-target alignment either in the pixel space
through image translation [13, 4] or in the feature space
[38, 10] (see Figure 1). The proposed model can be inter-
preted as the alignment of posterior probabilities ps(y|x)
and pt(y|x), where we align the source and target in the fi-
nal stage of the classification process. As the input image
x propagates through the classification framework (neural
network), it is transformed from an image to a feature vec-
tor and finally to a probability vector while decreasing its
information content and complexity. We hypothesize that
source-target alignment in the high-dimensional pixel space
and feature space is complex and less effective compared to
the alignment of probability vectors. Also, the feature space
is constantly changing as the network trains whereas, the
probability space has fewer variations.
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Figure 2. Model diagram for the GAP. (A) The feature extractor
F and Classifier C are trained using the source data. (B) Source
replicator (conditional generator) Gc is trained to replicate source
predictions. yf represents the fake label. (C) During the target
adaptation, the C component is frozen to retain the source classi-
fication boundaries. The feature extractor F and classifier C rep-
resent the Generator G, and are initialized using the source net-
work. The Source replication is performed using Eq.2 and the
target adaptation uses Eq.3.

We implement a Generative Adversarial Network (GAN) to
align the distributions qθ(y|x) and ps(y) [11]. The Gen-
erator network G(.;θ) models qθ(y|x), where θ are the
parameters of G(.;θ), x is the target input image and y
is the predicted label. The source prior ps(y) is modeled
by the Source Replicator Gc(.). We initialize the Gen-
erator G(.;θ) with the parameters of a pre-trained source
classifier. The similarity between the source and target do-
mains is exploited to provide a near-optimal initialization
for θ. The Discriminator network D(.;ϕ), with parameters
ϕ, is trained to distinguish between the Generator output
G(x;θ) → qθ(y|x) and outputs of the Source Replicator,
Gc(z,yf ;θc). Figure 2C depicts target adaptation where
only the feature extractor (F ) in the pre-trained classifier
G(.) is trained. The parameters of the classifier (C) are
frozen to anchor the classifier and ensure the target align-
ment does not drift away to yield a trivial solution in the

Method S→M M→U U→M Avg

Source 67.1 82.2 69.6 73.0
Source + LS 70.2 79.7 88.0 79.3
SFIT [14] 90.4 84.7 82.3 85.8
SDDA [18] 76.3 88.5 - -
SHOT-IM [21] 99.0 97.6 97.7 98.2
SHOT-Full [21] 98.9 98.0 97.9 98.3
GAP (Ours) 99.1 97.6 98.4 98.4

Target-Supervised (Oracle) 99.4 98.0 99.4 98.8

Table 1. Comparison of source-free classification accuracies on
the digits dataset. Bold numbers represent the highest accuracy
and the underline denotes the second highest.

absence of source data for alignment. The GAN objective
is based on the mean-squared loss function [25],

min
ϕ

1

2
E y∼Y

z∈N(0,I)

[(D(Gc(z,y;θc);ϕ)− 1)2]

+
1

2
Ex∼Dt [(D(G(x;θ);ϕ))2],

min
θ

1

2
Ex∼Dt [(D(G(x;θ);ϕ)− 1)2]. (3)

where the input to the Source Replicator y ∈ Y is a 1-
of-K binary vector, where p(y|π) =

∏K
k=1 π

ȳk

k . Following
[21], we assume the mixing components in π to be a uni-
form prior with πk = K−1 ∀k. The uniform prior can be
replaced with the source prior distribution. However, we
found empirically that uniform prior performs better than
the latter (see supplementary material).

In Figure 2C, the feature extractor (F ) and classifier (C)
together form the Generator G. To account for smoother
posterior probabilities, we apply label smoothing with a
constant ϵ = 0.1 [36] while training the source network. La-
bel smoothing results in better generalization accuracy and
has been adopted in many source-free domain adaptation
approaches [21, 16, 2]. The parameters of the Generator
G(.;θ) are initialized using a pre-trained source network.
Following [21], we only train the feature extractor (F ) and
fix the classifier (C) during the target adaptation phase.

