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Abstract

MultiModal Summarization (MMS) aims to001
generate a concise summary based on mul-002
timodal data like texts and images and has003
wide application in multimodal fields. Previous004
works mainly focus on the coarse-level textual005
and visual features in which the overall features006
of the image interact with the whole sentence.007
However, the entities of the input text and the008
objects of the image may be underutilized, lim-009
iting the performance of current MMS models.010
In this paper, we propose a novel Visual En-011
hanced Entity-Level Interaction Network (VE-012
ELIN) to address the problem of underutiliza-013
tion of multimodal inputs at a fine-grained level014
in two ways. We first design a cross-modal en-015
tity interaction module to better fuse the entity016
information in text and the object information017
in vision. Then, we design an object-guided018
visual enhancement module to fully extract the019
visual features and enhance the focus of the020
image on the object area. We evaluate VE-021
ELIN on two MMS datasets and propose new022
metrics to measure the factual consistency of023
entities in the output. Finally, experimental024
results demonstrate that VE-ELIN is effective025
and outperforms previous methods under both026
traditional metrics and ours.027

1 Introduction028

MultiModal Summarization (MMS) takes multi-029

modal data like texts and images as input and aims030

to generate a concise summarization as output.031

This task has attracted much attention in the re-032

search community (Li et al., 2019, 2018b; Zhu033

et al., 2018) because it can be widely used in var-034

ious real-world applications, such as social me-035

dia (Zhang et al., 2022a), meeting (Zhong et al.,036

2021), and e-commerce products (Li et al., 2020a).037

Recent studies primarily concentrate on the038

cross-modal interaction and filtering of visual039

features, which have achieved promising perfor-040

mances. For instance, Yu et al. (2021) explores041

Britain's Nicole Cooke won gold in the 
women's cycling road race at the Beijing 
Olympics here on sunday .

TextImage

Summary from VG-BART: Nicole Cooke wins women 's cycling gold
Summary from Ours: Cooke wins women 's cycling road race gold at Beijing Olympics

Target Summary: Britain 's Cooke wins olympic gold in women 's cycling road race

Figure 1: Illustration of multimodal summarization task.
The bottom part is the target summary, a summary from
the previous method, and ours. The previous method can
not adequately leverage fine-grained entity information.

various ways of image-text fusion to utilize multi- 042

modal information based on the application of gen- 043

erative Pre-trained Language Models (PLMs) to the 044

task. Zhang et al. (2022b) adopts knowledge distil- 045

lation from the vision-language pre-trained model 046

to improve image selection. Liang et al. (2023) 047

designs a target-oriented contrastive objective to 048

discard needless visual information. Despite their 049

effectiveness, current methods mainly focus on the 050

coarse-level rather than fine-grained visual and tex- 051

tual features, which conduct interactions between 052

the global image and sentence semantics. This 053

might lead to an insufficient utilization of crucial 054

local information. As shown in Figure 1, there are 055

three fine-grained entities "Nicole Cooke", "Gold", 056

and "Beijing Olympics" in the input text, and three 057

object regions in the image corresponding to them 058

while previous methods are not able to extract the 059

fine-grained information adequately. 060

Thus, we consider utilizing the inherent entity 061

information in the text and object information in 062

the image so that the output summary maintains 063

key entities with high coherence. In this paper, 064

we propose a novel Visual Enhanced Entity-Level 065

Interaction Network (VE-ELIN) for Multimodal 066

Summarization. The proposed VE-ELIN addresses 067
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the problem of incomplete generation of entity in-068

