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Abstract

Understanding the decision-making process of Graph Neural Networks (GNNs)1

is crucial to their interpretability. Present methods for explaining GNNs typically2

rely on training auxiliary models, and may struggle with issues such as overfitting3

to noise, insufficient discriminability, and inconsistent explanations across data4

samples of the same class. This paper introduces Graph Output Attribution (GOAt),5

a novel method to attribute graph outputs to input graph features, creating GNN6

explanations that are faithful, discriminative, as well as stable across similar sam-7

ples. By expanding the GNN as a sum of scalar products involving node features,8

edge features and activation patterns, we propose an efficient analytical method9

to compute contribution of each node or edge feature to each scalar product and10

aggregate the contributions from all scalar products in the expansion form to derive11

the importance of each node and edge. Through extensive experiments on synthetic12

and real data, we show that our method has consistently outperformed various13

state-of-the-art GNN explainers in terms of fidelity, discriminability, and stability.14

1 Introduction15

Graph Neural Networks (GNNs) have demonstrated notable success in learning representations from16

graph-structured data in various fields [14, 9, 30]. However, their black-box nature has driven the17

need for explainability, especially in sectors where transparency and accountability are essential, such18

as finance [28], healthcare [1], and security [18]. The ability to interpret GNNs can provide insights19

into the mechanisms underlying deep models and help establish trustworthy predictions.20

Existing attempts to explain GNNs usually focus on local-level or global-level explainability. Local-21

level explainers [31, 17, 21, 27, 10, 15, 23, 3] typically train a secondary model to identify the critical22

graph structures that best explain the behavior of a pretrained GNN for specific input instances. These23

methods are always optimized for ground-truth explanations or fidelity metrics, yet may not be able to24

generate consistent explanations for similar graph samples or produce accurate and human-intelligible25

explanations for class discrimination. Global-level explainers [2, 11] perform prototype learning or26

random walk on the explanation instances to extract the global explanations over a multitude of graph27

samples. However, their effectiveness rely heavily on the quality of local-level explanations.28

In this paper, we introduce a computationally efficient local-level GNN explanation technique called29

Graph Output Attribution (GOAt) to overcome the limitations of existing methods. Unlike methods30

that rely on back-propagation with gradients [20, 4, 22, 8] and those relyinig on hyper-parameters or31

training complex black-box models [17, 15, 23, 3], our approach enables attribution of GNN output32

to input features, leveraging the repetitive sum-product structure in the forward pass of a GNN.33

Given that the matrix multiplication in each GNN layer adheres to linearity properties and the34

activation functions operate element-wise, a GNN can be represented in an expansion form as a35
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sum of scalar product terms, involving input graph features, model parameters, as well as activation36

patterns that indicate the activation levels of the scalar products. Based on the notion that all scalar37

variables Xi in a scalar product term g = cX1X2 . . . XN contribute equally to g, where c is a38

constant, we can attribute each product term to its corresponding factors and thus to input features,39

obtaining the importance of each node or edge feature in the input graph to GNN outputs. We present40

case studies that demonstrate the effectiveness of our analytical explanation method GOAt on typical41

GNN variants, including GCN, GraphSAGE, and GIN.42

Besides the fidelity metric, which is commonly used to assess the faithfulness of GNN explanations,43

we introduce two new metrics to evaluate the discriminability and stability of the explanation, which44

are under-investigated by prior literature. Discriminability refers to the ability of explanations to45

distinguish between classes, which is assessed by the difference between the mean explanation46

embeddings of different classes, while stability refers to the ability to generate consistent explanations47

across similar data instances, which is measured by the percentage of data samples covered by top-k48

explanations. Through comprehensive experiments based on on both synthetic and real-world datasets49

along with qualitative analysis, we show the outstanding performance of our proposed method, GOAt,50

in providing highly faithful, discriminative, and stable explanations for GNNs, as compared to a51

range of state-of-the-art methods.52

2 Problem Formulation53

Graph Neural Networks Let G = (V, E) be a graph, where V = {v1, v2, . . . , vN} denotes the set54

of nodes and E ⊆ V ×V denotes the set of edges. The node feature matrix of the graph is represented55

by X ∈ RN×d, and the adjacency matrix is represented by A ∈ {0, 1}N×N such that Aij = 1 if56

there exists an edge between nodes vi and vj . The task of a GNN is to learn a function f(G), which57

maps the input graph G to a target output, such as node labels, graph labels, or edge labels. Formally58

speaking, for a given GNN, the hidden state h
(l)
i of node vi at its layer l can be represented as:59

h
(l)
i = COMBINE(l)

