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ColVO: Colonoscopic Visual Odometry Considering Geometric
and Photometric Consistency
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ABSTRACT
Locating lesions is the primary goal of colonoscopy examinations.
3D perception techniques can enhance the accuracy of lesion local-
ization by restoring 3D spatial information of the colon. However,
existing methods focus on the local depth estimation of a single
frame and neglect the precise global positioning of the colonoscope,
thus failing to provide the accurate 3D location of lesions. The root
causes of this shortfall are twofold: Firstly, existing methods treat
colon depth and colonoscope pose estimation as independent tasks or
design them as parallel sub-task branches. Secondly, the light source
in the colon environment moves with the colonoscope, leading to
brightness fluctuations among continuous frame images. To address
these two issues, we propose ColVO, a novel deep learning-based
Visual Odometry framework, which can continuously estimate colon
depth and colonoscopic pose using two key components: a deep
couple strategy for depth and pose estimation (DCDP) and a light
consistent calibration mechanism (LCC). DCDP utilization of mul-
timodal fusion and loss function constraints to couple depth and
pose estimation modes ensures seamless alignment of geometric
projections between consecutive frames. Meanwhile, LCC accounts
for brightness variations by recalibrating the luminosity values of
adjacent frames, enhancing ColVO’s robustness. A comprehensive
evaluation of ColVO on colon odometry benchmarks reveals its su-
periority over state-of-the-art methods in depth and pose estimation.
We also demonstrate two valuable applications: immediate polyp
localization and complete 3D reconstruction of the intestine. The
code for ColVO is available at https://github.com/xxx/xxx.

CCS CONCEPTS
• Computing methodologies → Computer vision tasks.

KEYWORDS
Visual Odometry, Monocular Depth Estimation, Pose Estimation,
Colonoscopy

1 INTRODUCTION
The primary objective of colonoscopy examinations is lesion lo-
calization. Traditional colonoscopy procedures typically rely on
capturing two-dimensional (2D) images from colonoscopy videos to
identify the location of lesions within the planar region. However,
due to limitations in 2D observation such as restricted field-of-view
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Figure 1: Visualization comparison of 3D reconstruction and
polyp localization between GT (left) and predicted results (right).
The results from ColVO are close to GT. 𝑒 denotes the error
between the estimated 3D position and the GT position of the
polyp.

(Fov) and potential occlusions, physicians often rely on their ex-
pertise to estimate the approximate location of lesions within the
intestinal tract, making it difficult to avoid subjective errors. With
the emergence of large-scale cross-modal colonoscopy datasets and
integrated deep learning (DL) methods, DL-based three-dimensional
(3D) perception techniques have the potential to enhance lesion lo-
calization accuracy by recovering 3D spatial information of the intes-
tine. However, most existing methods [19, 21, 24, 40] focus only on
single-image depth estimation, overlooking the geometric continuity
between frames of colonoscopy videos. Consequently, they can only
reflect the spatial position of lesions within a local frame and can-
not accurately determine their precise global coordinates within the
entire colon. To solve this problem, some work [12, 29, 30, 32, 38]
have attempted to joint camera motion estimation with depth estima-
tion by minimizing photometric errors between consecutive frames
to obtain global 3D spatial information of the intestine. However,
these methods fail to consider specific challenges in the colon, in-
cluding sparse texture features and lighting fluctuations. The former
affects the sufficient and effective feature extraction in network mod-
els, thereby impacting depth and pose estimation consistency and
accuracy. The latter arises from the correlated motion between the
camera and light source during colonoscopy examinations and the
non-Lambertian reflectance properties of tissues, both of which sig-
nificantly affect the constraints of photometric errors on network
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models. Consequently, these methods cannot balance the accuracy
of depth and pose estimation.

In this paper, we propose ColVO, a novel colonoscopic visual
odometry framework for precise spatial localization of lesions by
simultaneously enhancing depth and camera motion estimation in
colon environments. To address the challenges in the colon, we
first introduce the deep couple strategy for depth and pose estima-
tion (DCDP). DCDP incorporates cross-modal RGB and inferred
depth features from the depth estimator through multilevel fusion
in the pose estimator. The estimated depth and pose are jointed
through a reprojection-based photometric loss function to constrain
the network. By leveraging the scene geometry features from the
depth maps, DCDP improves pose estimation accuracy and ensures
geometric consistency in low-texture conditions. To tackle the illu-
mination variation in the intestinal environment, we present the light
consistent calibration mechanism (LCC). The LCC calculates the
light state of each frame based on the surface normal and camera
pose. By reconstructing the photometric loss function using LCC and
mask for non-Lambertian regions, photometric consistency between
adjacent frames can be aligned to enhance the continuity and accu-
racy of depth and pose estimation under nonuniform illumination
conditions. The main contributions of our paper are as follows:

• We design a novel VO framework tailored for lesion localization
in colonoscopy (ColVO) that estimates depth and camera motion
simultaneously. To meet the clinical application of precise polyp
localization and 3D colon reconstruction, our ColVO framework
focuses on geometric consistency and photometric consistency to
enhance the accuracy of depth and pose estimation.