formation in two ways. Firstly, we design the cross-069

modal Entity Interaction (EI) module which can070

better fuse the entity information in text and the071

object information in vision and provide richer mul-072

timodal representation. In particular, the EI module073

includes three levels of features, namely sentence,074

entity, and object level. We encode the input text075

using a textual encoder to obtain sentence-level fea-076

tures and use a pre-trained Named Entity Recogni-077

tion model (Yan et al., 2021) to get entity-level fea-078

tures. Moreover, we use the image object detection079

model (Carion et al., 2020) to capture the objects080

in the image and encode them to obtain the object-081

level features. Secondly, to further distill features082

from vision information, we apply CLIP (Radford083

et al., 2021) and integrate it into our object-guided084

Visual Enhancement (VE) module. The VE module085

can fully extract the visual features and enhance the086

focus of the image on the object area to better inject087

visual information into the multimodal decoder.088

In addition to conventional evaluation methods,089

we introduce novel metrics to measure the factual090

consistency of entities in the output summarization.091

Specifically, we count the number of entities in092

the output and compare it with the entities in the093

target summary. Then, we compute the proportion094

of entities named EntityScore and the similarity095

between entities named SimilarScore.096

We evaluate VE-ELIN on two MMS datasets,097

which have different text lengths and input image098

numbers. The experimental results demonstrate099

that VE-ELIN is effective and outperforms previ-100

ous methods under both traditional metrics and101

ours.102

In summary, our contributions are as follows:103

• To the best of our knowledge, we are the first104

to identify the significance of fine-grained en-105

tity information for the multimodal summa-106

rization task.107

• We propose a unified Visual Enhanced Entity-108

Level Interaction Network (VE-ELIN) to gen-109

erate high-quality summaries while capturing110

key entity information in the original text.111

• We propose two new metrics EntityScore and112

SimilarScore to further assess the factual con-113

sistency of entities in the output. The experi-114

mental results demonstrate the effectiveness115

of our proposed VE-ELIN.116

2 Related Work 117

2.1 Multimodal Interaction 118

Object detection aims to predict a set of bounding 119

boxes and corresponding category labels for the tar- 120

geted objects in an image, which is a fundamental 121

task in computer vision. Named Entity Recognition 122

aims to identify the named entities in the text and 123

can be widely used in information retrieval (Brand- 124

sen et al., 2022), and knowledge graphs (Zamini 125

et al., 2022). Due to the rapid development of so- 126

cial media platforms such as Twitter, Multimodal 127

Named Entity Recognition (MNER) (Zhao et al., 128

2022) has attracted increasing attention. Given 129

image-text pairs, MNER aims to recognize the 130

named entities in the text and classify the corre- 131

sponding types. In the study of MNER, aligning 132

the instance information in images with entities in 133

text is an intuitive idea. However, in the field of 134

multimodal summarization, there has been limited 135

research on fine-grained interaction between visual 136

and textual modalities. 137

2.2 Multimodal Summarization 138

Text summarization aims to extract important infor- 139

mation from text and generate a concise summary. 140

With the increasing of multimodal data on the in- 141

ternet, researchers have shown a growing interest 142

in multimodal summarization. Different from tra- 143

ditional text summarization, multimodal summa- 144

rization aims to generate summaries based on data 145

from various modalities, e.g., video, image, audio, 146

and text. 147

Existing multimodal summarization tasks con- 148

tain sports summarization (Tjondronegoro et al., 149

2011), movies summarization (Evangelopoulos 150

et al., 2013), video summarization (Sanabria et al., 151

2018), meeting summarization (Erol et al., 2003; 152

Li et al., 2019), multimodal sentence summariza- 153

tion (Li et al., 2018b), multimodal summariza- 154

tion with multimodal output (Zhu et al., 2018), 155

e-commerce products summarization (Li et al., 156

2020a) and so on. Previous studies on multimodal 157

summarization tackle the tasks from different as- 158

pects. Palaskar et al. (2019) explore the hierar- 159

chy attention between the textual article and visual 160

features. Consequent studies utilize fusion forget 161

gate (Liu et al., 2020), visual selective gates (Li 162

et al., 2020b), and contribution network (Xiao et al., 163

2023), directing the attention of models towards 164

the most salient parts in the visual features for sum- 165

marization. 166
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3 Methodology167