4. Experiments

4.1. Datasets

We perform our experiments on the standard source-
free domain adaptation settings. For digits experiments,
we use SVHN → MNIST, MNIST → USPS and USPS →
MNIST combinations [29, 19, 15]. For object recognition,
we use Office-31 [34], Office-Home [40] and VisDa-C [31]
datasets.
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Source Ar Cl Pr Rw AvgTarget Cl Pr Rw Ar Pr Rw Ar Cl Rw Ar Cl Pr

Source 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
Source + LS 44.6 67.3 74.8 52.7 62.7 64.8 53.0 40.6 73.2 65.3 45.4 78.0 60.2
Rob. Adapt [1] - - - - - - - - - - - - 65.1
SFDA [17] 48.4 73.4 76.9 64.3 69.8 71.7 62.7 45.3 76.6 69.8 50.5 79.0 65.7
SHOT-IM [21] 55.4 76.6 80.4 66.9 74.3 75.4 65.6 54.8 80.7 73.7 58.4 83.4 70.5
SHOT-full [21] 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
GAP (Ours) 55.4 73.4 80.8 67.2 75.5 78.3 65.5 54.0 82.4 74.3 59.4 84.0 70.8

Table 2. Comparison of source-free classification accuracies on the Office-Home dataset (ResNet-50). Bold numbers represent the highest
accuracy and the underline denotes the second highest. LS stands for label smoothing.

Method Plane Bcycl Bus Car Horse Knife Mcycl Person Plant Sktbrd Train Truck Avg

Source 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
Source + LS 60.9 21.6 50.9 67.6 65.8 6.3 82.2 23.2 57.3 30.6 84.6 8.0 46.6
SFIT [14] - - - - - - - - - - - - 63.5
Rob. Adapt [1] - - - - - - - - - - - - 74.9
SFDA [17] 86.9 81.7 84.6 63.9 93.1 91.4 86.6 71.9 84.5 58.2 74.5 42.7 76.7
SHOT-IM [21] 93.7 86.4 78.7 50.7 91.0 93.5 79.0 78.3 89.2 85.4 87.9 51.1 80.4
SHOT-Full [21] 94.3 88.5 80.1 57.3 93.1 94.9 80.7 80.3 91.5 89.1 86.3 58.2 82.9
GAP (Ours) 94.2 84.8 82.5 57.2 93.8 95.1 86.5 78.2 83.1 87.8 86.3 53.5 81.9

Table 3. Comparison of source-free classification accuracies on on the VisDA dataset (ResNet-101). Bold numbers represent the highest
accuracy and the underline denotes the second highest. LS stands for label smoothing.

Method A→D A→W D→A D→W W→A W→D Avg

Source 68.9 68.4 62.5 96.7 60.7 99.4 76.1
Source + LS 80.8 76.9 60.3 95.3 63.6 98.7 79.3
SDDA [18] 85.3 82.5 66.4 99.0 67.7 99.8 83.5
Rob. Adapt [1] - - - - - - 87.0
SFDA [17] 92.2 91.1 71.0 98.2 71.2 99.5 87.2
SHOT-IM [21] 90.6 91.2 72.5 98.3 71.4 99.9 87.3
SHOT-full [21] 94.0 90.1 74.7 98.4 74.3 99.9 88.6
GAP (Ours) 90.6 90.9 74.5 98.7 73.9 99.8 88.1

Table 4. Comparison of source-free classification accuracies on
the Office-31 dataset (ResNet-50). Bold numbers represent the
highest accuracy and the underline denotes the second highest. LS
stands for label smoothing.

4.2. Training Setup

We follow the training protocol and use the network ar-
chitectures from [21]. For the digits dataset, the networks
are trained from scratch. We use ResNet-50 and ResNet-
101 as the backbone network for Office datasets and VisDa
datasets respectively. The networks Gc and Dc consist of
four fully connected layers of size 500 and discriminator D
is a vanilla discriminator composed of two hidden layers of
size 100. All the networks are trained on a batch size of 64
using an SGD optimizer with a momentum of 0.9. We use
1e−2 learning rate for office and 1e−3 for the VisDa dataset

and decay it as η = η0(1+10p)−0.75 where p is the training
progress. The learning rate for pre-trained layers is reduced
by a factor of 10.

