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Abstract

Co-design of robots involves optimizing the control mechanism and physical form
together. This intertwined design process is inherently challenging and sample
inefficient because of the large design and control search spaces. We introduce
COGENT, a novel framework that leverages a graph synthesis technique named
GFlowNet, to enhance search space traversal in robotic co-design. To increase
sample efficiency, the proposed framework introduces a cost/performance-aware
design prioritization mechanism that learns a design generator policy by carefully
sampling the design space. Our experiments show the effectiveness of the proposed
framework in various robot co-design tasks. Evaluations performed on a wide range
of agent design problems demonstrate that our method significantly outperforms
baselines. We show that COGENT produces a suite of diverse designs achieving
better task objectives across all evaluated design problems.

1 Introduction

Designing robots involves numerous challenges, from defining the robot’s structure to integrating
various components and developing control algorithms. Hence, the development of robot platforms
has mainly been a task of human engineers thus far. However, the development of optimization-
and learning-driven methods capable of co-designing robot behavior and embodiment has received
increased attention in recent years. Early approaches, starting with the seminal work by |Sims| (1994)
to the more recent works like Michalewicz| (2013), [Doncieux et al.| (2015), Lipson and Pollack
(2000), |Gupta et al.| (2021)) address the problem of robot co-design primarily through the lens of
(biologically-inspired) evolution. These evolutionary methods apply the principles of selection,
variation, and inheritance to automate the robot creation process, enabling candidate robot designs to
independently learn and adapt by engaging with their surroundings similar to living organisms.

Recent advances in computational efficiency have propelled deep learning-based methods such as
Wang et al.[(2018),/Hal (2019) and [Luck et al.|(2020), demonstrating early success in co-optimizing
robot design and control by leveraging (deep) reinforcement learning (RL). This resulted in more
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recent advances including [Yuan et al.| (2021), Dong et al. (2023), Fan et al.| (2024), and [Lu et al.
(2025)), all focusing on the generation of novel task-tailored robotic systems through RL traversing the
underlying complex search space of possible robot embodiments. More specifically, these approaches
model each robot as a graph comprised of discrete components (links & joints, with actuators at each
joint) and frame the co-design problem as a joint optimization over a combinatorial graph space and
continuous closed-loop control policies, constrained usually by a finite evaluation budget. However,
all methods discussed thus far focus on producing a single “best” robot design that is incrementally
transformed given an initial template. We hypothesize that a major pitfall to such incremental design
alterations is sub-optimal convergence in the highly multimodal, rugged design landscapes typical
of robot co-design. This focus on single, incrementally derived designs highlights two fundamental
challenges for co-design algorithms:

(C1) Generating a single optimal design is insufficient for real-world applications requiring diverse
alternatives to evaluate multi-objective performance trade-offs. Efficiently exploring vast design
spaces for multiple high-performing candidates remains an open challenge.

(C2) Determining candidate fitness is difficult under limited computational or real-world resources,
as training behavior policies for each varying prototype is resource-intensive. This is compounded by
designs of differing complexity requiring disparate training budgets.

A promising framework for generating diverse, high-quality graphs to address C1 is the Generative
Flow Network (GFlowNet) (Bengio et al., 2021). GFlowNets learn a probability distribution over
graph structures by modeling the generation process as a flow network, where paths to high-reward
terminal states receive higher probability. This allows for efficient sampling of diverse, high-reward
graphs, distinct from single-optimum methods, and has seen success in areas like drug discovery
(Jain et al., 2022) and material design (Cipcigan et al.|[2024). However, applying GFlowNets to robot
co-design is significantly challenged by C2, due to the computational cost of evaluating the fitness of
each potential design candidate.

In this paper, we introduce Co-design of Robots with GEnerative Flow NeTworks (COGENT), a
novel GFlowNet-based co-design framework. COGENT addresses the limitations highlighted by C2
through two key innovations: (i) a performance rate-based prioritization method implementing an
early stopping mechanism based on current performance and its improvement rate during training,
and (ii) a cost-aware design sampling method that optimizes training budget allocation by learning to
prioritize resources for promising designs. We evaluate COGENT in MuJoCo (Todorov et al.,[2012)
and EvolutionGym (Bhatia et al.,2021) environments to demonstrate its effectiveness in generating
diverse, task-specific robot co-designs, outperforming existing methods within a constrained compu-
tational budget. Notably, COGENT consistently generated multiple high-performing robot designs
exhibiting distinct structural characteristics.