In this section, we introduce the overview of our168

framework. We first present the brief task formu-169

lation and describe the method overview. Then,170

we detail our proposed module and introduce the171

training and generation process.172

3.1 Task Formulation173

In this paper, we focus on the multimodal sum-174

marization task, involving a dataset comprising n175

triplets ⟨ti, vi, si⟩, where ti represents the i-th text176

input, vi represents the i-th image input, and the177

MMS model is tasked with generating a summary178

si based on both ti and vi.179

3.2 Method Overview180

We use VG-GPLM (Yu et al., 2021) as the back-181

bone, which is built upon generative pre-trained182

language models (e.g., BART), and injects visual183

features on the encoder side. As shown in Figure 2,184

the VE-ELIN takes text and image as inputs and185

generates a summary as output. The multimodal186

encoder part of VE-ELIN consists of an EI module187

that can better fuse the entity features in textual and188

visual information and a VE module that can fully189

extract the visual features and enhance the focus190

of the image on the object area. Then, in the mul-191

timodal decoder, we fuse the features of different192

modalities from EI module and VE module and use193

it as extra input to the decoder.194

3.3 Multimodal Encoder195

3.3.1 Object-guided Visual Enhancement196

Given an image, we first utilize the visual encoder197

of CLIP (Radford et al., 2021) to extract visual198

local grid features. CLIP is a dual-stream vision-199

language pre-trained model that has undergone pre-200

training with a contrastive loss using 400 million201

image-text pairs. This model comprises a Trans-202

former (Vaswani et al., 2017) text encoder and an203

image encoder which could be either Vision Trans-204

former (ViT) (Dosovitskiy et al., 2020) or Resid-205

ual Convolutional Neural Network (ResNet) (He206

et al., 2016). In this paper, we apply the ViT im-207

age encoder of CLIP and obtain visual features208

V ∈ Rsv×dv , where sv is the patch numbers and209

dv is the hidden dimension of image features.210

Previous studies have indicated that different211

regions of visual features contribute unequally to212

summary generation (Li et al., 2020b; Liu et al.,213

2020; Xiao et al., 2023). For instance, given the214

input sentence and image, the target summary is 215

"Britain’s Cooke wins Olympic gold in women’s 216

cycling road race.", as shown in Figure 1. In the 217

image, the People, Gold Medal, and Olympic Logo 218

components are more relevant to the target sum- 219

mary, while the features corresponding to the rest 220

of the sections are less important. Thus we design 221

a simple feature filter to enhance the focus on the 222

image objects and better utilization of input visual 223

features. In practice, we follow Carion et al. (2020) 224

to detect the objects in the image using ResNet-101 225

as a backbone. As shown in Figure 2(b), two fea- 226

tures are obtained after going through DETR, one 227

is the visual features of each object marked with the 228

bounding box: ObjectFeatures=Vo ∈ Rn×1×dv , 229

where n is the object numbers. For instance, there 230

are three objects in the image, then n=3. In addi- 231

tion, we set the maximum number of objects to 64. 232

The other is the attention score matrix of the whole 233

image: AttentionScore=Ai,j=(ai,j) ∈ Rm×m, 234

where ai,j ∈ [0, 1], i, j ∈ [0,m] and are the in- 235

dexes of the matrix, the closer the value is to the 236

object area the closer it is to 1. We design a simple 237

features filter through the attention score matrix, in 238

practice, we transform Ai,j through a linear layer 239

to the same dimension as the image features, and 240

then fuse it with the image features. 241

Âi,j = Linear(Ai,j) (1) 242

Vfiltered = V ∗ Âi,j (2) 243

where Vfiltered ∈ Rsv×dv . The filtered visual fea- 244

tures are represented in Figure 2 as visual-enhanced 245

features. 246

3.3.2 Cross-modal Entity Interaction 247

We design this module to capture entity-related tex- 248

tual and visual information through three features: 249

sentence-level features, entity-level features, and 250

object-level features. Finally, get the entity-related 251

feature as output and add it to the text-vision fusion 252

in Section 3.4. 253

Sentence-level Features. At the entry of the 254

framework, the input text is first tokenized and 255

converted to a sequence of token embeddings 256

Xt ∈ RN×dt , and the positional encodings Epe ∈ 257

RN×dt are added to it, in which N is the sequence 258

length and dt is the textual dimension. 259

Zenc
0 = Xt + Epe (3) 260

As illustrated in Figure 2(a), the encoder is 261

composed of a stack of L encoder layers, 262

3



(c) Multimodal Decoder(a) Cross-modal Entity Interaction (b) Object-guided 
Visual Enhancement