4.3. Results

The results for digits, Office-Home, VisDa and Office-
31 are in Table 1, 2, 3 and 4 respectively. We compare our
approach with source-free domain adaptation methods like
SFDA [17], SDDA [18], SHOT [21]. Our method achieves
comparable performance against all the baseline methods.
SHOT-full outperforms our approach but it uses pseudo la-
beling loss along with SHOT-IM loss functions- entropy
minimization and diversity maximization. Our method is
much simpler, does not use any auxiliary loss or requires
hyper-parameter tuning.

5. Analysis
5.1. Ablation Study

We perform an ablation study on our loss function to un-
derstand the contribution of its different components. First,
we remove the label smoothing from source model training.
In the second experiment, we replace the mean-squared er-
ror (MSE) loss with the binary cross-entropy (BCE) loss.
We perform these experiments on Office-31, Office-home,
digits datasets and the results are in Table 5. As per the
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Figure 3. t-SNE visualization for VisDa in a source-free setting. Different colors represents different domains: Blue: Source; Orange:
Source Replicator; Green: Target. The probability distributions are showcased in the left section and the penultimate layer features on
the right. The first row is before adaptation and the second row is our approach. (A) Source probability distribution on source trained
model. (B) Target probability distribution on source trained model. (C) Target features using the source-trained model. (D) Source and
Source Replicator probability distribution. (E) Source Replicator and Target probability distribution after adaptation. (F) Target probability
distribution after adaptation. (G) Target features after adaptation. Best viewed in color.

LS Alignment Office-31 Office-Home Digits

✗ NA 76.1 46.1 73.0
✗ BCE 84.1 67.0 98.1
✗ MSE 86.3 69.8 98.1

✓ NA 79.3 60.2 79.3
✓ BCE 85.7 68.8 97.2
✓ MSE 88.1 70.8 98.4

Table 5. Ablation study of our method on Office-31 and Of-
ficeHome source-free setting. ‘LS’ denotes label smoothing
used for source-model training. ‘Alignment’ denotes the align-
ment loss used for target adaptation. NA: No alignment
was performed/Source-only performance. BCE: Binary Cross-
Entropy; MSE: Mean-squared-error

results, label smoothing provides benefits in generalization
during source training and target domain adaptation. The
MSE loss function results in slightly superior performance,
mainly due to its stability and also observed that BCE loss
experiences partial mode collapse frequently.

5.2. Impact of batch size

When there are a large number of categories, a mini-
batch cannot contain samples from all the classes. We com-
pare GAP with SHOT-IM (Entropy minimization + diver-

Figure 4. Comparison of our approach with SHOT-IM (Entropy
minimization + Diversity maximization loss) for different batch
sizes on Art → Clipart (Office-Home) source-free setting.

sity maximization loss) for different batch sizes. Figure
4 shows the results of this experiment on Art → Clipart
(Office-Home) source-free setting. When the batch size de-
creases to 1

4 of its starting value, our approach has a signifi-
cantly lesser decrease (approximately 10%) in performance
compared to SHOT-IM (25%). GAP does not show fluc-
tuations until the batch size reaches 20 whereas the perfor-
mance of SHOT-IM drops significantly with the reduction

4130



Method A→D A→W D→A D→W W→A W→D Mean
CDAN+E [23] 92.9 94.1 71.0 98.6 69.3 100.0 87.7
BSP+CDAN [7] 93.0 93.3 73.6 98.2 72.6 100.0 88.5
ALDA [6] 94.0 95.6 72.2 97.7 72.5 100.0 88.7
SymNets [49] 93.9 90.8 74.6 98.8 72.5 100.0 88.4
TADA[45] 91.6 94.3 72.9 98.7 73.0 99.8 88.4
MADA [30] 87.8 90.0 70.3 97.4 66.4 99.6 85.2
MDD [48] 93.5 94.5 74.6 98.4 72.2 100.0 88.9
CDAN+TransNorm [44] 94.0 95.7 73.4 98.7 74.2 100.0 89.3