• We introduce DCDP, a novel technique that couples depth and
pose estimation in a single network and uses cross-modal fusion
of RGB and depth features to enhance the pose estimator.

• We propose LCC, a novel technique that calibrates the pixel values
of adjacent frames based on the light state and masks out the non-
Lambertian regions to enhance the photometric consistency.

• We conduct experiments on two synthetic datasets and one real
dataset and show that ColVO achieves state-of-the-art accuracy in
depth and pose estimation in the colon environment. We also show
that ColVO enables complete and coherent 3D reconstruction of
the colon, accurate colonoscope trajectory prediction, and precise
lesion localization.

2 RELATED WORK
2.1 Monocular Depth Estimation Method
Traditional depth sensors such as stereo, structured light, or time-
of-flight cameras are ineffective when used in narrow intra-body
environments, especially in colon scenes [30]. Therefore, algorithm-
based monocular depth estimation using colonoscopic images is
preferred. However, these methods encounter challenges in colon en-
vironments, including lighting variations and texture scarcity. Oda et
al. [21] addressed the issue of light reflections and textures in monoc-
ular endoscopic depth estimation by directly removing them using
Lambertian surface translation. Similarly, Visentini-Scarzanella et
al. [33] employed a mapping technique for input bronchoscopy
frames. However, these crude approaches hinder the network model
from effectively capturing the textured features of the colon and
fail to address the fundamental challenges posed by the intra-body

environment in depth estimation tasks. The scarcity of texture-rich
images makes it challenging to provide valuable information for
guiding network training. Although some studies [3, 8, 10, 13–16]
have considered using sparse depth information, easily obtained
through traditional structure-from-motion or simultaneous localiza-
tion and mapping (SLAM) methods, to assist in image-based depth
estimation. However, these methods introduce challenges such as
inconsistent distribution of valid pixels when combined with full-
resolution RGB images. Inspired by depth modality’s effectiveness
in enhancing depth estimation, our method leverages the fusion of
inferred depth with RGB information to improve depth and pose
estimation in the colon.

Although existing DL-based depth estimation algorithms can
generate satisfactory depth maps for individual images, their effec-
tiveness in endoscopy is often limited to the local spatial region of a
single frame [19, 24, 42], disregarding the correlation between con-
secutive frames. Consequently, when attempting to stitch together
the depth maps of each frame to generate a complete 3D model of the
colon, misalignment may occur in the space projection of adjacent
frames, resulting in deficiencies in the reconstructed gastrointestinal
model and the inability to obtain the location of lesions within the
entire colon.

2.2 Joint Depth and Pose Estimation Methods
Localization lesion in the colon requires predicting both dense depth
and camera pose for each frame. To achieve this, some works design
VO framework jointly training depth estimation network (DepthNet)
and pose estimation network (PoseNet). Turan et al. [30] proposed
Deep EndoVO, which is the first monocular VO approach for en-
doscopy through DL techniques. However, Deep EndoVO does not
strictly belong to the end-to-end VO as the depth map is derived
from traditional visual geometry methods. Similarly, DL technology
is only adopted in the DepthNet of Endo-Depth-and-Motion [25],
resulting in a disjoint between DepthNet and the Pose estimator and
preventing close integration during training. Subsequently, some
studies have utilized view synthesis between consecutive frames
as a photometric error function to constrain both depth and pose,
thereby achieving unsupervised/self-supervised VO. The premise
for photometric error is constant illumination and unchanged pixel
brightness with respect to the view direction. Unsupervised VO must
incorporate illumination variations in the endoscopy environment.
Turan et al. [32] presented the first unsupervised endoscopic VO
Endo Odometry Learner and designed a soft reliability mask to ad-
dress factors that disrupt view synthesis, such as non-Lambertian
surfaces. However, [32] lacked sufficient details on the soft reliabil-
ity mask. Ling et al. [12] also created masks to remove highlighted
regions according to the values of saturation and intensity. Zhang
et al. [45] extended classic photometric loss with feature matching
to compensate for changing contrast and brightness. Ozyoruk et al.
[22] leveraged brightness-aware photometric loss to improve the
robustness under fast illumination changes in endoscopic videos.
These methods primarily rely on masks or adjustments in lighting
from the image surface to mitigate illumination effects. In contrast,
our approach tackles the underlying cause of illumination variations
in the intestinal environment, namely, the motion of the light source
accompanying the camera, and recalibrates the illumination. Notably,
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large illumination changes and a lack of texture in colon scenes can
result in unsatisfactory performance of the DL when trained without
supervision on colonoscopic videos [26, 38, 45, 46].