2 Related Works

Robot co-design, which aims to simultaneously optimize a robot’s physical structure (embodiment)
and its control policy (behavior), has roots in several distinct research areas.

Evolutionary Co-design. Pioneering work of [Sims|(1994) demonstrated the potential to evolve
both morphology and controllers for virtual creatures in simulated physics environments. This
spurred further research exploring diverse representations and evolutionary algorithms for co-design
including Stanley and Miikkulainen| (2002); Michalewicz| (2013); |Chu et al.|(2011); Michalewicz
(2013); |IDoncieux et al.| (2015); [Wang et al.| (2019); |Gupta et al.|(2021). These methods generate
increasingly complex robots through effective traversal of the complex search space through iterative
mutation and selection, aiming to find a single optimal design for a given task. However, premature
convergence to locally optimal solutions (Gupta et al., |2021) is a deterrent to employing these methods
in complex search spaces. There is also significant work in quality-diversity optimization methods,
for example MAP-Elites (Mouret and Clunel [2015)) to discover solutions that not only perform well,
but also exhibit diverse behavioral characteristics. However, these methods need a good descriptor to
guide their diversification and are not easily scalable to the more complex setting of joint optimization
of morphology and control, where there is a possibility of wasting a lot of evaluations when poorly
initialized. Additionally, the effectiveness of early stopping as a means to improve sample efficiency
while preserving behavioral diversity has been demonstrated by |[Veenstra and Glette| (2020) and
further generalized by |Arza et al.| (2024). However, as noted in their work, the proposed stopping



criteria offer limited advantages over the default termination mechanisms already implemented in
most simulators, which are designed to prevent prolonged execution in undesirable states.

Deep-RL based Co-design. Recent advances in differentiable physics and scalable RL have
inspired methods that treat morphology choice as part of the decision process. Approaches like
Wang et al.| (2018)) and |Ha| (2019) demonstrated how RL could be used to co-optimize modular
robot designs, often represented as graphs, alongside their controllers. Subsequent works were
built on this approach, by transforming initial robot structures through expressive graph encodings
(Yuan et al.l |2021)), incorporating symmetry priors (Dong et al., |2023)), incorporating memory to
reuse good designs to balance exploration with exploitation (Fan et al., 2024), developing specific
graph-based RL frameworks for co-design (Luck et al.,[2020) and introducing global message passing
and reward-balancing (Lu et al.| 2025)). Despite their differences, these algorithms still return a single
“best” design after an incremental hill-climbing procedure, making them prone to local convergence
in a complex design landscape.

GFlowNets for Design. Generative Flow Networks (GFlowNets) (Bengio et al.,|2021)) have been
proposed as a promising solution to generate diverse candidates in complex design spaces. They learn
a policy to construct objects sequentially with probabilities proportional to a given reward function
for a more global exploration of the design space. Initially applied to molecular design (Jain et al.|
2022) and material discovery (Cipcigan et al., [2024), GFlowNets show potential for robot co-design,
but are hindered by challenges in sample efficiency and the exploration-exploitation balance.

To the best of our knowledge, COGENT is the first method to generate multiple high-performance
robot designs through the combination of a novel early-stopping mechanism and an intelligent
resource-allocated mechanism to train RL-based controllers. Through this, COGENT explicitly
learns a policy to generate heterogeneous, high-reward morphologies addressing the first challenge
(C1) and introduces a performance rate-based prioritization and a cost-aware sampling strategy to
address the evaluation-cost bottleneck C2 overlooked by previous approaches.

3 Preliminaries

Reinforcement Learning. Reinforcement Learning (RL) problems are modeled as a Markov
Decision Process (MDP), represented as (S, A, T, R), where S is the state space, A is the action
space, T : § x A — S is the transition function governing the next state reached by taking an action
a € Ainastates € S,and R : S x A — R is the scalar-valued reward-producing function for
taking action a in state s.