Britain 's nicole cooke won gold in the women 's.... race at the Beijing 
Olympics here on sunday .
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Figure 2: The overview of our model. Given input text and image, our model generates summaries as output
through three modules: the cross-modal entity interaction module, object-guided visual enhancement module, and
multimodal decoder.

each containing two sub-layers: Multi-head263

Self-Attention (MSA) and Feed-Forward Net-264

work (FFN). After each sub-layer, there is a resid-265

ual connection (Wang et al., 2019) followed by a266

layer normalization (LN). We obtain the sentence-267

level features Ts through the encoder.268

Z ′
l = LN(MSA(Zenc

l−1) + Zenc
l−1) (4)269

Ts = LN(FFN(Z ′
l) + Z ′

l) (5)270

where Ts ∈ RN×dt .271

Entity-level features. Following Yan et al.272

(2021), we use the Seq2Seq model with the pointer273

mechanism to generate the entity index sequences,274

which are then mapped to sentence-level features275

to obtain entity-level features. This part includes276

two components.277

(1) BART Encoder encodes the input sentence278

X = ti into vectors He279

He = Encoder(X) (6)280

where He ∈ RN×dt , and dt is the hidden dimen-281

sion.282

(2) BART Decoder is to get the index probabil-283

ity distribution for each step Pt = P (yt | X,Y<t).284

However, since Y<t contains the pointer and tag285

index, it cannot be directly inputted to the Decoder.286

We use the Index2Token conversion to convert in-287

dexes into tokens:288

ŷt =

{
Xyt , ifyt ≤ n,

Gyt−n, ifyt > n
(7)289

After converting each yt this way, we can get 290

the last hidden state hdt
t ∈ Rdt with Ŷ<t = 291

[ŷ1, ..., ŷt−1] as follows 292

hdt
t = Decoder(He; Ŷ<t) (8) 293

Then, we can use the following equations to 294

achieve the index probability distribution Pt 295

Ee = TokenEmbed(X) (9) 296

Ĥe = MLP(He) (10) 297

H̄e = α× Ĥe + (1− α)×Ee (11) 298

Gdt = TokenEmbed(G) (12) 299

Pt = Softmax([H̄e ⊗ hdt
t ;Gdt ⊗ hdt

t ]) (13) 300

where TokenEmbed is the embeddings shared be- 301

tween the Encoder and Decoder; Ee, Ĥe, H̄e ∈ 302

Rn×dt ; α ∈ [0, 1] is a hyper-parameter; Gdt ∈ 303

Rl×dt ; [·; ·] means concatenation in the first dimen- 304

sion; ⊗ means the dot product. Finally, we map 305

the index Pt to the sentence-level features Eq.(5) 306

to get entity-level features. 307

Te = Map(P, Ts) (14) 308

During the training phase, we use the negative 309

log-likelihood loss and the teacher forcing method. 310

During the inference, we use an autoregressive 311

manner to generate the target sequence. In the 312

overall framework of our model, the NER part is 313

pre-trained in advance, and in the overall model 314

training, it is used for inference. 315
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Cross-modal Entity Interaction. Firstly, we316