{
h
(l−1)
i ,AGGREGATE(l)

({
h
(l−1)
j ,∀vj ∈ Ni

})}
, (1)

where Ni represents the set of neighbors of node vi in the graph. COMEBINE(l)(·) is a COMBINE60

function such as concatenation [9], while AGGREGATE(l)(·) are AGGREGATE functions with61

aggregators such as ADD. We focus on GNNs that adopt the non-linear activation function ReLU in62

COMBINE or AGGREGATE functions.63

Local-level GNN Explainability Our goal is to generate a faithful explanation for a graph instance64

G = (V, E) by identifying a subset of edges S ⊆ E , given a GNN f(·) pretrained on a set of graphs65

G. The term faithful refers to the explanation’s ability to perform well in not only fidelity [33] and66

robustness [3] metrics, but also stability in identifying consistent patterns. We highlight edges instead67

of nodes as suggested by [7] that edges have more fine-grained information than nodes while giving68

human-understandable explanations like subgraphs.69

3 Method70

This section begins by presenting our fundamental definition of equal contribution in a product term71

and its application in an example of a toy graph neural network. Then, we mathematically present72

GOAt method for explaining typical GNNs, followed by a case study on GCN [14]. Additional case73

studies of applying GOAt to GraphSAGE [9] and GIN [30] are included in the Appendix.74

3.1 Definitions75

Consider a function g(X1, . . . , XM ) of M variables X = {X1, . . . , XM}. If we let a pair of variables76

(Xi, Xj) be set to (Xi, Xj) = (xi, xj), we will obtain a manifold gXi=xi,Xj=xj
(X\{Xi, Xj}),77

which represents g(·) when all variables excluding Xi and Xj can vary. Consider a base manifold78

gXi=x′
i,Xj=x′

j
(X\{Xi, Xj}). If we can obtain two identical manifolds by setting (Xi, Xj) =79

(xi, x
′
j) and (Xi, Xj) = (x′

i, xj), it will indicate that changing Xi = x′
i to Xi = xi is equivalent80

to changing Xj = x′
j to Xj = xj with respect to the base manifold at (Xi, Xj) = (x′

i, x
′
j).81

For example, a function g(x, y, z) = 2xy + x2z has three variables x, y, z, we consider taking82
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gx=−1,y=−1(z) = z + 2 as the base manifold. Since gx=1,y=−1(z) = gx=−1,y=1(z) = z − 2, we83

say that changing x = −1 to x = 1 is equivalent to changing y = −1 to y = 1 with respect to the84

base manifold at (x, y) = (−1,−1).85

Definition 1 (Equal Contribution). Given a function g(X) where X = {X1, . . . , XM} represents86

M variables, we say that variables Xi and Xj have equal contribution to function g at (xi, xj)87

with respect to the base manifold at (x′
i, x

′
j) if and only if setting Xi = xi, Xj = x′

j and setting88

Xi = x′
i, Xj = xj yield the same manifold, i.e.,89

gXi=xi,Xj=x′
j
(X\{Xi, Xj}) = gXi=x′

i,Xj=xj
(X\{Xi, Xj})

for any values of X excluding Xi and Xj .90

Lemma 2 (Equal Contribution in a product). Given a function g(X) defined as g(X) =91

b
∏M

k=1 Xk, where b is a constant, and X = {X1, . . . , XM} represents M uncorrelated variables.92

Each variable Xk is either 0 or xk, depending on the absence or presence of a certain feature. Then,93

all the variables in X contribute equally to g(X) at [x1, . . . , xM ] with respect to [0, . . . , 0].94

Proofs of all Lemmas and Theorems can be found in the Appendix. Since all the binary variables95

have equal contribution, we define the contribution of each variable Xk to g(X) = b
∏M

k=1 Xk for96

all k = 1, . . . ,M , as97

IXk
=

b
∏M

i=1 xi

M
. (2)