The learning problem is to find an optimal policy that maximizes returns E, . [r(7)], where 7 is a
trajectory sampled from policy m, and r(7) = 3_ . . e, R(s, a)y" is the shorthand for the sum of

the rewards over trajectory 7 with a discount factor v € [0, 1].
Generative Flow Networks.

GFlowNets (Bengio et al., [2021) learn a stochastic, step-wise construction policy that samples
terminal objects 51 with probability proportional to a reward R(57):

P(ET) o R(ET) (1)

By explicitly spreading probability mass over many high-reward states, GFlowNet produces diverse
candidates. GFlowNets have already been effective in settings that demand both quality and variety,
such as novel drug candidates (Jain et al.} 2022)) and material discovery (Cipcigan et al.| 2024)).
MDP formulation Starting from the initial (empty) state S, a policy 7¢(a|s) either stops or attaches
a component, yielding a trajectory 7 = (3¢, @o, .- , 57). Each state § carries a non-negative flow F(3)
that satisfies the conservation rule:

F(s)=Y_ P(s'|5a)F(s) 2)

acA
where P(53' | 3,a) is the forward transition probability. When this condition holds, the induced
terminal-state distribution matches the target in Eq. while allocating flow across multiple con-
struction paths. This ensures: a) paths leading to high-reward terminal states are sampled more
frequently, and b) flow is spread across different trajectories, allowing for diverse solutions rather



than a single optimal one. During training, the policy network adjusts the flow in each state to ensure
that it is consistent with both the reward and flow conservation property. In this way, the model learns
a probability distribution over the trajectories that encourages diverse, high-reward graphs.

To ensure that the sampling model learns a policy that can generate samples according to a target
distribution, GFlowNets uses the Trajectory Balance (TB) objective (Malkin et al.| 2022), given by:
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where 0, 1) denote the learnable parameters and Z,; is the partition function that ensures consistency

between state transitions. TB aims to ensure that the marginal likelihood of a trajectory becomes

proportional to the reward R(57) through efficient credit assignment.

3

Application to Co-design. We hypothesize that GFlowNet can generate diverse designs, and avoid
mode collapse Bengio et al.|(2021)) observed when applying standard RL approaches, leveraging a
carefully crafted reward function R(57) that can reflect task performance, and balance exploration-
exploitation through flow consistency and probabilistic diversity in high-dimensional spaces.

4 Co-Design Problem Statement

We follow the general co-design setup (Luck et al., 2020; |Yuan et al.|[2021)) and define the optimization
of robot embodiment and behavior as a bi-level optimization problem (Bracken and McGill, [1973)),

(Liu et al., 2021). Given a set of robot embodiments in their graph representation G(V, E) and set of
policy/behavior parameters ® we aim to solve:

max R(G, ¢*), s.t. ¢* = argmax R(G, ¢), 4
GeG pe®

where R(-,-) and R(-,-) are fitness functions. The outer loop optimizes robot embodiment design,
while the inner loop finds the optimal behavioral policy 74 for a given design. We further specify
that both optimization problems are posed as Markovian, and thus can be modeled as an MDP, and
solved via (deep) RL.

The outer optimization problem models the robot embodiment design search as a sequential graph
construction process represented as an MDP and presented as 7y with a maximization objective:

T
E Y 4750 a) | a~7o(5:), 5 = d(@i-1,51)| )
t=0

in which the state 5; corresponds to the graph G, constructed up to step i. Actions a; involve
adding components (like nodes or edges) to the graph, governed by deterministic dynamics 5; =
d(@;—1,5;—1). The final graph G generated upon reaching a terminal state 51 (e.g., via a STOP
action) serves as the static structural description of a robot, convertible to formats like the Universal
Robot Description File (URDF) format (Kang et al.|[2019). This relation precisely defines how the
graph representation is transformed from G;_; to G; under the influence of the action a;_1. Within
this MDP framework, we employ GFlowNets (Sec. “Preliminaries”) to learn a stochastic policy 7y
for graph construction. GFlowNets sample terminal graphs G with probability proportional to a
non-negative terminal reward R(Gr). The outer loop is thus optimized using only this terminal
reward, with a discount factor ¥ = 1, aligning with the GFlowNet objective of matching the terminal
reward distribution. Moreover, in this bi-level framework, this terminal reward for the outer loop,
R(Gr), is defined by the embodiment fitness obtained from the inner policy optimization given
by R(Gr) = max, R(Gr, ¢). This fitness is determined by training a policy for the constructed
embodiment G using classic (deep) RL (e.g., PPO (Schulman et al.l 2017)) on the task-specific
reward R(-,-). In this inner loop MDP, the robot’s dynamics s; ~ d(s;|$;—1,a;—1, G) depend
explicitly on the embodiment G, and has the standard RL discount factor v < 1, contrasting with the
outer loop’s ¥ = 1.

Crucially, evaluating R(G) for each embodiment requires executing the computationally expensive
inner policy optimization. Given the vastness of G and a finite computational budget, the practical
challenge is to efficiently explore the graph space G and discover a diverse set of high-performing

designs {G1, ..., Gy} and their corresponding policies, while simultaneously addressing the limita-
tions outlined as challenges (C1) and (C2) in Sec. “Introduction”.
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Figure 1: An illustration of COGENT framework with the two key stages: (a) Generator generates
final graphs, by encoding graph objects into tensors to pass through the TB Model to compute graph
actions i.e. AddNode, AddEdge or STOP (top-right purple box) until STOP action is received and (b)
Evaluator, evaluates the robots constructed from final graphs and applies performance rate-based
prioritization and cost-awareness techniques before storing these ranked co-designs in the replay
buffer; which then helps calculate model loss and updates model parameters.

5 COGENT: End-to-End Architecture

This section outlines the key components in our approach coined COGENT, to traverse the complex
robot co-design space. This implementation can be broadly divided into two main stages, as depicted
in the flow diagram in Fig. [T}

Generator. The Generator (a), depicted in Fig. [1} is responsible for proposing a batch of m diverse
robot designs, each represented as a graph G. This is achieved using a GFlowNet Transformer
with a design policy 7y. Starting from initial states, the generator incrementally constructs each of
the m graphs by iteratively applying Graph Actions (AddNode, AddEdge, STOP) selected from a
defined action space. These actions are guided by the learned forward policy 7y, which is influenced
by our annealing exploration strategy (SubSec. “Annealing Exploration”). The process continues
independently for each graph in the batch until a STOP action is sampled, yielding m complete robot
design graphs (37, = G to 57, = G/). To promote diversity within the generated batch, the
Gumbel trick (Gumbel, |1954) is applied when sampling actions.

Evaluator. The Evaluator (b) (Fig. [I)) takes the batch of m generated robot design graphs (G} to
G/ ) and assesses their potential task performance. Firstly, these graph representations are converted
into a format suitable for simulation, such as XML, representing the robot’s structure. These robots
are then instantiated within a physics simulator, where their behavior policies are trained using an
policy optimization algorithm (like PPO) for a specified number of timesteps ((; for each design d;).
The performance achieved during this training (R(57,)) is then processed by our proposed methods:
Performance Rate-based Prioritization and Cost-Aware Sampling. These methods modify the raw
simulation reward to produce a composite reward R(37,) (Eq. [8)) that incorporates factors beyond just
final performance, reflecting the potential for improvement and the computational cost of evaluation.
This composite reward is then used to update the Generator’s design policy 7y and the partition
function Z,;, via the TB objective (Eq. EI), closing the loop.