Current VO frameworks typically treat DepthNet and PoseNet
as separate parallel networks and overlook the interconnectedness
between the two sub-networks. In contrast, our ColVO leverages
the potential benefits of the inferred depth map from DepthNet to
improve pose estimation accuracy. Additionally, some endoscopic
VO methods [12, 25, 30, 32] are not specifically designed for the
colon. Some methods [18, 45] can only achieve local mapping to
reconstruct the partial colon, thus failing to meet the demand for
global lesion localization.

3 METHOD
In this section, we present our ColVO network which takes consecu-
tive colon video frames as input and simultaneously generates dense
depth maps and colonoscopic trajectories. We first describe the en-
tire ColVO framework, and then explain the learning objectives of
ColVO.

3.1 Method Overview and Network Architecture
Our goal is to jointly train DepthNet and PoseNet using monocu-
lar colonoscopic videos. As shown in Fig. 2, given two consecutive
colon frames with dimensions𝐻×𝑊 ×𝐶 at time 𝑡 and 𝑡+1, DepthNet
first generates dense depth maps with dimensions𝐻×𝑊×1. Then, the
predicted depth maps, denoted as (�̂�𝑡 , �̂�𝑡+1), are concatenated with
the image pairs and fed into the PoseNet to estimate the relative pose
parameterized as 6-DoF transformation matrices 𝑇𝑡→𝑡+1 between
consecutive frames. DepthNet follows the U-Net encoder-decoder ar-
chitecture [27], while PoseNet adopts an encoder-regressor structure.
The DCDP strategy leverages the RGB-depth incremental fusion in
PoseNet for improved geometric consistency between consecutive
frames. To deal with drastic illumination changes and weak texture
in the colon, ColVO integrates both supervised and self-supervised
constraints to train DepthNet and PoseNet. Supervised signals are
derived from ground-truth (GT) depth maps and pose information,
while self-supervised signals are based on photometric loss. As the
movement of light sources with the colonoscope and non-Lambertian
reflection of colon tissues readily disrupt the light consistency in the
photometric loss, the LCC mechanism is designed for reconstructing
the photometric loss to ensure consistent lighting conditions.

3.2 Deep Coupling Strategy for Depth and Pose
Estimation

To achieve accurate lesion spatial localization, we need to estimate
both dense depth and precise colonoscope trajectories from monocu-
lar images. However, these two tasks are interdependent and chal-
lenging in the colon environment. On one hand, the pose estimation
relies on the image features, which are often limited and affected by
the dynamic lighting in the colon. On the other hand, the depth esti-
mation depends on the geometric consistency and continuity, which
can be disrupted by the inaccurate pose estimation. Therefore, we
propose a deep coupled VO framework that jointly trains DepthNet
and PoseNet in a sequential and progressive manner.

Unlike the traditional parallel dual-stream structures [2, 6, 12,
30, 45, 47] that use only image inputs for pose estimation, our pose

estimation sub-network leverages both RGB and inferred depth in-
puts from DepthNet. Inspired by Jiang et al ’s work [11], we use
a multilayer incremental fusion strategy [11] to fuse cross-modal
features from intermediate layers of the encoder. This strategy allows
the PoseNet to benefit from the rich and relatively robust geomet-
ric features from DepthNet branch. We use ResNet-18 [43] as the
encoder for both streams, but we only share the weights except for
the batch normalization (BN) layer, thereby ensuring that the fea-
tures before BN are in the same latent space, so that they can be
exchanged between streams. To preserve complementary features
between RGB and depth modalities, we use a channel exchange (CE)
strategy [36] that swaps important feature elements in each stage of
feature fusion.

𝐸1, 𝐸2 = 𝐶𝐸 (𝐵𝑁 (𝑅𝑒𝑙𝑢 (𝐶𝑜𝑛𝑣 (𝐼 , �̂�)))) (1)

where �̂� = 𝐷𝑒𝑝𝑡ℎ𝑁𝑒𝑡 (𝐼 ), 𝑅𝑒𝑙𝑢 is the activation function. After
encoding each modality into the generic feature space, we use a pose
regressor to predict a 6-dimensional relative pose representation
from each feature.