For example, let f(A,X) = AXW be a simple 2-node GNN for node classification, where A,X,W98

are 2× 2 matrices that denote adjacency matrix, node feature matrix, and weight matrix, respectively.99

Then, we can represent each entry in the resulting 2× 2 matrix f(A,X) as an expansion form:100

fi,j(A,X) =

1∑
k=0

1∑
l=0

Ai,kXk,lWl,j , (3)

where fi,j(A,X) represents the prediction of the i-th node for the j-th class. In a pretrained101

GNN, parameter W is fixed. Thus, only Ai,k and Xk,l contribute to the value of each scalar product102

Ai,kXk,lWl,j . As Ai,k is usually independent of Xk,l under proper data cleaning, we can calculate the103

contributions of Ai,k and Xk,l to the scalar product Ai,kXk,lWl,j by IAi,k
= IXk,l

= 1
2Ai,kXk,lWl,j104

based on Lemma 2 and Equation (2). By similar computations for all the scalar products in the105

expansion form of f(·), we can obtain the contribution of all the input features to each entry of the106

output matrix.107

3.2 Explaining Graph Neural Networks via Attribution108

A typical GNN [14, 9, 30] for node or graph classification tasks usually comprises 2-6 message-109

passing layers for learning node or graph representations, followed by several fully connected layers110

that serve as the classifier. With the hidden state h
(l)
i of node vi at the l-th message-passing layer111

defined as Equation (1), we generally have the hidden state H(l) of a data sample as:112

H(l) = σ
(
Φ(l)

((
A+ ϵ(l)I

)
H(l−1)

)
+ λΨ(l)

(
H(l−1)

))
, (4)

where A is the adjacency matrix, ϵ(l) refers to the self-loop added to the graph if fixed to 1, otherwise it113

is a learnable parameter, σ(·) is the element wise activation function, Φ(l) and Ψ(l) can be Multilayer114

Perceptrons (MLP) or linear mappings, λ ∈ {0, 1} determines whether a concatenation is required.115

If the COMBINE step of a GNN requires a concatenation, we have λ = 1 and ϵ(l) = 1; if the116

COMBINE step requires a weighted sum, we have ϵ(l) set trainable and λ = 0. Alternatively,117

Equation (4) can be expanded to:118

H(l) = σ

(
AH(l−1)

K∏
k=1

WΦ
(l)
k + ϵ(l)H(l−1)

K∏
k=1

WΦ
(l)
k + λH(l−1)

Q∏
q=1

WΨ
(l)
q

)
, (5)

where K,Q refer to the number of MLP layers in Φ(l)(·) and Ψ(l)(·), and WΦ
(l)
k and WΨ(l)

q are the119

trainable parameters in Φ
(l)
k and Ψ

(l)
q .120

Given a certain data sample and a pretrained GNN, for an element-wise activation function we can121

define the activation pattern as the ratio between the output and input of the activation function:122
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Definition 3 (Activation Pattern). Denote H(l)′ and H(l) as the hidden representations before and123

after passing through the element-wise activation function at the l-th layer, we define activation124

pattern P (l) for a given data sample as125

P
(l)
i,j =


H

(l)
i,j

H
(l)′
i,j

, if H(l)′
i,j ̸= 0

0, otherwise

where P
(l)
i,j is the element-wise activation pattern for the j-th feature of i-th node at layer l.126

Hence, the hidden state H(l) at the l-th layer for a given sample can be written as127

H(l) = P (l) ⊙

(
AH(l−1)

K∏
k=1

WΦ
(l)
k + ϵ(l)H(l−1)

K∏
k=1

WΦ
(l)
k + λH(l−1)

Q∏
q=1

WΨ(l)
q

)
, (6)

where ⊙ represents element-wise multiplication. Thus, similar to Equation (3), we can expand the128

expression of each output entry in a GNN f(A,X) into a sum of scalar products, where each scalar129

product is the multiplication of corresponding entries in A, X , W , and P in all layers. Then each130

scalar product can be written as131

z = C·
(
P

(1)
α10,β11

. . . P
(L)
αL0,βL1

)(
P (c1)
αL0,γ11

. . . P
(c(M−1))
αL0,γ(M−1)1

)
·(

A(L)
αL0,αL1

. . . A(1)
α10,α11

)
Xi,j

(
W

(1)
β10,β11

. . .W
(L)
βL0,βL1

)(
W (c1)