5.1 COGENT Contributions

To tackle the challenges of sample inefficiency and evaluating diverse designs in robot co-design with
GFlowNets, COGENT introduces key contributions in both the Generator and Evaluator stages. The
goal remains to learn a design policy 7y that generates high-performing robot designs 57, optimized
via the TB objective (Eq. [3). The following subsections outline these contributions:

Rate-based Prioritization. To address sample inefficiency of standard GFlowNets, we introduce
performance rate-based prioritization (RBP), an early stopping heuristic that is part of the Evaluator
(Fig. [T (b)). In the context of robot co-design, this rate indicates how quickly the robot’s performance
improves during training with a sampled budget of  timesteps immediately before the cutoff budget,



denoted by 7. A higher rate combined with good reward accumulation performance indicates that
the robot co-design has a comparatively greater potential for rapid improvement given more training
timesteps. Therefore, in COGENT, we prioritize such quick and stable learners by ranking them

higher relative to the other co-designs. This can be formalized as:

RP(ET) = R(ETC) +

R(51.) — R(51,)

6
C=n (6)

where ]:Z(ETC) is the performance after a budget of ¢ timesteps and R(ETW) is the performance
observed at an intermediate budget of 7 timesteps.

Cost Aware Sampling. Allocating a fixed
amount of training resources to all candidate
co-designs can lead to two issues: (i) If the
allocated timestep budget is too low, the Gen-
erator (Fig. (a)) may become biased to-
wards producing simpler designs that under-
perform when given more resources, due to
learning behaviors that are only beneficial in
the short term. (ii) If the allocated budget
is too high, unpromising designs receive ex-
cessive resources, resulting in sample inef-
ficiency and potential difficulties in conver-
gence. It is challenging to pin down the right
level of resources for fair evaluation per task.
Hence, we propose a flexible budgeting mech-
anism wherein designs may utilize evaluation
resources exceeding a base level, contingent
on performance gains justifying the imposed
resource cost penalty. COGENT learns a joint
sampling strategy to select both design nodes
(robot links) with parameters (length, size
etc.) and an associated budget factor § for

Algorithm 1 COGENT Algorithm

Initialize: Design Policy 7y, Behavior Policy g, Par-
tition function Zy, Batch Size m, Maximum Iterations
K, and Maximum Training Budget B >

while iter < K do
Sample batch 7; Vi € {1,--- ,m} using Tg and 3
(Eq. D
>

for 7; = (design d;, budget ¢;, reward ;) in batch ¢

do
Train 7y of d; for (; steps and collect reward,

R(gTi ) _
Update Reward using Eq. to get R(51;)

end for

Calculate loss £(7;) using TB objective (Eq.

Update 0 and 1) via gradient descent on £(7;) using
Eq.[3
end while
Sample final batch 7 using g
Train all designs in final batch using maximum budget
B

each node. The evaluation budget per node is
calculated as b,cy = 9§ - by, where by is the
base budget allocated for the selected node
and 0 is a multiplicative factor learned by the design policy. After all the nodes are sampled with
their individual node resource (b,), the total budget (¢ timesteps) is calculated as an aggregate of
individual node budgets. However, allocating maximum budget to each node i.e., b, = max(d) - b,
leads to an undesirably large total budget, thus we restrict such allocations by introducing a cost
metric C'(57) that quantifies the excess cost of the robot design relative to a baseline budget (across
all the nodes V' in graph G). Therefore, cost-aware sampling (CS) can be formalized as:

Result 7y and final designs from 7

Re(s51) = w.C(5r) ©)
where w, is a hyperparameter that controls the trade-off between task performance and evaluation
cost. Mathematically,

C(5r)=(—[V[xby and (=) b,

veV
Finally, the combination of R(ET), ]A%p(ET) and Rc(gT) constitutes R(sr), that is,

R(st) = R(57) + Ry(57) + Re(57) ®)

Annealing Exploration. Efficiently exploring the vast robot design space in the early stages
of training and then converging on high-performing regions is crucial for effective co-design. In
GFlowNets, the inverse temperature parameter 3 in the forward policy 7y controls this trade-off
(Bengio et all 2021)), where higher 5 promotes uniform sampling (exploration), while lower 3
sharpens the distribution toward high-reward actions (exploitation). Standard implementations often
fix 8 or apply basic annealing schedules. To smoothen this transition, COGENT introduces an
annealing strategy given by:

ﬁdecay(t) =p- ﬂim’t + (1 — P ﬂzmt . (1 - dv)(tidd)/ds (9)



where,
0 ift>dy

plda:t) = {1 ift < dy (19)

wherein ¢ is the current iteration, d,, is the percentage reduction in exploration every d; number of
iterations and d; determines the window after which this exploration annealing begins. The gradual
decay in 8 ensures COGENT’s Generator smoothly transitions its design policy from exploration to
exploitation, avoiding abrupt changes in the sampling distribution that could destabilize training.

