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ABSTRACT

Physics-informed Neural Networks (PINNs) have been widely used to obtain ac-
curate neural surrogates for a system of Partial Differential Equations (PDE). One
of the major limitations of PINNs is that the neural solutions are challenging to
interpret, and are often treated as black-box solvers. While Symbolic Regression
(SR) has been studied extensively, very few works exist which generate analyti-
cal expressions to directly perform SR for a system of PDEs. In this work, we
introduce an end-to-end framework for obtaining mathematical expressions for
solutions of PDEs. We use a trained PINN to generate a dataset, upon which we
perform SR. We use a Differentiable Program Architecture (DPA) defined using
context-free grammar to describe the space of symbolic expressions. We improve
the interpretability by pruning the DPA in a depth-first manner using the magni-
tude of weights as our heuristic. On average, we observe a 95.3% reduction in
parameters of DPA while maintaining accuracy at par with PINNs. Furthermore,
on an average, pruning improves the accuracy of DPA by 7.81% . We demonstrate
our framework outperforms the existing state-of-the-art SR solvers on systems of
complex PDEs like Navier-Stokes: Kovasznay flow and Taylor-Green Vortex flow.
Furthermore, we produce analytical expressions for a complex industrial use-case
of an Air-Preheater, without suffering from performance loss viz-a-viz PINNs.

1 INTRODUCTION

Symbolic Regression is the task of generating a mathematical expression that best fits a given dataset.
SR is an important problem as it helps understand underlying relationships and patterns in data,
with application in scientific discovery [1, 2], engineering design [3, 4], and financial forecasting
[5], just to name a few. SR helps reduce the complexity of the models and provides interpretable
solutions, thereby improving the transparency and accountability of AI systems. Recently, Virgolin
et al. in [6] proved SR to be an NP-hard problem. Historically, SR has been attempted using
genetic programming methods [7], purely Deep-learning methods like sequence generation [8, 9],
tree search [10, 11, 12], and a combination of both Deep-learning and Genetic programming methods
[13, 14].

While SR has been applied for PDE equation discovery using Genetic Programming [15], Fast-
function extraction [3], replacing activation functions of NNs with primitive functions [16], sequence
to sequence equation generation using Transformers [17], very few works [18, 19] attempts to di-
rectly model the final analytical solution of the governing PDE. Inspired by [20] which generates
differentiable programs, Majumdar et al. in [19] introduced Physics Informed Symbolic Networks
(PISN) to generate analytical expressions for PDEs. Given context-free grammar, they approximate
a production rule by taking a linear weighted approximation of the rules. While PISNs performed
on par with PINNs, the analytical expressions generated were large and weren’t interpretable. In
this work, we use the original differentiable program architecture (DPA) in [20] for performing
symbolic regression over generated data points by PINNs. We improve the transparency of the sym-
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Figure 1: Program Derivation Graph of a Grammar with operators: sin, exp, x, y, c of Depth 2

bolic expressions by pruning the DPA in a depth-first manner, using the magnitude of weights as the
heuristic. Pruning allows us to obtain sparser representations for PDEs that are easily interpretable.

Our key contributions are as follows: 1) We use a DPA to perform Symbolic Regression on PDEs.
2) Our pruning strategy reduces 95.3% of the parameters of the program architecture with a perfor-
mance at par with PINNs. 3) Our framework demonstrates excellent performance on complex PDEs
like Navier Stokes and industrial systems like Air-preheater [21, 22] which have no predefined ana-
lytical solution.

The rest of the paper is organized as follows. Section 2 consists of Methodology, followed by Ob-
servations and Discussions. Section 4 consists of the limitations. The Appendix is organized as
follows. Section A.1 consists of PDE-details, followed by Experiment details. Section A.3 consists
of training schedule, followed by generated symbolic expressions and a comparison between pruned
and unpruned DPA. Finally, we conclude by providing a visualization of the proposed pruning algo-
rithm.