𝑇𝑠→𝑡 = 𝑃𝑜𝑠𝑒𝑁𝑒𝑡 (𝐸′1, 𝐸
′
2) (2)

where 𝐸′1, 𝐸′2 are generated by multiple Eq. 1 processes. The final
output is the refined pose estimation from the fourth stage. We also
apply the training loss proposed in [11] to prevent the model from
reaching singular solutions.

3.3 Light Consistent Calibration
While the deep coupling of depth and pose estimators in the network
architecture enhances the geometric consistency between consecu-
tive frames, the DL-based VO task ensures photometric consistency
between consecutive frames by minimizing photometric loss based
on estimated depth �̂�𝑡 and pose 𝑇𝑠→𝑡 . In addition to the classi-
cal image pixel error [47], we also adopt image dissimilarity error
SSIM [2, 37] in photometric loss to effectively handle illumination
changes.

L𝑝 (𝐼𝑡 , 𝐼𝑠→𝑡 ) = 𝛼
1 − 𝑆𝑆𝐼𝑀 (𝐼𝑡 , 𝐼𝑠→𝑡 )

2
+ (1 − 𝛼 ) ∥𝐼𝑡 − 𝐼𝑠→𝑡 ∥ (3)

where 𝑆𝑆𝐼𝑀 (𝐼𝑡 , 𝐼𝑠→𝑡 ) and ∥𝐼𝑡−𝐼𝑠→𝑡 ∥ stand for the element-wise sim-
ilarity and pixel-level similarity between the target image 𝐼𝑡 and the
synthetic target image 𝐼𝑠→𝑡 , respectively. 𝐼𝑠→𝑡 = 𝐼𝑠 ⟨𝑝𝑟𝑜 𝑗 (�̂�𝑠 ,𝑇𝑠→𝑡 , 𝐾)⟩,
⟨·⟩ represents the sampling operator, 𝑝𝑟𝑜 𝑗 (·) returns the 2D coordi-
nates of the depths in 𝐷𝑡 when reprojected into the viewpoint of 𝐼𝑠 .
Following [2], we use 𝛼 = 0.15 in our framework.

As the classical VO systems task assumes a fixed absolute po-
sition of the light source in global environments, the synthesized
images maintain constant illumination and unchanged pixel bright-
ness with the target images. However, the light source moves with
the camera in the colonoscopic videos, leading to the photometric
variation of the same spatial position between consecutive frames
(the upper right corner of Fig. 2). This means that a certain difference
remains between 𝐼𝑠→𝑡 and 𝐼𝑡 even if the depth and pose estimation
are completely correct, which disfavors neural network learning.
To address the issue of photometric inconsistency in ColVO, we
propose an LCC mechanism considering light source mobility. LCC
is defined as the ratio of luminosity generated by the reflection of
light rays from the same spatial point on the colon surface between
continuous time 𝑡 and 𝑠.
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Figure 2: Left: Classical DL-based VO framework with relatively separates DepthNet and PoseNet. Right: Overview of the proposed
ColVO framework jointly with DepthNet and PoseNet in a sequential and progressive manner. DCDP also integrates inferred depth
features with RGB to enhance the pose estimator. LCC recalibrates the luminosity values of adjacent frames caused by the light source
mobility.

𝐿𝐶𝐶 =
𝑚𝑡

𝑚𝑠
=
𝑒 ®𝑙𝑡 𝜌 ®𝑛𝑡
𝑒 ®𝑙𝑠𝜌 ®𝑛𝑠

=
®𝑙𝑡 ®𝑛𝑡
®𝑙𝑠 ®𝑛𝑠

=
( ®𝑙𝑙𝑖𝑔ℎ𝑡 − ®𝑝𝑡 ) ®𝑛𝑡
( ®𝑙𝑙𝑖𝑔ℎ𝑡 − ®𝑝𝑠 ) ®𝑛𝑠

(4)

where𝑚 represents the luminosity value and is denoted as𝑚 = 𝑒l𝜌n
according to photometric stereo methods [4, 7, 41]. 𝑒 and 𝜌 are
constants and represent light source intensity and the surface diffuse
reflection coefficient, respectively. ®𝑙 represents the light direction and
is denoted as ®𝑙 = ®𝑙𝑙𝑖𝑔ℎ𝑡 − ®𝑝, where ®𝑙𝑙𝑖𝑔ℎ𝑡 is the vector from the camera
position to the light source position and ®𝑝 is the orientation vector
from the camera to the spatial point. ®𝑛 stands for the surface normal
vector and is calculated through principal component analysis (PCA)
[28] using the predicted depth map. All the vectors that appear are
in the camera coordinate system.