In summary (also presented in Alg. [5.I), COGENT addresses key challenges in applying GFlowNets
to robot co-design through several novel contributions. The Generator’s (Fig. [I] (a)) exploration
is strategically managed by the annealing exploration strategy (SubSec. “Annealing Exploration™),
while the Evaluator’s (Fig. |1 (b)) efficiency is significantly improved by incorporating rate-based
prioritization (Eq. [6)) and cost-aware sampling (Eq. [7) into the reward computation. By enhancing
both the design proposal and evaluation phases, these combined strategies allow COGENT to
overcome the sample inefficiency and evaluation complexity often faced by standard GFlowNets and
traditional techniques in this domain, facilitating the discovery of effective robot co-designs.

6 Experiments and Results

6.1 Experiment Setup

We use the Gymnasium MuJoCo environments (Todorov et al.,[2012) and EvolutionGym, (Bhatia;
et al.,|2021) environments where we retain all original physics settings. These simulators allow us
to embed agents with different embodiments proposed by COGENT and baseline methods. While
COGENT can handle any number of robot links (or voxels), we limit the maximum number to create
environments of different complexity as follows:

MuJoCo Environments. We use 3D Locomotion (based on Ant-v5 (Schulman et al.,|2015)), 2D
Locomotion (based on Hopper-v5 (Erez et al.,2012)), Gap Environment (our modified terrain based
on Hopper-v5) and Swimmer (based on Swimmer-v5 (Coulom, 2002)) environments. The maximum
nodes (or body parts) in each of these environments is limited to 10, 6, 8 and 6 respectively. Each
of their body parts are cost coded to 1.5e4 timesteps. A robot, for example, in the 3D Locomotion
environment can by default be allocated a base total budget, i.e. |V (G)| x by which can vary between
1.5e4 to 1.5eb timesteps depending on the number of nodes being 1 to 10 respectively. The goal of
all robots in these environments is to walk to collect more rewards.

EvolutionGym Environments. We use the 3 locomotion environments Walker, BridgeWalker and
BidirectionalWalker introduced in EvoGym (Bhatia et al., 2021). We limit the maximum voxels
for each robots generated across these environments to 16, and each robot across the mentioned
environments are allocated a base budget that could vary between 6.25e3 to 1eb timesteps depending
on the voxels sampled in the final robot. The goal of these agents is also to move forward and collect
more rewards when various terrain conditions are presented in each environment.

COGENT Hyperparameters. The hyperparameters corresponding to RBP and CS components
are set to by = 2e4, n = 1.5e4, 6 = {1,1.12,1.25,1.37,1.5} and w, = 1, w. = —0.002 across all
experiments. For annealing exploration, we set 5;,;+ = 10 d,, = 0.5, ds = 16 and d; = 25.

Table 1: MuJoCo Envs. Average Rewards (as mean =+ standard deviation) for the best design
generated by each of the methods in different MuJoCo environments when run for 5 independent
trials and a training budget of 2¢6 timesteps. These best designs are selected after training all
co-design methods to an equivalent timesteps budget of 1.5e8.

MulJoCo Environments | 3D Locomotion | 2D Locomotion Gap Terrain Swimmer
ESS 823.7 £ 65.7 9259 £55.2 569.3 £78.3 198.5 £49.1
NGE 1023.8 + 82.7 1002.7 £+ 58.8 656.2 £88.2 | 159.3 £35.1
T2ACT 1563.7 +46.2 1639.3 £47.3 | 1116.5 & 142.7 | 190.8 =524
EDiSon 1890.3 £35.3 1923.8 £+ 80.8 1592.5 £754 | 233.7 + 80.6
BodyGen 23933 +£353 2234.3 £ 284 1605.1 £ 32.1 | 242.5+434
COGENT 2830.3 £59.1 | 2612.7 £27.2 | 1862.3 £42.9 | 320.6 = 12.5




Table 2: EvoGym Envs. Average Rewards (as mean =+ standard deviation) for the best design
generated by each of the methods in different EvoGym environments when run for 5 independent
trials and a training budget of 2e6 timesteps. These best designs are selected after training all
co-design methods to an equivalent timesteps budget of 1.5e8.