2 METHODOLOGY

Algorithm 1 Symbolic Regression for Partial Differential Equation
1: Train a PDE solver to solve for the PDE
2: Generate input-output data points using the learned PDE solver
3: Perform Regression on generated data points using Differentiable Program Architecture
4: Prune the Differentiable Program Architecture

Algorithm 1 describes our end-to-end procedure for performing symbolic regression on Partial Dif-
ferential Equations. In the first step, we use a PDE solver to solve for the given PDE setup. In this
work, we use PINNs as our PDE solver. The PINN solver can be replaced by any numerical PDE
solver suitable for the problem at hand. The second step involves preparing the dataset by generat-
ing input-output data points using the trained PINN. Symbolic regression is then performed using
a Differentiable Program Architecture defined based on the context-free grammar [23] described in
Equation 1. We take sin, exp, log, power 2, and power 3 as our unary operators, and Addition and
Multiplication as our binary operators. Figure 1 provides an example of expanding the differentiable
program architecture till depth 2 using sin, exp, and leaf nodes as operators. x,y,t,c are the terminal
symbols. Finally, we prune the DPA as described in Algorithm 2.

α ::= sin α1 | exp α1 | log α1 | pow2 α1 | pow3 α1 | Add α1 α2 |Multiply α1 α2 | x | y | t | c (1)

Algorithm 2 represents our pruning strategy for DPA. We initialize the final DPA with unpruned
DPA weights and loss as the mean-relative-L2-error on data points generated using the PDE solver.
We postulate the importance of a term in the mathematical expression is directly proportional to the
magnitude of the edge. Thus, we recursively visit every child of a node starting with the child having
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Algorithm 2 Depth First Search Pruning Strategy of Differentiable Program Architecture (DPA)
1: Global initialize W ← Unpruned DPA weights, loss← SCORE (W )
2: Function DFS (node)
3: Initialize visited← node, children← children of node sorted by absolute value
4: if children is None then
5: W

′ ← PRUNE (node)
6: W

′ ← FINETUNE (W
′
)

7: finetuned-loss← SCORE (W
′
)

8: if finetuned-loss ≤ loss then
9: loss← finetuned-loss

10: W ←W
′

11: end if
12: Return W ,loss
13: end if
14: for all child in children do
15: if child not in visited then
16: DFS(child)
17: end if
18: end for

a minimum value, in a depth-first manner. On encountering a leaf, we prune that weight and finetune
the DPA. If the resulting DPA performs on par or better, we accept the prune, else we reset the prune
and move to the next child. We perform this operation recursively until all nodes are visited.

3 OBSERVATIONS AND DISCUSSION

Table 1 compares the performance of the output variables of interest. We compare the performance
of pruned DPA with the trained PINN, unpruned DPA, and our benchmarks, AI-Feynmann (AIF),
SymbolicGPT (SGPT), and Deep Symbolic Regression (DSR). Except for Air-Preheater (APH),
we compare the relative-L2 error between the solutions generated with their corresponding true
analytical solution. In the case of APH, true analytical solutions don’t exist, and we use numerical
simulations by Finite Difference Method to generate the ground-truth temperature distribution [24].

PINN DPA-Unpruned DPA-Pruned AIF SGPT DSR
Diffusion u 7.32e-3 8.54e-3 8.16e-3 8.00e-4 0.54 1.16

Kovasznay
u 9.64e-3 1.15e-2 9.85e-3 4.50e-1 0.53 0.64
v 1.44e-2 1.56e-2 1.47e-2 4.80e-1 0.55 0.54
p 1.75e-2 2.09e-2 1.77e-2 1.69e-2 0.75 1.33

Taylor u 3.02e-2 3.71e-2 3.08e-2 5.60e-1 0.59 1.52
Green v 2.73e-2 3.59e-2 2.76e-2 6.70e-1 0.62 1.83

p 3.64e-2 4.66e-2 3.75e-2 7.40e-1 0.76 0.91
Diffusion u 1.34e-2 1.68e-2 1.64e-2 3.50e-1 0.56 0.82Reaction

APH

Tfg 2.03 2.14 2.06 31.93 35.21 22.45
Tmg 2.53 2.55 2.54 34.23 38.24 31.27
Tfa1 3.08 3.27 3.09 28.45 46.65 44.48
Tma1 2.81 3.02 2.85 47.71 41.24 49.67
Tfa2 2.97 3.10 3.00 39.64 37.41 45.21
Tma2 3.02 3.08 3.04 38.26 41.69 37.73

Table 1: Performance comparison of Differentiable program architecture with existing benchmarks.
In every row, bold denotes the Top-2 best performing methods.