employ multi-head self-attention on the interaction317

features to exploit contexts of the same modality.318

Dm = MultiHeadAttn(Hm, Hm, Hm) (15)319

Hm is the interaction features, where m ∈320

{Te, Vo, Ts}. Then, we interact entity features with321

object features via a gated cross-attention module.322

Re = MultiHeadAttn(HTe , DVo , DVo) (16)323

αe = Sigmoid(We1Re +We2HTe) (17)324

Me = αe ·Re + (1− αe) ·HTe (18)325

where Me is object-aware entity representations.326

Similarly, we obtain entity-aware object represen-327

tations Mo. After that, we fuse visual information328

from Me to the sentence-level features Ts.329

αs = Sigmoid(Ws1Me +Ws2HTs) (19)330

Ms = αs ·Rs + (1− αs) ·HTs (20)331

Finally, we add Ms and Mo to get the output entity-332

related features Zer of the cross-modal entity inter-333

action module.334

Zer = Ms +Mo (21)335

3.4 Multimodal Decoder336

We inject visual information through the vision-337

guided multi-head attention mechanism. The query338

Q is from the obtained filtered visual features339

Vfiltered in Section 3.3.1, and the key K and value340

V are from the obtained sentence-level features Ts341

in Section 3.3.2. Then, we apply a cross-modal342

multi-head attention (CMA) to get the text queried343

visual features Zv. Finally, we add the entity-344

related features Zer and Zv to get the text-vision345

fusion features Zk.346

Z ′
v = CMA(Vfiltered, Ts, Ts) (22)347

Zv = Dropout(concat(Ts, Z
′
v)) (23)348

Zk = Linear(Zer + Zv) (24)349

The text-vision fusion features will be input into350

the decoder of BART to generate the corresponding351

summary.352

log pθ(y) =

n∑
i=1

log pθ(yi|Zk, yi, . . . , yi−1) (25)353

where yi is the ith generated token on the decoder354

side. For the text-vision fusion process above, the355

training loss is the commonly used cross-entropy356

loss function Lce.357

Dataset Size S.Len T.Len I.Num
(M/A/M) (M/A/M) (M/A/M)

MMSS
train 62, 0000 11/21.68/63 2/7.72/25 1/1/1
dev 2, 000 11/24.35/47 3/7.68/17 1/1/1
test 2, 000 11/22.97/51 3/7.67/24 1/1/1
average - 23.00 7.69 1

MM-Sum-En
train 303, 8280 7/461.82/39, 282 1/22.12/172 0/2.35/118
dev 11, 437 55/440.59/1, 686 8/21.15/41 0/2.24/30
test 11, 460 61/438.11/1, 667 7/21.23/42 0/2.09/26
average - 446.84 21.50 2.23

Table 1: The statistics of MMSS and MM-Sum-En
datasets. "S.Len" and "T.Len" refer to the num-
ber of words in the source text and the target sum-
mary. "I.Num" denotes the number of images cor-
responding to each text. "M/A/M" means Mini-
mum/Average/Maximum.

4 Experiments 358

4.1 Dataset 359

We evaluate our method on the MultiModal Sen- 360

tence summarization (MMSS) (Li et al., 2018a) 361

and Multilingual Multimodal abstractive Summa- 362

rization for English (MM-Sum-En) dataset on 363

mid-high-resource scenario (Liang et al., 2022). 364

The MMSS dataset contains 62,000 samples in 365

the training set, 2, 000 in the validation set, and 366

2, 000 in the test set, and each sample is a triplet 367

of ⟨sentence, image, summary⟩. The MM-Sum 368

dataset for English contains 326, 725 samples and 369

867, 817 images in total which crawled from the 370

BBC News, where each sample is constructed of 371

a news article and some images and presented as 372

⟨article, images, summary⟩. We count some ba- 373

sic information about the dataset, which is shown 374

in Table 1. 375

4.2 Experimental Settings 376

For image processing, we utilize the vision encoder 377

of the "ViT-B/32" version of CLIP (Radford et al., 378

2021), the image patches are 7× 7 and the dimen- 379

sion of output visual features is 768. We apply the 380

"Resnet-101" version of DETR (Carion et al., 2020) 381

for object detection with threshold = 0.95. For 382

textual generative pre-trained language models, we 383

adopt BART-base (Lewis et al., 2020) as our textual 384

encoder and decoder, where the textual dimension 385

is also 768. We train the Named Entity Recogni- 386

tion (NER) model proposed by Yan et al. (2021) as 387

a tool for extracting text entities. During training, 388

for MMSS, we set the dropout to 0.1, the batch size 389

is 120, the maximum training epochs is 50, and the 390

beam size is 5. The learning rate is 2e-5 and the 5 391
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Model ROUGE-1 ROUGE-2 ROUGE-L BLEU BERTScore MoverScore

MMSS
Lead⋆⊤ 33.64 13.40 31.84 - - -
Compress⋆⊤ 31.56 11.02 28.87 - - -
ABS⋆⊤ 35.95 18.21 31.89 - - -
SEASS⋆⊤ 44.86 23.03 41.92 - - -
Multi-Source⋆ 39.67 19.11 38.03 - - -
Doubly-Attention⋆ 41.11 21.75 39.92 - - -
MAtt⋆ 47.28 24.85 44.48 - - -
MSE⋆ 45.63 23.68 42.97 - - -
CFSum⋆ 47.86 25.64 44.64 48.83 86.98 32.36
V G-BART 52.02 29.67 49.45 57.94 91.86 47.36
Ours (V E-ELIN) 54.20 31.24 51.47 60.16 92.22 49.15