EvoGym Environments | Walker | BridgeWalker | BidirectionalWalker
GA 3.8£0.6 48 +0.5 42105
BO 21+141 5.1+£0.8 48 £0.8
CPPN-NEAT 5.6 +0.2 33+0.3 43+04
COGENT 7.3+0.5 6.6 + 0.4 71+0.5

Baselines. Across MuJoCo experiments we use two evolutionary methods i.e. ESS (Chu et al.,[2011)
and NGE (Wang et al.,|2019) and three Deep-RL based Co-Design methods i.e. T2ACT (Yuan et al.|
2021), EDiSon (Fan et al.,|2024)) and BodyGen (Lu et al., |2025)) as baselines. Across EvolutionGym
environments, we use GA (Michalewicz, |2013)), BO (Kandasamy et al.| 2018)), and CPPN-NEAT
(Stanley and Miikkulainen, 2002) as baselines. For a fair evaluation, we use the same initial robot
design across all MuJoCo and EvoGym experiments for baselines and COGENT.

Evaluation Budget. We allocate all evolutionary methods and COGENT 1.5e8 timesteps to train
and collect 3 top designs. We compare these to the designs produced by 3 independent runs (different
seeds) of all Deep-RL co-design methods trained for 5e7 timesteps. To disentangle the quality of
design from policy, we independently train the design(s) produced from each method using common
PPO hyperparameters for 2e6 timesteps and report the results for the designs produced by all methods.

6.2 Results

Sample Efficiency Analysis. We present our results in Table [T] comparing COGENT with both
Deep-RL based policy gradient methods and evolutionary methods across MuJoCo environments.
Since all baselines optimize a single fitness function that combines design and behavior effectiveness,
their final robot design given the same amount of environment interaction budget as COGENT is still
low performing when the influence of their learned behavior policy is removed. The experimental
results show that COGENT is significantly (p << 0.05) better than the next-best baseline for each
environment confirmed using a student t-test between COGENT and next best baseline results. This
effectiveness is because COGENT focuses on a design-first approach, where more resources are
allocated to identify the best embodiment rather than training one behavior policy until saturation
which might forgo the need for good-quality designs. Additionally, COGENT’s Performance Rate-
Based Prioritization and Cost-Aware Sampling methods combined with the Annealing Exploration
technique, help ensure the Generator effectively uses timesteps compared to other methods, thus ar-
riving at multiple best performance designs faster while learning from good and bad performing robot
designs throughout the training process. This ability of generating/discovering novel heterogeneous
embodiments and locomotion behaviors, allows engineers to select from multiple top-performing
designs rather than just one, given any task. Notably, the COGENT’s designs conform to the estab-
lished constraints of evaluation budget, design, and behavior trade-offs yet perform better than the
baselines, evident from Fig. E}

Avg.Rew: 6.6 +0.4 Avg.Rew: 6.1 +0.2

T2ACT EDiSon BodyGen COGENT [1-4]

i&k#.x‘(t ""'" A
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Figure 2: COGENT’s diverse designs and single  Figure 3: Top-4 diverse designs produced by CO-
best design output by each baseline methods in ~ GENT in the BridgeWalker environment, mov-
2D Loco. (top) and EvoGym Walker (bottom)  ing left to right to traverse the suspended bridge.
envs. with performance values (in blue).

We also observed that with the same COGENT hyperparameters, our contributions are applicable to
tasks from a different simulator altogether. More specifically, across all EvoGym locomotion tasks,



COGENT was able to generate compellingly diverse designs performing better than baselines. Their
performance compared to baselines is presented in Table 2] and final designs are presented in Fig. [3]

Design Diversity Analysis. We quantified morphological diversity using Average Pairwise Distance
(APD). Each robot was characterized by its number of components (voxels or links) and the set
of unique component types (e.g., voxel types in EvoGym or parameter types in MuJoCo). The
pairwise distance between two robots was calculated by averaging two values: the difference in their
component counts and the Jaccard distance between their sets of component types (i.e., 1 minus the
ratio of shared to total unique types). APD is defined as the average of these pairwise distances across
all robot pairs and serves as a measure of overall structural diversity. Table [3|reports the APD results
for both EvoGym and MuJoCo environments.