Across all tasks, Unpruned-DPA is slightly worse than PINNs on the same training samples, in
spite of the best expression lying in the defined CFG. The reason is, NNs have one standard acti-
vation throughout, while DPA has multiple operators with unique convergence characteristics. For
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example, Sine introduces periodicity, leading to the gradients being periodic, exponential increases
rapidly for larger values and log decreases sharply for very small values. Currently, popular op-
timizers like Adam have difficulty in converging all the operators simultaneously [25], as they all
have different convergence rates. Loss-curve characteristics of DPA need to be studied and custom
optimizers have to be developed further. Across all examples, we observe pruning to improve the
accuracy of DPA. The accuracy boost happens because pruning of weights reduces overfitting oc-
curring due to complex expressions at higher depths, leading to better generalization. From table
3, we observe on an average, 95.3% reduction in # weights of DPA after pruning. Furthermore,
pruned DPA comprehensively outperforms the benchmarks. Across the 14 output variables in 5
PDEs, AIF is marginally better on just 2 variables whose underlying mathematical expressions are
Depth-1 expressions and are easy to capture. The other 12 variables have expressions with higher
depths which the benchmarks struggle to recapture. Failure of benchmarks on expressions with
higher depth highlights the superior representation capacity of program architecture.

Table 4 and 5 represent the expressions obtained by Pruned-DPA and benchmark methods respec-
tively. On careful observation, we notice SGPT and DSR to be biased towards the logarithm and
nested sin and cos operators. AIF produces over-simplified expressions, hence struggles to find a
good fit to datapoints. We provide an example in Appendix A.5 of unpruned-DPA for the Diffu-
sion equation. Our pruning heuristics allows us to prune 95% of the weights and bring down 20
line expressions to 1-2 lines, drastically improving their explainability. Furthermore, for complex
examples like Kovasznay flow, pruned-DPA expressions come very close to the ground-truth, and
equivalencies can be proved. utrue and u differ in cos(2πy) and sin(6.28y − 1.57) terms, and it’s
well known from trignometric identities relation, cos(2πy) = sin(2πy − pi/2). vtrue and v differ
in exp(λx)/2π and (0.29− 0.54x+ 0.46x2− 0.28x3 + 0.12x4), where one can verify, the differed
expression is in fact the Taylor-series approximation of the ground-truth upto the 4th order.

The higher relative L2-error of PINNs and DPA in Taylor Green Vortex is because of the difficulty
in the underlying physics dynamics, as the flow is unsteady with decaying vortices [26]. Here,
the advantages of pruning are more evident, as there is a 0.79% boost in accuracy over pruned-
DPA, indicating significant improvement in function generalization arising from disentanglement
from complex expressions, thereby improving interpretability. In the Diffusion-Reaction example,
the ground-truth is an example of Depth-6. We were able to obtain a symbolic expression using a
Depth-3 DPA, highlighting the expressive capacity of DPA. However, it comes at a cost of larger
complex expressions with terms like log, 2nd and 3rd power terms which don’t appear in the ground
truth. In contrast to other examples, there isn’t a large boost in accuracy from pruning here, as there
are large inter-dependencies amongst operators to fit a Depth-6 expression into a Depth-3 DPA.
Our framework shows promise for systems with no-analytical solution, as evident from the example
of Air-Preheaters, where benchmark methods fail. Pruned-DPA gives 1-line symbolic expressions
for generalizing temperature distributions in the entire domain, while the temperature MAE w.r.t.
numerical simulations are comparable to that of PINNs.