By implementing LCC, we can recalibrate the luminosity values
of adjacent frames and align the colon frames, originally captured un-
der different illumination conditions, to a uniform lighting standard.
This crucial step guarantees consistent illumination between frames
in colonoscopic videos. Moreover, leveraging the LCC mechanism,
we reconstruct the photometric loss function 𝐿𝑝 (𝐼𝑡 , 𝐿𝐶𝐶 · 𝐼𝑠→𝑡 ) in
ColVO to further enhance depth and pose estimation accuracy.

3.4 Learning Objectives for ColVO
According to [18, 26, 38], neural networks trained solely on self-
supervision using colonoscopic videos can be susceptible to chal-
lenges posed by illumination variations and textureless features in
the colon. To address this, ColVO incorporates both supervised
and self-supervised learning into estimating depth and pose from
colonoscopic videos. The supervised aspect L𝑠𝑢 of ColVO involves
minimizing the Euclidean distance between the predicted depth and
pose and their GTs or references, which can be obtained using ad-
vanced sensors such as CT models [33, 44] and OptiTrack Prime
[30, 31]. The self-supervised aspect L𝑠𝑒𝑙 𝑓 of ColVO involves en-
forcing photometric consistency and smoothness constraints on the
reconstructed images and depth maps. The total loss L is a weighted

sum of the supervised and self-supervised losses, as shown below:

L𝑠𝑢 = L𝑔𝑑 (𝐷𝑡 , 𝐷𝑡 ) + L𝑔𝑥 (𝑇𝑠→𝑡 ,𝑇𝑠→𝑡 ) (5)

L𝑠𝑒𝑙 𝑓 = 𝜆1L𝑝 (𝐼𝑡 , 𝐼𝑠 ) + 𝜆2L𝑠 (𝐷𝑡 ) + 𝜆3L𝑛 (𝑓𝑥 ) (6)

L = L𝑠𝑢 + L𝑠𝑒𝑙 𝑓 (7)

where L𝑔𝑑 and L𝑔𝑥 are the L1 loss in depth and pose, respectively.
𝐷𝑡 and𝑇𝑠→𝑡 are the estimated depth and pose, while𝐷𝑡 and𝑇𝑠→𝑡 are
the GTs. L𝑛 (𝑓𝑥 ) is the regularization term of PoseNet [11], which
is used to prevent the network from falling into a local optimum. 𝜆
is the parameter for each loss.

Photometric consistency is usually satisfied under the assumption
that the camera is moving and the scene is stationary. However, in
the colon, the colon wall can perform irregular movements and the
watery colon surface can reflect the light and violate the Lambertian
reflectance assumption. To address these challenges, ColVO uses
two masking techniques: auto mask M𝑝 [6] and temporal mask
M𝑡 [6]. The auto mask removes the pixels that do not conform to
the photometric consistency assumption, while the temporal mask
removes the pixels that do not have corresponding matches between
the preceding and the following frames. The final photometric loss
is as follows:

L𝑝 (𝐼𝑡 , 𝐼𝑠 ) = L𝑝 (𝐼𝑡 , 𝐿𝐶𝐶 · 𝐼𝑠→𝑡 ) ⊙ M𝑝 ⊙ M𝑡 (8)

where 𝐿𝐶𝐶 is the local color correction mechanism proposed by
ColVO to handle the illumination variations in the colon.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets:

We used two typical benchmark datasets, namely the VR-Caps
dataset (VCD) and the colonoscopy simulator dataset (CSD), to train
and evaluate our ColVO model. The VR-Caps dataset was collected
from a virtual capsule endoscopy system [9] that provides realistic
3D models of the colon with real in-body texture mapping. We split
the VCD dataset, which consists of 17,057 RGB-D images with

4
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poses, into a training set of 8,676 continuous colon image sequences
and a validation set of 8,381 colon image sequences, following [34,
39]. The CSD dataset was collected from a colonoscopy simulator
[44] that offers a more challenging colon environment with rich
vascular texture features.

The CSD dataset contains two paths with a total of 3500 images.
We use one path with 1748 images as the training set and the other
path with 1752 images as the validation set. In addition, we also
reported the results on a real colon dataset [22] named olympus
dataset (OD) to evaluate the generalization ability of our model.

Evaluation Metrics: We adopted the classic VO criterion [47]
to evaluate the depth and pose. We used the error metrics (RMSE,
abs.REL) and the accuracy metrics (𝛿1, 𝛿2) to evaluate the depth
estimation performance. We used the Absolute Trajectory Error
(ATE) and Rotation Error (RE) to evaluate the error of the estimated
position and rotation.