MM-Sum-En
mT5∧⊤ 36.99 15.18 29.64 - - -
V G-mT5∧ 37.17 14.88 29.41 - - -
SOV -MAS∧ 37.26 15.02 29.61 - - -
V G-BART 37.39 15.99 30.35 40.81 90.11 27.37
Ours (V E-ELIN) 39.97 18.09 32.47 45.44 90.61 30.85

Table 2: Experimental results on test set of multimodal sentence summarization (MMSS) dataset and test set of
Multilingual Multimodal abstractive Summarization for English (MM-Sum-En) dataset. "⋆" marks the experimental
results reported by Xiao et al. (2023) and "∧" indicates that they were reported by Liang et al. (2022). "⊤" denotes
this method only leverages text modality data.

times the learning rate for vision-related modules392

of the MMS model and the loss function is cross en-393

tropy. We leverage AdamW (Loshchilov and Hut-394

ter, 2018) as optimizer with β1 = 0.9, β2 = 0.999395

and a weight decay of 1e-2. Additionally, we apply396

a scheduler to decay the learning rate to 95% of the397

current one after every 10 epochs. The maximum398

input length is 64 and the maximum output length399

is 32. For the MM-Sum-En dataset, the parameters400

are the same as in MMSS except that the maximum401

input length is 1024, the maximum output length is402

256, the batch size is 10, and the maximum training403

epochs is 20. We save our best model checkpoint404

according to the best ROUGE-2 score on the vali-405

dation set. All models are trained and tested on a406

single NVIDIA 3090Ti GPU.407

4.3 Compared Methods408

Our base model is VG-BART (Yu et al., 2021),409

which utilizes PLMs as the backbone and injects410

visual features into the encoder layer through dot411

production.412

We also compare our method with other works413

with these two datasets. For MMS dataset: 1)414

Lead. The initial eight words are employed as415

the summary. 2) Compress (Clarke and Lap-416

ata, 2008). A methodology centered on sentence 417

compression, utilizing syntactic structure as a ba- 418

sis. 3) ABS (Rush et al., 2015). An attentive 419

CNN encoder in conjunction with a neural net- 420

work language model decoder to proficiently sum- 421

marize sentences. 4) SEASS (Zhou et al., 2017). 422

A summarization framework distinguished by its 423

incorporation of textual selective encoding. 5) 424

Multi-Source (Libovický and Helcl, 2017). This 425

method integrates multiple source modalities utiliz- 426

ing hierarchical attention mechanisms, addressing 427

challenges in multimodal machine translation. 6) 428

Doubly-Attention (Calixto et al., 2017). This ap- 429

proach leverages two distinct attention mechanisms 430

to incorporate visual features, narrowing the gap 431

between image and translation. 7) MAtt (Li et al., 432

2018b). This approach proposes modality attention 433

and image-filtering techniques tailored for multi- 434

modal summarization. 8) MSE (Li et al., 2020a). 435

This approach advocates for the application of vi- 436

sual selective gates in multimodal summarization. 437

9) CFSum (Xiao et al., 2023). This approach pro- 438

poses a contribution network that selects more im- 439

portant parts of images for multimodal summariza- 440

tion, which is a strong baseline 441

For MM-Sum-En dataset: 1) mT5 (Xue et al., 442
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2020). This approach is a multilingual language443