4 LIMITATIONS

While our pruning strategy reduces the size of DPA, the ground-truth expressions are far more con-
cise than the obtained expressions. One of the reasons is the greedy nature of the pruning algorithm.
To provide an intuition, suppose a lesser weight is assigned to the operator when the DPA hasn’t
been pruned yet, which can ultimately provide the most concise expression. There is a high possi-
bility of that weight getting pruned, as a different expression obtained by the remaining operators
can still generalize over the dataset. Thus, our pruning strategy is sub-optimal in nature, and better
pruning strategies need to be explored to obtain even more concise expressions. Nevertheless, this
DFS-based pruning is a good starting point. Additionally, the convergence of DPA is non-trivial due
to the varying mathematical properties of primitive operators. Detailed investigation on optimization
guarantees of DPA and theoretical studies on its convergence and error bounds remain.
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A APPENDIX

A.1 PDE INFORMATION

Table 2 represents the PDE setups for our experiments. The second column consists of informa-
tion on governing conditions, initial conditions, boundary conditions, and the domain of the spatial
and temporal variables. The final column represents the ground-truth analytical solutions of output
variables of interest.

Air-Preheater: We consider the non-dimensional form of APH. Equation 2 represents Conduction
while 3 represents convection heat transfer. There are six outputs to this PDE system, three fluid
temperatures (T ) and three metal temperature (Tm) for given co-ordinates (θ, z). NTU and Pe
stand for the number of transfer units and Peclet number respectively.

∂Tmj
∂ϕ

= NTUmj (Tj − Tmj ) +
1

Pemj

∂2Tmj
∂z2

(2)

∂Tj
∂z

= NTUmj
(
Tmj − Tj ,

)
j = 1, 2, 3 (3)

Tj (ϕ, z = 0) = Tin,j , j = 1, 2, 3 (4)

Tm1(ϕ = 0, z) = Tm3(ϕ = 1, 1− z) (5)

Tm1
(ϕ = 1, z) = Tm2

(ϕ = 0, 1− z) (6)

Tm2(ϕ = 1, z) = Tm3(ϕ = 0, z) (7)

6
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Governing Conditions Ground-truth expressions

Diffusion
ut = uxx − e−tsin(πx)(1− π2)

u(x, 0) = sin(πx) utrue = e−tsin(πx)
u(−1, t) = u(1, t) = 0

Kovasznay
u · ∇u+∇p = ν∆u in [0, 1]2 utrue = 1− eλxcos(2πy)
div(u) = 0 in [0,1] vtrue = λeλxsin(2πy)/2π

ptrue = (1− e2λx)/2

Taylor-Green
ut + u · ∇u+∇p = ν∆u in [0, 2]2×[0,1] utrue = −cos(πx)sin(πy)e−2π2νt

div(u) = 0 in [0, 2]2×[0,1] vtrue = sin(πx)cos(πy)e−2π2νt

u(t = 0) = u0 in [0, 2]2 ptrue = − (cos(2πx)+cos(2πy))e−2π2νt

4
ut = uxx + e−tf(x) utrue = e−t(p(x) + q(x))

Diffusion u(x, 0) = p(x) + q(x) p(x) = 12sin(x)(1+cos(x))+4sin(3x)
12

Reaction u(t,−π) = u(t, π) = 0 in [−π,π]×[0,1] q(x) = sin(4x)(1+cos(4x)
4

f(x) = 36sin(2x)+64sin(3x)+90sin(4x)+189sin(8x)
24

Table 2: PDE-information

Figure 2: Air-Preheater schematic derived from [22]. The computational domain is divided into
three parts, Gas, primary air and secondary air respectively.

∂Tmj [z = 0, 1]

∂z
= 0, j = 1, 2, 3 (8)

The boundary conditions are imposed by Gas inlet temperature (Tin,1), primary air inlet temperature
(Tin,2), and secondary air inlet temperature (Tin,3) in Equation 4. Equations 5,6,7 impose continuity
constraints on the metal temperature.