Implementation and Settings: We implemented our models
using PyTorch [23]. Both the DepthNet and PoseNet received input
of size 320×320 pixels. We trained the model for 20 epochs with a
batch size of 12. We set the learning rate to 10−4 and reduced it to
10−5 after 15 epochs. Following [6, 11], we set the hyperparameters
in Eq. 8 as follows: 𝜆1 = 0.1, 𝜆2 = 0.001, 𝜆3 = 0.0002.

4.2 Comparison with Other Methods
We evaluated our ColVO method against traditional VOs [5, 20] and
existing end-to-end DL-based VO methods [1, 2, 17, 22, 29, 47]. The
traditional multiview geometry-based VO methods include ORB-
SLAM [20] and DSO [5]. As shown in Fig. 3, ORBSLAM failed
to accurately predict colonoscope trajectories due to its reliance
on strict feature detection and matching, which is impractical in
feature-scarce colon environments. Similarly, the optical flow-based
DSO algorithm also performs poorly in pose estimation. We trained
these VO methods using open-source code on the VCD and the CSD
dataset. However, we observed that these unsupervised VO methods
failed to learn features effectively from challenging colon videos, re-
sulting in extremely inaccurate depth and pose estimation. Therefore,
we specialized them by incorporating supervised information (Eq.

5) to adapt to the challenges of the colon environment for fair com-
parisons. Fig. 3 and Fig. 4 show the qualitative results of the depth
and pose estimation comparison with the SoTA methods, and Table
1 contains the quantitative results. Experimental results revealed that
integrating supervised signals with MonoDepth2 [6] yielded com-
petitive results in terms of depth and pose estimation. Therefore, we
selected this method as the baseline method for comparison. Quanti-
tative analysis (Table 1) revealed that the ColVO model exhibited
exceptional overall performance, especially in position estimation.
This advantage translates into achieving more precise colonoscope
trajectories and improved 3D perception.

Visualizing the depth estimation results (Fig. 4), the ColVO
method produced more accurate and realistic depth maps than the ex-
isting methods. Classical VO systems, such as SfMLearner [47] and
SC-Depth [2], performed poorly in estimating the correct distances
in the colon due to their focus on human activity scenes. Although
the latest VO methods, such as DualRefine [1] and SRD-Depth[17],
exhibited considerable capability in adapting to the colon environ-
ment, they still produced relatively coarse depth maps with noise
and artifacts when faced with the more challenging CSD dataset.
As for endoscopic VO systems, Endo-SfMLearner [22] and AF-
SfMLearner[29] showed better overall performance in depth map
prediction due to their specialized modules for handling lighting
variations and low-texture images. Nonetheless, these systems suf-
fered from suboptimal error performance partly due to their error
maps demonstrating significant absolute errors. However, regarding
depth estimation, ColVO’s performance is slightly inferior to Endo-
SfMLearner. This discrepancy arises because ColVO emphasizes
improving the precision of the global camera trajectory to meet the
clinical requirement of precise polyp localization. Consequently,
there is a trade-off in sacrificing some local depth estimation per-
formance. The qualitative depth prediction results are consistent
with the quantitative results shown in the error metrics RMSE and
abs.REL, and accuracy metrics (𝛿1, 𝛿2) in Table 1.

According to the visualization of the colonoscope trajectory in
Fig. 3, the trajectory predictions of ColVO are close to the ground
truth and exhibit less drift or jitter compared to other methods. Most
existing VO methods primarily focus on depth estimation, often

Figure 3: Qualitative results of predicted trajectory compared with the SoTA method. Blue represents the ground truth and black
represents our method.
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Figure 4: Qualitative results of depth estimation compared with the SoTA methods on the VCD and CSD datasets. Each test example
includes a colon image, the corresponding GT depth map, the predicted depth map, and an error map showing the discrepancy between
the predicted results and GT. The depth heatmap visualizes relative depth values. The error map shows the disparities between the
predicted depth with absolute scale and the GT.

utilizing PoseNet only to assist in depth prediction. As a result, these
methods are unable to accurately estimate colonoscope trajectories
that align with the reference. In clinical applications, doctors typi-
cally focus more on the location of polyps, hence the importance
of endoscopic pose estimation exceeds that of depth estimation. As
evident from Table 2, although our method’s depth estimation is
slightly less accurate than the best one, its pose estimation is the
best, aligning well with practical clinical applications.