model pre-trained on a large dataset of 101 lan-444

guages that is a text-only baseline. 2) VG-445

mT5 (Liang et al., 2022). This approach imple-446

ments the vision-guided multi-head attention fu-447

sion method to inject visual features into the mT5448

model. 3) SOV-MAS (Liang et al., 2022). This ap-449

proach applies two summary-oriented visual mod-450

eling tasks to enhance the MMS model based on451

the pre-trained language models (e.g., BART).452

For all the above models trained on MM-Sum-453

En, we follow the same monolingual experimental454

settings in the mid-high-resource scenario, as em-455

ployed by Liang et al. (2022).456

4.4 Main Results457

Following Xiao et al. (2023) and Liang et al.458

(2022), we report our experiment results with459

6 automatic metrics: ROUGE-1, ROUGE-460

2, ROUGE-L (Lin, 2005), BLEU (Papineni461

et al., 2002), MOVER (Zhao et al., 2019) and462

BERTScore (Zhang et al., 2019).463

Overall, compared with previous works on464

MMSS as shown in Table 2, our proposed method465

demonstrates significant improvements across all466

6 reported evaluation metrics. Compared with the467

strong baseline CFSum (Xiao et al., 2023), our468

method achieves 6.64 higher points on ROUGE-469

1 than it, demonstrating the effectiveness of our470

proposed method. Comparing VG-BART with471

those that design gate-based pre-filters or other net-472

works based on the vision-language pre-trained473

encoder (e.g., MSE (Li et al., 2020b) and CF-474

Sum (Xiao et al., 2023)), we find that our base475

model, which straightforwardly employs a PLM476

and integrates visual features, proves to be more477

effective in enhancing model performance. Fur-478

thermore, VE-ELIN outperforms the base model479

VG-BART, showing that the image processing and480

visual enhancement we use in the model and the481

added entity-level features complement each other482

and significantly improve the quality of the output483

summarization. The experimental effects of each484

module are specified in the ablation study 5.1. In485

the MM-Sum-En dataset, we observe the same re-486

sults as in MMSS dataset, the performance of our487

proposed method is improved compared to others.488

As shown in Table 1, the average length of input489

sentences in MMSS is 23, and the average num-490

ber of input images is 1. In contrast, the length491

and number of MM-Sum-En are 446.84 and 2.23.492

Also, MMSS is from the headlines of article pairs493

Model R-1 R-2 R-L

MMSS
Ours(VE-ELIN) 54.20 31.24 51.47
- w/o MV E&MEI&Vf 52.02 29.67 49.45
- w/o MV E&MEI 53.60 31.10 50.80
- w/o MV E 53.42 31.03 51.02
- w/o MEI 53.30 30.97 50.85

MM-Sum-En
Ours(VE-ELIN) 39.97 18.09 32.47
- w/o MV E&MEI&Vf 37.39 15.99 30.35
- w/o MV E&MEI 39.30 17.60 31.90
- w/o MV E 39.74 17.96 32.28
- w/o MEI 39.51 17.84 32.04

Table 3: Ablation study on two datasets, the top row
of each model shows the experimental results from the
MMS dataset and the bottom row shows the results from
the MM-Sum dataset. R-1/2/L denotes ROUGE-1/2/L,
"MV E" denotes visual enhancement module, "MEI"
denotes entity interaction module, and "Vf " denotes
visual features.

from Gigaword (Graff and Cieri, 2003; Napoles 494

et al., 2012), and MM-Sum-En is sourced from 495

BBC website 1. This indicates that there is a huge 496

difference between the two MMS datasets. Our 497

method still generates high-quality summaries, fur- 498

ther demonstrating the robustness and effectiveness 499

of our proposed VE-ELIN. 500

5 Analysis 501

5.1 Ablation Study 502

We conduct ablation studies on both MMSS dataset 503

and MM-Sum-En dataset to prove the effectiveness 504

of the different components of our model. The 505

results are shown in Table 3. We have the following 506

conclusions: 507

The absence of visual features means that it is 508

a text-only model based on pre-trained language 509

models (PLMs) like BART. It shows a decrease in 510

performance across all ROUGE metrics, demon- 511

strating the incorporation of visual information 512

within the MMS model yields noticeable enhance- 513

ments in performance. 514

Without the inclusion of the visual enhancement 515

module and entity interaction module, we find a 516

performance degradation of about 1%, this verifies 517

the effectiveness of our proposed modules. 518

As for the model without the visual enhancement 519

module compared with the previous methods, we 520

find an improvement in the metrics, which shows 521

1https://www.bbc.com/
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Dataset Source Target VG-BART Ours (VE-ELIN)