A.2 EXPERIMENTS

We consider five systems of PDEs for our experiments, Diffusion equation [27], Navier-Stokes:
Kovasznay flow [27], Navier-Stokes: Taylor Green Vortex equation [26], Diffusion Reaction equa-
tion, and two dimensional conjugate heat transfer in Air-Preheater[24]. Diffusion-Reaction PDEs
are important for modeling chemical reactions [28] wherein there is a formation of new chemical
products, and diffusion wherein there is a transfer of matter over a domain. Kovasznay flow is a
two-dimensional steady-state Navier-Stokes equation with Reynold’s Number of 20. Taylor-Green
Vortex flow is a two-dimensional unsteady Navier-Stokes equation with viscosity ν = 0.01. For both
Kovasznay flow and Taylor-Green Vortex, we sample the boundary conditions from the ground-truth
analytical solutions. Our final use case is that of Air-Preheaters (APH). APH is a heat exchanger
deployed in thermal power plants to improve the thermal efficiency. Monitoring of internal tem-
perature profiles of APH is important to avoid failures, which arises due to complex thermal and
chemical phenomena. The reference solution of APH is derived using a Finite-Difference method

7



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

and doesn’t have a ground-truth analytical solution. Inspection of internal temperature profiles can
significantly benefit from symbolic representations in contrast to NNs due to improved interpretabil-
ity. We describe the schematics of APH in A.1 and governing equations of other PDE systems in
Table 2.

A.3 TRAINING SCHEDULE

PINNs: We consider a Neural Network with 3 hidden layers of 50 neurons each. We train using
Adam optimizer for 60k epochs with multiplicative decay of 0.1 every 15k epochs, starting from
a learning rate of 1e−3. We further finetune using the L-BFGS optimizer. In the examples of
Diffusion, Diffusion Reaction, there are two input variables, x, t. We consider a computational
domain of [0, 1] X [0, 1] with 10201 collocation points divided into 7500 training points and 2701
test points. In Kovasznay flow, we consider a 101x101 equally spaced grid domain to represent
the XY plane, where X, Y ∈ [-0.5,1.0] X [-0.5,1.5]. We consider 2601 collocation points and
320 boundary condition points, with 80 points for each face of the grid. Taylor-Green Vortex: the
computational domain is defined for X,Y,T as [0,2] X [0,2] X [0,1], with a time-step of 0.1 in the
time dimension. We sample 25k collocation points, 5k initial-boundary condition points throughout
the domain. For evaluating the test-performance, across all PDE examples, we sample 10k points
for every output variable of interest.

Differentiable Program Architecture: Table 3 consists of the information on the maximum depth
of the architecture and operators of interest for every PDE system. The weights of the DPA are
initialized using the Glorot-uniform optimizer which is used to perform SR. We use an Adam Opti-
mizer for 100k epochs with multiplicative decay of 0.1 every 25k epochs with an initial learning rate
of 1e−2. We further apply early stopping if the generalization on datapoints generated by PINNs
doesn’t improve in the last 5k epochs. For training the unpruned-DPA, we apply L1-regularization
over all weights with L1-coefficient of 1e−5. All experiments were conducted on Nvidia P100 GPU
with 16 GB GPU Memory and 1.32 GHz GPU Memory clock using Pytorch framework.

SymbolicGPT: The training methedology of SymbolicGPT is adapted from the original paper [8].
The hyperparameter specifications are as follows: numEpochs: 20, embeddingSize: 512, number of
points:10k, blockSize: 200, testBlockSize: 400, batchSize: 128, variable-embedding: False.

AI-Feynman: The training methodology of AI-Feynman is adapted from the original paper
[12]. We consider the following hyperparameter sets for our experiments: ’bftt’:{60,120},
’epochs’:{300,400,500}, ’op’:{’7ops.txt’,’10ops.txt’,’14ops.txt’,’19ops.txt’}, ’polynomial de-
gree’:{3,4,5}.
DSR: The training methodology of Deep Symbolic Regression is adapted from the original paper
[13]. We consider the following hyperparameter sets for our experiments: ’seed’:{1,2,3,4,5}, ’func-
tion set’:{’add’, ’sub’, ’mul’, ’div’, ’sin’, ’cos’, ’exp’, ’log’, ’const’}, batch size:1000, learning rate:
5e−4, entropy coefficient: 0.005, risk factor: 0.05.
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Depth Unpruned Pruned Operators
Diffusion u 2 157 15 [x,t,sin,exp,+,∗]