γ10,γ11
. . .W (cM )

γM0,γM1

)
,

(7)

where C is a constant, ck refers to the k-th layer of the classifier, (αl0, αl1), (βl0, βl1), (γl0, γl1) are132

(row, column) indices of the corresponding matrices at layer l. In a classifier with M MLP layers,133

only (M − 1) layers adopt activation functions. Therefore, we do not have P (cM )
αL0,γM1 in Equation (7).134

For scalar products without factors of A, all A’s are considered as constants equal to 1 in Equation (7).135

Since the GNN model parameters are pretrained and fixed, we only consider A, X , and all the P136

terms as the variables in each product term.137

Lemma 4 (Equal Contribution variables in the GNN expansion form’s scalar product). For a138

scalar product term z in the expansion form of a pretrained GNN f(·), when the number of nodes N139

is large, all variables in z have equal contributions to the scalar product z.140

Hence, by Equation (2), we can calculate the contribution Iν(z) of a variable ν (i.e., an entry in A, X141

and P matrices) to each scalar product z (given by Equation (7)) by:142

Iν(z) =
z

|V (z)|
, (8)

where function V (·) represents the set of variables in its input, and |V (z)| denotes the number of143

unique variables in z, e.g., V (x2y) = {x, y}, and |V (x2y)| = 2.144

Similar to Section 3.1, an entry fm,n(A,X) of the output matrix f(A,X) can be expressed by the145

sum of all the related scalar products as146

fm,n(A,X) =
∑

C·
(
P

(1)
α10,β11

. . . P
(L)
m,βL1

)
·
(
P (c1)
m,γ11

. . . P
(c(M−1))
m,γ(M−1)1

)
·
(
A(L)

m,αL1
. . . A(1)

α10,α11

)
·Xi,j ·

(
W

(1)
β10,β11

. . .W
(L)
βL0,βL1

)
·
(
W (c1)

γ10,γ11
. . .W (cM )

γM0,n

)
,

(9)

where summation is over all possible (αl0, αl1), (βl0, βl1), (γl0, γl1), for message passing layer147

l = 1, . . . , L or classifier layer l = 1, . . . ,M , as well as all i, j indices for X . By summing up the148

contribution of each variable ν among the entries in the A, X and P ’s in all the scalar products in the149

expansion form of fm,n(·), we can obtain the contribution of ν to fm,n(·) as:150

Iν(fm,n(·)) =
∑

z in fm,n(·) that contain ν

z

|V (z)|
. (10)

Theorem 5 (Contribution of variables in the expansion form of a pretrained GNN). Given151

Equations (8) and (10), for each variable ν (i.e., an entry in A, X and P matrices), when the number152

of nodes N is large, we can approximate Iν(fm,n(·)) by:153

Iν(fm,n(·)) =
∑

z in fm,n(·) that contain ν

O(ν, z)∑
ρ in z O(ρ, z)

· z, (11)

where O(ν, z) denotes the number of occurrences of ν among the variables of z.154
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Recall that |V (z)| stand for the number of unique variables in z. Hence the total number of155

occurrences of all the variables
∑

ρ in z O(ρ, z) is not necessarily equal to |V (z)|. For example,156

if all of {A(1)
α10,α11 , . . . , A

(L)
αL0,αL1} in z are unique entries in A, then they can be considered as L157

independent variables in the function representing z. If two of these occurrences of variables refer to158

the same entry in A, then there are only (L− 1) unique variables related to A.159

Although Theorem 5 gives the contribution of each entry in A, X and P ’s, we need to further attribute160

P ’s to A and X and allocate the contribution of each activation pattern P
(r)
a,b to node features X and161

edges A by considering all non-zero features in Xa of node va and the edges within m hops of node162

va, as these inputs may contribute to the activation pattern P
(r)
a,b . However, determining the exact163

contribution of each feature that contributes to P
(r)
a,b is not straightforward due to non-linear activation.164

We approximately attribute all relevant features equally to P
(r)
a,b . That is, each input feature ν that has165

nonzero contribution to P
(r)
a,b will share an equal contribution of I

P
(r)
a,b

(fm,n(·))/|V (P
(r)
a,b )|, where166

|V (P
(r)
a,b )| denotes the number of distinct node and edge features in X and A contributing to P