4.3 Ablation Study
To better understand how the components of our ColVO model
contribute to the overall performance in depth and pose estimation,
we performed an ablation study by removing the corresponding
modules from the complete ColVO model. Previous experiments
demonstrated that the VCD dataset posed greater challenges to the
VO task, especially in terms of colonoscope trajectory estimation.
Therefore, we conducted ablation experiments on the VCD dataset.
As listed in Table 2, our ColVO method outperformed the baseline
method in both depth and pose estimation, demonstrating positive

and effective contributions of the designed modules in ColVO. Ta-
ble 2 lists the performance degradation when specific modules are
removed from our method, resulting in a decrease in performance
in either depth or pose estimation, or both simultaneously. The vi-
sualization of trajectories in Fig. 5 further highlights this effect,
providing a clearer depiction of the results. The purple trajectory rep-
resenting the baseline exhibits the most severe deviation compared
to the red trajectory of ColVO.

We analyze the benefits of each module as follows:
• Benefits of DCDP. Experiments in Table 2 and Fig. 5 demon-

strated that this strategy led to a remarkable decline in pose error
(ATE: 2.1% ↓, RE: 89.5% ↓) and a significant enhancement in
scale consistency. In terms of depth estimation, the RMSE shows
a slight increase. This is because the DCDP module prioritizes
the accuracy of the overall camera trajectory rather than solely
focusing on improving the accuracy of local depth estimation.
Therefore, the DCDP can fulfill the specific clinical demand for
exact polyps localization.

• Benefits of LCC. From the baseline to −𝐷𝐶𝐷𝑃 row (only LCC)
in Table 2, the RMSE decreased by 5.79%, and the abs.REL by
5.95%, signifying a substantial depth accuracy enhancement due
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Table 1: Comparison with SoTA on VCD and CSD. Smaller error and greater accuracy are better. The highlight results are presented
as follows: best (bold), second-best (underlined), and third-best (italicized).

Methods Error (Pose) Error (Depth) Accuracy (Depth)
ATE↓ RE↓ RMSE↓ abs.REL↓ 𝛿1 ↑ 𝛿2 ↑

V
C

D
[9

]

baseline 0.553±0.240 1.605±0.687 0.281 0.058 98.60% 99.82%
SfMLearner [47] 0.476±0.191 1.348±0.898 0.887 0.195 69.86% 91.92%

SC-Depth [2] 0.561±0.205 1.851±0.813 1.433 0.400 41.42% 69.75%
Endo-SfMLearner [22] 1.956±0.628 0.870±0.276 0.242 0.040 98.81% 99.90%
AF-SfMLearner [29] 0.612±0.245 1.802±0.775 0.271 0.056 98.60% 99.82%

DualRefine [1] 0.596±0.275 1.709±0.807 0.260 0.054 98.75% 99.83%
SRD-Depth [17] 0.595±0.274 1.332±0.894 0.262 0.054 98.91% 99.92%

ColVO(ours) 0.475±0.240 0.305±0.107 0.264 0.054 98.77% 99.86%

C
SD

[4
4]

baseline 5.539±3.015 1.862±0.622 0.375 0.078 96.12% 99.09%
SfMLearner [47] 6.978±3.425 1.374±0.524 1.642 0.282 55.82% 81.58%

SC-Depth [2] 8.491±3.293 1.842±0.864 2.297 0.375 44.51% 67.37%
Endo-SfMLearner [22] 5.858±2.921 2.116±0.766 0.330 0.059 97.09% 99.51%
AF-SfMLearner [29] 9.849±3.900 1.966±0.753 0.820 0.117 89.38% 97.62%

DualRefine [1] 8.980±3.207 1.464±0.870 0.514 0.106 88.71% 96.68%
SRD-Depth [17] 9.612±3.388 1.477±0.894 0.439 0.073 95.28% 98.88%

ColVO(ours) 3.987±1.502 1.735±0.762 0.366 0.077 96.13% 99.10%

Table 2: Ablation study on components of ColVO.

Error (Pose) Error (Depth) Accuracy (Depth)

ATE↓ RE↓ RMSE↓ abs.REL↓ 𝛿1 ↑ 𝛿2 ↑

baseline 0.553±0.240 1.605±0.687 0.2813 0.0588 98.60% 99.82%

ColVO(ours) 0.475±0.240 0.305±0.107 0.2641 0.0546 98.77% 99.86%

−𝐷𝐶𝐷𝑃 0.493±0.285 1.221±0.618 0.2650 0.0553 98.83% 99.88%

−𝐿𝐶𝐶 0.541±0.257 0.167±0.124 0.2821 0.0573 98.64% 99.84%

L
os

se
s

−L𝑔𝑑 ,L𝑔𝑥 0.783±0.319 1.869±0.753 1.4342 0.4037 41.35% 69.69%

−M𝑝 0.628±0.329 1.370±0.903 0.2746 0.0563 98.78% 99.86%

M
as

ks

−M𝑡 0.584±0.209 1.139±0.874 0.3186 0.0635 98.04% 99.74%

to LCC. Furthermore, pose-related errors witnessed a significant
decline, with the ATE declining by 10.8%, and the RE by 23.9%
compared to the baseline. Additionally, LCC is a versatile solution
for environments with active light sources, like pipeline and tunnel
robot operations.