Kovasznay
u 2 343 12 [x,y,sin,exp,+,∗,log,pow2,pow3]
v 2 343 13 [x,y,sin,exp,+,∗,log,pow2,pow3]
p 2 343 9 [x,y,sin,exp,+,∗,log,pow2,pow3]

Taylor-Green
u 3 3097 20 [x,y,t,sin,exp,+,∗,log,pow2,pow3]
v 3 3097 33 [x,y,t,sin,exp,+,∗,log,pow2,pow3]
p 3 3097 35 [x,y,t,sin,exp,+,∗,log,pow2,pow3]

Diffusion u 3 3097 63 [x,t,sin,exp,+,∗,log,pow2,pow3]Reaction

Air-Preheater

Tfg 2 157 6 [θ,z,sin,exp,+,∗]
Tmg 2 157 15 [θ,z,sin,exp,+,∗]
Tfa1 2 157 15 [θ,z,sin,exp,+,∗]
Tma1 2 157 9 [θ,z,sin,exp,+,∗]
Tfa2 2 157 8 [θ,z,sin,exp,+,∗]
Tma2 2 157 12 [θ,z,sin,exp,+,∗]

Table 3: Differentiable Program Architecture characteristics. Unpruned and pruned refers to #
parameters in the resulting DPA respectively.

A.4 GENERATED SYMBOLIC EXPRESSIONS

Diffusion u = (1.51x− 2.04sin(−2.51x+ 0.20t))(2.62x+ 0.32t)
+3.67sin(1.30sin(0.37t+ 1.63) + 3.13x)− 3.53
u = 1.01 + 0.99(sin(6.28y − 1.57)e−1.81x)

Kovasznay v = sin(6.28y − 3.14)(0.29− 0.54x+ 0.46x2 − 0.28x3 + 0.12x4)
Flow p = −2x4 + 4.38x3 − 3.75x2 + 1.81x+ 0.02

u = (1.93x2 − 0.13xt− 0.03t− 0.26x− 0.36)(4.13y − 4.12)∗
(−0.72sin(1.71y) + xy − 0.56y2 + 0.06y) + 0.50

Taylor-Green v = 0.21sin(−0.33xt+ 0.34yt+ 3.41x− 3.43y) + (0.74x+ 0.54y + 0.13t− 1.09)
Vortex ∗(−1.03x− 0.93y − 0.31)(0.31x− 0.69sin(1.69x+ 1.87y − 2.11))

p = 0.75sin(h1)− 0.29h3 − 0.17(sin((−0.91x+ 0.32t+ 0.61) + 3.30))
h3 = sin(2.07(−0.18t+ 1.84)(−1.64x− 0.44t+ 0.41))
h1 = 0.25t− 1.61sin(1.89y + 0.08) + (1.30y − 0.03t)(0.18y + 0.23t− 1.41) + 0.33
u = 0.30log(0.64log(−0.44x2 − 1.9x− 0.95))− 0.07h22 + h3
h2 = 0.84− 0.25sin(0.95x− 0.33) + 0.46h28 − 0.43h39

Diffusion h3 = 0.19(−0.26x− 0.12y − 0.15e−0.66−0.22y)3

Reaction h8 = 0.87x− 0.47e0.83x+0.64 + 0.83(−0.99x+ 0.33y − 0.25)
(0.49x+ 0.02y + 0.71)− 0.07(0.07x− 0.30y − 0.04)3

h9 = 0.17sin(0.22x− 0.07y − 0.28)− 0.19(0.67x− 0.14y − 0.07)2

−0.09(0.50x+ 0.72)3 + 0.22x− 0.07y − 0.02

APH

Tfg = 0.99sin(0.22z + 0.83e−0.21z+0.61θ+0.66)

Tmg = (0.52sin(1.56θ) + 1.18)(0.83e−0.44θ + 0.18zθ − 0.23θ2 − 0.27θ)
Tfa1 = (−0.11z + 0.77θ − 1.59 + 0.27(zθ))(0.03z + 0.22θ − 0.60 + 0.37θ2)
Tma1 = (−1.14sin(0.07z + 0.88θ − 1.06))(0.06z + 0.69θ + 0.97)
Tfa2 = 0.86sin(0.34z + 1.26θ + 0.55)(−0.10z − 1.02θ)(0.11z + 1.10θ) + 0.96
Tma2 = (0.13z + 1.30sin(1.08θ) + 1.25)(0.08z − 0.68θ + 0.77)