(r)
a,b ,167

which is exactly all non-zero features in Xa of node va and the adjacency matrix entries within r168

hops of node va. Finally, based on Equation (11), we can obtain the contribution of an input feature ν169

in X , A of a graph instance to the (m,n)-th entry of the GNN output f(·) as:170

Îν(fm,n(·)) = Iν(fm,n(·)) +
∑

P
(r)
a,b in fm,n(·),with ν inP

(r)
a,b

I
P

(r)
a,b

(fm,n(·))

|V (P
(r)
a,b )|

, (12)

where ν is an entry in the adjacency matrix A or the input feature matrix X , P (r)
a,b denotes an entry in171

all the activation patterns. Thus, we have attributed f(·) to each input feature of a given data instance.172

Our approach meets the completeness axiom, which is a critical requirement in attribution methods [25,173

24, 6]. This axiom guarantees that the attribution scores for input features add up to the difference174

in the GNN’s output with and without those features. Passing this sanity check implies that our175

approach provides a more comprehensive account of feature importance than existing methods that176

only rank the top features [3, 17, 20, 31, 27, 23].177

3.3 Case Study: Explaining Graph Convolutional Network (GCN)178

GCNs use a simple sum in the combination step, and the adjacency matrix is normalized with the179

diagonal node degree matrix D. Hence, the hidden state of a GCN’s l-th message-passing layer is:180

H(l) = ReLU
(
V H(l−1)W (l) +B(l)

)
, (13)

where V = D− 1
2 (A + I)D− 1

2 represents the normalized adjacency matrix with self-loops added.181

Suppose a GCN has three convolution layers and a 2-layer MLP as the classifier, then its expansion182

form without the activation functions ReLU(·) will be:183

f(V,X) ̸P = V (3)V (2)V (1)XW (1)W (2)W (3)W (c1)W (c2) + V (3)V (2)B(1)W (2)W (3)W (c1)W (c2)

+ V (3)B(2)W (3)W (c1)W (c2) +B(3)W (c1)W (c2) +B(c1)W (c2) +B(c2),
(14)

where V (l) = V is the normalized adjacency matrix in the l-th layer’s calculation. In the actual184

expansion form with the activation patterns, the corresponding P (m)’s are multiplied whenever185

there is a W (m) or B(m) in a scalar product, excluding the last layer W (c2) and B(c2). For ex-186

ample, in the scalar products corresponding to V (3)V (2)V (1)XW (1)W (2)W (3)W (c1)W (c2), there187

are eight variables consisting of four P ’s, one X , and three V ’s. By Equation (11), an ad-188

jacency entry Vi,j itself will contribute 1
8 of p(V (3)V

(2)
:i V

(1)
i,j Xj:W

(1)W (2)W (3)W (c1)W (c2)) +189

p(V
(3)
:i V

(2)
i,j V

(1)
j: XW (1)W (2)W (3)W (c1)W (c2))+p(V

(3)
i,j V

(2)
j: V (1)XW (1)W (2)W (3)W (c1)W (c2)),190

where p(·) denotes the results with the element-wise multiplication of the corresponding activation191

patterns applied at the appropriate layers. After we obtain the contribution of Vi,j itself on all the192

scalar products, we can follow Equation (12) to allocate the contribution of activation patterns to Vi,j .193
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Figure 1: Fidelity performance averaged across 10 runs on the pretrained GCNs for the datasets at
different levels of average sparsity.

With Equation (14), we find that when both V and X are set to zeros, f(·) remains non-zero and is:194

f(0,0) = p(B(3)W (c1)W (c2)) + p(B(c1)W (c2)) +B(c2), (15)

where B(c2) is the global bias, and the other terms have non-zero entries at the activated neurons. In195

other words, certain GNN neurons in the 3-rd and c1-th layers may already be activated prior to any196

input feature being passed to the network. When we do feed input features, some of these neurons197

may remain activated or be toggled off. With Equation (12), we consider taking all 0’s of the X198

entries, V entries and P entries as the base manifold. Now, given that some of the P entries in GCN199

are non-zero when all X and V set to zeros, as present in Equation (15), we will need to subtract the200

contribution of each features on these P from the contribution values calculated by Equation (12).201