Source 68.9 68.4 62.5 96.7 60.7 99.4 76.1
DANN [10] 79.7 82.0 68.2 96.9 67.4 99.1 82.2
GAP (Ours) 84.7 89.3 72.9 97.2 72.8 99.2 86.0
GAP + KD (Ours) 88.8 91.8 75.4 97.6 73.5 99.8 87.8

Source + LS 80.8 76.9 60.3 95.3 63.6 98.7 79.3
DANN + LS [10] 78.7 86.3 69.0 94.7 71.5 99.4 83.3
GAP + LS (Ours) 92.2 92.6 78.0 98.2 74.0 100.0 89.2
GAP + LS + KD (Ours) 90.0 93.6 74.5 97.7 74.4 100.0 88.4

Table 6. Comparison of classification accuracies and abalation study on the Office-31 dataset with source present (ResNet-50). LS stands
for source network trained with label smoothing and KD denotes knowledge distillation. Bold numbers represent the highest accuracy and
the underline denotes the second highest.

of batch size. Due to this, all approaches using entropy min-
imization and diversity maximization losses are susceptible
to small batch sizes. We overcome this issue by training the
Discriminator multiple times before updating the Generator.
This way the Discriminator is unaffected by the mini-batch
bias.

5.3. t-SNE Visualization

We show t-SNE plots for visualizing the output proba-
bility space and the penultimate layer features for the VisDa
dataset in Figure 3. (A) and (B) denote the output probabili-
ties of the source and target data respectively using a model
trained on the source. (C) shows the target features using
the source-trained model. (D) exhibits GAP can replicate
the source probability variations. (E) We train the model
to have the same variations with target data. (F) and (G)
are the target outputs and features after adaptation. Based
on these plots, we observe that GAP ends up clustering the
penultimate layer features as well.

6. Domain Adaptation with Source Data
We evaluate GAP for regular unsupervised domain adap-

tation. In this scenario, we do not need to train a source
replicator. Instead, we can align the target with actual
source probabilities and train the network on source data
as well. We use the popular Gradient Reversal layer and
adapt it to our approach for these experiments. Specifically,
the Discriminator is trained to discriminate between source
and target output probabilities using the mean-squared loss
function. The network is trained using reversed gradients
from the Discriminator. In this scenario, we do not freeze

Figure 5. t-SNE visualization of the penultimate layer features (top
row) and the the output probability space (bottom row) for Of-
fice31 - Amazon → Webcam with source present setting. Blue
denotes Source domain (Amazon) and Green denotes Target do-
main (Webcam). Best viewed in color.

the classification layer. We use Office-31 and Office-Home
datasets for these experiments.

The experiment results are in Table 6 for Office-31 and
Table 7 for Office-Home dataset. We compare GAP with
domain adaptation methods like CDANN [7], SymNets
[49], TADA [45] in the top section. In our approach, we
consider both the cases of training the network - without la-
bel smoothing (midsection) and with label smoothing (bot-
tom section). In the mid and bottom sections, the first
row denotes the performance of source-only models. The
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Source Ar Cl Pr Rw
Mean

Target Cl Pr Rw Ar Pr Rw Ar Cl Rw Ar Cl Pr

CDAN+E [23] 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
CDAN+BSP [7] 52.0 68.6 76.1 58.0 70.3 70.2 58.6 50.2 77.6 72.2 59.3 81.9 66.3
ALDA [6] 53.7 70.1 76.4 60.2 72.6 71.5 56.8 51.9 77.1 70.2 56.3 82.1 66.6
SymNets [49] 47.7 72.9 78.5 64.2 71.3 74.2 64.2 48.8 79.5 74.5 52.6 82.7 67.6
TADA [45] 53.1 72.3 77.2 59.1 71.2 72.1 59.7 53.1 78.4 72.4 60.0 82.9 67.6
CDAN+TransNorm [44] 50.2 71.4 77.4 59.3 72.7 73.1 61.0 53.1 79.5 71.9 59.0 82.9 67.6
MDD [48] 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1