Table 4: Expressions obtained after pruning DPA
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AI-Feynman Symbolic GPT DSR
u 1.01exp(−0.99t) ∗ cos(0.99x− 1.56) 1.22x− log(x− θ) sin(cos(sin(log(x)))
u 1.24cos(x) exp(0.43x− 0.71y) + 2.23 sin(sin(x)) + tan(y)
v sin(x)− 1.14cos(y) 1.52 2.57tan(y)
p 0.51− 0.48eλx log(y − exp(1.13x) + 0.47) 0.52x− 1.62y
u 0.75tan(1.61sin(y − z)− 0.33cos(t) 1.1704 1.6321
v 4.43 1.82 + 1.10y − 0.43t x3 − 1.22cos(t)− 1.15
p 2.24x− (1.19log(x)− 0.47t− 0.22)3 0.95x− 0.18y + 1.44 0.08log(1.87)
u 1.27exp(x− t)(cos(x)− sin(cos(t))) 3.33e−t(1.14x− x2) sin(sin(x))cos(cos(t))
Tfg 1.45log(2zθ + (sin(z − θ)3) θ − log(0.96z + 0.34) sin(sin(sin(θ)))
Tmg 2.67exp(1.33cos(θ − 5.53))− 3.41 z − θ2 3.32
Tfa1 tan(0.77z)− θ ∗ cos(z)− 1.05 3.22log(1.19z)− 0.46 cos(cos(cos(θ)))
Tma1 1.22z2 1.17θ − 0.95 z − θ + cos(cos(1.32))
Tfa2 1.64log(2.32θ)− 0.19z3 2.43log(θ)log(z) + 3.21 cos(cos(1.33sin(z)− θ))
Tma1 z − θ 1.52log(θz)− 0.96 1.67θ − z

Table 5: Symbolic Expressions generated by benchmark methods

A.5 PRUNED VS UNPRUNED: DIFFUSION EQUATION

Uunpruned = −1.76e−6x+0.30t−0.78sin(h20)−0.43eh21−4.84e−5(h22 +h23)+1.04h24h25 +
3.45e−5

h20 = −0.57x− 6.45e−5t− 0.54sin(h10)− 0.47eh11 + 1.28(h12 + h13) + 1.05e−4h14h15 + 0.15
h21 = −1.16e−5x − 2.18e−5t + 7.28e−5sin(h16) − 1.85e−5eh17 − 1.77e−4(h18 + h19) −
2.12e−5h110h111 + 0.07
h22 = −1.16e−5x − 2.18e−5t + 7.28e−5sin(h112) − 1.85e−5eh113 − 1.77e−4(h114 + h115) −
2.12e−5h116h117 − 6.65e−5

h23 = 7.42e−5x + 1.63e−5t − 1.60e−4sin(h118) − 8.29e−5eh119 − 6.21e−5(h120 + h121) +
1.59e−4h122h123 + 0.0002
h24 = 6.04e−1x − 1.95e−1t − 8.08e−1sin(h124) + 7.38e−5eh125 − 2.00e−1(h126 + h127) −
6.44e−5h128h129 + 0.20
h25 = 3.39e−2x − 1.44e−5t − 8.03e−5sin(h130) + 3.85e−1eh

131 − 3.38e−5(h132 + h133) +
1.14h134h135 + 0.29
h10 = −0.04x+ 1.32t+ 0.60, h11 = 4.65e−1x+ 6.25e−6t+ 0.5031
h12 = −7.07e−1x+ 1.47e−5t+ 8.60e−6, h13 = −1.02x+ 1.49e−5t+ 1.23e−5

h14 = −0.0001x− 0.0001t− 0.0002, h15 = −1.25e−4x+ 5.77e−5t− 0.0002
h16 = −4.31e−5− 1.34e−4− 8.35e−5, h17 = −1.64e−4x+ 2.97e−5t− 7.37e−5