We let P′ represent the activation patterns of f(0,0), then the calibrated contribution ÎcaliVi,j
(f(·)) of202

Vi,j is given by:203

ÎcaliVi,j
(f(·)) = ÎVi,j (f(V,X))−

∑
P

′(r)
a,b in f(0,0),withVi,j inP

′(r)
a,b

I
P

′(r)
a,b

(f(0,0))

|V (P
(r)
a,b )|

. (16)

In graph classification tasks, a pooling layer such as mean-pooling is added after the convolution204

layers to obtain the graph representation. To determine the contribution of each input feature, we can205

simply apply the same pooling operation as used in the pre-trained GCN.206

As we mentioned in Section 2, we aim to obtain the explanations by the critical edges in this paper,207

since edges have more fine-grained information than nodes. Therefore, we treat the edges as variables,208

while considering the node features X as constants similar to parameters W or B. This setup naturally209

aggregates the contribution of node features onto edges. By leveraging edge attributions, we are able210

to effectively highlight motifs within the graph structure.211

4 Experiments212

We conduct a series of experiments on the fidelity, discriminability and stability metrics to compare213

our method with the state-of-the-art methods including GNNExplainer [31], PGExplainer [17], PGM-214

Explainer [27], SubgraphX [33], CF-GNNExplainer [16], RCExplainer [3], RG-Explainer [23] and215

DEGREE [8]. As outlined in Section 2, we highlight edges as explanations as suggested by [7]. For216

baselines that identify nodes or subgraphs as explanations, we adopt the evaluation setup from [3].217

We evaluate the performance of explanations on three variants of GNNs, which are GCN [14],218

GraphSAGE [9] and GIN [30]. The experiments are conducted on both the graph classification219

task and the node classification task. For graph classification task, we evaluate on a synthetic220

dataset, BA-2motifs [17], and two real-world datasets, Mutagenicity [13] and NCI1 [19]. For node221

classification task, we evaluate on three synthetic datasets [17], which are BA-shapes, BA-Community222

and Tree-grid. As space is limited, we will only present the key results here. Fidelity results on GIN223

and GraphSAGE, as well as the results of node classification tasks can be found in the Appendix.224

Discussions on the controversial metrics such as accuracy are also moved to the Appendix.225

4.1 Fidelity226

Fidelity [20, 32, 29, 3] is the decrease of predicted probability between original and new predictions227

after removing important edges, which are used to evaluate the faithfulness of explanations. It is228
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Figure 2: Discriminability performance averaged across 10 runs of the explanations produced by
various GNN explainers at different levels of sparsity. "Original" refer to the performance of feeding
the original data into the GNN without any modifications or explanations applied.

Class 0 Class 1

(a)GNNExplainer (b)PGExplainer (c)PGM-Explainer (d)RG-Explainer
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(i) Original

Figure 3: Visualization of explanation embeddings on the BA-2Motifs dataset. Subfigure (i) refers
to the visualization of the original embeddings by directly feeding the original data into the GNN
without any modifications or explanations applied.

defined as fidelity(S,G) = fy(G)− fy(G\S). As pointed out by [32], the fidelity may be sensitive229

to sparsity of explanations. The sparsity of an explanation S ⊆ E for a graph G = {V, E} is given by230

sparsity(S,G) = 1− |S|
|E| . It indicates the percentage of edges that remain in G after the removal of231

edges in S. Higher sparsity means fewer edges are identified as critical, which may have a smaller232

impact on the prediction probability. Therefore, we compare fidelity performance under similar levels233

of average sparsity, as in [33, 29, 3]. Figure 1 displays the fidelity results, with the baseline results234

sourced from [3]. Our proposed approach, GOAt, consistently outperforms the baselines in terms235

of fidelity across all sparsity levels, validating its superior performance in generating accurate and236

reliable faithful explanations. Among the other methods, RCExplainer exhibits the highest fidelity, as237

it is specifically designed for fidelity optimization. Notably, unlike the other methods that require238

training and hyperparameter tuning, GOAt offers the advantage of being a training-free approach,239

thereby avoiding any errors across different runs.240

4.2 Discriminability241

Discriminability, also known as discrimination ability [5, 12], refers to the ability of the explanations242

to distinguish between the classes. We define the discriminability between two classes c1 and c2 as the243