Table 3: APD values across 2 MuJoCo (top) and  Table 4: Sensitivity analysis of COGENT in 2D
2 EvoGym environments (bottom) compared to  Loco. environment, showing diversity and aver-
next best relevant baselines. A higher APD sug-  age performances of top-3 designs for different
gests more diversity in the final batch of robots ~ parameter settings of w,, and w...

and lowest APD possible is 0. Parameters | Diversity Performance
Environments | COGENT | BodyGen | CPPN-NEAT Wp, We (in APD) | Top-1 Top-2 Top-3

3D Loco. 21 02 N 0.5,-0.001 1.1 2670.7 2635.4 2608.2

Gap 0.3 02 _ 0.5, -0.004 1.2 2877.6 2780.0 2716.5

Walker 2% : "l 2, 0.001 12 27874 27078  2666.3
BridgeWalker 3.2 _ 1.4 2,-0.004 1.2 2552.8 2518.8 2504.8

Table [3 highlights the design diversity achieved by CO-
GENT across environments of varying complexity, from GFlowNet wo Annealing

the simpler Gap/Walker to the more complex 3D Locomo- w/o RP s w/o CS WM COGENT
tion/BridgeWalker environments. COGENT demonstrates ¢ g
a strong capacity to explore and generate diverse solutions wS }
in high-dimensional design spaces. However, in baseline g 0.75
methods such as BodyGen and CPPN-NEAT, the optimiza- = 0.50

©

tion is centered around improving a single design trajec-  § 0.25
tory, thereby restricting their ability to capture a diverse 2=
range of viable morphologies. 0.00" 50 o 2D Loco. Swimmer

6.3 Ablation Study Figure 4: Normalized performance per
million steps of top-performing designs

We performed ablations to show the impact of the indi- by COGENT and its ablated versions.

vidual components of the overall framework, Fig. ). We

compare COGENT with naive GFlowNet, its variants with-

out Performance Rate-based Prioritization (w/o RP), Cost-

aware Sampling (w/o CS) and Annealing Exploration (w/o

Annealing). RP showed the highest significance on the performance of COGENT with CS and An-

nealing contributing significantly in the more complex 3D environment.

Sensitivity Analysis. Reward function in Eq. [§]is composed of three parts: (i) the task reward,
(ii) R, (proposed rate-based prioritization to detect good designs early), and (iii) R. (proposed
cost based penalization to give higher training budget only to deserving designs). We set the
weight corresponding to (i) as 1 and vary the others (w,, € [0.5,2.0] and w. € [—0.001, —0.004])
corresponding to R, and R respectively and present these results in Table E} Notably, across all
parameter sets the performance of our co-designs is higher than the next best baseline which has a
performance value of 2234.3.

7 Discussion & Conclusion

COGENT advances robot co-design by leveraging GFlowNets for sample-efficient, multi-modal
distribution learning. Unlike traditional single-solution optimizers, COGENT generates diverse,
high-performing designs, reducing sensitivity to initialization and enhancing robustness. Future work
could improve further on sample efficiency by enabling knowledge transfer across robot topologies
during policy (behavior) learning, transferring knowledge while preventing negative interference



or catastrophic forgetting could significantly reduce the computational cost of evaluating candidate
designs, thus enhancing scalability.

We presented COGENT, a novel framework for sample-efficient robot co-design that uses GFlowNets
to explore diverse morphological and control configurations. Our key contributions include perfor-
mance rate-based candidate prioritization, cost-aware sampling, and annealing exploration. These
strategies enable COGENT to balance performance gains against computational costs, while gradually
shifting from broad exploration to focused exploitation making the whole process extremely sample
efficient. Our experimental results demonstrate COGENT’s superior performance in diverse design
generation compared to baseline methods in different environments.
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