Source 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
DANN [10] 45.6 59.3 70.1 47.0 58.5 60.9 46.1 43.7 68.5 63.2 51.8 76.8 57.6
GAP (Ours) 54.5 71.1 78.5 61.6 73.7 71.7 61.6 54.2 80.4 72.5 57.4 83.8 68.4
GAP + KD (Ours) 56.5 72.6 79.2 64.5 74.3 74.0 64.8 57.7 82.3 74.2 57.4 84.7 70.2

Source + LS 44.6 67.3 74.8 52.7 62.7 64.8 53.0 40.6 73.2 65.3 45.4 78.0 60.2
LS + DANN [10] 50.9 59.3 73.0 54.6 67.2 69.8 55.2 53.7 76.0 68.4 58.7 79.3 63.8
GAP + LS (Ours) 57.5 74.3 78.7 65.6 74.5 75.2 65.4 57.1 81.6 75.4 59.8 85.6 70.9
GAP + LS + KD (Ours) 55.6 73.3 78.1 64.9 72.6 74.5 65.0 57.6 81.4 73.7 59.6 84.6 70.1

Table 7. Comparison of classification accuracies on the Office-Home dataset with source present (ResNet-50). LS is for source network
trained with Label Smoothing and KD denotes Knowledge Distillation. Bold numbers represent the highest accuracy and the underline
denotes the second highest.

second-row results are when we align the deep features us-
ing the vanilla DANN loss function for baseline comparison
[10]. The third row shows the performance of GAP. In the
last row, we combine our approach with knowledge distil-
lation [12]. We soften the probabilities using a temperature
equal to 2 to align the inter-class relationships between the
domains. We do not use temperature for the source-free ex-
periments as the logits space between the source and target
is not the same. Hence, using a temperature hurts the per-
formance.

GAP outperforms all the listed baselines for source-
present scenarios on both datasets. The compared ap-
proaches use advanced techniques like attention [45] or
complex architectures like SymNets [49], whereas the GAP
is a simple model based on adversarial alignment. Knowl-
edge distillation boosts the performance when no label
smoothing is used. Using knowledge distillation with label
smoothing results in a negative transfer as label smoothing
places deep features of the classes at equal distance from
each other and disturbs the inter-class relationships [28].
We also show the t-SNE plots of the penultimate features
and the probability outputs for Office-31 Amazon to We-
bcam in Figure 5. GAP aligns the probabilities better than
DANN and results in similar feature alignment [10] without
explicitly aligning it.

7. Limitations

Although GAP has several advantages and yields good
performance, we discuss the scenarios where it can under-
perform. GAP is based on ps(y) ≈ pt(y) assumption, and

our experiments on multiple datasets that it is a reasonable
assumption and works for the majority of the cases. How-
ever, this can affect the performance negatively when the
target labels follow a long-tail distribution and would af-
fect the baseline methods as well. On the other hand, if the
distribution were known, it could be used as a prior to en-
hance the alignment. GAP assumes the source and target
have identical label spaces. In its current form GAP can-
not be extended to OpenSet and Partial domain adaptation
cases where the label spaces of the source and target are not
identical. Exploring these settings for our method can be an
interesting future direction.

8. Conclusions
In this paper, we present a model for the Generative

Alignment of Posterior probabilities (GAP) for source-free
domain adaptation. GAP uses a Source Replicator (prob-
ability generator) that mimics the variations in the poste-
rior probabilities of the source classes and then aligns target
posterior probabilities to it through adversarial alignment.
Through extensive experiments, we show the approach is
robust to smaller batch sizes, does not introduce any new
hyper-parameters and yields comparable performance to the
compared baselines for source-free and source-present do-
main adaptation scenarios.
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