L2 norm of the difference between the mean values of explanation embeddings of the two classes. The244

embeddings used for explanations are taken prior to the last-layer classifier, with node embeddings245

employed for node classification tasks and graph embeddings utilized for graph classification tasks.246

In this procedure, only the explanation subgraph S is fed into the GNN instead of G.247

We show the discriminability across various sparsity levels on GCN, as illustrated in Figure 2. Due to248

the significant performance gap between the baselines and GOAt, a logarithmic scale is employed.249

Our approach consistently outperforms the baselines in terms of discriminability across all sparsity250

levels, demonstrating its superior ability to generate accurate and reliable class-specific explanations.251

Notably, at sparsity = 0.7, GOAt achieves higher discriminability than the original graphs on the252

BA-2Motifs and NCI1 datasets. This indicates that GOAt effectively reduces noise unrelated to253

the investigated class while producing informative class explanations. Additionally, we observe a254
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Figure 4: Coverage of the top-k explanations across the datasets.

substantial decrease in discriminability between sparsity levels of 0.75 and 0.8 on BA-2Motifs. This255

implies that a minimum of approximately 25% of the edges is necessary to distinguish between256

the classes, which is in line with our expectation, given that a "house" motif, consisting of 6 edges,257

usually represents 24% of the total edges (on average, the total number of edges in BA-2Motifs is 25).258

Furthermore, we present scatter plots to visualize the explanation embeddings generated by various259

GNN explainers. Figure 3 showcases the explanation embeddings obtained from different GNN260

explaining methods on the BA-2Motifs dataset, with sparsity = 0.7. More scatter plots on Muta-261

genicity and NCI1 and can be found in the Appendix. The explanations generated by GNNExplainer262

fail to exhibit class discrimination, as all the data points are clustered together without any distinct263

separation. While some of the Class 1 explanations produced by PGExplainer, PGM-Explainer,264

RG-Explainer, RCExplainer, and DEGREE are noticeably separate from the Class 0 explanations, the265

majority of the data points remain closely clustered together. As for SubgraphX, most of its Class 1266

explanations are isolated from the Class 0 explanations, but there is a discernible overlap between the267

Class 1 and Class 0 data points. In contrast, our method, GOAt, generates explanations that clearly268

and effectively distinguish between Class 0 and Class 1, with no overlapping points and a substantial269

separation distance, highlighting the strong discriminability of our approach.270

4.3 Stability of extracting motifs271

As we will later show in Section 4.4, it is often observed that datasets contain specific class motifs.272

For instance, in the BA-2Motifs dataset, the Class 1 motif exhibits a "house" structure. To ensure273

the stability of GNN explainers in capturing the class motifs across diverse data samples, we aim274

for the explanation motifs to exhibit relative consistency for data samples with similar properties,275

rather than exhibiting significant variations. To quantify this characteristic, we introduce the stability276

metric, which measures the coverage of the top-k explanations across the dataset. An ideal explainer277

should generate explanations that cover a larger number of data samples using fewer motifs. This278

characteristic is also highly desirable in global-level explainers, such as [2, 11]. We illustrate the279

stability of the unbiased class as the percentage converge of the top-k explanations produced on280

GCN with sparsity = 0.7 in Figure 4. Our approach surpasses the baselines by a considerable281

margin in terms of the stability of producing explanations. Specifically, GOAt is capable of providing282

explanations for all the Class 1 data samples using only three explanations. This explains why there283

are only three Class 1 scatters visible in Figure 3.284

4.4 Qualitative analysis285

We present the qualitative results of our approach in Table 1, where we compare it with state-of-the-art286

baselines such as PGExplainer, SubgraphX, and RCExplainer. The pretrained GNN achieves a 100%287

accuracy on the BA-2Motifs dataset. As long as it successfully identifies one class, the remaining288

data samples naturally belong to the other class, leading to a perfect accuracy rate. Based on the289

explanations from GOAt, we have observed that the GNN effectively recognizes the "house" motif290

that is associated with Class 1. In contrast, other approaches face difficulties in consistently capturing291

this motif. The Class 0 motifs in the Mutagenicity dataset generated by GOAt represent multiple292

connected carbon rings. This indicates that the presence of more carbon rings in a molecule increases293

its likelihood of being mutagenic (Class 0), while the presence of more "C-H" or "O-H" bonds in a294

molecule increases its likelihood of being non-mutagenic (Class 1). Similarly, in the NCI1 dataset,295

GOAt discovers that the GNN considers a higher number of carbon rings as evidence of chemical296
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Table 1: Qualitative results of the top motifs of each class produced by PGExplainer, SubgraphX,
RCExplainer and GOAt. The percentages indicate the coverage of the explanations.