E.Num E.Num E.Score S.Score E.Num E.Score S.Score E.Num E.Score S.Score

MMSS
dev 3, 013 1, 422.0 100 100 616 48.80 91.53 703 61.87 93.74
test 3, 117 1, 429.0 100 100 620 58.47 93.35 641 59.60 93.47
average 3, 065 1, 425.5 100 100 618 53.64 92.44 672 60.74 93.61

MM-Sum-En
dev 72, 412.0 19, 300 100 100 6, 461.0 37.96 90.27 7, 293.0 43.28 91.31
test 72, 403.0 19, 200 100 100 6, 310.0 37.02 90.14 7, 272.0 43.01 91.20
average 72, 407.5 19, 250 100 100 6, 385.5 37.49 90.21 7, 282.5 43.15 91.26

Table 4: The Entity evaluation metrics in the output summarization. "Source" refers to the input text of the datasets,
and "Target" refers to the reference summary. "E.Num" denotes the number of entities in the text, "E.Score" refers
to the EntityScore, which is the proposed evaluation metric, and the "S.Score" means SimlarScore metric, which is
obtained by doing similarity calculations between the entities in the summaries generated by Target/VG-BART/Ours
and the entities in the "Target" respectively.

that the image features filter does help to improve522

the quality of the output summaries. The results523

show that the visual enhancement module further524

improves the model performance, indicating that525

the objects in the images are beneficial to the visual526

modality information.527

The model without entity interaction module528

makes relative contributions to the MMS model.529

We can see a certain growth of three ROUGE met-530

rics compared with others in Section 4.4, showing531

that focusing on the object visual features of the532

image is effective. The results indicate that our533

entity interaction module improves the quality of534

the output summaries and has a large improvement535

on the model performance.536

5.2 Entity Consistency537

As shown in Table 4, we formulate some new met-538

rics to assess the quality of output summarization.539

Specifically, we utilize the NER model trained with540

BART with an accuracy of 93.8% to count the num-541

ber of entities in the output summarization gen-542

erated by the proposed method and the baseline,543

which is represented in Table 4 by "E.Num". In the544

process of counting, if an entity in the generated545

summary is also among the entities in the corre-546

sponding target summary, the entity is recorded as547

a valid entity. Then, the ratio of the number of valid548

entities to the number of entities in the target sum-549

mary is calculated and named EntityScore, which550

is expressed as "E.Score" in Table 4.551

EntityScore =
Ngenerated

Ntarget
(26)552

where Ngenerated and Ntarget is the entity num-553

bers in generated summary and target summary.554

Statistical results indicate a significant improve- 555

ment in the number of entities recognized by our 556

approach. Moreover, we concatenate the entities 557

in the model output summary into one sentence 558

X=⟨x1, x2, ..., xk⟩ and the entities in the target 559

summary into another sentence X̂=⟨x̂1, x̂2, ..., x̂l⟩. 560

Following Zhang et al. (2019), the SimilarScore 561

is then used to calculate the similarity of the two 562

sentences. 563

SimilarScore = BERTScore(X, X̂) (27) 564

The computational results demonstrate that our pro- 565

posed method indeed improves the number and 566

quality of entities in the output summarization, thus 567

proving the effectiveness of our model. 568

6 Conclusion 569

In this paper, we propose a novel framework VE- 570

ELIN for multimodal summarization to alleviate 571

the incomplete generation of entity information in 572

summary. We design a cross-modal entity inter- 573

action module to better utilize the entity features 574

in texts and images, and an object-guided visual 575

enhancement module to enhance the focus on the 576

objects while taking full advantage of useful image 577

information. To further evaluate the factual consis- 578

tency of entities in the output summary, we also 579

propose two new metrics named EntityScore and 580

SimilarScore. Experimental results on two differ- 581

ent types of datasets demonstrate that our method 582

is effective and outperforms previous methods un- 583

der both traditional evaluation metrics and our pro- 584

posed new metrics. 585
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Limitations586

Our approach is limited by the underlying per-587

formance of the generative pre-trained language588

model. In addition, the accuracy of the object de-589

tection model DETR and named entity recognition590

model also limit our performance.591

Ethics Statement592

We affirm that our work here does not deepen the bi-593

ases already inherent in the models and the datasets594

we used are open-sourced. Thus we expect no ethi-595

cal concerns associated with this research.596
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