h18 = 4.88e−6x+7.52e−5t−8.31e−5, h19 = −9.6106e−5x−9.97e−5t+1.88e−5

h110 = 5.38e−5x− 6.86e−5t+ 0.0001, h111 = −2.50e−4x+ 9.12e−5t− 0.0001
h112 = 0.0001x+ 0.0001t− 5.28e−5, h113 = 1.23e−5x+ 6.02e−5t+ 2.20e−5

h114 = 0.0002x− 0.0002t+ 0.0003, h115 = 3.81e−5x+ 7.75e−5t+ 8.39e−5

h116 = 3.08e−4x+ 1.16e−5t− 0.0003, h117 = 6.94e−5x− 1.38e−4t− 4.28e−5

h118 = 9.81e−5x−6.65e−5t+ 3.90e−5, h119 = 9.98e−5x−1.34e−4t+ 8.06e−5

h120 = −4.02e−6x+5.20e−5t−0.0003, h121 = −4.28e−5x−1.22e−4t−7.00e−6

h122 = −0.0002x+0.0001t+9.46e−5, h123 = 4.80e−5x−4.22e−5t+3.66e−5

h124 = −2.06x+0.65t+0.53, h125 = 5.84e−5x+1.66e−4t−1.68e−5

h126 = −2.03e−1x+1.86e−5t−2.52e−5, h127 = −4.98e−6x+1.8e−5t+1.07e−5

h128 = −3.32e−5x− 8.32e−5t− 0.0001, h129 = 2.89e−5x+ 6.21e−5t+ 0.0001
h130 = −1.42e−4x+ 1.01e−7t+ 6.28e−5, h131 = 3.57e−5x− 5.78e−2t+ 0.37
h132 = −2.34e−4x+ 1.66e−6t− 6.33e−5, h133 = 0.0001x+ 0.0002− 0.0002
h134 = 0.81x− 0.03t− 0.65, h135 = −1.23x+ 0.11t+ 1.03e−5

Upruned = (1.51x−2.04sin(−2.51x+0.20t))(2.62x+0.32t)+3.67sin(1.30sin(0.37t+1.63)+
3.13x)− 3.53
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A.6 PRUNING ALGORITHM VISUALIZATION

As an example, we take a DPA of depth 2 with sin,exp,log as operators, and x,y,c as leaf nodes.

root

sin

sin exp log

exp

sin exp log

x y 1

log

sin exp log

-0.34 0.16

-1.37 1.24 -0.05

1.19 2.32 0.35

-3.71

Figure 3: Starting from the root, we recursively select the node with minimum magnitude till we
encounter the leaf. The path followed is root→exp→log→1. Now, we prune the leaf and assume
after fine-tuning, the loss of newer architecture is at par with the original. Thus, we accept the prune.

root

sin

sin exp log

exp

sin exp log

x y

log

sin exp log

-0.37 0.14

-1.29 1.36 -0.07

0.74 1.86

-3.64

Figure 4: Currently, we are at node root→exp→log. The node x is selected and tested for pruning.
Let’s assume the pruning is accepted. The resulting tree is as follows:

root

sin

sin exp log

exp

sin exp log

y

log

sin exp log

-0.39 0.129

-1.15 1.28 -0.03

2.32

-3.67

Figure 5: Now the node root→exp→log→y is tested. Let’s assume fine-tuned weight performance
is worse, hence it’s not prunable. Resulting DPA:

11



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

root

sin

sin exp log

exp

sin

x y 1

exp log

y

log

sin exp log

-0.39 0.129

-1.15

0.27 -0.55 0.62

1.28 -0.03

2.32

-3.67

Figure 6: Let’s assume root→exp→log→y is not prunable, the algorithm recurses back to
root→exp→log. The prune is rejected again, and recurses to node root→exp. The nodes selected
following the algorithm are sin→x, and the algorithm continues recursively, in a depth-first manner.
Let’s assume after all the nodes are visited, the DPA obtained is:

root

exp

sin

x

log

y

0.16

-1.37

0.39

-0.05

2.14

Figure 7: The final symbolic expression is 0.16exp(−1.37sin(0.39x)− 0.05log(2.14y)).
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