BA-2Motifs Mutagenicity NCI1
Class0 Class1 Class0 Class1 Class0 Class1

PGExplainer

C

N

C

C CC C C

C C

C

C

Cl

C

C C C

C C

×2

×2 ×N ×N

4.8% 1.8% 1.2% 1.3% 0.1% 0.5%

SubgraphX
Br

C

H H

C

H

C

N

0.4% 12.8% 0.2% 0.2% 0.2% 0.1%

RCExplainer
C

C C

C

C

C C

×N
H

C

H

C

Br

Br
×N ×N ×N

6.4% 6.2% 0.4% 0.5% 0.05% 0.1%

GOAt
×N

×N

C

C

C

×N

C

C

C

C

C

×N

H

C

×N

H

O

×N ×N

3.8% 3.4% 93.4% 4% 3.5% 2.2% 2.2% 1.2% 3.5% 1.2% 4.3% 4.0%

compounds being active against non-small cell lung cancer. Other approaches, on the other hand, fail297

to provide clear and human-understandable explanations.298

5 Related Work299

Local-level Graph Neural Network (GNN) explanation approaches have been developed to shed300

light on the decision-making process of GNN models at the individual data instance level. Most of301

them, such as GNNExplainer [31], PGExplainer [17], PGM-Explainer [27], GraphLime [10], RG-302

Explainer [23], CF-GNNExplainer [16], RCExplainer [3], CF2 [26], RelEx [34] and Gem [15], train a303

secondary model to identify crucial nodes, edges, or subgraphs that explain the behavior of pretrained304

GNNs for specific input samples. However, the quality of the explanations produced by these methods305

is highly dependent on hyperparameter choices. Moreover, these explainers’ black-box nature raises306

doubts about their ability to provide comprehensive explanations for GNN models. Approaches like307

SA [4], Grad-CAM [20], GNN-LRP [22], and DEGREE [8], which rely on gradient back-propagation,308

encounter the saturation problem [24]. As a result, these methods may generate explanations that are309

less faithful. SubgraphX [33] combines perturbation-based techniques with pruning using Shapley310

values. While it can generate some high-quality subgraph explanations, its computational cost is311

significantly high due to the reliance on the MCTS (Monte Carlo Tree Search). Additionally, as312

demonstrated in our experiments in Section 4, existing approaches exhibit inconsistencies on similar313

data samples and poor discriminability. This reinforces the need for our proposed method GOAt,314

which outperforms state-of-the-art baselines on fidelity, discriminability and stability metrics. Our315

work also relates to global-level explainability approaches. GLGExplainer [2] leverages prototype316

learning and builds upon PGExplainer to obtain global explanations. GCFExplainer [11] generates317

global counterfactual explanations by employing random walks on an edit map of graphs, utilizing318

local explanations from RCExplainer and CF2. Both GLGExplainer and GCFExplainer heavily rely319

on local explanations. Integrating local explainers that produce higher-quality local explanations,320

such as GOAt, has the potential to enhance the performance of these global-level explainers.321

6 Conclusion322

We propose GOAt, a local-level GNN explainer that overcomes the limitations of existing GNN323

explainers, in terms of insufficient discriminability, inconsistency on same-class data samples, and324

overfitting to noise. We analytically expand GNN outputs for each class into a sum of scalar products325

and attribute each scalar product to each input feature. Although GOAt shares similar limitations326

with some decomposition methods of requiring expert knowledge to design corresponding explaining327

processes for various GNNs, our extensive experiments on both synthetic and real datasets, along328

with qualitative analysis, demonstrate its superior explanation ability. Our method contributes to329

enhancing the transparency of decision-making in various fields where GNNs are widely applied.330
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