• Benefits of supervised signal. Supervision helps ColVO to di-
rectly overcome lighting variations and texture scarcity in the
colon. As listed in Table 2, without direct supervision, both depth
and pose estimation results drastically decline.

• Benefits of mask. The auto mask M𝑝 and temporal mask M𝑡

can eliminate the negative effects caused by the frame-to-frame
image changes and the colon’s self-motion, greatly improving the
ColVO’s performance.

4.4 Generalization Ability
We validated the generalization performance of ColVO in real Olym-
pusCam colon dataset using model trained on VR-Caps dataset. CT
visualization in the bottom left corner of Fig. 6 revealed that the real
colon exhibited a straight and elongated structure. The predicted
depth map accurately captured the detailed depth map of the colon,

Figure 5: Trajectory visualization of ablation experiments. The
closer to the blue line, the closer to the ground truth.
successfully estimating even small abnormalities within the colon,
particularly at node 3○ . Additionally, the predicted trajectory closely
aligned with the actual trends and variations of the colon, especially
at node 2○.

Similarly, we make a comparison between ColVO and other meth-
ods. Consequently, these methods fail to reconstruct satisfactory 3D
colon models. In contrast, ColVO generates clearer and more accu-
rate depth maps, even in polyp regions. For example, SfMLearner,
SC-Depth and Endo-SfMLearner fail to produce accurate depth pre-
dictions. Although AF-SfMLearner, DualRefine and SRD-Depth
show better depth maps, their trajectory predictions are unsatisfac-
tory. The 3D colon model with complete structure and correct shape
demonstrates ColVO’s superior generalization performance.

4.5 Scale Continuity and Geometry Consistency
According to [35], scale is defined as the median of a depth map.
The significant scale fluctuation between adjacent frames will cause
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Figure 6: Generalization validation of ColVO model on the real OlympusCam colon dataset.

Figure 7: Quantitative comparison in terms of depth scale results
and ATE indicators with/without DCDP module.

the corresponding depth maps fail to be accurately stitched together
to produce a complete and accurate 3D colon model. Fig. 7 indicted
that merging DepthNet and PoseNet in a simplistic and independent
manner can actually result in depth scale estimation outcomes that
are even worse than those achieved by DepthNet alone. In contrast,
DCDP effectively reduced scale fluctuations and trajectory errors
between frames, leading to more accurate ego-motion estimation
and enhanced geometric consistency.

4.6 3D Visualization
To demonstrate the effectiveness of our ColVO, we implemented
a 3D colon reconstruction visualization in Fig. 1 by stitching to-
gether the dense depth maps of each frame using the colonoscopic
trajectory. We did not incorporate any additional design such as
surface mesh, the dense point cloud generated by ColVO provided
intuitive and original results. In comparison to other colon VOs
[13, 18, 45], which focus only on partial colon reconstruction over

short timescales, the ColVO is capable of reconstructing the com-
plete 3D colon model along with long timescales colonoscopic tra-
jectory. Although there may be a few noise points present, our colon
models have a clear shape and intact structure.

4.7 Polyp Localization
We demonstrated a valuable and practical application of our ColVO
in polyp localization, as depicted in Fig. 1. Our ColVO enables
immediate and direct acquisition of the 3D position of lesions during
colonoscopy. This capability holds significant importance in the
diagnosis and treatment of gastrointestinal diseases. After the polyps
were detected, we utilized the estimated depth values and endoscope
pose by ColVO to calculate the spatial positions of the polyps. By
comparing with the GT values, most of the predictions can achieve
a level of accuracy within millimeters.

5 CONCLUSION AND FUTURE WORK
This paper proposed ColVO, a novel model for simultaneous dense
depth estimation and camera pose prediction in challenging colon
environments. Our model leveraged two key innovations: the DCDP
module, which fuses depth information with RGB and enforces geo-
metric consistency to enhance the PoseNet performance, and the
LCC mechanism, which adapts itself to the dynamic light source and
improves the photometric consistency. We conducted extensive ex-
periments on synthetic and real colon datasets and demonstrated that
our model achieved superior results and clinical benefits compared
to existing methods. In the future, we will focus on semantic cues
such as surgical instruments, bodily fluids, polyps, and cancerous
lesions can potentially serve as valuable feature cues to enhance
ColVO performance.
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